blob: b28fe68224f6718ac116cb9762352fbb5c2ed3e0 [file] [log] [blame] [edit]
/*
* Copyright (C) 2007 The Android Open Source Project
*
* Licensed under the Apache License, Version 2.0 (the "License");
* you may not use this file except in compliance with the License.
* You may obtain a copy of the License at
*
* http://www.apache.org/licenses/LICENSE-2.0
*
* Unless required by applicable law or agreed to in writing, software
* distributed under the License is distributed on an "AS IS" BASIS,
* WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
* See the License for the specific language governing permissions and
* limitations under the License.
*/
#define ATRACE_TAG ATRACE_TAG_GRAPHICS
#include <dlfcn.h>
#include <errno.h>
#include <inttypes.h>
#include <math.h>
#include <stdatomic.h>
#include <stdint.h>
#include <sys/types.h>
#include <mutex>
#include <EGL/egl.h>
#include <cutils/properties.h>
#include <log/log.h>
#include <binder/IPCThreadState.h>
#include <binder/IServiceManager.h>
#include <binder/PermissionCache.h>
#include <ui/DisplayInfo.h>
#include <ui/DisplayStatInfo.h>
#include <gui/BufferQueue.h>
#include <gui/GuiConfig.h>
#include <gui/IDisplayEventConnection.h>
#include <gui/Surface.h>
#include <ui/GraphicBufferAllocator.h>
#include <ui/HdrCapabilities.h>
#include <ui/PixelFormat.h>
#include <ui/UiConfig.h>
#include <utils/misc.h>
#include <utils/String8.h>
#include <utils/String16.h>
#include <utils/StopWatch.h>
#include <utils/Timers.h>
#include <utils/Trace.h>
#include <private/android_filesystem_config.h>
#include <private/gui/SyncFeatures.h>
#include <set>
#include "Client.h"
#include "clz.h"
#include "Colorizer.h"
#include "DdmConnection.h"
#include "DisplayDevice.h"
#include "DispSync.h"
#include "EventControlThread.h"
#include "EventThread.h"
#include "Layer.h"
#include "LayerVector.h"
#include "LayerDim.h"
#include "MonitoredProducer.h"
#include "SurfaceFlinger.h"
#include "DisplayHardware/FramebufferSurface.h"
#include "DisplayHardware/HWComposer.h"
#include "DisplayHardware/VirtualDisplaySurface.h"
#include "Effects/Daltonizer.h"
#include "RenderEngine/RenderEngine.h"
#include <cutils/compiler.h>
#include <android/hardware/configstore/1.0/ISurfaceFlingerConfigs.h>
#include <configstore/Utils.h>
#define DISPLAY_COUNT 1
/*
* DEBUG_SCREENSHOTS: set to true to check that screenshots are not all
* black pixels.
*/
#define DEBUG_SCREENSHOTS false
extern "C" EGLAPI const char* eglQueryStringImplementationANDROID(EGLDisplay dpy, EGLint name);
namespace android {
// ---------------------------------------------------------------------------
using namespace android::hardware::configstore;
using namespace android::hardware::configstore::V1_0;
const String16 sHardwareTest("android.permission.HARDWARE_TEST");
const String16 sAccessSurfaceFlinger("android.permission.ACCESS_SURFACE_FLINGER");
const String16 sReadFramebuffer("android.permission.READ_FRAME_BUFFER");
const String16 sDump("android.permission.DUMP");
// ---------------------------------------------------------------------------
int64_t SurfaceFlinger::vsyncPhaseOffsetNs;
int64_t SurfaceFlinger::sfVsyncPhaseOffsetNs;
bool SurfaceFlinger::useContextPriority;
int64_t SurfaceFlinger::dispSyncPresentTimeOffset;
bool SurfaceFlinger::useHwcForRgbToYuv;
uint64_t SurfaceFlinger::maxVirtualDisplaySize;
bool SurfaceFlinger::hasSyncFramework;
int64_t SurfaceFlinger::maxFrameBufferAcquiredBuffers;
SurfaceFlinger::SurfaceFlinger()
: BnSurfaceComposer(),
mTransactionFlags(0),
mTransactionPending(false),
mAnimTransactionPending(false),
mLayersRemoved(false),
mLayersAdded(false),
mRepaintEverything(0),
mRenderEngine(NULL),
mBootTime(systemTime()),
mVisibleRegionsDirty(false),
mHwWorkListDirty(false),
mAnimCompositionPending(false),
mDebugRegion(0),
mDebugDDMS(0),
mDebugDisableHWC(0),
mDebugDisableTransformHint(0),
mDebugInSwapBuffers(0),
mLastSwapBufferTime(0),
mDebugInTransaction(0),
mLastTransactionTime(0),
mBootFinished(false),
mForceFullDamage(false),
mInterceptor(this),
mPrimaryDispSync("PrimaryDispSync"),
mPrimaryHWVsyncEnabled(false),
mHWVsyncAvailable(false),
mDaltonize(false),
mHasColorMatrix(false),
mHasPoweredOff(false),
mFrameBuckets(),
mTotalTime(0),
mLastSwapTime(0),
mNumLayers(0)
{
ALOGI("SurfaceFlinger is starting");
vsyncPhaseOffsetNs = getInt64< ISurfaceFlingerConfigs,
&ISurfaceFlingerConfigs::vsyncEventPhaseOffsetNs>(1000000);
sfVsyncPhaseOffsetNs = getInt64< ISurfaceFlingerConfigs,
&ISurfaceFlingerConfigs::vsyncSfEventPhaseOffsetNs>(1000000);
maxVirtualDisplaySize = getUInt64<ISurfaceFlingerConfigs,
&ISurfaceFlingerConfigs::maxVirtualDisplaySize>(0);
hasSyncFramework = getBool< ISurfaceFlingerConfigs,
&ISurfaceFlingerConfigs::hasSyncFramework>(true);
useContextPriority = getBool< ISurfaceFlingerConfigs,
&ISurfaceFlingerConfigs::useContextPriority>(false);
dispSyncPresentTimeOffset = getInt64< ISurfaceFlingerConfigs,
&ISurfaceFlingerConfigs::presentTimeOffsetFromVSyncNs>(0);
useHwcForRgbToYuv = getBool< ISurfaceFlingerConfigs,
&ISurfaceFlingerConfigs::useHwcForRGBtoYUV>(false);
maxFrameBufferAcquiredBuffers = getInt64< ISurfaceFlingerConfigs,
&ISurfaceFlingerConfigs::maxFrameBufferAcquiredBuffers>(2);
char value[PROPERTY_VALUE_MAX];
property_get("ro.bq.gpu_to_cpu_unsupported", value, "0");
mGpuToCpuSupported = !atoi(value);
property_get("debug.sf.showupdates", value, "0");
mDebugRegion = atoi(value);
property_get("debug.sf.ddms", value, "0");
mDebugDDMS = atoi(value);
if (mDebugDDMS) {
if (!startDdmConnection()) {
// start failed, and DDMS debugging not enabled
mDebugDDMS = 0;
}
}
ALOGI_IF(mDebugRegion, "showupdates enabled");
ALOGI_IF(mDebugDDMS, "DDMS debugging enabled");
property_get("debug.sf.enable_hwc_vds", value, "0");
mUseHwcVirtualDisplays = atoi(value);
ALOGI_IF(!mUseHwcVirtualDisplays, "Enabling HWC virtual displays");
property_get("ro.sf.disable_triple_buffer", value, "1");
mLayerTripleBufferingDisabled = atoi(value);
ALOGI_IF(mLayerTripleBufferingDisabled, "Disabling Triple Buffering");
}
void SurfaceFlinger::onFirstRef()
{
mEventQueue.init(this);
}
SurfaceFlinger::~SurfaceFlinger()
{
EGLDisplay display = eglGetDisplay(EGL_DEFAULT_DISPLAY);
eglMakeCurrent(display, EGL_NO_SURFACE, EGL_NO_SURFACE, EGL_NO_CONTEXT);
eglTerminate(display);
}
void SurfaceFlinger::binderDied(const wp<IBinder>& /* who */)
{
// the window manager died on us. prepare its eulogy.
// restore initial conditions (default device unblank, etc)
initializeDisplays();
// restart the boot-animation
startBootAnim();
}
static sp<ISurfaceComposerClient> initClient(const sp<Client>& client) {
status_t err = client->initCheck();
if (err == NO_ERROR) {
return client;
}
return nullptr;
}
sp<ISurfaceComposerClient> SurfaceFlinger::createConnection() {
return initClient(new Client(this));
}
sp<ISurfaceComposerClient> SurfaceFlinger::createScopedConnection(
const sp<IGraphicBufferProducer>& gbp) {
if (authenticateSurfaceTexture(gbp) == false) {
return nullptr;
}
const auto& layer = (static_cast<MonitoredProducer*>(gbp.get()))->getLayer();
if (layer == nullptr) {
return nullptr;
}
return initClient(new Client(this, layer));
}
sp<IBinder> SurfaceFlinger::createDisplay(const String8& displayName,
bool secure)
{
class DisplayToken : public BBinder {
sp<SurfaceFlinger> flinger;
virtual ~DisplayToken() {
// no more references, this display must be terminated
Mutex::Autolock _l(flinger->mStateLock);
flinger->mCurrentState.displays.removeItem(this);
flinger->setTransactionFlags(eDisplayTransactionNeeded);
}
public:
explicit DisplayToken(const sp<SurfaceFlinger>& flinger)
: flinger(flinger) {
}
};
sp<BBinder> token = new DisplayToken(this);
Mutex::Autolock _l(mStateLock);
DisplayDeviceState info(DisplayDevice::DISPLAY_VIRTUAL, secure);
info.displayName = displayName;
mCurrentState.displays.add(token, info);
mInterceptor.saveDisplayCreation(info);
return token;
}
void SurfaceFlinger::destroyDisplay(const sp<IBinder>& display) {
Mutex::Autolock _l(mStateLock);
ssize_t idx = mCurrentState.displays.indexOfKey(display);
if (idx < 0) {
ALOGW("destroyDisplay: invalid display token");
return;
}
const DisplayDeviceState& info(mCurrentState.displays.valueAt(idx));
if (!info.isVirtualDisplay()) {
ALOGE("destroyDisplay called for non-virtual display");
return;
}
mInterceptor.saveDisplayDeletion(info.displayId);
mCurrentState.displays.removeItemsAt(idx);
setTransactionFlags(eDisplayTransactionNeeded);
}
void SurfaceFlinger::createBuiltinDisplayLocked(DisplayDevice::DisplayType type) {
ALOGW_IF(mBuiltinDisplays[type],
"Overwriting display token for display type %d", type);
mBuiltinDisplays[type] = new BBinder();
// All non-virtual displays are currently considered secure.
