blob: 038ece2e05ffdf7e18d69a7e48b51de076803329 [file] [log] [blame]
/*
* Copyright (C) 2007 The Android Open Source Project
*
* Licensed under the Apache License, Version 2.0 (the "License");
* you may not use this file except in compliance with the License.
* You may obtain a copy of the License at
*
* http://www.apache.org/licenses/LICENSE-2.0
*
* Unless required by applicable law or agreed to in writing, software
* distributed under the License is distributed on an "AS IS" BASIS,
* WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
* See the License for the specific language governing permissions and
* limitations under the License.
*/
//#define LOG_NDEBUG 0
#undef LOG_TAG
#define LOG_TAG "Layer"
#define ATRACE_TAG ATRACE_TAG_GRAPHICS
#include <stdlib.h>
#include <stdint.h>
#include <sys/types.h>
#include <math.h>
#include <cutils/compiler.h>
#include <cutils/native_handle.h>
#include <cutils/properties.h>
#include <utils/Errors.h>
#include <utils/Log.h>
#include <utils/NativeHandle.h>
#include <utils/StopWatch.h>
#include <utils/Trace.h>
#include <ui/DebugUtils.h>
#include <ui/GraphicBuffer.h>
#include <ui/PixelFormat.h>
#include <gui/BufferItem.h>
#include <gui/BufferQueue.h>
#include <gui/Surface.h>
#include "clz.h"
#include "Colorizer.h"
#include "DisplayDevice.h"
#include "Layer.h"
#include "LayerRejecter.h"
#include "MonitoredProducer.h"
#include "SurfaceFlinger.h"
#include "DisplayHardware/HWComposer.h"
#include "RenderEngine/RenderEngine.h"
#include <mutex>
#define DEBUG_RESIZE 0
namespace android {
// ---------------------------------------------------------------------------
int32_t Layer::sSequence = 1;
Layer::Layer(SurfaceFlinger* flinger, const sp<Client>& client,
const String8& name, uint32_t w, uint32_t h, uint32_t flags)
: contentDirty(false),
sequence(uint32_t(android_atomic_inc(&sSequence))),
mFlinger(flinger),
mTextureName(-1U),
mPremultipliedAlpha(true),
mName("unnamed"),
mFormat(PIXEL_FORMAT_NONE),
mTransactionFlags(0),
mPendingStateMutex(),
mPendingStates(),
mQueuedFrames(0),
mSidebandStreamChanged(false),
mActiveBufferSlot(BufferQueue::INVALID_BUFFER_SLOT),
mCurrentTransform(0),
mCurrentScalingMode(NATIVE_WINDOW_SCALING_MODE_FREEZE),
mOverrideScalingMode(-1),
mCurrentOpacity(true),
mBufferLatched(false),
mCurrentFrameNumber(0),
mPreviousFrameNumber(0),
mRefreshPending(false),
mFrameLatencyNeeded(false),
mFiltering(false),
mNeedsFiltering(false),
mMesh(Mesh::TRIANGLE_FAN, 4, 2, 2),
#ifndef USE_HWC2
mIsGlesComposition(false),
#endif
mProtectedByApp(false),
mHasSurface(false),
mClientRef(client),
mPotentialCursor(false),
mQueueItemLock(),
mQueueItemCondition(),
mQueueItems(),
mLastFrameNumberReceived(0),
mUpdateTexImageFailed(false),
mAutoRefresh(false),
mFreezeGeometryUpdates(false)
{
#ifdef USE_HWC2
ALOGV("Creating Layer %s", name.string());
#endif
mCurrentCrop.makeInvalid();
mFlinger->getRenderEngine().genTextures(1, &mTextureName);
mTexture.init(Texture::TEXTURE_EXTERNAL, mTextureName);
uint32_t layerFlags = 0;
if (flags & ISurfaceComposerClient::eHidden)
layerFlags |= layer_state_t::eLayerHidden;
if (flags & ISurfaceComposerClient::eOpaque)
layerFlags |= layer_state_t::eLayerOpaque;
if (flags & ISurfaceComposerClient::eSecure)
layerFlags |= layer_state_t::eLayerSecure;
if (flags & ISurfaceComposerClient::eNonPremultiplied)
mPremultipliedAlpha = false;
mName = name;
mTransactionName = String8("TX - ") + mName;
mCurrentState.active.w = w;
mCurrentState.active.h = h;
mCurrentState.active.transform.set(0, 0);
mCurrentState.crop.makeInvalid();
mCurrentState.finalCrop.makeInvalid();
mCurrentState.requestedFinalCrop = mCurrentState.finalCrop;
mCurrentState.requestedCrop = mCurrentState.crop;
mCurrentState.z = 0;
#ifdef USE_HWC2
mCurrentState.alpha = 1.0f;
#else
mCurrentState.alpha = 0xFF;
#endif
mCurrentState.layerStack = 0;
mCurrentState.flags = layerFlags;
mCurrentState.sequence = 0;
mCurrentState.requested = mCurrentState.active;
mCurrentState.dataSpace = HAL_DATASPACE_UNKNOWN;
mCurrentState.appId = 0;
mCurrentState.type = 0;
// drawing state & current state are identical
mDrawingState = mCurrentState;
#ifdef USE_HWC2
const auto& hwc = flinger->getHwComposer();
const auto& activeConfig = hwc.getActiveConfig(HWC_DISPLAY_PRIMARY);
nsecs_t displayPeriod = activeConfig->getVsyncPeriod();
#else
nsecs_t displayPeriod =
flinger->getHwComposer().getRefreshPeriod(HWC_DISPLAY_PRIMARY);
#endif
mFrameTracker.setDisplayRefreshPeriod(displayPeriod);
CompositorTiming compositorTiming;
flinger->getCompositorTiming(&compositorTiming);
mFrameEventHistory.initializeCompositorTiming(compositorTiming);
}
void Layer::onFirstRef() {
// Creates a custom BufferQueue for SurfaceFlingerConsumer to use
sp<IGraphicBufferProducer> producer;
sp<IGraphicBufferConsumer> consumer;
BufferQueue::createBufferQueue(&producer, &consumer, true);
mProducer = new MonitoredProducer(producer, mFlinger, this);
mSurfaceFlingerConsumer = new SurfaceFlingerConsumer(consumer, mTextureName, this);
mSurfaceFlingerConsumer->setConsumerUsageBits(getEffectiveUsage(0));
mSurfaceFlingerConsumer->setContentsChangedListener(this);
mSurfaceFlingerConsumer->setName(mName);
if (mFlinger->isLayerTripleBufferingDisabled()) {
mProducer->setMaxDequeuedBufferCount(2);
}
const sp<const DisplayDevice> hw(mFlinger->getDefaultDisplayDevice());
updateTransformHint(hw);
}
Layer::~Layer() {
sp<Client> c(mClientRef.promote());
if (c != 0) {
c->detachLayer(this);
}
for (auto& point : mRemoteSyncPoints) {
point->setTransactionApplied();
}
for (auto& point : mLocalSyncPoints) {
point->setFrameAvailable();
}
mFlinger->deleteTextureAsync(mTextureName);
mFrameTracker.logAndResetStats(mName);
#ifdef USE_HWC2
if (!mHwcLayers.empty()) {
ALOGE("Found stale hardware composer layers when destroying "
"surface flinger layer %s", mName.string());
destroyAllHwcLayers();
}
#endif
}
// ---------------------------------------------------------------------------
// callbacks
// ---------------------------------------------------------------------------
#ifdef USE_HWC2
void Layer::onLayerDisplayed(const sp<Fence>& releaseFence) {
if (mHwcLayers.empty()) {
return;
}
mSurfaceFlingerConsumer->setReleaseFence(releaseFence);
}
#else
void Layer::onLayerDisplayed(const sp<const DisplayDevice>& /* hw */,
HWComposer::HWCLayerInterface* layer) {
if (layer) {
layer->onDisplayed();
mSurfaceFlingerConsumer->setReleaseFence(layer->getAndResetReleaseFence());
}
}
#endif
void Layer::onFrameAvailable(const BufferItem& item) {
// Add this buffer from our internal queue tracker
{ // Autolock scope
Mutex::Autolock lock(mQueueItemLock);
mFlinger->mInterceptor.saveBufferUpdate(this, item.mGraphicBuffer->getWidth(),
item.mGraphicBuffer->getHeight(), item.mFrameNumber);
// Reset the frame number tracker when we receive the first buffer after
// a frame number reset
if (item.mFrameNumber == 1) {
mLastFrameNumberReceived = 0;
}
// Ensure that callbacks are handled in order
while (item.mFrameNumber != mLastFrameNumberReceived + 1) {
status_t result = mQueueItemCondition.waitRelative(mQueueItemLock,
ms2ns(500));
if (result != NO_ERROR) {
ALOGE("[%s] Timed out waiting on callback", mName.string());
}
}
mQueueItems.push_back(item);
android_atomic_inc(&mQueuedFrames);
// Wake up any pending callbacks
mLastFrameNumberReceived = item.mFrameNumber;
mQueueItemCondition.broadcast();
}
mFlinger->signalLayerUpdate();
}
void Layer::onFrameReplaced(const BufferItem& item) {
{ // Autolock scope
Mutex::Autolock lock(mQueueItemLock);
// Ensure that callbacks are handled in order
while (item.mFrameNumber != mLastFrameNumberReceived + 1) {
status_t result = mQueueItemCondition.waitRelative(mQueueItemLock,
ms2ns(500));
if (result != NO_ERROR) {
ALOGE("[%s] Timed out waiting on callback", mName.string());
}
}
if (mQueueItems.empty()) {
ALOGE("Can't replace a frame on an empty queue");
return;
}
mQueueItems.editItemAt(mQueueItems.size() - 1) = item;
// Wake up any pending callbacks
mLastFrameNumberReceived = item.mFrameNumber;
mQueueItemCondition.broadcast();
}
}
void Layer::onSidebandStreamChanged() {
if (android_atomic_release_cas(false, true, &mSidebandStreamChanged) == 0) {
// mSidebandStreamChanged was false
mFlinger->signalLayerUpdate();
}
}
void Layer::onRemovedFromCurrentState() {
// the layer is removed from SF mCurrentState to mLayersPendingRemoval
if (mCurrentState.zOrderRelativeOf != nullptr) {
sp<Layer> strongRelative = mCurrentState.zOrderRelativeOf.promote();
if (strongRelative != nullptr) {
strongRelative->removeZOrderRelative(this);
mFlinger->setTransactionFlags(eTraversalNeeded);
}
mCurrentState.zOrderRelativeOf = nullptr;
}
for (const auto& child : mCurrentChildren) {
child->onRemovedFromCurrentState();
}
}
void Layer::onRemoved() {
// the layer is removed from SF mLayersPendingRemoval
mSurfaceFlingerConsumer->abandon();
#ifdef USE_HWC2
destroyAllHwcLayers();
#endif
for (const auto& child : mCurrentChildren) {
child->onRemoved();
}
}
// ---------------------------------------------------------------------------
// set-up
// ---------------------------------------------------------------------------
const String8& Layer::getName() const {
return mName;
}
status_t Layer::setBuffers( uint32_t w, uint32_t h,
PixelFormat format, uint32_t flags)
{
uint32_t const maxSurfaceDims = min(
mFlinger->getMaxTextureSize(), mFlinger->getMaxViewportDims());
// never allow a surface larger than what our underlying GL implementation
// can handle.
