blob: 8ba72ab7739dcfd76ace188c898f6c8131a29dc6 [file] [log] [blame]
#ifndef ANDROID_DVR_SERVICES_DISPLAYD_HARDWARE_COMPOSER_H_
#define ANDROID_DVR_SERVICES_DISPLAYD_HARDWARE_COMPOSER_H_
#include <ui/GraphicBuffer.h>
#include "DisplayHardware/ComposerHal.h"
#include "hwc_types.h"
#include <hardware/gralloc.h>
#include <log/log.h>
#include <array>
#include <condition_variable>
#include <memory>
#include <mutex>
#include <thread>
#include <tuple>
#include <vector>
#include <dvr/pose_client.h>
#include <pdx/file_handle.h>
#include <pdx/rpc/variant.h>
#include <private/dvr/buffer_hub_client.h>
#include "acquired_buffer.h"
#include "display_surface.h"
// Hardware composer HAL doesn't define HWC_TRANSFORM_NONE as of this writing.
#ifndef HWC_TRANSFORM_NONE
#define HWC_TRANSFORM_NONE static_cast<hwc_transform_t>(0)
#endif
namespace android {
namespace dvr {
// Basic display metrics for physical displays. Dimensions and densities are
// relative to the physical display orientation, which may be different from the
// logical display orientation exposed to applications.
struct HWCDisplayMetrics {
int width;
int height;
struct {
int x;
int y;
} dpi;
int vsync_period_ns;
};
// Layer represents the connection between a hardware composer layer and the
// source supplying buffers for the layer's contents.
class Layer {
public:
Layer() {}
// Sets up the global state used by all Layer instances. This must be called
// before using any Layer methods.
static void InitializeGlobals(Hwc2::Composer* hwc2_hidl,
const HWCDisplayMetrics* metrics);
// Releases any shared pointers and fence handles held by this instance.
void Reset();
// Sets up the layer to use a display surface as its content source. The Layer
// automatically handles ACQUIRE/RELEASE phases for the surface's buffer train
// every frame.
//
// |blending| receives HWC_BLENDING_* values.
// |transform| receives HWC_TRANSFORM_* values.
// |composition_type| receives either HWC_FRAMEBUFFER for most layers or
// HWC_FRAMEBUFFER_TARGET (unless you know what you are doing).
// |index| is the index of this surface in the DirectDisplaySurface array.
void Setup(const std::shared_ptr<DirectDisplaySurface>& surface,
HWC::BlendMode blending, HWC::Transform transform,
HWC::Composition composition_type, size_t z_roder);
// Sets up the layer to use a direct buffer as its content source. No special
// handling of the buffer is performed; responsibility for updating or
// changing the buffer each frame is on the caller.
//
// |blending| receives HWC_BLENDING_* values.
// |transform| receives HWC_TRANSFORM_* values.
// |composition_type| receives either HWC_FRAMEBUFFER for most layers or
// HWC_FRAMEBUFFER_TARGET (unless you know what you are doing).
void Setup(const std::shared_ptr<IonBuffer>& buffer, HWC::BlendMode blending,
HWC::Transform transform, HWC::Composition composition_type,
size_t z_order);
// Layers that use a direct IonBuffer should call this each frame to update
// which buffer will be used for the next PostLayers.
void UpdateBuffer(const std::shared_ptr<IonBuffer>& buffer);
// Sets up the hardware composer layer for the next frame. When the layer is
// associated with a display surface, this method automatically ACQUIRES a new
// buffer if one is available.
void Prepare();
// After calling prepare, if this frame is to be dropped instead of passing
// along to the HWC, call Drop to close the contained fence(s).
void Drop();
// Performs fence bookkeeping after the frame has been posted to hardware
// composer.
void Finish(int release_fence_fd);
// Sets the blending for the layer. |blending| receives HWC_BLENDING_* values.
void SetBlending(HWC::BlendMode blending);
// Sets the z-order of this layer
void SetZOrder(size_t z_order);
// Gets the current IonBuffer associated with this layer. Ownership of the
// buffer DOES NOT pass to the caller and the pointer is not guaranteed to
// remain valid across calls to Layer::Setup(), Layer::Prepare(), or
// Layer::Reset(). YOU HAVE BEEN WARNED.