DisplayDeviceState info(type, true);
mCurrentState.displays.add(mBuiltinDisplays[type], info);
mInterceptor.saveDisplayCreation(info);
}
sp<IBinder> SurfaceFlinger::getBuiltInDisplay(int32_t id) {
if (uint32_t(id) >= DisplayDevice::NUM_BUILTIN_DISPLAY_TYPES) {
ALOGE("getDefaultDisplay: id=%d is not a valid default display id", id);
return NULL;
}
return mBuiltinDisplays[id];
}
void SurfaceFlinger::bootFinished()
{
if (mStartPropertySetThread->join() != NO_ERROR) {
ALOGE("Join StartPropertySetThread failed!");
}
const nsecs_t now = systemTime();
const nsecs_t duration = now - mBootTime;
ALOGI("Boot is finished (%ld ms)", long(ns2ms(duration)) );
mBootFinished = true;
// wait patiently for the window manager death
const String16 name("window");
sp<IBinder> window(defaultServiceManager()->getService(name));
if (window != 0) {
window->linkToDeath(static_cast<IBinder::DeathRecipient*>(this));
}
// stop boot animation
// formerly we would just kill the process, but we now ask it to exit so it
// can choose where to stop the animation.
property_set("service.bootanim.exit", "1");
const int LOGTAG_SF_STOP_BOOTANIM = 60110;
LOG_EVENT_LONG(LOGTAG_SF_STOP_BOOTANIM,
ns2ms(systemTime(SYSTEM_TIME_MONOTONIC)));
}
void SurfaceFlinger::deleteTextureAsync(uint32_t texture) {
class MessageDestroyGLTexture : public MessageBase {
RenderEngine& engine;
uint32_t texture;
public:
MessageDestroyGLTexture(RenderEngine& engine, uint32_t texture)
: engine(engine), texture(texture) {
}
virtual bool handler() {
engine.deleteTextures(1, &texture);
return true;
}
};
postMessageAsync(new MessageDestroyGLTexture(getRenderEngine(), texture));
}
class DispSyncSource : public VSyncSource, private DispSync::Callback {
public:
DispSyncSource(DispSync* dispSync, nsecs_t phaseOffset, bool traceVsync,
const char* name) :
mName(name),
mValue(0),
mTraceVsync(traceVsync),
mVsyncOnLabel(String8::format("VsyncOn-%s", name)),
mVsyncEventLabel(String8::format("VSYNC-%s", name)),
mDispSync(dispSync),
mCallbackMutex(),
mCallback(),
mVsyncMutex(),
mPhaseOffset(phaseOffset),
mEnabled(false) {}
virtual ~DispSyncSource() {}
virtual void setVSyncEnabled(bool enable) {
Mutex::Autolock lock(mVsyncMutex);
if (enable) {
status_t err = mDispSync->addEventListener(mName, mPhaseOffset,
static_cast<DispSync::Callback*>(this));
if (err != NO_ERROR) {
ALOGE("error registering vsync callback: %s (%d)",
strerror(-err), err);
}
//ATRACE_INT(mVsyncOnLabel.string(), 1);
} else {
status_t err = mDispSync->removeEventListener(
static_cast<DispSync::Callback*>(this));
if (err != NO_ERROR) {
ALOGE("error unregistering vsync callback: %s (%d)",
strerror(-err), err);
}
//ATRACE_INT(mVsyncOnLabel.string(), 0);
}
mEnabled = enable;
}
virtual void setCallback(const sp<VSyncSource::Callback>& callback) {
Mutex::Autolock lock(mCallbackMutex);
mCallback = callback;
}
virtual void setPhaseOffset(nsecs_t phaseOffset) {
Mutex::Autolock lock(mVsyncMutex);
// Normalize phaseOffset to [0, period)
auto period = mDispSync->getPeriod();
phaseOffset %= period;
if (phaseOffset < 0) {
// If we're here, then phaseOffset is in (-period, 0). After this
// operation, it will be in (0, period)
phaseOffset += period;
}
mPhaseOffset = phaseOffset;
// If we're not enabled, we don't need to mess with the listeners
if (!mEnabled) {
return;
}
// Remove the listener with the old offset
status_t err = mDispSync->removeEventListener(
static_cast<DispSync::Callback*>(this));
if (err != NO_ERROR) {
ALOGE("error unregistering vsync callback: %s (%d)",
strerror(-err), err);
}
// Add a listener with the new offset
err = mDispSync->addEventListener(mName, mPhaseOffset,
static_cast<DispSync::Callback*>(this));
if (err != NO_ERROR) {
ALOGE("error registering vsync callback: %s (%d)",
strerror(-err), err);
}
}
private:
virtual void onDispSyncEvent(nsecs_t when) {
sp<VSyncSource::Callback> callback;
{
Mutex::Autolock lock(mCallbackMutex);
callback = mCallback;
if (mTraceVsync) {
mValue = (mValue + 1) % 2;
ATRACE_INT(mVsyncEventLabel.string(), mValue);
}
}
if (callback != NULL) {
callback->onVSyncEvent(when);
}
}
const char* const mName;
int mValue;
const bool mTraceVsync;
const String8 mVsyncOnLabel;
const String8 mVsyncEventLabel;
DispSync* mDispSync;
Mutex mCallbackMutex; // Protects the following
sp<VSyncSource::Callback> mCallback;
Mutex mVsyncMutex; // Protects the following
nsecs_t mPhaseOffset;
bool mEnabled;
};
class InjectVSyncSource : public VSyncSource {
public:
InjectVSyncSource() {}
virtual ~InjectVSyncSource() {}
virtual void setCallback(const sp<VSyncSource::Callback>& callback) {
std::lock_guard<std::mutex> lock(mCallbackMutex);
mCallback = callback;
}
virtual void onInjectSyncEvent(nsecs_t when) {
std::lock_guard<std::mutex> lock(mCallbackMutex);
mCallback->onVSyncEvent(when);
}
virtual void setVSyncEnabled(bool) {}
virtual void setPhaseOffset(nsecs_t) {}
private:
std::mutex mCallbackMutex; // Protects the following
sp<VSyncSource::Callback> mCallback;
};
// Do not call property_set on main thread which will be blocked by init
// Use StartPropertySetThread instead.
void SurfaceFlinger::init() {
ALOGI( "SurfaceFlinger's main thread ready to run. "
"Initializing graphics H/W...");
Mutex::Autolock _l(mStateLock);
// initialize EGL for the default display
mEGLDisplay = eglGetDisplay(EGL_DEFAULT_DISPLAY);
eglInitialize(mEGLDisplay, NULL, NULL);
// start the EventThread
sp<VSyncSource> vsyncSrc = new DispSyncSource(&mPrimaryDispSync,
vsyncPhaseOffsetNs, true, "app");
mEventThread = new EventThread(vsyncSrc, *this, false);
sp<VSyncSource> sfVsyncSrc = new DispSyncSource(&mPrimaryDispSync,
sfVsyncPhaseOffsetNs, true, "sf");
mSFEventThread = new EventThread(sfVsyncSrc, *this, true);
mEventQueue.setEventThread(mSFEventThread);
// set EventThread and SFEventThread to SCHED_FIFO to minimize jitter
struct sched_param param = {0};
param.sched_priority = 2;
if (sched_setscheduler(mSFEventThread->getTid(), SCHED_FIFO, &param) != 0) {
ALOGE("Couldn't set SCHED_FIFO for SFEventThread");
}
if (sched_setscheduler(mEventThread->getTid(), SCHED_FIFO, &param) != 0) {
ALOGE("Couldn't set SCHED_FIFO for EventThread");
}
// Initialize the H/W composer object. There may or may not be an
// actual hardware composer underneath.
mHwc.reset(new HWComposer(this,
*static_cast<HWComposer::EventHandler *>(this)));
// get a RenderEngine for the given display / config (can't fail)
mRenderEngine = RenderEngine::create(mEGLDisplay,
mHwc->getVisualID(), 0);
// retrieve the EGL context that was selected/created
mEGLContext = mRenderEngine->getEGLContext();
LOG_ALWAYS_FATAL_IF(mEGLContext == EGL_NO_CONTEXT,
"couldn't create EGLContext");
// initialize our non-virtual displays
for (size_t i=0 ; i<DisplayDevice::NUM_BUILTIN_DISPLAY_TYPES ; i++) {
DisplayDevice::DisplayType type((DisplayDevice::DisplayType)i);
// set-up the displays that are already connected
if (mHwc->isConnected(i) || type==DisplayDevice::DISPLAY_PRIMARY) {
// All non-virtual displays are currently considered secure.
bool isSecure = true;
createBuiltinDisplayLocked(type);
wp<IBinder> token = mBuiltinDisplays[i];
sp<IGraphicBufferProducer> producer;
sp<IGraphicBufferConsumer> consumer;
BufferQueue::createBufferQueue(&producer, &consumer);
sp<FramebufferSurface> fbs = new FramebufferSurface(*mHwc, i,
consumer);
int32_t hwcId = allocateHwcDisplayId(type);
sp<DisplayDevice> hw = new DisplayDevice(this,
type, hwcId, mHwc->getFormat(hwcId), isSecure, token,
fbs, producer,
mRenderEngine->getEGLConfig(), false);
if (i > DisplayDevice::DISPLAY_PRIMARY) {
// FIXME: currently we don't get blank/unblank requests
// for displays other than the main display, so we always
// assume a connected display is unblanked.
ALOGD("marking display %zu as acquired/unblanked", i);
hw->setPowerMode(HWC_POWER_MODE_NORMAL);
}
mDisplays.add(token, hw);
}
}
// make the GLContext current so that we can create textures when creating Layers
// (which may happens before we render something)
getDefaultDisplayDeviceLocked()->makeCurrent(mEGLDisplay, mEGLContext);
mEventControlThread = new EventControlThread(this);
mEventControlThread->run("EventControl", PRIORITY_URGENT_DISPLAY);
// set a fake vsync period if there is no HWComposer
if (mHwc->initCheck() != NO_ERROR) {
mPrimaryDispSync.setPeriod(16666667);
}
// initialize our drawing state
mDrawingState = mCurrentState;
// set initial conditions (e.g. unblank default device)
initializeDisplays();
mRenderEngine->primeCache();
// Inform native graphics APIs that the present timestamp is NOT supported:
mStartPropertySetThread = new StartPropertySetThread(false);
if (mStartPropertySetThread->Start() != NO_ERROR) {
ALOGE("Run StartPropertySetThread failed!");
}
ALOGV("Done initializing");
}
int32_t SurfaceFlinger::allocateHwcDisplayId(DisplayDevice::DisplayType type) {
return (uint32_t(type) < DisplayDevice::NUM_BUILTIN_DISPLAY_TYPES) ?
type : mHwc->allocateDisplayId();
}
void SurfaceFlinger::startBootAnim() {
// Start boot animation service by setting a property mailbox
// if property setting thread is already running, Start() will be just a NOP
mStartPropertySetThread->Start();
// Wait until property was set
if (mStartPropertySetThread->join() != NO_ERROR) {
ALOGE("Join StartPropertySetThread failed!");
}
}
size_t SurfaceFlinger::getMaxTextureSize() const {
return mRenderEngine->getMaxTextureSize();
}
size_t SurfaceFlinger::getMaxViewportDims() const {
return mRenderEngine->getMaxViewportDims();
}
// ----------------------------------------------------------------------------
bool SurfaceFlinger::authenticateSurfaceTexture(
const sp<IGraphicBufferProducer>& bufferProducer) const {
Mutex::Autolock _l(mStateLock);
return authenticateSurfaceTextureLocked(bufferProducer);
}
bool SurfaceFlinger::authenticateSurfaceTextureLocked(
const sp<IGraphicBufferProducer>& bufferProducer) const {
sp<IBinder> surfaceTextureBinder(IInterface::asBinder(bufferProducer));
return mGraphicBufferProducerList.indexOf(surfaceTextureBinder) >= 0;
}
status_t SurfaceFlinger::getSupportedFrameTimestamps(
std::vector<FrameEvent>* outSupported) const {
*outSupported = {
FrameEvent::REQUESTED_PRESENT,
FrameEvent::ACQUIRE,
FrameEvent::LATCH,
FrameEvent::FIRST_REFRESH_START,
FrameEvent::LAST_REFRESH_START,
FrameEvent::GPU_COMPOSITION_DONE,
FrameEvent::DEQUEUE_READY,
FrameEvent::RELEASE,
};
return NO_ERROR;
}
status_t SurfaceFlinger::getDisplayConfigs(const sp<IBinder>& display,
Vector<DisplayInfo>* configs) {
if ((configs == NULL) || (display.get() == NULL)) {
return BAD_VALUE;
}
int32_t type = getDisplayType(display);
if (type < 0) return type;
// TODO: Not sure if display density should handled by SF any longer
class Density {
static int getDensityFromProperty(char const* propName) {
char property[PROPERTY_VALUE_MAX];
int density = 0;
if (property_get(propName, property, NULL) > 0) {
density = atoi(property);
}
return density;
}
public:
static int getEmuDensity() {
return getDensityFromProperty("qemu.sf.lcd_density"); }
static int getBuildDensity() {
return getDensityFromProperty("ro.sf.lcd_density"); }
};
configs->clear();
const Vector<HWComposer::DisplayConfig>& hwConfigs =
getHwComposer().getConfigs(type);
for (size_t c = 0; c < hwConfigs.size(); ++c) {
const HWComposer::DisplayConfig& hwConfig = hwConfigs[c];
DisplayInfo info = DisplayInfo();
float xdpi = hwConfig.xdpi;
float ydpi = hwConfig.ydpi;
if (type == DisplayDevice::DISPLAY_PRIMARY) {
// The density of the device is provided by a build property
float density = Density::getBuildDensity() / 160.0f;
if (density == 0) {
// the build doesn't provide a density -- this is wrong!