if ((uint32_t(w)>maxSurfaceDims) || (uint32_t(h)>maxSurfaceDims)) {
ALOGE("dimensions too large %u x %u", uint32_t(w), uint32_t(h));
return BAD_VALUE;
}
mFormat = format;
mPotentialCursor = (flags & ISurfaceComposerClient::eCursorWindow) ? true : false;
mProtectedByApp = (flags & ISurfaceComposerClient::eProtectedByApp) ? true : false;
mCurrentOpacity = getOpacityForFormat(format);
mSurfaceFlingerConsumer->setDefaultBufferSize(w, h);
mSurfaceFlingerConsumer->setDefaultBufferFormat(format);
mSurfaceFlingerConsumer->setConsumerUsageBits(getEffectiveUsage(0));
return NO_ERROR;
}
sp<IBinder> Layer::getHandle() {
Mutex::Autolock _l(mLock);
LOG_ALWAYS_FATAL_IF(mHasSurface,
"Layer::getHandle() has already been called");
mHasSurface = true;
return new Handle(mFlinger, this);
}
sp<IGraphicBufferProducer> Layer::getProducer() const {
return mProducer;
}
// ---------------------------------------------------------------------------
// h/w composer set-up
// ---------------------------------------------------------------------------
#ifdef USE_HWC2
bool Layer::createHwcLayer(HWComposer* hwc, int32_t hwcId) {
LOG_ALWAYS_FATAL_IF(mHwcLayers.count(hwcId) != 0,
"Already have a layer for hwcId %d", hwcId);
HWC2::Layer* layer = hwc->createLayer(hwcId);
if (!layer) {
return false;
}
HWCInfo& hwcInfo = mHwcLayers[hwcId];
hwcInfo.hwc = hwc;
hwcInfo.layer = layer;
layer->setLayerDestroyedListener(
[this, hwcId] (HWC2::Layer* /*layer*/){mHwcLayers.erase(hwcId);});
return true;
}
void Layer::destroyHwcLayer(int32_t hwcId) {
if (mHwcLayers.count(hwcId) == 0) {
return;
}
auto& hwcInfo = mHwcLayers[hwcId];
LOG_ALWAYS_FATAL_IF(hwcInfo.layer == nullptr,
"Attempt to destroy null layer");
LOG_ALWAYS_FATAL_IF(hwcInfo.hwc == nullptr, "Missing HWComposer");
hwcInfo.hwc->destroyLayer(hwcId, hwcInfo.layer);
// The layer destroyed listener should have cleared the entry from
// mHwcLayers. Verify that.
LOG_ALWAYS_FATAL_IF(mHwcLayers.count(hwcId) != 0,
"Stale layer entry in mHwcLayers");
}
void Layer::destroyAllHwcLayers() {
size_t numLayers = mHwcLayers.size();
for (size_t i = 0; i < numLayers; ++i) {
LOG_ALWAYS_FATAL_IF(mHwcLayers.empty(), "destroyAllHwcLayers failed");
destroyHwcLayer(mHwcLayers.begin()->first);
}
LOG_ALWAYS_FATAL_IF(!mHwcLayers.empty(),
"All hardware composer layers should have been destroyed");
}
#endif
Rect Layer::getContentCrop() const {
// this is the crop rectangle that applies to the buffer
// itself (as opposed to the window)
Rect crop;
if (!mCurrentCrop.isEmpty()) {
// if the buffer crop is defined, we use that
crop = mCurrentCrop;
} else if (mActiveBuffer != NULL) {
// otherwise we use the whole buffer
crop = mActiveBuffer->getBounds();
} else {
// if we don't have a buffer yet, we use an empty/invalid crop
crop.makeInvalid();
}
return crop;
}
static Rect reduce(const Rect& win, const Region& exclude) {
if (CC_LIKELY(exclude.isEmpty())) {
return win;
}
if (exclude.isRect()) {
return win.reduce(exclude.getBounds());
}
return Region(win).subtract(exclude).getBounds();
}
Rect Layer::computeScreenBounds(bool reduceTransparentRegion) const {
const Layer::State& s(getDrawingState());
Rect win(s.active.w, s.active.h);
if (!s.crop.isEmpty()) {
win.intersect(s.crop, &win);
}
Transform t = getTransform();
win = t.transform(win);
if (!s.finalCrop.isEmpty()) {
win.intersect(s.finalCrop, &win);
}
const sp<Layer>& p = mDrawingParent.promote();
// Now we need to calculate the parent bounds, so we can clip ourselves to those.
// When calculating the parent bounds for purposes of clipping,
// we don't need to constrain the parent to its transparent region.
// The transparent region is an optimization based on the
// buffer contents of the layer, but does not affect the space allocated to
// it by policy, and thus children should be allowed to extend into the
// parent's transparent region. In fact one of the main uses, is to reduce
// buffer allocation size in cases where a child window sits behind a main window
// (by marking the hole in the parent window as a transparent region)
if (p != nullptr) {
Rect bounds = p->computeScreenBounds(false);
bounds.intersect(win, &win);
}
if (reduceTransparentRegion) {
auto const screenTransparentRegion = t.transform(s.activeTransparentRegion);
win = reduce(win, screenTransparentRegion);
}
return win;
}
Rect Layer::computeBounds() const {
const Layer::State& s(getDrawingState());
return computeBounds(s.activeTransparentRegion);
}
Rect Layer::computeBounds(const Region& activeTransparentRegion) const {
const Layer::State& s(getDrawingState());
Rect win(s.active.w, s.active.h);
if (!s.crop.isEmpty()) {
win.intersect(s.crop, &win);
}
Rect bounds = win;
const auto& p = mDrawingParent.promote();
if (p != nullptr) {
// Look in computeScreenBounds recursive call for explanation of
// why we pass false here.
bounds = p->computeScreenBounds(false /* reduceTransparentRegion */);
}
Transform t = getTransform();
if (p != nullptr) {
win = t.transform(win);
win.intersect(bounds, &win);
win = t.inverse().transform(win);
}
// subtract the transparent region and snap to the bounds
return reduce(win, activeTransparentRegion);
}
Rect Layer::computeInitialCrop(const sp<const DisplayDevice>& hw) const {
// the crop is the area of the window that gets cropped, but not
// scaled in any ways.
const State& s(getDrawingState());
// apply the projection's clipping to the window crop in
// layerstack space, and convert-back to layer space.
// if there are no window scaling involved, this operation will map to full
// pixels in the buffer.
// FIXME: the 3 lines below can produce slightly incorrect clipping when we have
// a viewport clipping and a window transform. we should use floating point to fix this.
Rect activeCrop(s.active.w, s.active.h);
if (!s.crop.isEmpty()) {
activeCrop.intersect(s.crop, &activeCrop);
}
Transform t = getTransform();
activeCrop = t.transform(activeCrop);
if (!activeCrop.intersect(hw->getViewport(), &activeCrop)) {
activeCrop.clear();
}
if (!s.finalCrop.isEmpty()) {
if(!activeCrop.intersect(s.finalCrop, &activeCrop)) {
activeCrop.clear();
}
}
return activeCrop;
}
FloatRect Layer::computeCrop(const sp<const DisplayDevice>& hw) const {
// the content crop is the area of the content that gets scaled to the
// layer's size. This is in buffer space.
FloatRect crop = getContentCrop().toFloatRect();
// In addition there is a WM-specified crop we pull from our drawing state.
const State& s(getDrawingState());
// Screen space to make reduction to parent crop clearer.
Rect activeCrop = computeInitialCrop(hw);
const auto& p = mDrawingParent.promote();
if (p != nullptr) {
auto parentCrop = p->computeInitialCrop(hw);
activeCrop.intersect(parentCrop, &activeCrop);
}
Transform t = getTransform();
// Back to layer space to work with the content crop.
activeCrop = t.inverse().transform(activeCrop);
// This needs to be here as transform.transform(Rect) computes the
// transformed rect and then takes the bounding box of the result before
// returning. This means
// transform.inverse().transform(transform.transform(Rect)) != Rect
// in which case we need to make sure the final rect is clipped to the
// display bounds.
if (!activeCrop.intersect(Rect(s.active.w, s.active.h), &activeCrop)) {
activeCrop.clear();
}
// subtract the transparent region and snap to the bounds
activeCrop = reduce(activeCrop, s.activeTransparentRegion);
// Transform the window crop to match the buffer coordinate system,
// which means using the inverse of the current transform set on the
// SurfaceFlingerConsumer.
uint32_t invTransform = mCurrentTransform;
if (getTransformToDisplayInverse()) {
/*
* the code below applies the primary display's inverse transform to the
* buffer
*/
uint32_t invTransformOrient =
DisplayDevice::getPrimaryDisplayOrientationTransform();
// calculate the inverse transform
if (invTransformOrient & NATIVE_WINDOW_TRANSFORM_ROT_90) {
invTransformOrient ^= NATIVE_WINDOW_TRANSFORM_FLIP_V |
NATIVE_WINDOW_TRANSFORM_FLIP_H;
}
// and apply to the current transform
invTransform = (Transform(invTransformOrient) * Transform(invTransform))
.getOrientation();
}
int winWidth = s.active.w;
int winHeight = s.active.h;
if (invTransform & NATIVE_WINDOW_TRANSFORM_ROT_90) {
// If the activeCrop has been rotate the ends are rotated but not
// the space itself so when transforming ends back we can't rely on
// a modification of the axes of rotation. To account for this we
// need to reorient the inverse rotation in terms of the current
// axes of rotation.
bool is_h_flipped = (invTransform & NATIVE_WINDOW_TRANSFORM_FLIP_H) != 0;
bool is_v_flipped = (invTransform & NATIVE_WINDOW_TRANSFORM_FLIP_V) != 0;
if (is_h_flipped == is_v_flipped) {
invTransform ^= NATIVE_WINDOW_TRANSFORM_FLIP_V |
NATIVE_WINDOW_TRANSFORM_FLIP_H;
}
winWidth = s.active.h;
winHeight = s.active.w;
}
const Rect winCrop = activeCrop.transform(
invTransform, s.active.w, s.active.h);
// below, crop is intersected with winCrop expressed in crop's coordinate space
float xScale = crop.getWidth() / float(winWidth);
float yScale = crop.getHeight() / float(winHeight);
float insetL = winCrop.left * xScale;
float insetT = winCrop.top * yScale;
float insetR = (winWidth - winCrop.right ) * xScale;
float insetB = (winHeight - winCrop.bottom) * yScale;
crop.left += insetL;
crop.top += insetT;
crop.right -= insetR;
crop.bottom -= insetB;
return crop;
}
#ifdef USE_HWC2
void Layer::setGeometry(const sp<const DisplayDevice>& displayDevice, uint32_t z)
#else
void Layer::setGeometry(
const sp<const DisplayDevice>& hw,
HWComposer::HWCLayerInterface& layer)
#endif
{
#ifdef USE_HWC2
const auto hwcId = displayDevice->getHwcDisplayId();
auto& hwcInfo = mHwcLayers[hwcId];
#else
layer.setDefaultState();
#endif
// enable this layer
#ifdef USE_HWC2
hwcInfo.forceClientComposition = false;
if (isSecure() && !displayDevice->isSecure()) {
hwcInfo.forceClientComposition = true;
}
auto& hwcLayer = hwcInfo.layer;
#else
layer.setSkip(false);
if (isSecure() && !hw->isSecure()) {
layer.setSkip(true);
}
#endif
// this gives us only the "orientation" component of the transform
const State& s(getDrawingState());
#ifdef USE_HWC2
auto blendMode = HWC2::BlendMode::None;
if (!isOpaque(s) || getAlpha() != 1.0f) {
blendMode = mPremultipliedAlpha ?
HWC2::BlendMode::Premultiplied : HWC2::BlendMode::Coverage;
}
auto error = hwcLayer->setBlendMode(blendMode);
ALOGE_IF(error != HWC2::Error::None, "[%s] Failed to set blend mode %s:"
" %s (%d)", mName.string(), to_string(blendMode).c_str(),
to_string(error).c_str(), static_cast<int32_t>(error));
#else
if (!isOpaque(s) || getAlpha() != 0xFF) {
layer.setBlending(mPremultipliedAlpha ?