IonBuffer* GetBuffer();
HWC::Composition GetCompositionType() const { return composition_type_; }
HWC::Layer GetLayerHandle() const { return hardware_composer_layer_; }
bool IsLayerSetup() const { return !source_.empty(); }
// Applies all of the settings to this layer using the hwc functions
void UpdateLayerSettings();
int GetSurfaceId() const {
int surface_id = -1;
pdx::rpc::IfAnyOf<SourceSurface>::Call(
&source_, [&surface_id](const SourceSurface& surface_source) {
surface_id = surface_source.surface->surface_id();
});
return surface_id;
}
private:
void CommonLayerSetup();
static Hwc2::Composer* hwc2_hidl_;
static const HWCDisplayMetrics* display_metrics_;
// The hardware composer layer and metrics to use during the prepare cycle.
hwc2_layer_t hardware_composer_layer_ = 0;
// Layer properties used to setup the hardware composer layer during the
// Prepare phase.
size_t z_order_ = 0;
HWC::BlendMode blending_ = HWC::BlendMode::None;
HWC::Transform transform_ = HWC::Transform::None;
HWC::Composition composition_type_ = HWC::Composition::Invalid;
HWC::Composition target_composition_type_ = HWC::Composition::Device;
// State when the layer is connected to a surface. Provides the same interface
// as SourceBuffer to simplify internal use by Layer.
struct SourceSurface {
std::shared_ptr<DirectDisplaySurface> surface;
AcquiredBuffer acquired_buffer;
pdx::LocalHandle release_fence;
SourceSurface(const std::shared_ptr<DirectDisplaySurface>& surface)
: surface(surface) {}
// Attempts to acquire a new buffer from the surface and return a tuple with
// width, height, buffer handle, and fence. If a new buffer is not available
// the previous buffer is returned or an empty value if no buffer has ever
// been posted. When a new buffer is acquired the previous buffer's release
// fence is passed out automatically.
std::tuple<int, int, sp<GraphicBuffer>, pdx::LocalHandle> Acquire() {
if (surface->IsBufferAvailable()) {
acquired_buffer.Release(std::move(release_fence));
acquired_buffer = surface->AcquireCurrentBuffer();
ATRACE_ASYNC_END("BufferPost", acquired_buffer.buffer()->id());
}
if (!acquired_buffer.IsEmpty()) {
return std::make_tuple(acquired_buffer.buffer()->width(),
acquired_buffer.buffer()->height(),
acquired_buffer.buffer()->buffer()->buffer(),
acquired_buffer.ClaimAcquireFence());
} else {
return std::make_tuple(0, 0, nullptr, pdx::LocalHandle{});
}
}
void Finish(pdx::LocalHandle fence) { release_fence = std::move(fence); }
// Gets a pointer to the current acquired buffer or returns nullptr if there
// isn't one.
IonBuffer* GetBuffer() {
if (acquired_buffer.IsAvailable())
return acquired_buffer.buffer()->buffer();
else
return nullptr;
}
// Returns the surface id of the surface.
int GetSurfaceId() { return surface->surface_id(); }
};
// State when the layer is connected to a buffer. Provides the same interface
// as SourceSurface to simplify internal use by Layer.
struct SourceBuffer {
std::shared_ptr<IonBuffer> buffer;
std::tuple<int, int, sp<GraphicBuffer>, pdx::LocalHandle> Acquire() {
if (buffer)
return std::make_tuple(buffer->width(), buffer->height(),
buffer->buffer(), pdx::LocalHandle{});
else
return std::make_tuple(0, 0, nullptr, pdx::LocalHandle{});
}
void Finish(pdx::LocalHandle /*fence*/) {}
IonBuffer* GetBuffer() { return buffer.get(); }
int GetSurfaceId() const { return -1; }
};
// The underlying hardware composer layer is supplied buffers either from a
// surface buffer train or from a buffer directly.
pdx::rpc::Variant<SourceSurface, SourceBuffer> source_;
pdx::LocalHandle acquire_fence_;
bool surface_rect_functions_applied_ = false;
Layer(const Layer&) = delete;
void operator=(const Layer&) = delete;
};
// HardwareComposer encapsulates the hardware composer HAL, exposing a
// simplified API to post buffers to the display.