// use xdpi instead
ALOGE("ro.sf.lcd_density must be defined as a build property");
density = xdpi / 160.0f;
}
if (Density::getEmuDensity()) {
// if "qemu.sf.lcd_density" is specified, it overrides everything
xdpi = ydpi = density = Density::getEmuDensity();
density /= 160.0f;
}
info.density = density;
// TODO: this needs to go away (currently needed only by webkit)
sp<const DisplayDevice> hw(getDefaultDisplayDevice());
info.orientation = hw->getOrientation();
} else {
// TODO: where should this value come from?
static const int TV_DENSITY = 213;
info.density = TV_DENSITY / 160.0f;
info.orientation = 0;
}
info.w = hwConfig.width;
info.h = hwConfig.height;
info.xdpi = xdpi;
info.ydpi = ydpi;
info.fps = float(1e9 / hwConfig.refresh);
info.appVsyncOffset = vsyncPhaseOffsetNs;
// This is how far in advance a buffer must be queued for
// presentation at a given time. If you want a buffer to appear
// on the screen at time N, you must submit the buffer before
// (N - presentationDeadline).
//
// Normally it's one full refresh period (to give SF a chance to
// latch the buffer), but this can be reduced by configuring a
// DispSync offset. Any additional delays introduced by the hardware
// composer or panel must be accounted for here.
//
// We add an additional 1ms to allow for processing time and
// differences between the ideal and actual refresh rate.
info.presentationDeadline =
hwConfig.refresh - sfVsyncPhaseOffsetNs + 1000000;
// All non-virtual displays are currently considered secure.
info.secure = true;
configs->push_back(info);
}
return NO_ERROR;
}
status_t SurfaceFlinger::getDisplayStats(const sp<IBinder>& /* display */,
DisplayStatInfo* stats) {
if (stats == NULL) {
return BAD_VALUE;
}
// FIXME for now we always return stats for the primary display
memset(stats, 0, sizeof(*stats));
stats->vsyncTime = mPrimaryDispSync.computeNextRefresh(0);
stats->vsyncPeriod = mPrimaryDispSync.getPeriod();
return NO_ERROR;
}
int SurfaceFlinger::getActiveConfig(const sp<IBinder>& display) {
sp<const DisplayDevice> device(getDisplayDevice(display));
if (device != NULL) {
return device->getActiveConfig();
}
return BAD_VALUE;
}
void SurfaceFlinger::setActiveConfigInternal(const sp<DisplayDevice>& hw, int mode) {
ALOGD("Set active config mode=%d, type=%d flinger=%p", mode, hw->getDisplayType(),
this);
int32_t type = hw->getDisplayType();
int currentMode = hw->getActiveConfig();
if (mode == currentMode) {
ALOGD("Screen type=%d is already mode=%d", hw->getDisplayType(), mode);
return;
}
if (type >= DisplayDevice::NUM_BUILTIN_DISPLAY_TYPES) {
ALOGW("Trying to set config for virtual display");
return;
}
hw->setActiveConfig(mode);
getHwComposer().setActiveConfig(type, mode);
}
status_t SurfaceFlinger::setActiveConfig(const sp<IBinder>& display, int mode) {
class MessageSetActiveConfig: public MessageBase {
SurfaceFlinger& mFlinger;
sp<IBinder> mDisplay;
int mMode;
public:
MessageSetActiveConfig(SurfaceFlinger& flinger, const sp<IBinder>& disp,
int mode) :
mFlinger(flinger), mDisplay(disp) { mMode = mode; }
virtual bool handler() {
Vector<DisplayInfo> configs;
mFlinger.getDisplayConfigs(mDisplay, &configs);
if (mMode < 0 || mMode >= static_cast<int>(configs.size())) {
ALOGE("Attempt to set active config = %d for display with %zu configs",
mMode, configs.size());
}
sp<DisplayDevice> hw(mFlinger.getDisplayDevice(mDisplay));
if (hw == NULL) {
ALOGE("Attempt to set active config = %d for null display %p",
mMode, mDisplay.get());
} else if (hw->getDisplayType() >= DisplayDevice::DISPLAY_VIRTUAL) {
ALOGW("Attempt to set active config = %d for virtual display",
mMode);
} else {
mFlinger.setActiveConfigInternal(hw, mMode);
}
return true;
}
};
sp<MessageBase> msg = new MessageSetActiveConfig(*this, display, mode);
postMessageSync(msg);
return NO_ERROR;
}
status_t SurfaceFlinger::getDisplayColorModes(const sp<IBinder>& display,
Vector<android_color_mode_t>* outColorModes) {
if (outColorModes == nullptr || display.get() == nullptr) {
return BAD_VALUE;
}
int32_t type = getDisplayType(display);
if (type < 0) return type;
std::set<android_color_mode_t> colorModes;
for (const HWComposer::DisplayConfig& hwConfig : getHwComposer().getConfigs(type)) {
colorModes.insert(hwConfig.colorMode);
}
outColorModes->clear();
std::copy(colorModes.cbegin(), colorModes.cend(), std::back_inserter(*outColorModes));
return NO_ERROR;
}
android_color_mode_t SurfaceFlinger::getActiveColorMode(const sp<IBinder>& display) {
if (display.get() == nullptr) return static_cast<android_color_mode_t>(BAD_VALUE);
int32_t type = getDisplayType(display);
if (type < 0) return static_cast<android_color_mode_t>(type);
return getHwComposer().getColorMode(type);
}
status_t SurfaceFlinger::setActiveColorMode(const sp<IBinder>& display,
android_color_mode_t colorMode) {
if (display.get() == nullptr || colorMode < 0) {
return BAD_VALUE;
}
int32_t type = getDisplayType(display);
if (type < 0) return type;
const Vector<HWComposer::DisplayConfig>& hwConfigs = getHwComposer().getConfigs(type);
HWComposer::DisplayConfig desiredConfig = hwConfigs[getHwComposer().getCurrentConfig(type)];
desiredConfig.colorMode = colorMode;
for (size_t c = 0; c < hwConfigs.size(); ++c) {
const HWComposer::DisplayConfig config = hwConfigs[c];
if (config == desiredConfig) {
return setActiveConfig(display, c);
}
}
return BAD_VALUE;
}
status_t SurfaceFlinger::clearAnimationFrameStats() {
Mutex::Autolock _l(mStateLock);
mAnimFrameTracker.clearStats();
return NO_ERROR;
}
status_t SurfaceFlinger::getAnimationFrameStats(FrameStats* outStats) const {
Mutex::Autolock _l(mStateLock);
mAnimFrameTracker.getStats(outStats);
return NO_ERROR;
}
status_t SurfaceFlinger::getHdrCapabilities(const sp<IBinder>& /*display*/,
HdrCapabilities* outCapabilities) const {
// HWC1 does not provide HDR capabilities
*outCapabilities = HdrCapabilities();
return NO_ERROR;
}
status_t SurfaceFlinger::enableVSyncInjections(bool enable) {
if (enable == mInjectVSyncs) {
return NO_ERROR;
}
if (enable) {
mInjectVSyncs = enable;
ALOGV("VSync Injections enabled");
if (mVSyncInjector.get() == nullptr) {
mVSyncInjector = new InjectVSyncSource();
mInjectorEventThread = new EventThread(mVSyncInjector, *this, false);
}
mEventQueue.setEventThread(mInjectorEventThread);
} else {
mInjectVSyncs = enable;
ALOGV("VSync Injections disabled");
mEventQueue.setEventThread(mSFEventThread);
mVSyncInjector.clear();
}
return NO_ERROR;
}
status_t SurfaceFlinger::injectVSync(nsecs_t when) {
if (!mInjectVSyncs) {
ALOGE("VSync Injections not enabled");
return BAD_VALUE;
}
if (mInjectVSyncs && mInjectorEventThread.get() != nullptr) {
ALOGV("Injecting VSync inside SurfaceFlinger");
mVSyncInjector->onInjectSyncEvent(when);
}
return NO_ERROR;
}
// ----------------------------------------------------------------------------
sp<IDisplayEventConnection> SurfaceFlinger::createDisplayEventConnection(
ISurfaceComposer::VsyncSource vsyncSource) {
if (vsyncSource == eVsyncSourceSurfaceFlinger) {
return mSFEventThread->createEventConnection();
} else {
return mEventThread->createEventConnection();
}
}
// ----------------------------------------------------------------------------
void SurfaceFlinger::waitForEvent() {
mEventQueue.waitMessage();
}
void SurfaceFlinger::signalTransaction() {
mEventQueue.invalidate();
}
void SurfaceFlinger::signalLayerUpdate() {
mEventQueue.invalidate();
}
void SurfaceFlinger::signalRefresh() {
mEventQueue.refresh();
}
status_t SurfaceFlinger::postMessageAsync(const sp<MessageBase>& msg,
nsecs_t reltime, uint32_t /* flags */) {
return mEventQueue.postMessage(msg, reltime);
}
status_t SurfaceFlinger::postMessageSync(const sp<MessageBase>& msg,
nsecs_t reltime, uint32_t /* flags */) {
status_t res = mEventQueue.postMessage(msg, reltime);
if (res == NO_ERROR) {
msg->wait();
}
return res;
}
void SurfaceFlinger::run() {
do {
waitForEvent();
} while (true);
}
void SurfaceFlinger::enableHardwareVsync() {
Mutex::Autolock _l(mHWVsyncLock);
if (!mPrimaryHWVsyncEnabled && mHWVsyncAvailable) {
mPrimaryDispSync.beginResync();
//eventControl(HWC_DISPLAY_PRIMARY, SurfaceFlinger::EVENT_VSYNC, true);
mEventControlThread->setVsyncEnabled(true);
mPrimaryHWVsyncEnabled = true;
}
}
void SurfaceFlinger::resyncToHardwareVsync(bool makeAvailable) {
Mutex::Autolock _l(mHWVsyncLock);
if (makeAvailable) {
mHWVsyncAvailable = true;
} else if (!mHWVsyncAvailable) {
// Hardware vsync is not currently available, so abort the resync
// attempt for now
return;
}
const nsecs_t period =
getHwComposer().getRefreshPeriod(HWC_DISPLAY_PRIMARY);
mPrimaryDispSync.reset();
mPrimaryDispSync.setPeriod(period);
if (!mPrimaryHWVsyncEnabled) {
mPrimaryDispSync.beginResync();
//eventControl(HWC_DISPLAY_PRIMARY, SurfaceFlinger::EVENT_VSYNC, true);
mEventControlThread->setVsyncEnabled(true);
mPrimaryHWVsyncEnabled = true;
}
}
void SurfaceFlinger::disableHardwareVsync(bool makeUnavailable) {
Mutex::Autolock _l(mHWVsyncLock);
if (mPrimaryHWVsyncEnabled) {
//eventControl(HWC_DISPLAY_PRIMARY, SurfaceFlinger::EVENT_VSYNC, false);
mEventControlThread->setVsyncEnabled(false);
mPrimaryDispSync.endResync();
mPrimaryHWVsyncEnabled = false;
}
if (makeUnavailable) {
mHWVsyncAvailable = false;
}
}
void SurfaceFlinger::resyncWithRateLimit() {
static constexpr nsecs_t kIgnoreDelay = ms2ns(500);
if (systemTime() - mLastSwapTime > kIgnoreDelay) {
resyncToHardwareVsync(false);
}
}
void SurfaceFlinger::onVSyncReceived(HWComposer* /*composer*/, int type,
nsecs_t timestamp) {
bool needsHwVsync = false;
{ // Scope for the lock
Mutex::Autolock _l(mHWVsyncLock);
if (type == 0 && mPrimaryHWVsyncEnabled) {
needsHwVsync = mPrimaryDispSync.addResyncSample(timestamp);
}
}
if (needsHwVsync) {
enableHardwareVsync();
} else {
disableHardwareVsync(false);
}
}
void SurfaceFlinger::getCompositorTiming(CompositorTiming* compositorTiming) {
std::lock_guard<std::mutex> lock(mCompositorTimingLock);
*compositorTiming = mCompositorTiming;
}
void SurfaceFlinger::onHotplugReceived(HWComposer* /*composer*/, int type, bool connected) {
if (mEventThread == NULL) {
// This is a temporary workaround for b/7145521. A non-null pointer
// does not mean EventThread has finished initializing, so this
// is not a correct fix.
ALOGW("WARNING: EventThread not started, ignoring hotplug");
return;
}
if (uint32_t(type) < DisplayDevice::NUM_BUILTIN_DISPLAY_TYPES) {
Mutex::Autolock _l(mStateLock);
if (connected) {
createBuiltinDisplayLocked((DisplayDevice::DisplayType)type);
} else {
mCurrentState.displays.removeItem(mBuiltinDisplays[type]);
mBuiltinDisplays[type].clear();
}
setTransactionFlags(eDisplayTransactionNeeded);
// Defer EventThread notification until SF has updated mDisplays.