HWC_BLENDING_PREMULT :
HWC_BLENDING_COVERAGE);
}
#endif
// apply the layer's transform, followed by the display's global transform
// here we're guaranteed that the layer's transform preserves rects
Region activeTransparentRegion(s.activeTransparentRegion);
Transform t = getTransform();
if (!s.crop.isEmpty()) {
Rect activeCrop(s.crop);
activeCrop = t.transform(activeCrop);
#ifdef USE_HWC2
if(!activeCrop.intersect(displayDevice->getViewport(), &activeCrop)) {
#else
if(!activeCrop.intersect(hw->getViewport(), &activeCrop)) {
#endif
activeCrop.clear();
}
activeCrop = t.inverse().transform(activeCrop, true);
// This needs to be here as transform.transform(Rect) computes the
// transformed rect and then takes the bounding box of the result before
// returning. This means
// transform.inverse().transform(transform.transform(Rect)) != Rect
// in which case we need to make sure the final rect is clipped to the
// display bounds.
if(!activeCrop.intersect(Rect(s.active.w, s.active.h), &activeCrop)) {
activeCrop.clear();
}
// mark regions outside the crop as transparent
activeTransparentRegion.orSelf(Rect(0, 0, s.active.w, activeCrop.top));
activeTransparentRegion.orSelf(Rect(0, activeCrop.bottom,
s.active.w, s.active.h));
activeTransparentRegion.orSelf(Rect(0, activeCrop.top,
activeCrop.left, activeCrop.bottom));
activeTransparentRegion.orSelf(Rect(activeCrop.right, activeCrop.top,
s.active.w, activeCrop.bottom));
}
Rect frame(t.transform(computeBounds(activeTransparentRegion)));
if (!s.finalCrop.isEmpty()) {
if(!frame.intersect(s.finalCrop, &frame)) {
frame.clear();
}
}
#ifdef USE_HWC2
if (!frame.intersect(displayDevice->getViewport(), &frame)) {
frame.clear();
}
const Transform& tr(displayDevice->getTransform());
Rect transformedFrame = tr.transform(frame);
error = hwcLayer->setDisplayFrame(transformedFrame);
if (error != HWC2::Error::None) {
ALOGE("[%s] Failed to set display frame [%d, %d, %d, %d]: %s (%d)",
mName.string(), transformedFrame.left, transformedFrame.top,
transformedFrame.right, transformedFrame.bottom,
to_string(error).c_str(), static_cast<int32_t>(error));
} else {
hwcInfo.displayFrame = transformedFrame;
}
FloatRect sourceCrop = computeCrop(displayDevice);
error = hwcLayer->setSourceCrop(sourceCrop);
if (error != HWC2::Error::None) {
ALOGE("[%s] Failed to set source crop [%.3f, %.3f, %.3f, %.3f]: "
"%s (%d)", mName.string(), sourceCrop.left, sourceCrop.top,
sourceCrop.right, sourceCrop.bottom, to_string(error).c_str(),
static_cast<int32_t>(error));
} else {
hwcInfo.sourceCrop = sourceCrop;
}
float alpha = getAlpha();
error = hwcLayer->setPlaneAlpha(alpha);
ALOGE_IF(error != HWC2::Error::None, "[%s] Failed to set plane alpha %.3f: "
"%s (%d)", mName.string(), alpha, to_string(error).c_str(),
static_cast<int32_t>(error));
error = hwcLayer->setZOrder(z);
ALOGE_IF(error != HWC2::Error::None, "[%s] Failed to set Z %u: %s (%d)",
mName.string(), z, to_string(error).c_str(),
static_cast<int32_t>(error));
int type = s.type;
int appId = s.appId;
sp<Layer> parent = mDrawingParent.promote();
if (parent.get()) {
auto& parentState = parent->getDrawingState();
type = parentState.type;
appId = parentState.appId;
}
error = hwcLayer->setInfo(type, appId);
ALOGE_IF(error != HWC2::Error::None, "[%s] Failed to set info (%d)",
mName.string(), static_cast<int32_t>(error));
#else
if (!frame.intersect(hw->getViewport(), &frame)) {
frame.clear();
}
const Transform& tr(hw->getTransform());
layer.setFrame(tr.transform(frame));
layer.setCrop(computeCrop(hw));
layer.setPlaneAlpha(getAlpha());
#endif
/*
* Transformations are applied in this order:
* 1) buffer orientation/flip/mirror
* 2) state transformation (window manager)
* 3) layer orientation (screen orientation)
* (NOTE: the matrices are multiplied in reverse order)
*/
const Transform bufferOrientation(mCurrentTransform);
Transform transform(tr * t * bufferOrientation);
if (getTransformToDisplayInverse()) {
/*
* the code below applies the primary display's inverse transform to the
* buffer
*/
uint32_t invTransform =
DisplayDevice::getPrimaryDisplayOrientationTransform();
// calculate the inverse transform
if (invTransform & NATIVE_WINDOW_TRANSFORM_ROT_90) {
invTransform ^= NATIVE_WINDOW_TRANSFORM_FLIP_V |
NATIVE_WINDOW_TRANSFORM_FLIP_H;
}
/*
* Here we cancel out the orientation component of the WM transform.
* The scaling and translate components are already included in our bounds
* computation so it's enough to just omit it in the composition.
* See comment in onDraw with ref to b/36727915 for why.
*/
transform = Transform(invTransform) * tr * bufferOrientation;
}
// this gives us only the "orientation" component of the transform
const uint32_t orientation = transform.getOrientation();
#ifdef USE_HWC2
if (orientation & Transform::ROT_INVALID) {
// we can only handle simple transformation
hwcInfo.forceClientComposition = true;
} else {
auto transform = static_cast<HWC2::Transform>(orientation);
auto error = hwcLayer->setTransform(transform);
ALOGE_IF(error != HWC2::Error::None, "[%s] Failed to set transform %s: "
"%s (%d)", mName.string(), to_string(transform).c_str(),
to_string(error).c_str(), static_cast<int32_t>(error));
}
#else
if (orientation & Transform::ROT_INVALID) {
// we can only handle simple transformation
layer.setSkip(true);
} else {
layer.setTransform(orientation);
}
#endif
}
#ifdef USE_HWC2
void Layer::forceClientComposition(int32_t hwcId) {
if (mHwcLayers.count(hwcId) == 0) {
ALOGE("forceClientComposition: no HWC layer found (%d)", hwcId);
return;
}
mHwcLayers[hwcId].forceClientComposition = true;
}
void Layer::setPerFrameData(const sp<const DisplayDevice>& displayDevice) {
// Apply this display's projection's viewport to the visible region
// before giving it to the HWC HAL.
const Transform& tr = displayDevice->getTransform();
const auto& viewport = displayDevice->getViewport();
Region visible = tr.transform(visibleRegion.intersect(viewport));
auto hwcId = displayDevice->getHwcDisplayId();
auto& hwcInfo = mHwcLayers[hwcId];
auto& hwcLayer = hwcInfo.layer;
auto error = hwcLayer->setVisibleRegion(visible);
if (error != HWC2::Error::None) {
ALOGE("[%s] Failed to set visible region: %s (%d)", mName.string(),
to_string(error).c_str(), static_cast<int32_t>(error));
visible.dump(LOG_TAG);
}
error = hwcLayer->setSurfaceDamage(surfaceDamageRegion);
if (error != HWC2::Error::None) {
ALOGE("[%s] Failed to set surface damage: %s (%d)", mName.string(),
to_string(error).c_str(), static_cast<int32_t>(error));
surfaceDamageRegion.dump(LOG_TAG);
}
// Sideband layers
if (mSidebandStream.get()) {
setCompositionType(hwcId, HWC2::Composition::Sideband);
ALOGV("[%s] Requesting Sideband composition", mName.string());
error = hwcLayer->setSidebandStream(mSidebandStream->handle());
if (error != HWC2::Error::None) {
ALOGE("[%s] Failed to set sideband stream %p: %s (%d)",
mName.string(), mSidebandStream->handle(),
to_string(error).c_str(), static_cast<int32_t>(error));
}
return;
}
// Client layers
if (hwcInfo.forceClientComposition ||
(mActiveBuffer != nullptr && mActiveBuffer->handle == nullptr)) {
ALOGV("[%s] Requesting Client composition", mName.string());
setCompositionType(hwcId, HWC2::Composition::Client);
return;
}
// SolidColor layers
if (mActiveBuffer == nullptr) {
setCompositionType(hwcId, HWC2::Composition::SolidColor);
// For now, we only support black for DimLayer
error = hwcLayer->setColor({0, 0, 0, 255});
if (error != HWC2::Error::None) {
ALOGE("[%s] Failed to set color: %s (%d)", mName.string(),
to_string(error).c_str(), static_cast<int32_t>(error));
}
// Clear out the transform, because it doesn't make sense absent a
// source buffer
error = hwcLayer->setTransform(HWC2::Transform::None);
if (error != HWC2::Error::None) {
ALOGE("[%s] Failed to clear transform: %s (%d)", mName.string(),
to_string(error).c_str(), static_cast<int32_t>(error));
}
return;
}
// Device or Cursor layers
if (mPotentialCursor) {
ALOGV("[%s] Requesting Cursor composition", mName.string());
setCompositionType(hwcId, HWC2::Composition::Cursor);
} else {
ALOGV("[%s] Requesting Device composition", mName.string());
setCompositionType(hwcId, HWC2::Composition::Device);
}
ALOGV("setPerFrameData: dataspace = %d", mCurrentState.dataSpace);
error = hwcLayer->setDataspace(mCurrentState.dataSpace);
if (error != HWC2::Error::None) {
ALOGE("[%s] Failed to set dataspace %d: %s (%d)", mName.string(),
mCurrentState.dataSpace, to_string(error).c_str(),
static_cast<int32_t>(error));
}
uint32_t hwcSlot = 0;
sp<GraphicBuffer> hwcBuffer;
hwcInfo.bufferCache.getHwcBuffer(mActiveBufferSlot, mActiveBuffer,
&hwcSlot, &hwcBuffer);
auto acquireFence = mSurfaceFlingerConsumer->getCurrentFence();
error = hwcLayer->setBuffer(hwcSlot, hwcBuffer, acquireFence);
if (error != HWC2::Error::None) {
ALOGE("[%s] Failed to set buffer %p: %s (%d)", mName.string(),
mActiveBuffer->handle, to_string(error).c_str(),
static_cast<int32_t>(error));
}
}
#else
void Layer::setPerFrameData(const sp<const DisplayDevice>& hw,
HWComposer::HWCLayerInterface& layer) {
// we have to set the visible region on every frame because
// we currently free it during onLayerDisplayed(), which is called
// after HWComposer::commit() -- every frame.
// Apply this display's projection's viewport to the visible region
// before giving it to the HWC HAL.
const Transform& tr = hw->getTransform();
Region visible = tr.transform(visibleRegion.intersect(hw->getViewport()));
layer.setVisibleRegionScreen(visible);
layer.setSurfaceDamage(surfaceDamageRegion);
mIsGlesComposition = (layer.getCompositionType() == HWC_FRAMEBUFFER);
if (mSidebandStream.get()) {
layer.setSidebandStream(mSidebandStream);
} else {
// NOTE: buffer can be NULL if the client never drew into this
// layer yet, or if we ran out of memory
layer.setBuffer(mActiveBuffer);
}
}
#endif
#ifdef USE_HWC2
void Layer::updateCursorPosition(const sp<const DisplayDevice>& displayDevice) {
auto hwcId = displayDevice->getHwcDisplayId();
if (mHwcLayers.count(hwcId) == 0 ||
getCompositionType(hwcId) != HWC2::Composition::Cursor) {
return;
}
// This gives us only the "orientation" component of the transform
const State& s(getCurrentState());
// Apply the layer's transform, followed by the display's global transform
// Here we're guaranteed that the layer's transform preserves rects
Rect win(s.active.w, s.active.h);
if (!s.crop.isEmpty()) {
win.intersect(s.crop, &win);
}
// Subtract the transparent region and snap to the bounds
Rect bounds = reduce(win, s.activeTransparentRegion);
Rect frame(getTransform().transform(bounds));
frame.intersect(displayDevice->getViewport(), &frame);
if (!s.finalCrop.isEmpty()) {
frame.intersect(s.finalCrop, &frame);
}
auto& displayTransform(displayDevice->getTransform());
auto position = displayTransform.transform(frame);
auto error = mHwcLayers[hwcId].layer->setCursorPosition(position.left,
position.top);
ALOGE_IF(error != HWC2::Error::None, "[%s] Failed to set cursor position "
"to (%d, %d): %s (%d)", mName.string(), position.left,
position.top, to_string(error).c_str(),
static_cast<int32_t>(error));
}
#else
void Layer::setAcquireFence(const sp<const DisplayDevice>& /* hw */,
HWComposer::HWCLayerInterface& layer) {
int fenceFd = -1;
// TODO: there is a possible optimization here: we only need to set the
// acquire fence the first time a new buffer is acquired on EACH display.
if (layer.getCompositionType() == HWC_OVERLAY || layer.getCompositionType() == HWC_CURSOR_OVERLAY) {
sp<Fence> fence = mSurfaceFlingerConsumer->getCurrentFence();
if (fence->isValid()) {
fenceFd = fence->dup();
if (fenceFd == -1) {
ALOGW("failed to dup layer fence, skipping sync: %d", errno);
}
}
}
layer.setAcquireFenceFd(fenceFd);
}
Rect Layer::getPosition(
const sp<const DisplayDevice>& hw)
{
// this gives us only the "orientation" component of the transform
const State& s(getCurrentState());
// apply the layer's transform, followed by the display's global transform
// here we're guaranteed that the layer's transform preserves rects
Rect win(s.active.w, s.active.h);
if (!s.crop.isEmpty()) {
win.intersect(s.crop, &win);
}
// subtract the transparent region and snap to the bounds
Rect bounds = reduce(win, s.activeTransparentRegion);
Rect frame(getTransform().transform(bounds));
frame.intersect(hw->getViewport(), &frame);
if (!s.finalCrop.isEmpty()) {
frame.intersect(s.finalCrop, &frame);
}
const Transform& tr(hw->getTransform());
return Rect(tr.transform(frame));
}
#endif
// ---------------------------------------------------------------------------
// drawing...
