blob: ced1899109c5bfc4b5cde7e78de9d5961d53a3d5 [file] [log] [blame]
/*
* Copyright 2018 The Android Open Source Project
*
* Licensed under the Apache License, Version 2.0 (the "License");
* you may not use this file except in compliance with the License.
* You may obtain a copy of the License at
*
* http://www.apache.org/licenses/LICENSE-2.0
*
* Unless required by applicable law or agreed to in writing, software
* distributed under the License is distributed on an "AS IS" BASIS,
* WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
* See the License for the specific language governing permissions and
* limitations under the License.
*/
#pragma once
#include <chrono>
#include <cinttypes>
#include <numeric>
#include <unordered_map>
#include <vector>
namespace android {
namespace scheduler {
using namespace std::chrono_literals;
// This number is used to set the size of the arrays in scheduler that hold information
// about layers.
static constexpr size_t ARRAY_SIZE = 30;
// This number is used to have a place holder for when the screen is not NORMAL/ON. Currently
// the config is not visible to SF, and is completely maintained by HWC. However, we would
// still like to keep track of time when the device is in this config.
static constexpr int SCREEN_OFF_CONFIG_ID = -1;
static constexpr uint32_t HWC2_SCREEN_OFF_CONFIG_ID = 0xffffffff;
// This number is used when we try to determine how long do we keep layer information around
// before we remove it. It is also used to determine how long the layer stays relevant.
// This time period captures infrequent updates when playing YouTube video with static image,
// or waiting idle in messaging app, when cursor is blinking.
static constexpr std::chrono::nanoseconds OBSOLETE_TIME_EPSILON_NS = 1200ms;
// Layer is considered low activity if the buffers come more than LOW_ACTIVITY_EPSILON_NS
// apart. This is helping SF to vote for lower refresh rates when there is not activity
// in screen.
static constexpr std::chrono::nanoseconds LOW_ACTIVITY_EPSILON_NS = 250ms;
// Calculates the statistical mean (average) in the data structure (array, vector). The
// function does not modify the contents of the array.
template <typename T>
auto calculate_mean(const T& v) {
using V = typename T::value_type;
V sum = std::accumulate(v.begin(), v.end(), static_cast<V>(0));
return sum / static_cast<V>(v.size());
}
// Calculates the statistical median in the vector. Return 0 if the vector is empty. The
// function modifies the vector contents.
int64_t calculate_median(std::vector<int64_t>* v);
// Calculates the statistical mode in the vector. Return 0 if the vector is empty.
template <typename T>
auto calculate_mode(const T& v) {
if (v.empty()) {
return 0;
}
// Create a map with all the counts for the indivicual values in the vector.
std::unordered_map<int64_t, int> counts;
for (int64_t value : v) {
counts[value]++;
}
// Sort the map, and return the number with the highest count. If two numbers have
// the same count, first one is returned.
using ValueType = const decltype(counts)::value_type&;
const auto compareCounts = [](ValueType l, ValueType r) { return l.second <= r.second; };
return static_cast<int>(std::max_element(counts.begin(), counts.end(), compareCounts)->first);
}
} // namespace scheduler
} // namespace android