}
}
void SurfaceFlinger::onInvalidateReceived(HWComposer* /*composer*/) {
repaintEverything();
}
void SurfaceFlinger::eventControl(int disp, int event, int enabled) {
ATRACE_CALL();
getHwComposer().eventControl(disp, event, enabled);
}
void SurfaceFlinger::onMessageReceived(int32_t what) {
ATRACE_CALL();
switch (what) {
case MessageQueue::INVALIDATE: {
bool refreshNeeded = handleMessageTransaction();
refreshNeeded |= handleMessageInvalidate();
refreshNeeded |= mRepaintEverything;
if (refreshNeeded) {
// Signal a refresh if a transaction modified the window state,
// a new buffer was latched, or if HWC has requested a full
// repaint
signalRefresh();
}
break;
}
case MessageQueue::REFRESH: {
handleMessageRefresh();
break;
}
}
}
bool SurfaceFlinger::handleMessageTransaction() {
uint32_t transactionFlags = peekTransactionFlags();
if (transactionFlags) {
handleTransaction(transactionFlags);
return true;
}
return false;
}
bool SurfaceFlinger::handleMessageInvalidate() {
ATRACE_CALL();
return handlePageFlip();
}
void SurfaceFlinger::handleMessageRefresh() {
ATRACE_CALL();
nsecs_t refreshStartTime = systemTime(SYSTEM_TIME_MONOTONIC);
preComposition(refreshStartTime);
rebuildLayerStacks();
setUpHWComposer();
doDebugFlashRegions();
doComposition();
postComposition(refreshStartTime);
}
void SurfaceFlinger::doDebugFlashRegions()
{
// is debugging enabled
if (CC_LIKELY(!mDebugRegion))
return;
const bool repaintEverything = mRepaintEverything;
for (size_t dpy=0 ; dpy<mDisplays.size() ; dpy++) {
const sp<DisplayDevice>& hw(mDisplays[dpy]);
if (hw->isDisplayOn()) {
// transform the dirty region into this screen's coordinate space
const Region dirtyRegion(hw->getDirtyRegion(repaintEverything));
if (!dirtyRegion.isEmpty()) {
// redraw the whole screen
doComposeSurfaces(hw, Region(hw->bounds()));
// and draw the dirty region
const int32_t height = hw->getHeight();
RenderEngine& engine(getRenderEngine());
engine.fillRegionWithColor(dirtyRegion, height, 1, 0, 1, 1);
hw->compositionComplete();
hw->swapBuffers(getHwComposer());
}
}
}
postFramebuffer();
if (mDebugRegion > 1) {
usleep(mDebugRegion * 1000);
}
HWComposer& hwc(getHwComposer());
if (hwc.initCheck() == NO_ERROR) {
status_t err = hwc.prepare();
ALOGE_IF(err, "HWComposer::prepare failed (%s)", strerror(-err));
}
}
void SurfaceFlinger::preComposition(nsecs_t refreshStartTime)
{
bool needExtraInvalidate = false;
mDrawingState.traverseInZOrder([&](Layer* layer) {
if (layer->onPreComposition(refreshStartTime)) {
needExtraInvalidate = true;
}
});
if (needExtraInvalidate) {
signalLayerUpdate();
}
}
void SurfaceFlinger::updateCompositorTiming(
nsecs_t vsyncPhase, nsecs_t vsyncInterval, nsecs_t compositeTime,
std::shared_ptr<FenceTime>& presentFenceTime) {
// Update queue of past composite+present times and determine the
// most recently known composite to present latency.
mCompositePresentTimes.push({compositeTime, presentFenceTime});
nsecs_t compositeToPresentLatency = -1;
while (!mCompositePresentTimes.empty()) {
CompositePresentTime& cpt = mCompositePresentTimes.front();
// Cached values should have been updated before calling this method,
// which helps avoid duplicate syscalls.
nsecs_t displayTime = cpt.display->getCachedSignalTime();
if (displayTime == Fence::SIGNAL_TIME_PENDING) {
break;
}
compositeToPresentLatency = displayTime - cpt.composite;
mCompositePresentTimes.pop();
}
// Don't let mCompositePresentTimes grow unbounded, just in case.
while (mCompositePresentTimes.size() > 16) {
mCompositePresentTimes.pop();
}
setCompositorTimingSnapped(
vsyncPhase, vsyncInterval, compositeToPresentLatency);
}
void SurfaceFlinger::setCompositorTimingSnapped(nsecs_t vsyncPhase,
nsecs_t vsyncInterval, nsecs_t compositeToPresentLatency) {
// Integer division and modulo round toward 0 not -inf, so we need to
// treat negative and positive offsets differently.
nsecs_t idealLatency = (sfVsyncPhaseOffsetNs > 0) ?
(vsyncInterval - (sfVsyncPhaseOffsetNs % vsyncInterval)) :
((-sfVsyncPhaseOffsetNs) % vsyncInterval);
// Just in case sfVsyncPhaseOffsetNs == -vsyncInterval.
if (idealLatency <= 0) {
idealLatency = vsyncInterval;
}
// Snap the latency to a value that removes scheduling jitter from the
// composition and present times, which often have >1ms of jitter.
// Reducing jitter is important if an app attempts to extrapolate
// something (such as user input) to an accurate diasplay time.
// Snapping also allows an app to precisely calculate sfVsyncPhaseOffsetNs
// with (presentLatency % interval).
nsecs_t bias = vsyncInterval / 2;
int64_t extraVsyncs =
(compositeToPresentLatency - idealLatency + bias) / vsyncInterval;
nsecs_t snappedCompositeToPresentLatency = (extraVsyncs > 0) ?
idealLatency + (extraVsyncs * vsyncInterval) : idealLatency;
std::lock_guard<std::mutex> lock(mCompositorTimingLock);
mCompositorTiming.deadline = vsyncPhase - idealLatency;
mCompositorTiming.interval = vsyncInterval;
mCompositorTiming.presentLatency = snappedCompositeToPresentLatency;
}
void SurfaceFlinger::postComposition(nsecs_t refreshStartTime)
{
const HWComposer& hwc = getHwComposer();
const sp<const DisplayDevice> hw(getDefaultDisplayDevice());
mGlCompositionDoneTimeline.updateSignalTimes();
std::shared_ptr<FenceTime> glCompositionDoneFenceTime;
if (getHwComposer().hasGlesComposition(hw->getHwcDisplayId())) {
glCompositionDoneFenceTime =
std::make_shared<FenceTime>(hw->getClientTargetAcquireFence());
mGlCompositionDoneTimeline.push(glCompositionDoneFenceTime);
} else {
glCompositionDoneFenceTime = FenceTime::NO_FENCE;
}
mDisplayTimeline.updateSignalTimes();
sp<Fence> retireFence = mHwc->getDisplayFence(HWC_DISPLAY_PRIMARY);
auto retireFenceTime = std::make_shared<FenceTime>(retireFence);
mDisplayTimeline.push(retireFenceTime);
nsecs_t vsyncPhase = mPrimaryDispSync.computeNextRefresh(0);
nsecs_t vsyncInterval = mPrimaryDispSync.getPeriod();
// We use the refreshStartTime which might be sampled a little later than
// when we started doing work for this frame, but that should be okay
// since updateCompositorTiming has snapping logic.
updateCompositorTiming(
vsyncPhase, vsyncInterval, refreshStartTime, retireFenceTime);
CompositorTiming compositorTiming;
{
std::lock_guard<std::mutex> lock(mCompositorTimingLock);
compositorTiming = mCompositorTiming;
}
mDrawingState.traverseInZOrder([&](Layer* layer) {
// TODO(brianderson): The retire fence is incorrectly passed in as the
// present fence. Fix this if this file lives on.
bool frameLatched = layer->onPostComposition(glCompositionDoneFenceTime,
retireFenceTime, compositorTiming);
if (frameLatched) {
recordBufferingStats(layer->getName().string(),
layer->getOccupancyHistory(false));
}
});
if (retireFence->isValid()) {
if (mPrimaryDispSync.addPresentFence(retireFenceTime)) {
enableHardwareVsync();
} else {
disableHardwareVsync(false);
}
}
if (!hasSyncFramework) {
if (hw->isDisplayOn()) {
enableHardwareVsync();
}
}
if (mAnimCompositionPending) {
mAnimCompositionPending = false;
if (retireFenceTime->isValid()) {
mAnimFrameTracker.setActualPresentFence(std::move(retireFenceTime));
} else {
// The HWC doesn't support present fences, so use the refresh
// timestamp instead.
nsecs_t presentTime = hwc.getRefreshTimestamp(HWC_DISPLAY_PRIMARY);
mAnimFrameTracker.setActualPresentTime(presentTime);
}
mAnimFrameTracker.advanceFrame();
}
if (hw->getPowerMode() == HWC_POWER_MODE_OFF) {
return;
}
nsecs_t currentTime = systemTime();
if (mHasPoweredOff) {
mHasPoweredOff = false;
} else {
nsecs_t period = mPrimaryDispSync.getPeriod();
nsecs_t elapsedTime = currentTime - mLastSwapTime;
size_t numPeriods = static_cast<size_t>(elapsedTime / period);
if (numPeriods < NUM_BUCKETS - 1) {
mFrameBuckets[numPeriods] += elapsedTime;
} else {
mFrameBuckets[NUM_BUCKETS - 1] += elapsedTime;
}
mTotalTime += elapsedTime;
}
mLastSwapTime = currentTime;
}
void SurfaceFlinger::rebuildLayerStacks() {
// rebuild the visible layer list per screen
if (CC_UNLIKELY(mVisibleRegionsDirty)) {
ATRACE_CALL();
mVisibleRegionsDirty = false;
invalidateHwcGeometry();
for (size_t dpy=0 ; dpy<mDisplays.size() ; dpy++) {
Region opaqueRegion;
Region dirtyRegion;
Vector< sp<Layer> > layersSortedByZ;
const sp<DisplayDevice>& hw(mDisplays[dpy]);
const Transform& tr(hw->getTransform());
const Rect bounds(hw->getBounds());
if (hw->isDisplayOn()) {
computeVisibleRegions(hw, dirtyRegion, opaqueRegion);
mDrawingState.traverseInZOrder([&](Layer* layer) {
if (layer->getLayerStack() == hw->getLayerStack()) {
Region drawRegion(tr.transform(
layer->visibleNonTransparentRegion));
drawRegion.andSelf(bounds);
if (!drawRegion.isEmpty()) {
layersSortedByZ.add(layer);
}
}
});
}
hw->setVisibleLayersSortedByZ(layersSortedByZ);
hw->undefinedRegion.set(bounds);
hw->undefinedRegion.subtractSelf(tr.transform(opaqueRegion));
hw->dirtyRegion.orSelf(dirtyRegion);
}
}
}
void SurfaceFlinger::setUpHWComposer() {
for (size_t dpy=0 ; dpy<mDisplays.size() ; dpy++) {
bool dirty = !mDisplays[dpy]->getDirtyRegion(false).isEmpty();
bool empty = mDisplays[dpy]->getVisibleLayersSortedByZ().size() == 0;
bool wasEmpty = !mDisplays[dpy]->lastCompositionHadVisibleLayers;
// If nothing has changed (!dirty), don't recompose.
// If something changed, but we don't currently have any visible layers,
// and didn't when we last did a composition, then skip it this time.
// The second rule does two things:
// - When all layers are removed from a display, we'll emit one black
// frame, then nothing more until we get new layers.