// ---------------------------------------------------------------------------
void Layer::draw(const sp<const DisplayDevice>& hw, const Region& clip) const {
onDraw(hw, clip, false);
}
void Layer::draw(const sp<const DisplayDevice>& hw,
bool useIdentityTransform) const {
onDraw(hw, Region(hw->bounds()), useIdentityTransform);
}
void Layer::draw(const sp<const DisplayDevice>& hw) const {
onDraw(hw, Region(hw->bounds()), false);
}
static constexpr mat4 inverseOrientation(uint32_t transform) {
const mat4 flipH(-1,0,0,0, 0,1,0,0, 0,0,1,0, 1,0,0,1);
const mat4 flipV( 1,0,0,0, 0,-1,0,0, 0,0,1,0, 0,1,0,1);
const mat4 rot90( 0,1,0,0, -1,0,0,0, 0,0,1,0, 1,0,0,1);
mat4 tr;
if (transform & NATIVE_WINDOW_TRANSFORM_ROT_90) {
tr = tr * rot90;
}
if (transform & NATIVE_WINDOW_TRANSFORM_FLIP_H) {
tr = tr * flipH;
}
if (transform & NATIVE_WINDOW_TRANSFORM_FLIP_V) {
tr = tr * flipV;
}
return inverse(tr);
}
/*
* onDraw will draw the current layer onto the presentable buffer
*/
void Layer::onDraw(const sp<const DisplayDevice>& hw, const Region& clip,
bool useIdentityTransform) const
{
ATRACE_CALL();
if (CC_UNLIKELY(mActiveBuffer == 0)) {
// the texture has not been created yet, this Layer has
// in fact never been drawn into. This happens frequently with
// SurfaceView because the WindowManager can't know when the client
// has drawn the first time.
// If there is nothing under us, we paint the screen in black, otherwise
// we just skip this update.
// figure out if there is something below us
Region under;
bool finished = false;
mFlinger->mDrawingState.traverseInZOrder([&](Layer* layer) {
if (finished || layer == static_cast<Layer const*>(this)) {
finished = true;
return;
}
under.orSelf( hw->getTransform().transform(layer->visibleRegion) );
});
// if not everything below us is covered, we plug the holes!
Region holes(clip.subtract(under));
if (!holes.isEmpty()) {
clearWithOpenGL(hw, 0, 0, 0, 1);
}
return;
}
// Bind the current buffer to the GL texture, and wait for it to be
// ready for us to draw into.
status_t err = mSurfaceFlingerConsumer->bindTextureImage();
if (err != NO_ERROR) {
ALOGW("onDraw: bindTextureImage failed (err=%d)", err);
// Go ahead and draw the buffer anyway; no matter what we do the screen
// is probably going to have something visibly wrong.
}
bool blackOutLayer = isProtected() || (isSecure() && !hw->isSecure());
RenderEngine& engine(mFlinger->getRenderEngine());
if (!blackOutLayer) {
// TODO: we could be more subtle with isFixedSize()
const bool useFiltering = getFiltering() || needsFiltering(hw) || isFixedSize();
// Query the texture matrix given our current filtering mode.
float textureMatrix[16];
mSurfaceFlingerConsumer->setFilteringEnabled(useFiltering);
mSurfaceFlingerConsumer->getTransformMatrix(textureMatrix);
if (getTransformToDisplayInverse()) {
/*
* the code below applies the primary display's inverse transform to
* the texture transform
*/
uint32_t transform =
DisplayDevice::getPrimaryDisplayOrientationTransform();
mat4 tr = inverseOrientation(transform);
/**
* TODO(b/36727915): This is basically a hack.
*
* Ensure that regardless of the parent transformation,
* this buffer is always transformed from native display
* orientation to display orientation. For example, in the case
* of a camera where the buffer remains in native orientation,
* we want the pixels to always be upright.
*/
sp<Layer> p = mDrawingParent.promote();
if (p != nullptr) {
const auto parentTransform = p->getTransform();
tr = tr * inverseOrientation(parentTransform.getOrientation());
}
// and finally apply it to the original texture matrix
const mat4 texTransform(mat4(static_cast<const float*>(textureMatrix)) * tr);
memcpy(textureMatrix, texTransform.asArray(), sizeof(textureMatrix));
}
// Set things up for texturing.
mTexture.setDimensions(mActiveBuffer->getWidth(), mActiveBuffer->getHeight());
mTexture.setFiltering(useFiltering);
mTexture.setMatrix(textureMatrix);
engine.setupLayerTexturing(mTexture);
} else {
engine.setupLayerBlackedOut();
}
drawWithOpenGL(hw, useIdentityTransform);
engine.disableTexturing();
}
void Layer::clearWithOpenGL(const sp<const DisplayDevice>& hw,
float red, float green, float blue,
float alpha) const
{
RenderEngine& engine(mFlinger->getRenderEngine());
computeGeometry(hw, mMesh, false);
engine.setupFillWithColor(red, green, blue, alpha);
engine.drawMesh(mMesh);
}
void Layer::clearWithOpenGL(
const sp<const DisplayDevice>& hw) const {
clearWithOpenGL(hw, 0,0,0,0);
}
void Layer::drawWithOpenGL(const sp<const DisplayDevice>& hw,
bool useIdentityTransform) const {
const State& s(getDrawingState());
computeGeometry(hw, mMesh, useIdentityTransform);
/*
* NOTE: the way we compute the texture coordinates here produces
* different results than when we take the HWC path -- in the later case
* the "source crop" is rounded to texel boundaries.
* This can produce significantly different results when the texture
* is scaled by a large amount.
*
* The GL code below is more logical (imho), and the difference with
* HWC is due to a limitation of the HWC API to integers -- a question
* is suspend is whether we should ignore this problem or revert to
* GL composition when a buffer scaling is applied (maybe with some
* minimal value)? Or, we could make GL behave like HWC -- but this feel
* like more of a hack.
*/
Rect win(computeBounds());
Transform t = getTransform();
if (!s.finalCrop.isEmpty()) {
win = t.transform(win);
if (!win.intersect(s.finalCrop, &win)) {
win.clear();
}
win = t.inverse().transform(win);
if (!win.intersect(computeBounds(), &win)) {
win.clear();
}
}
float left = float(win.left) / float(s.active.w);
float top = float(win.top) / float(s.active.h);
float right = float(win.right) / float(s.active.w);
float bottom = float(win.bottom) / float(s.active.h);
// TODO: we probably want to generate the texture coords with the mesh
// here we assume that we only have 4 vertices
Mesh::VertexArray<vec2> texCoords(mMesh.getTexCoordArray<vec2>());
texCoords[0] = vec2(left, 1.0f - top);
texCoords[1] = vec2(left, 1.0f - bottom);
texCoords[2] = vec2(right, 1.0f - bottom);
texCoords[3] = vec2(right, 1.0f - top);
RenderEngine& engine(mFlinger->getRenderEngine());
engine.setupLayerBlending(mPremultipliedAlpha, isOpaque(s), getAlpha());
#ifdef USE_HWC2
engine.setSourceDataSpace(mCurrentState.dataSpace);
#endif
engine.drawMesh(mMesh);
engine.disableBlending();
}
#ifdef USE_HWC2
void Layer::setCompositionType(int32_t hwcId, HWC2::Composition type,
bool callIntoHwc) {
if (mHwcLayers.count(hwcId) == 0) {
ALOGE("setCompositionType called without a valid HWC layer");
return;
}
auto& hwcInfo = mHwcLayers[hwcId];
auto& hwcLayer = hwcInfo.layer;
ALOGV("setCompositionType(%" PRIx64 ", %s, %d)", hwcLayer->getId(),
to_string(type).c_str(), static_cast<int>(callIntoHwc));
if (hwcInfo.compositionType != type) {
ALOGV(" actually setting");
hwcInfo.compositionType = type;
if (callIntoHwc) {
auto error = hwcLayer->setCompositionType(type);
ALOGE_IF(error != HWC2::Error::None, "[%s] Failed to set "
"composition type %s: %s (%d)", mName.string(),
to_string(type).c_str(), to_string(error).c_str(),
static_cast<int32_t>(error));
}
}
}
HWC2::Composition Layer::getCompositionType(int32_t hwcId) const {
if (hwcId == DisplayDevice::DISPLAY_ID_INVALID) {
// If we're querying the composition type for a display that does not
// have a HWC counterpart, then it will always be Client
return HWC2::Composition::Client;
}
if (mHwcLayers.count(hwcId) == 0) {
ALOGE("getCompositionType called with an invalid HWC layer");
return HWC2::Composition::Invalid;
}
return mHwcLayers.at(hwcId).compositionType;
}
void Layer::setClearClientTarget(int32_t hwcId, bool clear) {
if (mHwcLayers.count(hwcId) == 0) {
ALOGE("setClearClientTarget called without a valid HWC layer");
return;
}
mHwcLayers[hwcId].clearClientTarget = clear;
}
bool Layer::getClearClientTarget(int32_t hwcId) const {
if (mHwcLayers.count(hwcId) == 0) {
ALOGE("getClearClientTarget called without a valid HWC layer");
return false;
}
return mHwcLayers.at(hwcId).clearClientTarget;
}
#endif
uint32_t Layer::getProducerStickyTransform() const {
int producerStickyTransform = 0;
int ret = mProducer->query(NATIVE_WINDOW_STICKY_TRANSFORM, &producerStickyTransform);
if (ret != OK) {
ALOGW("%s: Error %s (%d) while querying window sticky transform.", __FUNCTION__,
strerror(-ret), ret);
return 0;
}
return static_cast<uint32_t>(producerStickyTransform);
}
bool Layer::latchUnsignaledBuffers() {
static bool propertyLoaded = false;
static bool latch = false;
static std::mutex mutex;
std::lock_guard<std::mutex> lock(mutex);
if (!propertyLoaded) {
char value[PROPERTY_VALUE_MAX] = {};
property_get("debug.sf.latch_unsignaled", value, "0");
latch = atoi(value);
propertyLoaded = true;
}
return latch;
}
uint64_t Layer::getHeadFrameNumber() const {
Mutex::Autolock lock(mQueueItemLock);
if (!mQueueItems.empty()) {
return mQueueItems[0].mFrameNumber;
} else {
return mCurrentFrameNumber;
}
}
bool Layer::headFenceHasSignaled() const {
#ifdef USE_HWC2
if (latchUnsignaledBuffers()) {
return true;
}
Mutex::Autolock lock(mQueueItemLock);
if (mQueueItems.empty()) {
return true;
}
if (mQueueItems[0].mIsDroppable) {
// Even though this buffer's fence may not have signaled yet, it could
// be replaced by another buffer before it has a chance to, which means
// that it's possible to get into a situation where a buffer is never
// able to be latched. To avoid this, grab this buffer anyway.
return true;
}
return mQueueItems[0].mFenceTime->getSignalTime() !=
Fence::SIGNAL_TIME_PENDING;
#else
return true;
#endif
}
bool Layer::addSyncPoint(const std::shared_ptr<SyncPoint>& point) {
if (point->getFrameNumber() <= mCurrentFrameNumber) {
// Don't bother with a SyncPoint, since we've already latched the
// relevant frame
return false;
}
Mutex::Autolock lock(mLocalSyncPointMutex);
mLocalSyncPoints.push_back(point);
return true;
}
void Layer::setFiltering(bool filtering) {
mFiltering = filtering;
}
bool Layer::getFiltering() const {
return mFiltering;
}
// As documented in libhardware header, formats in the range
// 0x100 - 0x1FF are specific to the HAL implementation, and
// are known to have no alpha channel
// TODO: move definition for device-specific range into
// hardware.h, instead of using hard-coded values here.