//
// HardwareComposer is accessed by both the vr flinger dispatcher thread and the
// surface flinger main thread, in addition to internally running a separate
// thread for compositing/EDS and posting layers to the HAL. When changing how
// variables are used or adding new state think carefully about which threads
// will access the state and whether it needs to be synchronized.
class HardwareComposer {
public:
// Type for vsync callback.
using VSyncCallback = std::function<void(int, int64_t, int64_t, uint32_t)>;
using RequestDisplayCallback = std::function<void(bool)>;
// Since there is no universal way to query the number of hardware layers,
// just set it to 4 for now.
static constexpr size_t kMaxHardwareLayers = 4;
HardwareComposer();
HardwareComposer(Hwc2::Composer* hidl,
RequestDisplayCallback request_display_callback);
~HardwareComposer();
bool Initialize();
bool IsInitialized() const { return initialized_; }
// Start the post thread if there's work to do (i.e. visible layers). This
// should only be called from surface flinger's main thread.
void Enable();
// Pause the post thread, blocking until the post thread has signaled that
// it's paused. This should only be called from surface flinger's main thread.
void Disable();
// Get the HMD display metrics for the current display.
display::Metrics GetHmdDisplayMetrics() const;
HWC::Error GetDisplayAttribute(hwc2_display_t display, hwc2_config_t config,
hwc2_attribute_t attributes,
int32_t* out_value) const;
HWC::Error GetDisplayMetrics(hwc2_display_t display, hwc2_config_t config,
HWCDisplayMetrics* out_metrics) const;
std::string Dump();
void SetVSyncCallback(VSyncCallback callback);
// Metrics of the logical display, which is always landscape.
int DisplayWidth() const { return display_metrics_.width; }
int DisplayHeight() const { return display_metrics_.height; }
HWCDisplayMetrics display_metrics() const { return display_metrics_; }
// Metrics of the native display, which depends on the specific hardware
// implementation of the display.
HWCDisplayMetrics native_display_metrics() const {
return native_display_metrics_;
}
// Sets the display surfaces to compose the hardware layer stack.
void SetDisplaySurfaces(
std::vector<std::shared_ptr<DirectDisplaySurface>> surfaces);
void OnHardwareComposerRefresh();
private:
int32_t EnableVsync(bool enabled);
class ComposerCallback : public Hwc2::IComposerCallback {
public:
ComposerCallback() {}
hardware::Return<void> onHotplug(Hwc2::Display /*display*/,
Connection /*connected*/) override {
// TODO(skiazyk): depending on how the server is implemented, we might
// have to set it up to synchronize with receiving this event, as it can
// potentially be a critical event for setting up state within the
// hwc2 module. That is, we (technically) should not call any other hwc
// methods until this method has been called after registering the
// callbacks.
return hardware::Void();
}
hardware::Return<void> onRefresh(Hwc2::Display /*display*/) override {
return hardware::Void();
}
hardware::Return<void> onVsync(Hwc2::Display /*display*/,
int64_t /*timestamp*/) override {
return hardware::Void();
}
};
HWC::Error Validate(hwc2_display_t display);
HWC::Error Present(hwc2_display_t display);
void SetBacklightBrightness(int brightness);
void PostLayers();
void PostThread();
// The post thread has two controlling states:
// 1. Idle: no work to do (no visible surfaces).
// 2. Suspended: explicitly halted (system is not in VR mode).
// When either #1 or #2 is true then the post thread is quiescent, otherwise
// it is active.
using PostThreadStateType = uint32_t;
struct PostThreadState {
enum : PostThreadStateType {
Active = 0,
Idle = (1 << 0),
Suspended = (1 << 1),
Quit = (1 << 2),
};
};
void UpdatePostThreadState(uint32_t state, bool suspend);
// Blocks until either event_fd becomes readable, or we're interrupted by a
// control thread. Any errors are returned as negative errno values. If we're
// interrupted, kPostThreadInterrupted will be returned.