// - When a display is created with a private layer stack, we won't
// emit any black frames until a layer is added to the layer stack.
bool mustRecompose = dirty && !(empty && wasEmpty);
ALOGV_IF(mDisplays[dpy]->getDisplayType() == DisplayDevice::DISPLAY_VIRTUAL,
"dpy[%zu]: %s composition (%sdirty %sempty %swasEmpty)", dpy,
mustRecompose ? "doing" : "skipping",
dirty ? "+" : "-",
empty ? "+" : "-",
wasEmpty ? "+" : "-");
mDisplays[dpy]->beginFrame(mustRecompose);
if (mustRecompose) {
mDisplays[dpy]->lastCompositionHadVisibleLayers = !empty;
}
}
HWComposer& hwc(getHwComposer());
if (hwc.initCheck() == NO_ERROR) {
// build the h/w work list
if (CC_UNLIKELY(mHwWorkListDirty)) {
mHwWorkListDirty = false;
for (size_t dpy=0 ; dpy<mDisplays.size() ; dpy++) {
sp<const DisplayDevice> hw(mDisplays[dpy]);
const int32_t id = hw->getHwcDisplayId();
if (id >= 0) {
const Vector< sp<Layer> >& currentLayers(
hw->getVisibleLayersSortedByZ());
const size_t count = currentLayers.size();
if (hwc.createWorkList(id, count) == NO_ERROR) {
HWComposer::LayerListIterator cur = hwc.begin(id);
const HWComposer::LayerListIterator end = hwc.end(id);
for (size_t i=0 ; cur!=end && i<count ; ++i, ++cur) {
const sp<Layer>& layer(currentLayers[i]);
layer->setGeometry(hw, *cur);
if (mDebugDisableHWC || mDebugRegion || mDaltonize || mHasColorMatrix) {
cur->setSkip(true);
}
}
}
}
}
}
// set the per-frame data
for (size_t dpy=0 ; dpy<mDisplays.size() ; dpy++) {
sp<const DisplayDevice> hw(mDisplays[dpy]);
const int32_t id = hw->getHwcDisplayId();
if (id >= 0) {
const Vector< sp<Layer> >& currentLayers(
hw->getVisibleLayersSortedByZ());
const size_t count = currentLayers.size();
HWComposer::LayerListIterator cur = hwc.begin(id);
const HWComposer::LayerListIterator end = hwc.end(id);
for (size_t i=0 ; cur!=end && i<count ; ++i, ++cur) {
/*
* update the per-frame h/w composer data for each layer
* and build the transparent region of the FB
*/
const sp<Layer>& layer(currentLayers[i]);
layer->setPerFrameData(hw, *cur);
}
}
}
// If possible, attempt to use the cursor overlay on each display.
for (size_t dpy=0 ; dpy<mDisplays.size() ; dpy++) {
sp<const DisplayDevice> hw(mDisplays[dpy]);
const int32_t id = hw->getHwcDisplayId();
if (id >= 0) {
const Vector< sp<Layer> >& currentLayers(
hw->getVisibleLayersSortedByZ());
const size_t count = currentLayers.size();
HWComposer::LayerListIterator cur = hwc.begin(id);
const HWComposer::LayerListIterator end = hwc.end(id);
for (size_t i=0 ; cur!=end && i<count ; ++i, ++cur) {
const sp<Layer>& layer(currentLayers[i]);
if (layer->isPotentialCursor()) {
cur->setIsCursorLayerHint();
break;
}
}
}
}
status_t err = hwc.prepare();
ALOGE_IF(err, "HWComposer::prepare failed (%s)", strerror(-err));
for (size_t dpy=0 ; dpy<mDisplays.size() ; dpy++) {
sp<const DisplayDevice> hw(mDisplays[dpy]);
hw->prepareFrame(hwc);
}
}
}
void SurfaceFlinger::doComposition() {
ATRACE_CALL();
const bool repaintEverything = android_atomic_and(0, &mRepaintEverything);
for (size_t dpy=0 ; dpy<mDisplays.size() ; dpy++) {
const sp<DisplayDevice>& hw(mDisplays[dpy]);
if (hw->isDisplayOn()) {
// transform the dirty region into this screen's coordinate space
const Region dirtyRegion(hw->getDirtyRegion(repaintEverything));
// repaint the framebuffer (if needed)
doDisplayComposition(hw, dirtyRegion);
hw->dirtyRegion.clear();
hw->flip(hw->swapRegion);
hw->swapRegion.clear();
}
// inform the h/w that we're done compositing
hw->compositionComplete();
}
postFramebuffer();
}
void SurfaceFlinger::postFramebuffer()
{
ATRACE_CALL();
const nsecs_t now = systemTime();
mDebugInSwapBuffers = now;
HWComposer& hwc(getHwComposer());
if (hwc.initCheck() == NO_ERROR) {
if (!hwc.supportsFramebufferTarget()) {
// EGL spec says:
// "surface must be bound to the calling thread's current context,
// for the current rendering API."
getDefaultDisplayDevice()->makeCurrent(mEGLDisplay, mEGLContext);
}
hwc.commit();
}
// make the default display current because the VirtualDisplayDevice code cannot
// deal with dequeueBuffer() being called outside of the composition loop; however
// the code below can call glFlush() which is allowed (and does in some case) call
// dequeueBuffer().
getDefaultDisplayDevice()->makeCurrent(mEGLDisplay, mEGLContext);
for (size_t dpy=0 ; dpy<mDisplays.size() ; dpy++) {
sp<const DisplayDevice> hw(mDisplays[dpy]);
const Vector< sp<Layer> >& currentLayers(hw->getVisibleLayersSortedByZ());
hw->onSwapBuffersCompleted(hwc);
const size_t count = currentLayers.size();
int32_t id = hw->getHwcDisplayId();
if (id >=0 && hwc.initCheck() == NO_ERROR) {
HWComposer::LayerListIterator cur = hwc.begin(id);
const HWComposer::LayerListIterator end = hwc.end(id);
for (size_t i = 0; cur != end && i < count; ++i, ++cur) {
currentLayers[i]->onLayerDisplayed(hw, &*cur);
}
} else {
for (size_t i = 0; i < count; i++) {
currentLayers[i]->onLayerDisplayed(hw, NULL);
}
}
}
mLastSwapBufferTime = systemTime() - now;
mDebugInSwapBuffers = 0;
uint32_t flipCount = getDefaultDisplayDevice()->getPageFlipCount();
if (flipCount % LOG_FRAME_STATS_PERIOD == 0) {
logFrameStats();
}
}
void SurfaceFlinger::handleTransaction(uint32_t transactionFlags)
{
ATRACE_CALL();
// here we keep a copy of the drawing state (that is the state that's
// going to be overwritten by handleTransactionLocked()) outside of
// mStateLock so that the side-effects of the State assignment
// don't happen with mStateLock held (which can cause deadlocks).
State drawingState(mDrawingState);
Mutex::Autolock _l(mStateLock);
const nsecs_t now = systemTime();
mDebugInTransaction = now;
// Here we're guaranteed that some transaction flags are set
// so we can call handleTransactionLocked() unconditionally.
// We call getTransactionFlags(), which will also clear the flags,
// with mStateLock held to guarantee that mCurrentState won't change
// until the transaction is committed.
transactionFlags = getTransactionFlags(eTransactionMask);
handleTransactionLocked(transactionFlags);
mLastTransactionTime = systemTime() - now;
mDebugInTransaction = 0;
invalidateHwcGeometry();
// here the transaction has been committed
}
void SurfaceFlinger::handleTransactionLocked(uint32_t transactionFlags)
{
// Notify all layers of available frames
mCurrentState.traverseInZOrder([](Layer* layer) {
layer->notifyAvailableFrames();
});
/*
* Traversal of the children
* (perform the transaction for each of them if needed)
*/
if (transactionFlags & eTraversalNeeded) {
mCurrentState.traverseInZOrder([&](Layer* layer) {
uint32_t trFlags = layer->getTransactionFlags(eTransactionNeeded);
if (!trFlags) return;
const uint32_t flags = layer->doTransaction(0);
if (flags & Layer::eVisibleRegion)
mVisibleRegionsDirty = true;
});
}
/*
* Perform display own transactions if needed
*/
if (transactionFlags & eDisplayTransactionNeeded) {
// here we take advantage of Vector's copy-on-write semantics to
// improve performance by skipping the transaction entirely when
// know that the lists are identical
const KeyedVector< wp<IBinder>, DisplayDeviceState>& curr(mCurrentState.displays);
const KeyedVector< wp<IBinder>, DisplayDeviceState>& draw(mDrawingState.displays);
if (!curr.isIdenticalTo(draw)) {
mVisibleRegionsDirty = true;
const size_t cc = curr.size();
size_t dc = draw.size();
// find the displays that were removed
// (ie: in drawing state but not in current state)
// also handle displays that changed
// (ie: displays that are in both lists)
for (size_t i=0 ; i<dc ; i++) {
const ssize_t j = curr.indexOfKey(draw.keyAt(i));
if (j < 0) {
// in drawing state but not in current state
if (!draw[i].isMainDisplay()) {
// Call makeCurrent() on the primary display so we can
// be sure that nothing associated with this display
// is current.
const sp<const DisplayDevice> defaultDisplay(getDefaultDisplayDeviceLocked());
defaultDisplay->makeCurrent(mEGLDisplay, mEGLContext);
sp<DisplayDevice> hw(getDisplayDeviceLocked(draw.keyAt(i)));
if (hw != NULL)
hw->disconnect(getHwComposer());
if (draw[i].type < DisplayDevice::NUM_BUILTIN_DISPLAY_TYPES)
mEventThread->onHotplugReceived(draw[i].type, false);
mDisplays.removeItem(draw.keyAt(i));
} else {
ALOGW("trying to remove the main display");
}
} else {
// this display is in both lists. see if something changed.
const DisplayDeviceState& state(curr[j]);
const wp<IBinder>& display(curr.keyAt(j));
const sp<IBinder> state_binder = IInterface::asBinder(state.surface);
const sp<IBinder> draw_binder = IInterface::asBinder(draw[i].surface);
if (state_binder != draw_binder) {
// changing the surface is like destroying and
// recreating the DisplayDevice, so we just remove it
// from the drawing state, so that it get re-added
// below.
sp<DisplayDevice> hw(getDisplayDeviceLocked(display));
if (hw != NULL)
hw->disconnect(getHwComposer());
mDisplays.removeItem(display);
mDrawingState.displays.removeItemsAt(i);
dc--; i--;
// at this point we must loop to the next item
continue;
}
const sp<DisplayDevice> disp(getDisplayDeviceLocked(display));
if (disp != NULL) {
if (state.layerStack != draw[i].layerStack) {
disp->setLayerStack(state.layerStack);
}
if ((state.orientation != draw[i].orientation)
|| (state.viewport != draw[i].viewport)
|| (state.frame != draw[i].frame))
{
disp->setProjection(state.orientation,
state.viewport, state.frame);
}
if (state.width != draw[i].width || state.height != draw[i].height) {
disp->setDisplaySize(state.width, state.height);
}
}
}
}
// find displays that were added
// (ie: in current state but not in drawing state)
for (size_t i=0 ; i<cc ; i++) {
if (draw.indexOfKey(curr.keyAt(i)) < 0) {
const DisplayDeviceState& state(curr[i]);
sp<DisplaySurface> dispSurface;
sp<IGraphicBufferProducer> producer;
sp<IGraphicBufferProducer> bqProducer;
sp<IGraphicBufferConsumer> bqConsumer;
BufferQueue::createBufferQueue(&bqProducer, &bqConsumer);
int32_t hwcDisplayId = -1;
if (state.isVirtualDisplay()) {
// Virtual displays without a surface are dormant:
// they have external state (layer stack, projection,
// etc.) but no internal state (i.e. a DisplayDevice).
if (state.surface != NULL) {
int width = 0;
int status = state.surface->query(
NATIVE_WINDOW_WIDTH, &width);
ALOGE_IF(status != NO_ERROR,
"Unable to query width (%d)", status);
int height = 0;
status = state.surface->query(
NATIVE_WINDOW_HEIGHT, &height);
ALOGE_IF(status != NO_ERROR,
"Unable to query height (%d)", status);
if (mUseHwcVirtualDisplays &&
(SurfaceFlinger::maxVirtualDisplaySize == 0 ||
(width <= static_cast<int>(SurfaceFlinger::maxVirtualDisplaySize) &&
height <= static_cast<int>(SurfaceFlinger::maxVirtualDisplaySize)))) {
hwcDisplayId = allocateHwcDisplayId(state.type);
}
sp<VirtualDisplaySurface> vds = new VirtualDisplaySurface(
*mHwc, hwcDisplayId, state.surface,
bqProducer, bqConsumer, state.displayName);
dispSurface = vds;
producer = vds;
}
} else {
ALOGE_IF(state.surface!=NULL,
"adding a supported display, but rendering "
"surface is provided (%p), ignoring it",
state.surface.get());
hwcDisplayId = allocateHwcDisplayId(state.type);
// for supported (by hwc) displays we provide our
// own rendering surface
dispSurface = new FramebufferSurface(*mHwc, state.type,
bqConsumer);
producer = bqProducer;
}
const wp<IBinder>& display(curr.keyAt(i));
if (dispSurface != NULL) {
sp<DisplayDevice> hw = new DisplayDevice(this,
state.type, hwcDisplayId,
mHwc->getFormat(hwcDisplayId), state.isSecure,
display, dispSurface, producer,
mRenderEngine->getEGLConfig(), false);
hw->setLayerStack(state.layerStack);
hw->setProjection(state.orientation,
state.viewport, state.frame);
hw->setDisplayName(state.displayName);
mDisplays.add(display, hw);
if (state.isVirtualDisplay()) {
if (hwcDisplayId >= 0) {
mHwc->setVirtualDisplayProperties(hwcDisplayId,
hw->getWidth(), hw->getHeight(),
hw->getFormat());
}
} else {
mEventThread->onHotplugReceived(state.type, true);
}
}
}
}
}
}
if (transactionFlags & (eTraversalNeeded|eDisplayTransactionNeeded)) {
// The transform hint might have changed for some layers
// (either because a display has changed, or because a layer
// as changed).