#define HARDWARE_IS_DEVICE_FORMAT(f) ((f) >= 0x100 && (f) <= 0x1FF)
bool Layer::getOpacityForFormat(uint32_t format) {
if (HARDWARE_IS_DEVICE_FORMAT(format)) {
return true;
}
switch (format) {
case HAL_PIXEL_FORMAT_RGBA_8888:
case HAL_PIXEL_FORMAT_BGRA_8888:
case HAL_PIXEL_FORMAT_RGBA_FP16:
case HAL_PIXEL_FORMAT_RGBA_1010102:
return false;
}
// in all other case, we have no blending (also for unknown formats)
return true;
}
// ----------------------------------------------------------------------------
// local state
// ----------------------------------------------------------------------------
static void boundPoint(vec2* point, const Rect& crop) {
if (point->x < crop.left) {
point->x = crop.left;
}
if (point->x > crop.right) {
point->x = crop.right;
}
if (point->y < crop.top) {
point->y = crop.top;
}
if (point->y > crop.bottom) {
point->y = crop.bottom;
}
}
void Layer::computeGeometry(const sp<const DisplayDevice>& hw, Mesh& mesh,
bool useIdentityTransform) const
{
const Layer::State& s(getDrawingState());
const Transform hwTransform(hw->getTransform());
const uint32_t hw_h = hw->getHeight();
Rect win = computeBounds();
vec2 lt = vec2(win.left, win.top);
vec2 lb = vec2(win.left, win.bottom);
vec2 rb = vec2(win.right, win.bottom);
vec2 rt = vec2(win.right, win.top);
Transform layerTransform = getTransform();
if (!useIdentityTransform) {
lt = layerTransform.transform(lt);
lb = layerTransform.transform(lb);
rb = layerTransform.transform(rb);
rt = layerTransform.transform(rt);
}
if (!s.finalCrop.isEmpty()) {
boundPoint(&lt, s.finalCrop);
boundPoint(&lb, s.finalCrop);
boundPoint(&rb, s.finalCrop);
boundPoint(&rt, s.finalCrop);
}
Mesh::VertexArray<vec2> position(mesh.getPositionArray<vec2>());
position[0] = hwTransform.transform(lt);
position[1] = hwTransform.transform(lb);
position[2] = hwTransform.transform(rb);
position[3] = hwTransform.transform(rt);
for (size_t i=0 ; i<4 ; i++) {
position[i].y = hw_h - position[i].y;
}
}
bool Layer::isOpaque(const Layer::State& s) const
{
// if we don't have a buffer or sidebandStream yet, we're translucent regardless of the
// layer's opaque flag.
if ((mSidebandStream == nullptr) && (mActiveBuffer == nullptr)) {
return false;
}
// if the layer has the opaque flag, then we're always opaque,
// otherwise we use the current buffer's format.
return ((s.flags & layer_state_t::eLayerOpaque) != 0) || mCurrentOpacity;
}
bool Layer::isSecure() const
{
const Layer::State& s(mDrawingState);
return (s.flags & layer_state_t::eLayerSecure);
}
bool Layer::isProtected() const
{
const sp<GraphicBuffer>& activeBuffer(mActiveBuffer);
return (activeBuffer != 0) &&
(activeBuffer->getUsage() & GRALLOC_USAGE_PROTECTED);
}
bool Layer::isFixedSize() const {
return getEffectiveScalingMode() != NATIVE_WINDOW_SCALING_MODE_FREEZE;
}
bool Layer::isCropped() const {
return !mCurrentCrop.isEmpty();
}
bool Layer::needsFiltering(const sp<const DisplayDevice>& hw) const {
return mNeedsFiltering || hw->needsFiltering();
}
void Layer::setVisibleRegion(const Region& visibleRegion) {
// always called from main thread
this->visibleRegion = visibleRegion;
}
void Layer::setCoveredRegion(const Region& coveredRegion) {
// always called from main thread
this->coveredRegion = coveredRegion;
}
void Layer::setVisibleNonTransparentRegion(const Region&
setVisibleNonTransparentRegion) {
// always called from main thread
this->visibleNonTransparentRegion = setVisibleNonTransparentRegion;
}
// ----------------------------------------------------------------------------
// transaction
// ----------------------------------------------------------------------------
void Layer::pushPendingState() {
if (!mCurrentState.modified) {
return;
}
// If this transaction is waiting on the receipt of a frame, generate a sync
// point and send it to the remote layer.
if (mCurrentState.barrierLayer != nullptr) {
sp<Layer> barrierLayer = mCurrentState.barrierLayer.promote();
if (barrierLayer == nullptr) {
ALOGE("[%s] Unable to promote barrier Layer.", mName.string());
// If we can't promote the layer we are intended to wait on,
// then it is expired or otherwise invalid. Allow this transaction
// to be applied as per normal (no synchronization).
mCurrentState.barrierLayer = nullptr;
} else {
auto syncPoint = std::make_shared<SyncPoint>(
mCurrentState.frameNumber);
if (barrierLayer->addSyncPoint(syncPoint)) {
mRemoteSyncPoints.push_back(std::move(syncPoint));
} else {
// We already missed the frame we're supposed to synchronize
// on, so go ahead and apply the state update
mCurrentState.barrierLayer = nullptr;
}
}
// Wake us up to check if the frame has been received
setTransactionFlags(eTransactionNeeded);
mFlinger->setTransactionFlags(eTraversalNeeded);
}
mPendingStates.push_back(mCurrentState);
ATRACE_INT(mTransactionName.string(), mPendingStates.size());
}
void Layer::popPendingState(State* stateToCommit) {
auto oldFlags = stateToCommit->flags;
*stateToCommit = mPendingStates[0];
stateToCommit->flags = (oldFlags & ~stateToCommit->mask) |
(stateToCommit->flags & stateToCommit->mask);
mPendingStates.removeAt(0);
ATRACE_INT(mTransactionName.string(), mPendingStates.size());
}
bool Layer::applyPendingStates(State* stateToCommit) {
bool stateUpdateAvailable = false;
while (!mPendingStates.empty()) {
if (mPendingStates[0].barrierLayer != nullptr) {
if (mRemoteSyncPoints.empty()) {
// If we don't have a sync point for this, apply it anyway. It
// will be visually wrong, but it should keep us from getting
// into too much trouble.
ALOGE("[%s] No local sync point found", mName.string());
popPendingState(stateToCommit);
stateUpdateAvailable = true;
continue;
}
if (mRemoteSyncPoints.front()->getFrameNumber() !=
mPendingStates[0].frameNumber) {
ALOGE("[%s] Unexpected sync point frame number found",
mName.string());
// Signal our end of the sync point and then dispose of it
mRemoteSyncPoints.front()->setTransactionApplied();
mRemoteSyncPoints.pop_front();
continue;
}
if (mRemoteSyncPoints.front()->frameIsAvailable()) {
// Apply the state update
popPendingState(stateToCommit);
stateUpdateAvailable = true;
// Signal our end of the sync point and then dispose of it
mRemoteSyncPoints.front()->setTransactionApplied();
mRemoteSyncPoints.pop_front();
} else {
break;
}
} else {
popPendingState(stateToCommit);
stateUpdateAvailable = true;
}
}
// If we still have pending updates, wake SurfaceFlinger back up and point
// it at this layer so we can process them
if (!mPendingStates.empty()) {
setTransactionFlags(eTransactionNeeded);
mFlinger->setTransactionFlags(eTraversalNeeded);
}
mCurrentState.modified = false;
return stateUpdateAvailable;
}
void Layer::notifyAvailableFrames() {
auto headFrameNumber = getHeadFrameNumber();
bool headFenceSignaled = headFenceHasSignaled();
Mutex::Autolock lock(mLocalSyncPointMutex);
for (auto& point : mLocalSyncPoints) {
if (headFrameNumber >= point->getFrameNumber() && headFenceSignaled) {
point->setFrameAvailable();
}
}
}
uint32_t Layer::doTransaction(uint32_t flags) {
ATRACE_CALL();
pushPendingState();
Layer::State c = getCurrentState();
if (!applyPendingStates(&c)) {
return 0;
}
const Layer::State& s(getDrawingState());
const bool sizeChanged = (c.requested.w != s.requested.w) ||
(c.requested.h != s.requested.h);
if (sizeChanged) {
// the size changed, we need to ask our client to request a new buffer
ALOGD_IF(DEBUG_RESIZE,
"doTransaction: geometry (layer=%p '%s'), tr=%02x, scalingMode=%d\n"
" current={ active ={ wh={%4u,%4u} crop={%4d,%4d,%4d,%4d} (%4d,%4d) }\n"
" requested={ wh={%4u,%4u} }}\n"
" drawing={ active ={ wh={%4u,%4u} crop={%4d,%4d,%4d,%4d} (%4d,%4d) }\n"
" requested={ wh={%4u,%4u} }}\n",
this, getName().string(), mCurrentTransform,
getEffectiveScalingMode(),
c.active.w, c.active.h,
c.crop.left,
c.crop.top,
c.crop.right,
c.crop.bottom,
c.crop.getWidth(),
c.crop.getHeight(),
c.requested.w, c.requested.h,
s.active.w, s.active.h,
s.crop.left,
s.crop.top,
s.crop.right,
s.crop.bottom,
s.crop.getWidth(),
s.crop.getHeight(),
s.requested.w, s.requested.h);
// record the new size, form this point on, when the client request
// a buffer, it'll get the new size.
mSurfaceFlingerConsumer->setDefaultBufferSize(
c.requested.w, c.requested.h);
}
const bool resizePending = (c.requested.w != c.active.w) ||
(c.requested.h != c.active.h);
if (!isFixedSize()) {
if (resizePending && mSidebandStream == NULL) {
// don't let Layer::doTransaction update the drawing state
// if we have a pending resize, unless we are in fixed-size mode.
// the drawing state will be updated only once we receive a buffer
// with the correct size.
//
// in particular, we want to make sure the clip (which is part
// of the geometry state) is latched together with the size but is
// latched immediately when no resizing is involved.
//
// If a sideband stream is attached, however, we want to skip this
// optimization so that transactions aren't missed when a buffer
// never arrives
flags |= eDontUpdateGeometryState;
}
}
// Here we apply various requested geometry states, depending on our
// latching configuration. See Layer.h for a detailed discussion of
// how geometry latching is controlled.
if (!(flags & eDontUpdateGeometryState)) {
Layer::State& editCurrentState(getCurrentState());
// If mFreezeGeometryUpdates is true we are in the setGeometryAppliesWithResize
// mode, which causes attributes which normally latch regardless of scaling mode,
// to be delayed. We copy the requested state to the active state making sure
// to respect these rules (again see Layer.h for a detailed discussion).