int PostThreadPollInterruptible(const pdx::LocalHandle& event_fd,
int requested_events);
// BlockUntilVSync, WaitForVSync, and SleepUntil are all blocking calls made
// on the post thread that can be interrupted by a control thread. If
// interrupted, these calls return kPostThreadInterrupted.
int ReadWaitPPState();
int BlockUntilVSync();
int ReadVSyncTimestamp(int64_t* timestamp);
int WaitForVSync(int64_t* timestamp);
int SleepUntil(int64_t wakeup_timestamp);
bool IsFramePendingInDriver() { return ReadWaitPPState() == 1; }
// Reconfigures the layer stack if the display surfaces changed since the last
// frame. Called only from the post thread.
bool UpdateLayerConfig();
// Called on the post thread when the post thread is resumed.
void OnPostThreadResumed();
// Called on the post thread when the post thread is paused or quits.
void OnPostThreadPaused();
bool initialized_;
// Hardware composer HAL device from SurfaceFlinger. VrFlinger does not own
// this pointer.
Hwc2::Composer* hwc2_hidl_;
RequestDisplayCallback request_display_callback_;
sp<ComposerCallback> callbacks_;
// Display metrics of the physical display.
HWCDisplayMetrics native_display_metrics_;
// Display metrics of the logical display, adjusted so that orientation is
// landscape.
HWCDisplayMetrics display_metrics_;
// Transform required to get from native to logical display orientation.
HWC::Transform display_transform_ = HWC::Transform::None;
// Pending surface list. Set by the display service when DirectSurfaces are
// added, removed, or change visibility. Written by the message dispatch
// thread and read by the post thread.
std::vector<std::shared_ptr<DirectDisplaySurface>> pending_surfaces_;
// The surfaces displayed by the post thread. Used exclusively by the post
// thread.
std::vector<std::shared_ptr<DirectDisplaySurface>> display_surfaces_;
// Layer array for handling buffer flow into hardware composer layers.
std::array<Layer, kMaxHardwareLayers> layers_;
size_t active_layer_count_ = 0;
// Handler to hook vsync events outside of this class.
VSyncCallback vsync_callback_;
// The layer posting thread. This thread wakes up a short time before vsync to
// hand buffers to hardware composer.
std::thread post_thread_;
// Post thread state machine and synchronization primitives.
PostThreadStateType post_thread_state_{PostThreadState::Idle};
std::atomic<bool> post_thread_quiescent_{true};
bool post_thread_resumed_{false};
pdx::LocalHandle post_thread_event_fd_;
std::mutex post_thread_mutex_;
std::condition_variable post_thread_wait_;
std::condition_variable post_thread_ready_;
// Backlight LED brightness sysfs node.
pdx::LocalHandle backlight_brightness_fd_;
// Primary display vsync event sysfs node.
pdx::LocalHandle primary_display_vsync_event_fd_;
// Primary display wait_pingpong state sysfs node.
pdx::LocalHandle primary_display_wait_pp_fd_;
// VSync sleep timerfd.
pdx::LocalHandle vsync_sleep_timer_fd_;
// The timestamp of the last vsync.
int64_t last_vsync_timestamp_ = 0;
// Vsync count since display on.
uint32_t vsync_count_ = 0;
// Counter tracking the number of skipped frames.
int frame_skip_count_ = 0;
// Fd array for tracking retire fences that are returned by hwc. This allows
// us to detect when the display driver begins queuing frames.
std::vector<pdx::LocalHandle> retire_fence_fds_;
// Pose client for frame count notifications. Pose client predicts poses
// out to display frame boundaries, so we need to tell it about vsyncs.
DvrPose* pose_client_ = nullptr;
static constexpr int kPostThreadInterrupted = 1;
static void HwcRefresh(hwc2_callback_data_t data, hwc2_display_t display);
static void HwcVSync(hwc2_callback_data_t data, hwc2_display_t display,
int64_t timestamp);
static void HwcHotplug(hwc2_callback_data_t callbackData,
hwc2_display_t display, hwc2_connection_t connected);
HardwareComposer(const HardwareComposer&) = delete;
void operator=(const HardwareComposer&) = delete;
};
} // namespace dvr
} // namespace android
#endif // ANDROID_DVR_SERVICES_DISPLAYD_HARDWARE_COMPOSER_H_