//
// Walk through all the layers in currentLayers,
// and update their transform hint.
//
// If a layer is visible only on a single display, then that
// display is used to calculate the hint, otherwise we use the
// default display.
//
// NOTE: we do this here, rather than in rebuildLayerStacks() so that
// the hint is set before we acquire a buffer from the surface texture.
//
// NOTE: layer transactions have taken place already, so we use their
// drawing state. However, SurfaceFlinger's own transaction has not
// happened yet, so we must use the current state layer list
// (soon to become the drawing state list).
//
sp<const DisplayDevice> disp;
uint32_t currentlayerStack = 0;
bool first = true;
mCurrentState.traverseInZOrder([&](Layer* layer) {
// NOTE: we rely on the fact that layers are sorted by
// layerStack first (so we don't have to traverse the list
// of displays for every layer).
uint32_t layerStack = layer->getLayerStack();
if (first || currentlayerStack != layerStack) {
currentlayerStack = layerStack;
// figure out if this layerstack is mirrored
// (more than one display) if so, pick the default display,
// if not, pick the only display it's on.
disp.clear();
for (size_t dpy=0 ; dpy<mDisplays.size() ; dpy++) {
sp<const DisplayDevice> hw(mDisplays[dpy]);
if (hw->getLayerStack() == currentlayerStack) {
if (disp == NULL) {
disp = hw;
} else {
disp = NULL;
break;
}
}
}
}
if (disp == NULL) {
// NOTE: TEMPORARY FIX ONLY. Real fix should cause layers to
// redraw after transform hint changes. See bug 8508397.
// could be null when this layer is using a layerStack
// that is not visible on any display. Also can occur at
// screen off/on times.
disp = getDefaultDisplayDeviceLocked();
}
layer->updateTransformHint(disp);
first = false;
});
}
/*
* Perform our own transaction if needed
*/
if (mLayersAdded) {
mLayersAdded = false;
// Layers have been added.
mVisibleRegionsDirty = true;
}
// some layers might have been removed, so
// we need to update the regions they're exposing.
if (mLayersRemoved) {
mLayersRemoved = false;
mVisibleRegionsDirty = true;
mDrawingState.traverseInZOrder([&](Layer* layer) {
if (mLayersPendingRemoval.indexOf(layer) >= 0) {
// this layer is not visible anymore
// TODO: we could traverse the tree from front to back and
// compute the actual visible region
// TODO: we could cache the transformed region
Region visibleReg;
visibleReg.set(layer->computeScreenBounds());
invalidateLayerStack(layer, visibleReg);
}
});
}
commitTransaction();
updateCursorAsync();
}
void SurfaceFlinger::updateCursorAsync()
{
HWComposer& hwc(getHwComposer());
for (size_t dpy=0 ; dpy<mDisplays.size() ; dpy++) {
sp<const DisplayDevice> hw(mDisplays[dpy]);
const int32_t id = hw->getHwcDisplayId();
if (id < 0) {
continue;
}
const Vector< sp<Layer> >& currentLayers(
hw->getVisibleLayersSortedByZ());
const size_t count = currentLayers.size();
HWComposer::LayerListIterator cur = hwc.begin(id);
const HWComposer::LayerListIterator end = hwc.end(id);
for (size_t i=0 ; cur!=end && i<count ; ++i, ++cur) {
if (cur->getCompositionType() != HWC_CURSOR_OVERLAY) {
continue;
}
const sp<Layer>& layer(currentLayers[i]);
Rect cursorPos = layer->getPosition(hw);
hwc.setCursorPositionAsync(id, cursorPos);
break;
}
}
}
void SurfaceFlinger::commitTransaction()
{
if (!mLayersPendingRemoval.isEmpty()) {
// Notify removed layers now that they can't be drawn from
for (const auto& l : mLayersPendingRemoval) {
recordBufferingStats(l->getName().string(),
l->getOccupancyHistory(true));
l->onRemoved();
}
mLayersPendingRemoval.clear();
}
// If this transaction is part of a window animation then the next frame
// we composite should be considered an animation as well.
mAnimCompositionPending = mAnimTransactionPending;
mDrawingState = mCurrentState;
mDrawingState.traverseInZOrder([](Layer* layer) {
layer->commitChildList();
});
mTransactionPending = false;
mAnimTransactionPending = false;
mTransactionCV.broadcast();
}
void SurfaceFlinger::computeVisibleRegions(const sp<const DisplayDevice>& displayDevice,
Region& outDirtyRegion, Region& outOpaqueRegion)
{
ATRACE_CALL();
Region aboveOpaqueLayers;
Region aboveCoveredLayers;
Region dirty;
outDirtyRegion.clear();
mDrawingState.traverseInReverseZOrder([&](Layer* layer) {
// start with the whole surface at its current location
const Layer::State& s(layer->getDrawingState());
// only consider the layers on the given layer stack
if (layer->getLayerStack() != displayDevice->getLayerStack())
return;
/*
* opaqueRegion: area of a surface that is fully opaque.
*/
Region opaqueRegion;
/*
* visibleRegion: area of a surface that is visible on screen
* and not fully transparent. This is essentially the layer's
* footprint minus the opaque regions above it.
* Areas covered by a translucent surface are considered visible.
*/
Region visibleRegion;
/*
* coveredRegion: area of a surface that is covered by all
* visible regions above it (which includes the translucent areas).
*/
Region coveredRegion;
/*
* transparentRegion: area of a surface that is hinted to be completely
* transparent. This is only used to tell when the layer has no visible
* non-transparent regions and can be removed from the layer list. It
* does not affect the visibleRegion of this layer or any layers
* beneath it. The hint may not be correct if apps don't respect the
* SurfaceView restrictions (which, sadly, some don't).
*/
Region transparentRegion;
// handle hidden surfaces by setting the visible region to empty
if (CC_LIKELY(layer->isVisible())) {
const bool translucent = !layer->isOpaque(s);
Rect bounds(layer->computeScreenBounds());
visibleRegion.set(bounds);
Transform tr = layer->getTransform();
if (!visibleRegion.isEmpty()) {
// Remove the transparent area from the visible region
if (translucent) {
if (tr.preserveRects()) {
// transform the transparent region
transparentRegion = tr.transform(s.activeTransparentRegion);
} else {
// transformation too complex, can't do the
// transparent region optimization.
transparentRegion.clear();
}
}
// compute the opaque region
const int32_t layerOrientation = tr.getOrientation();
if (s.alpha==255 && !translucent &&
((layerOrientation & Transform::ROT_INVALID) == false)) {
// the opaque region is the layer's footprint
opaqueRegion = visibleRegion;
}
}
}
// Clip the covered region to the visible region
coveredRegion = aboveCoveredLayers.intersect(visibleRegion);
// Update aboveCoveredLayers for next (lower) layer
aboveCoveredLayers.orSelf(visibleRegion);
// subtract the opaque region covered by the layers above us
visibleRegion.subtractSelf(aboveOpaqueLayers);
// compute this layer's dirty region
if (layer->contentDirty) {
// we need to invalidate the whole region
dirty = visibleRegion;
// as well, as the old visible region
dirty.orSelf(layer->visibleRegion);
layer->contentDirty = false;
} else {
/* compute the exposed region:
* the exposed region consists of two components:
* 1) what's VISIBLE now and was COVERED before
* 2) what's EXPOSED now less what was EXPOSED before
*
* note that (1) is conservative, we start with the whole
* visible region but only keep what used to be covered by
* something -- which mean it may have been exposed.
*
* (2) handles areas that were not covered by anything but got
* exposed because of a resize.
*/
const Region newExposed = visibleRegion - coveredRegion;
const Region oldVisibleRegion = layer->visibleRegion;
const Region oldCoveredRegion = layer->coveredRegion;
const Region oldExposed = oldVisibleRegion - oldCoveredRegion;
dirty = (visibleRegion&oldCoveredRegion) | (newExposed-oldExposed);
}
dirty.subtractSelf(aboveOpaqueLayers);
// accumulate to the screen dirty region
outDirtyRegion.orSelf(dirty);
// Update aboveOpaqueLayers for next (lower) layer
aboveOpaqueLayers.orSelf(opaqueRegion);
// Store the visible region in screen space
layer->setVisibleRegion(visibleRegion);
layer->setCoveredRegion(coveredRegion);
layer->setVisibleNonTransparentRegion(
visibleRegion.subtract(transparentRegion));
});
outOpaqueRegion = aboveOpaqueLayers;
}
void SurfaceFlinger::invalidateLayerStack(const sp<const Layer>& layer, const Region& dirty) {
uint32_t layerStack = layer->getLayerStack();
for (size_t dpy=0 ; dpy<mDisplays.size() ; dpy++) {
const sp<DisplayDevice>& hw(mDisplays[dpy]);
if (hw->getLayerStack() == layerStack) {
hw->dirtyRegion.orSelf(dirty);
}
}
}
bool SurfaceFlinger::handlePageFlip()
{
nsecs_t latchTime = systemTime();
Region dirtyRegion;
bool visibleRegions = false;
bool frameQueued = false;
// Store the set of layers that need updates. This set must not change as
// buffers are being latched, as this could result in a deadlock.
// Example: Two producers share the same command stream and:
// 1.) Layer 0 is latched
// 2.) Layer 0 gets a new frame
// 2.) Layer 1 gets a new frame
// 3.) Layer 1 is latched.
// Display is now waiting on Layer 1's frame, which is behind layer 0's
// second frame. But layer 0's second frame could be waiting on display.
Vector<Layer*> layersWithQueuedFrames;
mDrawingState.traverseInZOrder([&](Layer* layer) {
if (layer->hasQueuedFrame()) {
frameQueued = true;
if (layer->shouldPresentNow(mPrimaryDispSync)) {
layersWithQueuedFrames.push_back(layer);
} else {
layer->useEmptyDamage();
}
} else {
layer->useEmptyDamage();
}
});
for (size_t i = 0, count = layersWithQueuedFrames.size() ; i<count ; i++) {
Layer* layer = layersWithQueuedFrames[i];
const Region dirty(layer->latchBuffer(visibleRegions, latchTime));
layer->useSurfaceDamage();
invalidateLayerStack(layer, dirty);
}
mVisibleRegionsDirty |= visibleRegions;
// If we will need to wake up at some time in the future to deal with a
// queued frame that shouldn't be displayed during this vsync period, wake
// up during the next vsync period to check again.
if (frameQueued && layersWithQueuedFrames.empty()) {
signalLayerUpdate();
}
// Only continue with the refresh if there is actually new work to do
return !layersWithQueuedFrames.empty();
}
void SurfaceFlinger::invalidateHwcGeometry()
{
mHwWorkListDirty = true;
}
void SurfaceFlinger::doDisplayComposition(const sp<const DisplayDevice>& hw,
const Region& inDirtyRegion)
{
// We only need to actually compose the display if:
// 1) It is being handled by hardware composer, which may need this to
// keep its virtual display state machine in sync, or
// 2) There is work to be done (the dirty region isn't empty)
bool isHwcDisplay = hw->getHwcDisplayId() >= 0;
if (!isHwcDisplay && inDirtyRegion.isEmpty()) {
return;
}
Region dirtyRegion(inDirtyRegion);
// compute the invalid region
hw->swapRegion.orSelf(dirtyRegion);
uint32_t flags = hw->getFlags();
if (flags & DisplayDevice::SWAP_RECTANGLE) {
// we can redraw only what's dirty, but since SWAP_RECTANGLE only
// takes a rectangle, we must make sure to update that whole
// rectangle in that case
dirtyRegion.set(hw->swapRegion.bounds());
} else {
if (flags & DisplayDevice::PARTIAL_UPDATES) {
// We need to redraw the rectangle that will be updated
// (pushed to the framebuffer).