//
// There is an awkward asymmetry in the handling of the crop states in the position
// states, as can be seen below. Largely this arises from position and transform
// being stored in the same data structure while having different latching rules.
// b/38182305
//
// Careful that "c" and editCurrentState may not begin as equivalent due to
// applyPendingStates in the presence of deferred transactions.
if (mFreezeGeometryUpdates) {
float tx = c.active.transform.tx();
float ty = c.active.transform.ty();
c.active = c.requested;
c.active.transform.set(tx, ty);
editCurrentState.active = c.active;
} else {
editCurrentState.active = editCurrentState.requested;
c.active = c.requested;
}
}
if (s.active != c.active) {
// invalidate and recompute the visible regions if needed
flags |= Layer::eVisibleRegion;
}
if (c.sequence != s.sequence) {
// invalidate and recompute the visible regions if needed
flags |= eVisibleRegion;
this->contentDirty = true;
// we may use linear filtering, if the matrix scales us
const uint8_t type = c.active.transform.getType();
mNeedsFiltering = (!c.active.transform.preserveRects() ||
(type >= Transform::SCALE));
}
// If the layer is hidden, signal and clear out all local sync points so
// that transactions for layers depending on this layer's frames becoming
// visible are not blocked
if (c.flags & layer_state_t::eLayerHidden) {
clearSyncPoints();
}
// Commit the transaction
commitTransaction(c);
return flags;
}
void Layer::commitTransaction(const State& stateToCommit) {
mDrawingState = stateToCommit;
}
uint32_t Layer::getTransactionFlags(uint32_t flags) {
return android_atomic_and(~flags, &mTransactionFlags) & flags;
}
uint32_t Layer::setTransactionFlags(uint32_t flags) {
return android_atomic_or(flags, &mTransactionFlags);
}
bool Layer::setPosition(float x, float y, bool immediate) {
if (mCurrentState.requested.transform.tx() == x && mCurrentState.requested.transform.ty() == y)
return false;
mCurrentState.sequence++;
// We update the requested and active position simultaneously because
// we want to apply the position portion of the transform matrix immediately,
// but still delay scaling when resizing a SCALING_MODE_FREEZE layer.
mCurrentState.requested.transform.set(x, y);
if (immediate && !mFreezeGeometryUpdates) {
// Here we directly update the active state
// unlike other setters, because we store it within
// the transform, but use different latching rules.
// b/38182305
mCurrentState.active.transform.set(x, y);
}
mFreezeGeometryUpdates = mFreezeGeometryUpdates || !immediate;
mCurrentState.modified = true;
setTransactionFlags(eTransactionNeeded);
return true;
}
bool Layer::setChildLayer(const sp<Layer>& childLayer, int32_t z) {
ssize_t idx = mCurrentChildren.indexOf(childLayer);
if (idx < 0) {
return false;
}
if (childLayer->setLayer(z)) {
mCurrentChildren.removeAt(idx);
mCurrentChildren.add(childLayer);
}
return true;
}
bool Layer::setLayer(int32_t z) {
if (mCurrentState.z == z)
return false;
mCurrentState.sequence++;
mCurrentState.z = z;
mCurrentState.modified = true;
// Discard all relative layering.
if (mCurrentState.zOrderRelativeOf != nullptr) {
sp<Layer> strongRelative = mCurrentState.zOrderRelativeOf.promote();
if (strongRelative != nullptr) {
strongRelative->removeZOrderRelative(this);
}
mCurrentState.zOrderRelativeOf = nullptr;
}
setTransactionFlags(eTransactionNeeded);
return true;
}
void Layer::removeZOrderRelative(const wp<Layer>& relative) {
mCurrentState.zOrderRelatives.remove(relative);
mCurrentState.sequence++;
mCurrentState.modified = true;
setTransactionFlags(eTransactionNeeded);
}
void Layer::addZOrderRelative(const wp<Layer>& relative) {
mCurrentState.zOrderRelatives.add(relative);
mCurrentState.modified = true;
mCurrentState.sequence++;
setTransactionFlags(eTransactionNeeded);
}
bool Layer::setRelativeLayer(const sp<IBinder>& relativeToHandle, int32_t z) {
sp<Handle> handle = static_cast<Handle*>(relativeToHandle.get());
if (handle == nullptr) {
return false;
}
sp<Layer> relative = handle->owner.promote();
if (relative == nullptr) {
return false;
}
mCurrentState.sequence++;
mCurrentState.modified = true;
mCurrentState.z = z;
mCurrentState.zOrderRelativeOf = relative;
relative->addZOrderRelative(this);
setTransactionFlags(eTransactionNeeded);
return true;
}
bool Layer::setSize(uint32_t w, uint32_t h) {
if (mCurrentState.requested.w == w && mCurrentState.requested.h == h)
return false;
mCurrentState.requested.w = w;
mCurrentState.requested.h = h;
mCurrentState.modified = true;
setTransactionFlags(eTransactionNeeded);
return true;
}
#ifdef USE_HWC2
bool Layer::setAlpha(float alpha) {
#else
bool Layer::setAlpha(uint8_t alpha) {
#endif
if (mCurrentState.alpha == alpha)
return false;
mCurrentState.sequence++;
mCurrentState.alpha = alpha;
mCurrentState.modified = true;
setTransactionFlags(eTransactionNeeded);
return true;
}
bool Layer::setMatrix(const layer_state_t::matrix22_t& matrix) {
mCurrentState.sequence++;
mCurrentState.requested.transform.set(
matrix.dsdx, matrix.dtdy, matrix.dtdx, matrix.dsdy);
mCurrentState.modified = true;
setTransactionFlags(eTransactionNeeded);
return true;
}
bool Layer::setTransparentRegionHint(const Region& transparent) {
mCurrentState.requestedTransparentRegion = transparent;
mCurrentState.modified = true;
setTransactionFlags(eTransactionNeeded);
return true;
}
bool Layer::setFlags(uint8_t flags, uint8_t mask) {
const uint32_t newFlags = (mCurrentState.flags & ~mask) | (flags & mask);
if (mCurrentState.flags == newFlags)
return false;
mCurrentState.sequence++;
mCurrentState.flags = newFlags;
mCurrentState.mask = mask;
mCurrentState.modified = true;
setTransactionFlags(eTransactionNeeded);
return true;
}
bool Layer::setCrop(const Rect& crop, bool immediate) {
if (mCurrentState.requestedCrop == crop)
return false;
mCurrentState.sequence++;
mCurrentState.requestedCrop = crop;
if (immediate && !mFreezeGeometryUpdates) {
mCurrentState.crop = crop;
}
mFreezeGeometryUpdates = mFreezeGeometryUpdates || !immediate;
mCurrentState.modified = true;
setTransactionFlags(eTransactionNeeded);
return true;
}
bool Layer::setFinalCrop(const Rect& crop, bool immediate) {
if (mCurrentState.requestedFinalCrop == crop)
return false;
mCurrentState.sequence++;
mCurrentState.requestedFinalCrop = crop;
if (immediate && !mFreezeGeometryUpdates) {
mCurrentState.finalCrop = crop;
}
mFreezeGeometryUpdates = mFreezeGeometryUpdates || !immediate;
mCurrentState.modified = true;
setTransactionFlags(eTransactionNeeded);
return true;
}
bool Layer::setOverrideScalingMode(int32_t scalingMode) {
if (scalingMode == mOverrideScalingMode)
return false;
mOverrideScalingMode = scalingMode;
setTransactionFlags(eTransactionNeeded);
return true;
}
void Layer::setInfo(uint32_t type, uint32_t appId) {
mCurrentState.appId = appId;
mCurrentState.type = type;
mCurrentState.modified = true;
setTransactionFlags(eTransactionNeeded);
}
uint32_t Layer::getEffectiveScalingMode() const {
if (mOverrideScalingMode >= 0) {
return mOverrideScalingMode;
}
return mCurrentScalingMode;
}
bool Layer::setLayerStack(uint32_t layerStack) {
if (mCurrentState.layerStack == layerStack)
return false;
mCurrentState.sequence++;
mCurrentState.layerStack = layerStack;
mCurrentState.modified = true;
setTransactionFlags(eTransactionNeeded);
return true;
}
bool Layer::setDataSpace(android_dataspace dataSpace) {
if (mCurrentState.dataSpace == dataSpace)
return false;
mCurrentState.sequence++;
mCurrentState.dataSpace = dataSpace;
mCurrentState.modified = true;
setTransactionFlags(eTransactionNeeded);
return true;
}
android_dataspace Layer::getDataSpace() const {
return mCurrentState.dataSpace;
}
uint32_t Layer::getLayerStack() const {
auto p = mDrawingParent.promote();
if (p == nullptr) {
return getDrawingState().layerStack;
}
return p->getLayerStack();
}
void Layer::deferTransactionUntil(const sp<Layer>& barrierLayer,
uint64_t frameNumber) {
mCurrentState.barrierLayer = barrierLayer;
mCurrentState.frameNumber = frameNumber;
// We don't set eTransactionNeeded, because just receiving a deferral
// request without any other state updates shouldn't actually induce a delay
mCurrentState.modified = true;
pushPendingState();
mCurrentState.barrierLayer = nullptr;
mCurrentState.frameNumber = 0;
mCurrentState.modified = false;
}
void Layer::deferTransactionUntil(const sp<IBinder>& barrierHandle,
uint64_t frameNumber) {
sp<Handle> handle = static_cast<Handle*>(barrierHandle.get());
deferTransactionUntil(handle->owner.promote(), frameNumber);
}
void Layer::useSurfaceDamage() {
if (mFlinger->mForceFullDamage) {
surfaceDamageRegion = Region::INVALID_REGION;
} else {
surfaceDamageRegion = mSurfaceFlingerConsumer->getSurfaceDamage();
}
}
void Layer::useEmptyDamage() {
surfaceDamageRegion.clear();
}
// ----------------------------------------------------------------------------
// pageflip handling...
// ----------------------------------------------------------------------------
bool Layer::shouldPresentNow(const DispSync& dispSync) const {
if (mSidebandStreamChanged || mAutoRefresh) {
return true;
}
Mutex::Autolock lock(mQueueItemLock);
if (mQueueItems.empty()) {
return false;
}
auto timestamp = mQueueItems[0].mTimestamp;
nsecs_t expectedPresent =
mSurfaceFlingerConsumer->computeExpectedPresent(dispSync);
// Ignore timestamps more than a second in the future
bool isPlausible = timestamp < (expectedPresent + s2ns(1));
ALOGW_IF(!isPlausible, "[%s] Timestamp %" PRId64 " seems implausible "
"relative to expectedPresent %" PRId64, mName.string(), timestamp,
expectedPresent);
bool isDue = timestamp < expectedPresent;
return isDue || !isPlausible;
}
bool Layer::onPreComposition(nsecs_t refreshStartTime) {
if (mBufferLatched) {
Mutex::Autolock lock(mFrameEventHistoryMutex);
mFrameEventHistory.addPreComposition(mCurrentFrameNumber, refreshStartTime);
}
mRefreshPending = false;
return mQueuedFrames > 0 || mSidebandStreamChanged || mAutoRefresh;
}
bool Layer::onPostComposition(const std::shared_ptr<FenceTime>& glDoneFence,
const std::shared_ptr<FenceTime>& presentFence,
const CompositorTiming& compositorTiming) {
// mFrameLatencyNeeded is true when a new frame was latched for the
// composition.
if (!mFrameLatencyNeeded)
return false;
// Update mFrameEventHistory.