// This is needed because PARTIAL_UPDATES only takes one
// rectangle instead of a region (see DisplayDevice::flip())
dirtyRegion.set(hw->swapRegion.bounds());
} else {
// we need to redraw everything (the whole screen)
dirtyRegion.set(hw->bounds());
hw->swapRegion = dirtyRegion;
}
}
if (CC_LIKELY(!mDaltonize && !mHasColorMatrix)) {
if (!doComposeSurfaces(hw, dirtyRegion)) return;
} else {
RenderEngine& engine(getRenderEngine());
mat4 colorMatrix = mColorMatrix;
if (mDaltonize) {
colorMatrix = colorMatrix * mDaltonizer();
}
mat4 oldMatrix = engine.setupColorTransform(colorMatrix);
doComposeSurfaces(hw, dirtyRegion);
engine.setupColorTransform(oldMatrix);
}
// update the swap region and clear the dirty region
hw->swapRegion.orSelf(dirtyRegion);
// swap buffers (presentation)
hw->swapBuffers(getHwComposer());
}
bool SurfaceFlinger::doComposeSurfaces(const sp<const DisplayDevice>& hw, const Region& dirty)
{
RenderEngine& engine(getRenderEngine());
const int32_t id = hw->getHwcDisplayId();
HWComposer& hwc(getHwComposer());
HWComposer::LayerListIterator cur = hwc.begin(id);
const HWComposer::LayerListIterator end = hwc.end(id);
bool hasGlesComposition = hwc.hasGlesComposition(id);
if (hasGlesComposition) {
if (!hw->makeCurrent(mEGLDisplay, mEGLContext)) {
ALOGW("DisplayDevice::makeCurrent failed. Aborting surface composition for display %s",
hw->getDisplayName().string());
eglMakeCurrent(mEGLDisplay, EGL_NO_SURFACE, EGL_NO_SURFACE, EGL_NO_CONTEXT);
if(!getDefaultDisplayDevice()->makeCurrent(mEGLDisplay, mEGLContext)) {
ALOGE("DisplayDevice::makeCurrent on default display failed. Aborting.");
}
return false;
}
// Never touch the framebuffer if we don't have any framebuffer layers
const bool hasHwcComposition = hwc.hasHwcComposition(id);
if (hasHwcComposition) {
// when using overlays, we assume a fully transparent framebuffer
// NOTE: we could reduce how much we need to clear, for instance
// remove where there are opaque FB layers. however, on some
// GPUs doing a "clean slate" clear might be more efficient.
// We'll revisit later if needed.
engine.clearWithColor(0, 0, 0, 0);
} else {
// we start with the whole screen area
const Region bounds(hw->getBounds());
// we remove the scissor part
// we're left with the letterbox region
// (common case is that letterbox ends-up being empty)
const Region letterbox(bounds.subtract(hw->getScissor()));
// compute the area to clear
Region region(hw->undefinedRegion.merge(letterbox));
// but limit it to the dirty region
region.andSelf(dirty);
// screen is already cleared here
if (!region.isEmpty()) {
// can happen with SurfaceView
drawWormhole(hw, region);
}
}
if (hw->getDisplayType() != DisplayDevice::DISPLAY_PRIMARY) {
// just to be on the safe side, we don't set the
// scissor on the main display. It should never be needed
// anyways (though in theory it could since the API allows it).
const Rect& bounds(hw->getBounds());
const Rect& scissor(hw->getScissor());
if (scissor != bounds) {
// scissor doesn't match the screen's dimensions, so we
// need to clear everything outside of it and enable
// the GL scissor so we don't draw anything where we shouldn't
// enable scissor for this frame
const uint32_t height = hw->getHeight();
engine.setScissor(scissor.left, height - scissor.bottom,
scissor.getWidth(), scissor.getHeight());
}
}
}
/*
* and then, render the layers targeted at the framebuffer
*/
const Vector< sp<Layer> >& layers(hw->getVisibleLayersSortedByZ());
const size_t count = layers.size();
const Transform& tr = hw->getTransform();
if (cur != end) {
// we're using h/w composer
for (size_t i=0 ; i<count && cur!=end ; ++i, ++cur) {
const sp<Layer>& layer(layers[i]);
const Region clip(dirty.intersect(tr.transform(layer->visibleRegion)));
if (!clip.isEmpty()) {
switch (cur->getCompositionType()) {
case HWC_CURSOR_OVERLAY:
case HWC_OVERLAY: {
const Layer::State& state(layer->getDrawingState());
if ((cur->getHints() & HWC_HINT_CLEAR_FB)
&& i
&& layer->isOpaque(state) && (state.alpha == 0xFF)
&& hasGlesComposition) {
// never clear the very first layer since we're
// guaranteed the FB is already cleared
layer->clearWithOpenGL(hw);
}
break;
}
case HWC_FRAMEBUFFER: {
layer->draw(hw, clip);
break;
}
case HWC_FRAMEBUFFER_TARGET: {
// this should not happen as the iterator shouldn't
// let us get there.
ALOGW("HWC_FRAMEBUFFER_TARGET found in hwc list (index=%zu)", i);
break;
}
}
}
layer->setAcquireFence(hw, *cur);
}
} else {
// we're not using h/w composer
for (size_t i=0 ; i<count ; ++i) {
const sp<Layer>& layer(layers[i]);
const Region clip(dirty.intersect(
tr.transform(layer->visibleRegion)));
if (!clip.isEmpty()) {
layer->draw(hw, clip);
}
}
}
// disable scissor at the end of the frame
engine.disableScissor();
return true;
}
void SurfaceFlinger::drawWormhole(const sp<const DisplayDevice>& hw, const Region& region) const {
const int32_t height = hw->getHeight();
RenderEngine& engine(getRenderEngine());
engine.fillRegionWithColor(region, height, 0, 0, 0, 0);
}
status_t SurfaceFlinger::addClientLayer(const sp<Client>& client,
const sp<IBinder>& handle,
const sp<IGraphicBufferProducer>& gbc,
const sp<Layer>& lbc,
const sp<Layer>& parent)
{
// add this layer to the current state list
{
Mutex::Autolock _l(mStateLock);
if (mNumLayers >= MAX_LAYERS) {
return NO_MEMORY;
}
if (parent == nullptr) {
mCurrentState.layersSortedByZ.add(lbc);
} else {
if (mCurrentState.layersSortedByZ.indexOf(parent) < 0) {
ALOGE("addClientLayer called with a removed parent");
return NAME_NOT_FOUND;
}
parent->addChild(lbc);
}
mGraphicBufferProducerList.add(IInterface::asBinder(gbc));
mLayersAdded = true;
mNumLayers++;
}
// attach this layer to the client
client->attachLayer(handle, lbc);
return NO_ERROR;
}
status_t SurfaceFlinger::removeLayer(const sp<Layer>& layer, bool topLevelOnly) {
Mutex::Autolock _l(mStateLock);
const auto& p = layer->getParent();
ssize_t index;
if (p != nullptr) {
if (topLevelOnly) {
return NO_ERROR;
}
sp<Layer> ancestor = p;
while (ancestor->getParent() != nullptr) {
ancestor = ancestor->getParent();
}
if (mCurrentState.layersSortedByZ.indexOf(ancestor) < 0) {
ALOGE("removeLayer called with a layer whose parent has been removed");
return NAME_NOT_FOUND;
}
index = p->removeChild(layer);
} else {
index = mCurrentState.layersSortedByZ.remove(layer);
}
// As a matter of normal operation, the LayerCleaner will produce a second
// attempt to remove the surface. The Layer will be kept alive in mDrawingState
// so we will succeed in promoting it, but it's already been removed
// from mCurrentState. As long as we can find it in mDrawingState we have no problem
// otherwise something has gone wrong and we are leaking the layer.
if (index < 0 && mDrawingState.layersSortedByZ.indexOf(layer) < 0) {
ALOGE("Failed to find layer (%s) in layer parent (%s).",
layer->getName().string(),
(p != nullptr) ? p->getName().string() : "no-parent");
return BAD_VALUE;
} else if (index < 0) {
return NO_ERROR;
}
layer->onRemovedFromCurrentState();
mLayersPendingRemoval.add(layer);
mLayersRemoved = true;
mNumLayers -= 1 + layer->getChildrenCount();
setTransactionFlags(eTransactionNeeded);
return NO_ERROR;
}
uint32_t SurfaceFlinger::peekTransactionFlags() {
return android_atomic_release_load(&mTransactionFlags);
}
uint32_t SurfaceFlinger::getTransactionFlags(uint32_t flags) {
return android_atomic_and(~flags, &mTransactionFlags) & flags;
}
uint32_t SurfaceFlinger::setTransactionFlags(uint32_t flags) {
uint32_t old = android_atomic_or(flags, &mTransactionFlags);
if ((old & flags)==0) { // wake the server up
signalTransaction();
}
return old;
}
void SurfaceFlinger::setTransactionState(
const Vector<ComposerState>& state,
const Vector<DisplayState>& displays,
uint32_t flags)
{
ATRACE_CALL();
Mutex::Autolock _l(mStateLock);
uint32_t transactionFlags = 0;
if (flags & eAnimation) {
// For window updates that are part of an animation we must wait for
// previous animation "frames" to be handled.
while (mAnimTransactionPending) {
status_t err = mTransactionCV.waitRelative(mStateLock, s2ns(5));
if (CC_UNLIKELY(err != NO_ERROR)) {
// just in case something goes wrong in SF, return to the
// caller after a few seconds.
ALOGW_IF(err == TIMED_OUT, "setTransactionState timed out "
"waiting for previous animation frame");
mAnimTransactionPending = false;
break;
}
}
}
size_t count = displays.size();
for (size_t i=0 ; i<count ; i++) {
const DisplayState& s(displays[i]);
transactionFlags |= setDisplayStateLocked(s);
}
count = state.size();
for (size_t i=0 ; i<count ; i++) {
const ComposerState& s(state[i]);
// Here we need to check that the interface we're given is indeed
// one of our own. A malicious client could give us a NULL
// IInterface, or one of its own or even one of our own but a
// different type. All these situations would cause us to crash.
//
// NOTE: it would be better to use RTTI as we could directly check
// that we have a Client*. however, RTTI is disabled in Android.
if (s.client != NULL) {
sp<IBinder> binder = IInterface::asBinder(s.client);
if (binder != NULL) {
if (binder->queryLocalInterface(ISurfaceComposerClient::descriptor) != NULL) {
sp<Client> client( static_cast<Client *>(s.client.get()) );
transactionFlags |= setClientStateLocked(client, s.state);
}
}
}
}
// If a synchronous transaction is explicitly requested without any changes,
// force a transaction anyway. This can be used as a flush mechanism for
// previous async transactions.
if (transactionFlags == 0 && (flags & eSynchronous)) {
transactionFlags = eTransactionNeeded;
}
if (transactionFlags) {
if (mInterceptor.isEnabled()) {
mInterceptor.saveTransaction(state, mCurrentState.displays, displays, flags);
}
// this triggers the transaction
setTransactionFlags(transactionFlags);
// if this is a synchronous transaction, wait for it to take effect
// before returning.
if (flags & eSynchronous) {
mTransactionPending = true;
}
if (flags & eAnimation) {
mAnimTransactionPending = true;
}
while (mTransactionPending) {
status_t err = mTransactionCV.waitRelative(mStateLock, s2ns(5));
if (CC_UNLIKELY(err != NO_ERROR)) {
// just in case something goes wrong in SF, return to the
// called after a few seconds.