{
Mutex::Autolock lock(mFrameEventHistoryMutex);
mFrameEventHistory.addPostComposition(mCurrentFrameNumber,
glDoneFence, presentFence, compositorTiming);
}
// Update mFrameTracker.
nsecs_t desiredPresentTime = mSurfaceFlingerConsumer->getTimestamp();
mFrameTracker.setDesiredPresentTime(desiredPresentTime);
std::shared_ptr<FenceTime> frameReadyFence =
mSurfaceFlingerConsumer->getCurrentFenceTime();
if (frameReadyFence->isValid()) {
mFrameTracker.setFrameReadyFence(std::move(frameReadyFence));
} else {
// There was no fence for this frame, so assume that it was ready
// to be presented at the desired present time.
mFrameTracker.setFrameReadyTime(desiredPresentTime);
}
if (presentFence->isValid()) {
mFrameTracker.setActualPresentFence(
std::shared_ptr<FenceTime>(presentFence));
} else {
// The HWC doesn't support present fences, so use the refresh
// timestamp instead.
mFrameTracker.setActualPresentTime(
mFlinger->getHwComposer().getRefreshTimestamp(
HWC_DISPLAY_PRIMARY));
}
mFrameTracker.advanceFrame();
mFrameLatencyNeeded = false;
return true;
}
#ifdef USE_HWC2
void Layer::releasePendingBuffer(nsecs_t dequeueReadyTime) {
if (!mSurfaceFlingerConsumer->releasePendingBuffer()) {
return;
}
auto releaseFenceTime = std::make_shared<FenceTime>(
mSurfaceFlingerConsumer->getPrevFinalReleaseFence());
mReleaseTimeline.updateSignalTimes();
mReleaseTimeline.push(releaseFenceTime);
Mutex::Autolock lock(mFrameEventHistoryMutex);
if (mPreviousFrameNumber != 0) {
mFrameEventHistory.addRelease(mPreviousFrameNumber,
dequeueReadyTime, std::move(releaseFenceTime));
}
}
#endif
bool Layer::isHiddenByPolicy() const {
const Layer::State& s(mDrawingState);
const auto& parent = mDrawingParent.promote();
if (parent != nullptr && parent->isHiddenByPolicy()) {
return true;
}
return s.flags & layer_state_t::eLayerHidden;
}
bool Layer::isVisible() const {
#ifdef USE_HWC2
return !(isHiddenByPolicy()) && getAlpha() > 0.0f
&& (mActiveBuffer != NULL || mSidebandStream != NULL);
#else
return !(isHiddenByPolicy()) && getAlpha()
&& (mActiveBuffer != NULL || mSidebandStream != NULL);
#endif
}
bool Layer::allTransactionsSignaled() {
auto headFrameNumber = getHeadFrameNumber();
bool matchingFramesFound = false;
bool allTransactionsApplied = true;
Mutex::Autolock lock(mLocalSyncPointMutex);
for (auto& point : mLocalSyncPoints) {
if (point->getFrameNumber() > headFrameNumber) {
break;
}
matchingFramesFound = true;
if (!point->frameIsAvailable()) {
// We haven't notified the remote layer that the frame for
// this point is available yet. Notify it now, and then
// abort this attempt to latch.
point->setFrameAvailable();
allTransactionsApplied = false;
break;
}
allTransactionsApplied = allTransactionsApplied && point->transactionIsApplied();
}
return !matchingFramesFound || allTransactionsApplied;
}
Region Layer::latchBuffer(bool& recomputeVisibleRegions, nsecs_t latchTime)
{
ATRACE_CALL();
if (android_atomic_acquire_cas(true, false, &mSidebandStreamChanged) == 0) {
// mSidebandStreamChanged was true
mSidebandStream = mSurfaceFlingerConsumer->getSidebandStream();
if (mSidebandStream != NULL) {
setTransactionFlags(eTransactionNeeded);
mFlinger->setTransactionFlags(eTraversalNeeded);
}
recomputeVisibleRegions = true;
const State& s(getDrawingState());
return getTransform().transform(Region(Rect(s.active.w, s.active.h)));
}
Region outDirtyRegion;
if (mQueuedFrames <= 0 && !mAutoRefresh) {
return outDirtyRegion;
}
// if we've already called updateTexImage() without going through
// a composition step, we have to skip this layer at this point
// because we cannot call updateTeximage() without a corresponding
// compositionComplete() call.
// we'll trigger an update in onPreComposition().
if (mRefreshPending) {
return outDirtyRegion;
}
// If the head buffer's acquire fence hasn't signaled yet, return and
// try again later
if (!headFenceHasSignaled()) {
mFlinger->signalLayerUpdate();
return outDirtyRegion;
}
// Capture the old state of the layer for comparisons later
const State& s(getDrawingState());
const bool oldOpacity = isOpaque(s);
sp<GraphicBuffer> oldActiveBuffer = mActiveBuffer;
if (!allTransactionsSignaled()) {
mFlinger->signalLayerUpdate();
return outDirtyRegion;
}
// This boolean is used to make sure that SurfaceFlinger's shadow copy
// of the buffer queue isn't modified when the buffer queue is returning
// BufferItem's that weren't actually queued. This can happen in shared
// buffer mode.
bool queuedBuffer = false;
LayerRejecter r(mDrawingState, getCurrentState(), recomputeVisibleRegions,
getProducerStickyTransform() != 0, mName.string(),
mOverrideScalingMode, mFreezeGeometryUpdates);
status_t updateResult = mSurfaceFlingerConsumer->updateTexImage(&r,
mFlinger->mPrimaryDispSync, &mAutoRefresh, &queuedBuffer,
mLastFrameNumberReceived);
if (updateResult == BufferQueue::PRESENT_LATER) {
// Producer doesn't want buffer to be displayed yet. Signal a
// layer update so we check again at the next opportunity.
mFlinger->signalLayerUpdate();
return outDirtyRegion;
} else if (updateResult == SurfaceFlingerConsumer::BUFFER_REJECTED) {
// If the buffer has been rejected, remove it from the shadow queue
// and return early
if (queuedBuffer) {
Mutex::Autolock lock(mQueueItemLock);
mQueueItems.removeAt(0);
android_atomic_dec(&mQueuedFrames);
}
return outDirtyRegion;
} else if (updateResult != NO_ERROR || mUpdateTexImageFailed) {
// This can occur if something goes wrong when trying to create the
// EGLImage for this buffer. If this happens, the buffer has already
// been released, so we need to clean up the queue and bug out
// early.
if (queuedBuffer) {
Mutex::Autolock lock(mQueueItemLock);
mQueueItems.clear();
android_atomic_and(0, &mQueuedFrames);
}
// Once we have hit this state, the shadow queue may no longer
// correctly reflect the incoming BufferQueue's contents, so even if
// updateTexImage starts working, the only safe course of action is
// to continue to ignore updates.
mUpdateTexImageFailed = true;
return outDirtyRegion;
}
if (queuedBuffer) {
// Autolock scope
auto currentFrameNumber = mSurfaceFlingerConsumer->getFrameNumber();
Mutex::Autolock lock(mQueueItemLock);
// Remove any stale buffers that have been dropped during
// updateTexImage
while (mQueueItems[0].mFrameNumber != currentFrameNumber) {
mQueueItems.removeAt(0);
android_atomic_dec(&mQueuedFrames);
}
mQueueItems.removeAt(0);
}
// Decrement the queued-frames count. Signal another event if we
// have more frames pending.
if ((queuedBuffer && android_atomic_dec(&mQueuedFrames) > 1)
|| mAutoRefresh) {
mFlinger->signalLayerUpdate();
}
// update the active buffer
mActiveBuffer = mSurfaceFlingerConsumer->getCurrentBuffer(
&mActiveBufferSlot);
if (mActiveBuffer == NULL) {
// this can only happen if the very first buffer was rejected.
return outDirtyRegion;
}
mBufferLatched = true;
mPreviousFrameNumber = mCurrentFrameNumber;
mCurrentFrameNumber = mSurfaceFlingerConsumer->getFrameNumber();
{
Mutex::Autolock lock(mFrameEventHistoryMutex);
mFrameEventHistory.addLatch(mCurrentFrameNumber, latchTime);
#ifndef USE_HWC2
auto releaseFenceTime = std::make_shared<FenceTime>(
mSurfaceFlingerConsumer->getPrevFinalReleaseFence());
mReleaseTimeline.updateSignalTimes();
mReleaseTimeline.push(releaseFenceTime);
if (mPreviousFrameNumber != 0) {
mFrameEventHistory.addRelease(mPreviousFrameNumber,
latchTime, std::move(releaseFenceTime));
}
#endif
}
mRefreshPending = true;
mFrameLatencyNeeded = true;
if (oldActiveBuffer == NULL) {
// the first time we receive a buffer, we need to trigger a
// geometry invalidation.
recomputeVisibleRegions = true;
}
setDataSpace(mSurfaceFlingerConsumer->getCurrentDataSpace());
Rect crop(mSurfaceFlingerConsumer->getCurrentCrop());
const uint32_t transform(mSurfaceFlingerConsumer->getCurrentTransform());
const uint32_t scalingMode(mSurfaceFlingerConsumer->getCurrentScalingMode());
if ((crop != mCurrentCrop) ||
(transform != mCurrentTransform) ||
(scalingMode != mCurrentScalingMode))
{
mCurrentCrop = crop;
mCurrentTransform = transform;
mCurrentScalingMode = scalingMode;
recomputeVisibleRegions = true;
}
if (oldActiveBuffer != NULL) {
uint32_t bufWidth = mActiveBuffer->getWidth();
uint32_t bufHeight = mActiveBuffer->getHeight();
if (bufWidth != uint32_t(oldActiveBuffer->width) ||
bufHeight != uint32_t(oldActiveBuffer->height)) {
recomputeVisibleRegions = true;
}
}
mCurrentOpacity = getOpacityForFormat(mActiveBuffer->format);
if (oldOpacity != isOpaque(s)) {
recomputeVisibleRegions = true;
}
// Remove any sync points corresponding to the buffer which was just
// latched
{
Mutex::Autolock lock(mLocalSyncPointMutex);
auto point = mLocalSyncPoints.begin();
while (point != mLocalSyncPoints.end()) {
if (!(*point)->frameIsAvailable() ||
!(*point)->transactionIsApplied()) {
// This sync point must have been added since we started
// latching. Don't drop it yet.
++point;
continue;
}
if ((*point)->getFrameNumber() <= mCurrentFrameNumber) {
point = mLocalSyncPoints.erase(point);
} else {
++point;
}
}
}
// FIXME: postedRegion should be dirty & bounds
Region dirtyRegion(Rect(s.active.w, s.active.h));
// transform the dirty region to window-manager space
outDirtyRegion = (getTransform().transform(dirtyRegion));
return outDirtyRegion;
}
uint32_t Layer::getEffectiveUsage(uint32_t usage) const
{
// TODO: should we do something special if mSecure is set?
if (mProtectedByApp) {
// need a hardware-protected path to external video sink
usage |= GraphicBuffer::USAGE_PROTECTED;
}
if (mPotentialCursor) {
usage |= GraphicBuffer::USAGE_CURSOR;
}
usage |= GraphicBuffer::USAGE_HW_COMPOSER;
return usage;
}
void Layer::updateTransformHint(const sp<const DisplayDevice>& hw) const {
uint32_t orientation = 0;
if (!mFlinger->mDebugDisableTransformHint) {
// The transform hint is used to improve performance, but we can
// only have a single transform hint, it cannot
// apply to all displays.