ALOGW_IF(err == TIMED_OUT, "setTransactionState timed out!");
mTransactionPending = false;
break;
}
}
}
}
uint32_t SurfaceFlinger::setDisplayStateLocked(const DisplayState& s)
{
ssize_t dpyIdx = mCurrentState.displays.indexOfKey(s.token);
if (dpyIdx < 0)
return 0;
uint32_t flags = 0;
DisplayDeviceState& disp(mCurrentState.displays.editValueAt(dpyIdx));
if (disp.isValid()) {
const uint32_t what = s.what;
if (what & DisplayState::eSurfaceChanged) {
if (IInterface::asBinder(disp.surface) != IInterface::asBinder(s.surface)) {
disp.surface = s.surface;
flags |= eDisplayTransactionNeeded;
}
}
if (what & DisplayState::eLayerStackChanged) {
if (disp.layerStack != s.layerStack) {
disp.layerStack = s.layerStack;
flags |= eDisplayTransactionNeeded;
}
}
if (what & DisplayState::eDisplayProjectionChanged) {
if (disp.orientation != s.orientation) {
disp.orientation = s.orientation;
flags |= eDisplayTransactionNeeded;
}
if (disp.frame != s.frame) {
disp.frame = s.frame;
flags |= eDisplayTransactionNeeded;
}
if (disp.viewport != s.viewport) {
disp.viewport = s.viewport;
flags |= eDisplayTransactionNeeded;
}
}
if (what & DisplayState::eDisplaySizeChanged) {
if (disp.width != s.width) {
disp.width = s.width;
flags |= eDisplayTransactionNeeded;
}
if (disp.height != s.height) {
disp.height = s.height;
flags |= eDisplayTransactionNeeded;
}
}
}
return flags;
}
uint32_t SurfaceFlinger::setClientStateLocked(
const sp<Client>& client,
const layer_state_t& s)
{
uint32_t flags = 0;
sp<Layer> layer(client->getLayerUser(s.surface));
if (layer != 0) {
const uint32_t what = s.what;
bool geometryAppliesWithResize =
what & layer_state_t::eGeometryAppliesWithResize;
if (what & layer_state_t::ePositionChanged) {
if (layer->setPosition(s.x, s.y, !geometryAppliesWithResize)) {
flags |= eTraversalNeeded;
}
}
if (what & layer_state_t::eLayerChanged) {
// NOTE: index needs to be calculated before we update the state
const auto& p = layer->getParent();
if (p == nullptr) {
ssize_t idx = mCurrentState.layersSortedByZ.indexOf(layer);
if (layer->setLayer(s.z) && idx >= 0) {
mCurrentState.layersSortedByZ.removeAt(idx);
mCurrentState.layersSortedByZ.add(layer);
// we need traversal (state changed)
// AND transaction (list changed)
flags |= eTransactionNeeded|eTraversalNeeded;
}
} else {
if (p->setChildLayer(layer, s.z)) {
flags |= eTransactionNeeded|eTraversalNeeded;
}
}
}
if (what & layer_state_t::eSizeChanged) {
if (layer->setSize(s.w, s.h)) {
flags |= eTraversalNeeded;
}
}
if (what & layer_state_t::eAlphaChanged) {
if (layer->setAlpha(uint8_t(255.0f*s.alpha+0.5f)))
flags |= eTraversalNeeded;
}
if (what & layer_state_t::eMatrixChanged) {
if (layer->setMatrix(s.matrix))
flags |= eTraversalNeeded;
}
if (what & layer_state_t::eTransparentRegionChanged) {
if (layer->setTransparentRegionHint(s.transparentRegion))
flags |= eTraversalNeeded;
}
if (what & layer_state_t::eFlagsChanged) {
if (layer->setFlags(s.flags, s.mask))
flags |= eTraversalNeeded;
}
if (what & layer_state_t::eCropChanged) {
if (layer->setCrop(s.crop, !geometryAppliesWithResize))
flags |= eTraversalNeeded;
}
if (what & layer_state_t::eFinalCropChanged) {
if (layer->setFinalCrop(s.finalCrop, !geometryAppliesWithResize))
flags |= eTraversalNeeded;
}
if (what & layer_state_t::eLayerStackChanged) {
ssize_t idx = mCurrentState.layersSortedByZ.indexOf(layer);
// We only allow setting layer stacks for top level layers,
// everything else inherits layer stack from its parent.
if (layer->hasParent()) {
ALOGE("Attempt to set layer stack on layer with parent (%s) is invalid",
layer->getName().string());
} else if (idx < 0) {
ALOGE("Attempt to set layer stack on layer without parent (%s) that "
"that also does not appear in the top level layer list. Something"
" has gone wrong.", layer->getName().string());
} else if (layer->setLayerStack(s.layerStack)) {
mCurrentState.layersSortedByZ.removeAt(idx);
mCurrentState.layersSortedByZ.add(layer);
// we need traversal (state changed)
// AND transaction (list changed)
flags |= eTransactionNeeded|eTraversalNeeded;
}
}
if (what & layer_state_t::eDeferTransaction) {
if (s.barrierHandle != nullptr) {
layer->deferTransactionUntil(s.barrierHandle, s.frameNumber);
} else if (s.barrierGbp != nullptr) {
const sp<IGraphicBufferProducer>& gbp = s.barrierGbp;
if (authenticateSurfaceTextureLocked(gbp)) {
const auto& otherLayer =
(static_cast<MonitoredProducer*>(gbp.get()))->getLayer();
layer->deferTransactionUntil(otherLayer, s.frameNumber);
} else {
ALOGE("Attempt to defer transaction to to an"
" unrecognized GraphicBufferProducer");
}
}
// We don't trigger a traversal here because if no other state is
// changed, we don't want this to cause any more work
}
if (what & layer_state_t::eReparentChildren) {
if (layer->reparentChildren(s.reparentHandle)) {
flags |= eTransactionNeeded|eTraversalNeeded;
}
}
if (what & layer_state_t::eDetachChildren) {
layer->detachChildren();
}
if (what & layer_state_t::eOverrideScalingModeChanged) {
layer->setOverrideScalingMode(s.overrideScalingMode);
// We don't trigger a traversal here because if no other state is
// changed, we don't want this to cause any more work
}
}
return flags;
}
status_t SurfaceFlinger::createLayer(
const String8& name,
const sp<Client>& client,
uint32_t w, uint32_t h, PixelFormat format, uint32_t flags,
uint32_t windowType, uint32_t ownerUid, sp<IBinder>* handle,
sp<IGraphicBufferProducer>* gbp, sp<Layer>* parent)
{
if (int32_t(w|h) < 0) {
ALOGE("createLayer() failed, w or h is negative (w=%d, h=%d)",
int(w), int(h));
return BAD_VALUE;
}
status_t result = NO_ERROR;
sp<Layer> layer;
String8 uniqueName = getUniqueLayerName(name);
switch (flags & ISurfaceComposerClient::eFXSurfaceMask) {
case ISurfaceComposerClient::eFXSurfaceNormal:
result = createNormalLayer(client,
uniqueName, w, h, flags, format,
handle, gbp, &layer);
break;
case ISurfaceComposerClient::eFXSurfaceDim:
result = createDimLayer(client,
uniqueName, w, h, flags,
handle, gbp, &layer);
break;
default:
result = BAD_VALUE;
break;
}
if (result != NO_ERROR) {
return result;
}
layer->setInfo(windowType, ownerUid);
result = addClientLayer(client, *handle, *gbp, layer, *parent);
if (result != NO_ERROR) {
return result;
}
mInterceptor.saveSurfaceCreation(layer);
setTransactionFlags(eTransactionNeeded);
return result;
}
String8 SurfaceFlinger::getUniqueLayerName(const String8& name)
{
bool matchFound = true;
uint32_t dupeCounter = 0;
// Tack on our counter whether there is a hit or not, so everyone gets a tag
String8 uniqueName = name + "#" + String8(std::to_string(dupeCounter).c_str());
// Loop over layers until we're sure there is no matching name
while (matchFound) {
matchFound = false;
mDrawingState.traverseInZOrder([&](Layer* layer) {
if (layer->getName() == uniqueName) {
matchFound = true;
uniqueName = name + "#" + String8(std::to_string(++dupeCounter).c_str());
}
});
}
ALOGD_IF(dupeCounter > 0, "duplicate layer name: changing %s to %s", name.c_str(), uniqueName.c_str());
return uniqueName;
}
status_t SurfaceFlinger::createNormalLayer(const sp<Client>& client,
const String8& name, uint32_t w, uint32_t h, uint32_t flags, PixelFormat& format,
sp<IBinder>* handle, sp<IGraphicBufferProducer>* gbp, sp<Layer>* outLayer)
{
// initialize the surfaces
switch (format) {
case PIXEL_FORMAT_TRANSPARENT:
case PIXEL_FORMAT_TRANSLUCENT:
format = PIXEL_FORMAT_RGBA_8888;
break;
case PIXEL_FORMAT_OPAQUE:
format = PIXEL_FORMAT_RGBX_8888;
break;
}
*outLayer = new Layer(this, client, name, w, h, flags);
status_t err = (*outLayer)->setBuffers(w, h, format, flags);
if (err == NO_ERROR) {
*handle = (*outLayer)->getHandle();
*gbp = (*outLayer)->getProducer();
}
ALOGE_IF(err, "createNormalLayer() failed (%s)", strerror(-err));
return err;
}
status_t SurfaceFlinger::createDimLayer(const sp<Client>& client,
const String8& name, uint32_t w, uint32_t h, uint32_t flags,
sp<IBinder>* handle, sp<IGraphicBufferProducer>* gbp, sp<Layer>* outLayer)
{
*outLayer = new LayerDim(this, client, name, w, h, flags);
*handle = (*outLayer)->getHandle();
*gbp = (*outLayer)->getProducer();
return NO_ERROR;
}
status_t SurfaceFlinger::onLayerRemoved(const sp<Client>& client, const sp<IBinder>& handle)
{
// called by a client when it wants to remove a Layer
status_t err = NO_ERROR;
sp<Layer> l(client->getLayerUser(handle));
if (l != NULL) {
mInterceptor.saveSurfaceDeletion(l);
err = removeLayer(l);
ALOGE_IF(err<0 && err != NAME_NOT_FOUND,
"error removing layer=%p (%s)", l.get(), strerror(-err));
}
return err;
}
status_t SurfaceFlinger::onLayerDestroyed(const wp<Layer>& layer)
{
// called by ~LayerCleaner() when all references to the IBinder (handle)
// are gone
sp<Layer> l = layer.promote();
if (l == nullptr) {
// The layer has already been removed, carry on
return NO_ERROR;
}
// If we have a parent, then we can continue to live as long as it does.
return removeLayer(l, true);
}
// ---------------------------------------------------------------------------
void SurfaceFlinger::onInitializeDisplays() {
// reset screen orientation and use primary layer stack
Vector<ComposerState> state;
Vector<DisplayState> displays;
DisplayState d;
d.what = DisplayState::eDisplayProjectionChanged |
DisplayState::eLayerStackChanged;
d.token = mBuiltinDisplays[DisplayDevice::DISPLAY_PRIMARY];
d.layerStack = 0;
d.orientation = DisplayState::eOrientationDefault;
d.frame.makeInvalid();
d.viewport.makeInvalid();
d.width = 0;
d.height = 0;
displays.add(d);
setTransactionState(state, displays, 0);
setPowerModeInternal(getDisplayDevice(d.token), HWC_POWER_MODE_NORMAL);
const nsecs_t period =
getHwComposer().getRefreshPeriod(HWC_DISPLAY_PRIMARY);
mAnimFrameTracker.setDisplayRefreshPeriod(period);
// Use phase of 0 since phase is not known.
// Use latency of 0, which will snap to the ideal latency.
setCompositorTimingSnapped(0, period, 0);
}
void SurfaceFlinger::initializeDisplays() {
class MessageScreenInitialized : public MessageBase {
SurfaceFlinger* flinger;
public:
explicit MessageScreenInitialized(SurfaceFlinger* flinger) : flinger(flinger) { }
virtual bool handler() {
flinger->onInitializeDisplays();
return true;
}
};
sp<MessageBase> msg = new MessageScreenInitialized(this);
postMessageAsync(msg); // we may be called from main thread, use async message
}
void SurfaceFlinger::setPowerModeInternal(const sp<DisplayDevice>& hw,
int mode) {
ALOGD("Set power mode=%d, type=%d flinger=%p", mode, hw->getDisplayType(),
this);
int32_t type = hw->getDisplayType();
int currentMode = hw->getPowerMode();
if (mode == currentMode) {
ALOGD("Screen type=%d is already mode=%d", hw->getDisplayType(), mode);
return;
}
hw->setPowerMode(mode);
if (type >= DisplayDevice::NUM_BUILTIN_DISPLAY_TYPES) {
ALOGW("Trying to set power mode for virtual display");
return;
}
if (mInterceptor.isEnabled()) {
Mutex::Autolock _l(mStateLock);
ssize_t idx = mCurrentState.displays.indexOfKey(hw->getDisplayToken());
if (idx < 0) {
ALOGW("Surface Interceptor SavePowerMode: invalid display token");
return;
}
mInterceptor.savePowerModeUpdate(mCurrentState.displays.valueAt(idx).displayId, mode);
}
if (currentMode == HWC_POWER_MODE_OFF) {
// Turn on the display
getHwComposer().setPowerMode(type, mode);
if (type == DisplayDevice::DISPLAY_PRIMARY &&
mode != HWC_POWER_MODE_DOZE_SUSPEND) {
// FIXME: eventthread only knows about the main display right now
mEventThread->onScreenAcquired();
resyncToHardwareVsync(true);
}
mVisibleRegionsDirty = true;
mHasPoweredOff = true;
repaintEverything();
struct sched_param param = {0};
param.sched_priority = 1;
if (sched_setscheduler(0, SCHED_FIFO, &param) != 0) {
ALOGW("Couldn't set SCHED_FIFO on display on");