const Transform& planeTransform(hw->getTransform());
orientation = planeTransform.getOrientation();
if (orientation & Transform::ROT_INVALID) {
orientation = 0;
}
}
mSurfaceFlingerConsumer->setTransformHint(orientation);
}
// ----------------------------------------------------------------------------
// debugging
// ----------------------------------------------------------------------------
void Layer::dump(String8& result, Colorizer& colorizer) const
{
const Layer::State& s(getDrawingState());
colorizer.colorize(result, Colorizer::GREEN);
result.appendFormat(
"+ %s %p (%s)\n",
getTypeId(), this, getName().string());
colorizer.reset(result);
s.activeTransparentRegion.dump(result, "transparentRegion");
visibleRegion.dump(result, "visibleRegion");
surfaceDamageRegion.dump(result, "surfaceDamageRegion");
sp<Client> client(mClientRef.promote());
PixelFormat pf = PIXEL_FORMAT_UNKNOWN;
const sp<GraphicBuffer>& buffer(getActiveBuffer());
if (buffer != NULL) {
pf = buffer->getPixelFormat();
}
result.appendFormat( " "
"layerStack=%4d, z=%9d, pos=(%g,%g), size=(%4d,%4d), "
"crop=(%4d,%4d,%4d,%4d), finalCrop=(%4d,%4d,%4d,%4d), "
"isOpaque=%1d, invalidate=%1d, "
"dataspace=%s, pixelformat=%s "
#ifdef USE_HWC2
"alpha=%.3f, flags=0x%08x, tr=[%.2f, %.2f][%.2f, %.2f]\n"
#else
"alpha=0x%02x, flags=0x%08x, tr=[%.2f, %.2f][%.2f, %.2f]\n"
#endif
" client=%p\n",
getLayerStack(), s.z,
s.active.transform.tx(), s.active.transform.ty(),
s.active.w, s.active.h,
s.crop.left, s.crop.top,
s.crop.right, s.crop.bottom,
s.finalCrop.left, s.finalCrop.top,
s.finalCrop.right, s.finalCrop.bottom,
isOpaque(s), contentDirty,
dataspaceDetails(getDataSpace()).c_str(), decodePixelFormat(pf).c_str(),
s.alpha, s.flags,
s.active.transform[0][0], s.active.transform[0][1],
s.active.transform[1][0], s.active.transform[1][1],
client.get());
sp<const GraphicBuffer> buf0(mActiveBuffer);
uint32_t w0=0, h0=0, s0=0, f0=0;
if (buf0 != 0) {
w0 = buf0->getWidth();
h0 = buf0->getHeight();
s0 = buf0->getStride();
f0 = buf0->format;
}
result.appendFormat(
" "
"format=%2d, activeBuffer=[%4ux%4u:%4u,%3X],"
" queued-frames=%d, mRefreshPending=%d\n",
mFormat, w0, h0, s0,f0,
mQueuedFrames, mRefreshPending);
if (mSurfaceFlingerConsumer != 0) {
mSurfaceFlingerConsumer->dumpState(result, " ");
}
}
#ifdef USE_HWC2
void Layer::miniDumpHeader(String8& result) {
result.append("----------------------------------------");
result.append("---------------------------------------\n");
result.append(" Layer name\n");
result.append(" Z | ");
result.append(" Comp Type | ");
result.append(" Disp Frame (LTRB) | ");
result.append(" Source Crop (LTRB)\n");
result.append("----------------------------------------");
result.append("---------------------------------------\n");
}
void Layer::miniDump(String8& result, int32_t hwcId) const {
if (mHwcLayers.count(hwcId) == 0) {
return;
}
String8 name;
if (mName.length() > 77) {
std::string shortened;
shortened.append(mName.string(), 36);
shortened.append("[...]");
shortened.append(mName.string() + (mName.length() - 36), 36);
name = shortened.c_str();
} else {
name = mName;
}
result.appendFormat(" %s\n", name.string());
const Layer::State& layerState(getDrawingState());
const HWCInfo& hwcInfo = mHwcLayers.at(hwcId);
result.appendFormat(" %10u | ", layerState.z);
result.appendFormat("%10s | ",
to_string(getCompositionType(hwcId)).c_str());
const Rect& frame = hwcInfo.displayFrame;
result.appendFormat("%4d %4d %4d %4d | ", frame.left, frame.top,
frame.right, frame.bottom);
const FloatRect& crop = hwcInfo.sourceCrop;
result.appendFormat("%6.1f %6.1f %6.1f %6.1f\n", crop.left, crop.top,
crop.right, crop.bottom);
result.append("- - - - - - - - - - - - - - - - - - - - ");
result.append("- - - - - - - - - - - - - - - - - - - -\n");
}
#endif
void Layer::dumpFrameStats(String8& result) const {
mFrameTracker.dumpStats(result);
}
void Layer::clearFrameStats() {
mFrameTracker.clearStats();
}
void Layer::logFrameStats() {
mFrameTracker.logAndResetStats(mName);
}
void Layer::getFrameStats(FrameStats* outStats) const {
mFrameTracker.getStats(outStats);
}
void Layer::dumpFrameEvents(String8& result) {
result.appendFormat("- Layer %s (%s, %p)\n",
getName().string(), getTypeId(), this);
Mutex::Autolock lock(mFrameEventHistoryMutex);
mFrameEventHistory.checkFencesForCompletion();
mFrameEventHistory.dump(result);
}
void Layer::onDisconnect() {
Mutex::Autolock lock(mFrameEventHistoryMutex);
mFrameEventHistory.onDisconnect();
}
void Layer::addAndGetFrameTimestamps(const NewFrameEventsEntry* newTimestamps,
FrameEventHistoryDelta *outDelta) {
Mutex::Autolock lock(mFrameEventHistoryMutex);
if (newTimestamps) {
// If there are any unsignaled fences in the aquire timeline at this
// point, the previously queued frame hasn't been latched yet. Go ahead
// and try to get the signal time here so the syscall is taken out of
// the main thread's critical path.
mAcquireTimeline.updateSignalTimes();
// Push the new fence after updating since it's likely still pending.
mAcquireTimeline.push(newTimestamps->acquireFence);
mFrameEventHistory.addQueue(*newTimestamps);
}
if (outDelta) {
mFrameEventHistory.getAndResetDelta(outDelta);
}
}
std::vector<OccupancyTracker::Segment> Layer::getOccupancyHistory(
bool forceFlush) {
std::vector<OccupancyTracker::Segment> history;
status_t result = mSurfaceFlingerConsumer->getOccupancyHistory(forceFlush,
&history);
if (result != NO_ERROR) {
ALOGW("[%s] Failed to obtain occupancy history (%d)", mName.string(),
result);
return {};
}
return history;
}
bool Layer::getTransformToDisplayInverse() const {
return mSurfaceFlingerConsumer->getTransformToDisplayInverse();
}
size_t Layer::getChildrenCount() const {
size_t count = 0;
for (const sp<Layer>& child : mCurrentChildren) {
count += 1 + child->getChildrenCount();
}
return count;
}
void Layer::addChild(const sp<Layer>& layer) {
mCurrentChildren.add(layer);
layer->setParent(this);
}
ssize_t Layer::removeChild(const sp<Layer>& layer) {
layer->setParent(nullptr);
return mCurrentChildren.remove(layer);
}
bool Layer::reparentChildren(const sp<IBinder>& newParentHandle) {
sp<Handle> handle = nullptr;
sp<Layer> newParent = nullptr;
if (newParentHandle == nullptr) {
return false;
}
handle = static_cast<Handle*>(newParentHandle.get());
newParent = handle->owner.promote();
if (newParent == nullptr) {
ALOGE("Unable to promote Layer handle");
return false;
}
for (const sp<Layer>& child : mCurrentChildren) {
newParent->addChild(child);
sp<Client> client(child->mClientRef.promote());
if (client != nullptr) {
client->setParentLayer(newParent);
}
}
mCurrentChildren.clear();
return true;
}
bool Layer::detachChildren() {
traverseInZOrder(LayerVector::StateSet::Drawing, [this](Layer* child) {
if (child == this) {
return;
}
sp<Client> client(child->mClientRef.promote());
if (client != nullptr) {
client->detachLayer(child);
}
});
return true;
}
void Layer::setParent(const sp<Layer>& layer) {
mCurrentParent = layer;
}
void Layer::clearSyncPoints() {
for (const auto& child : mCurrentChildren) {
child->clearSyncPoints();
}
Mutex::Autolock lock(mLocalSyncPointMutex);
for (auto& point : mLocalSyncPoints) {
point->setFrameAvailable();
}
mLocalSyncPoints.clear();
}
int32_t Layer::getZ() const {
return mDrawingState.z;
}
LayerVector Layer::makeTraversalList(LayerVector::StateSet stateSet) {
LOG_ALWAYS_FATAL_IF(stateSet == LayerVector::StateSet::Invalid,
"makeTraversalList received invalid stateSet");
const bool useDrawing = stateSet == LayerVector::StateSet::Drawing;
const LayerVector& children = useDrawing ? mDrawingChildren : mCurrentChildren;
const State& state = useDrawing ? mDrawingState : mCurrentState;
if (state.zOrderRelatives.size() == 0) {
return children;
}
LayerVector traverse;
for (const wp<Layer>& weakRelative : state.zOrderRelatives) {
sp<Layer> strongRelative = weakRelative.promote();
if (strongRelative != nullptr) {
traverse.add(strongRelative);
}
}
for (const sp<Layer>& child : children) {
traverse.add(child);
}
return traverse;
}
/**
* Negatively signed relatives are before 'this' in Z-order.
*/
void Layer::traverseInZOrder(LayerVector::StateSet stateSet, const LayerVector::Visitor& visitor) {
LayerVector list = makeTraversalList(stateSet);
size_t i = 0;
for (; i < list.size(); i++) {
const auto& relative = list[i];
if (relative->getZ() >= 0) {
break;
}
relative->traverseInZOrder(stateSet, visitor);
}
visitor(this);
for (; i < list.size(); i++) {
const auto& relative = list[i];
relative->traverseInZOrder(stateSet, visitor);
}
}
/**
* Positively signed relatives are before 'this' in reverse Z-order.
*/
void Layer::traverseInReverseZOrder(LayerVector::StateSet stateSet,
const LayerVector::Visitor& visitor) {
LayerVector list = makeTraversalList(stateSet);
int32_t i = 0;
for (i = list.size()-1; i>=0; i--) {
const auto& relative = list[i];
if (relative->getZ() < 0) {
break;
}
relative->traverseInReverseZOrder(stateSet, visitor);
}
visitor(this);
for (; i>=0; i--) {
const auto& relative = list[i];
relative->traverseInReverseZOrder(stateSet, visitor);
}
}
Transform Layer::getTransform() const {
Transform t;
const auto& p = mDrawingParent.promote();
if (p != nullptr) {
t = p->getTransform();
// If the parent is not using NATIVE_WINDOW_SCALING_MODE_FREEZE (e.g.
// it isFixedSize) then there may be additional scaling not accounted
// for in the transform. We need to mirror this scaling in child surfaces
// or we will break the contract where WM can treat child surfaces as
// pixels in the parent surface.
if (p->isFixedSize() && p->mActiveBuffer != nullptr) {
int bufferWidth;
int bufferHeight;
if ((p->mCurrentTransform & NATIVE_WINDOW_TRANSFORM_ROT_90) == 0) {
bufferWidth = p->mActiveBuffer->getWidth();
bufferHeight = p->mActiveBuffer->getHeight();
} else {
bufferHeight = p->mActiveBuffer->getWidth();
bufferWidth = p->mActiveBuffer->getHeight();
}
float sx = p->getDrawingState().active.w /
static_cast<float>(bufferWidth);
float sy = p->getDrawingState().active.h /
static_cast<float>(bufferHeight);
Transform extraParentScaling;
extraParentScaling.set(sx, 0, 0, sy);
t = t * extraParentScaling;
}
}
return t * getDrawingState().active.transform;
}
#ifdef USE_HWC2
float Layer::getAlpha() const {
const auto& p = mDrawingParent.promote();
float parentAlpha = (p != nullptr) ? p->getAlpha() : 1.0;
return parentAlpha * getDrawingState().alpha;
}
#else
uint8_t Layer::getAlpha() const {
const auto& p = mDrawingParent.promote();
float parentAlpha = (p != nullptr) ? (p->getAlpha() / 255.0f) : 1.0;
float drawingAlpha = getDrawingState().alpha / 255.0f;
drawingAlpha = drawingAlpha * parentAlpha;
return static_cast<uint8_t>(std::round(drawingAlpha * 255));
}
#endif
void Layer::commitChildList() {
for (size_t i = 0; i < mCurrentChildren.size(); i++) {
const auto& child = mCurrentChildren[i];
child->commitChildList();
}
mDrawingChildren = mCurrentChildren;
mDrawingParent = mCurrentParent;
}
// ---------------------------------------------------------------------------
}; // namespace android
#if defined(__gl_h_)
#error "don't include gl/gl.h in this file"
#endif
#if defined(__gl2_h_)
#error "don't include gl2/gl2.h in this file"
#endif