blob: 96a8adbaf5bc35f777342f44774375fb03844cc7 [file] [log] [blame]
/*
* Copyright (C) 2007 The Android Open Source Project
*
* Licensed under the Apache License, Version 2.0 (the "License");
* you may not use this file except in compliance with the License.
* You may obtain a copy of the License at
*
* http://www.apache.org/licenses/LICENSE-2.0
*
* Unless required by applicable law or agreed to in writing, software
* distributed under the License is distributed on an "AS IS" BASIS,
* WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
* See the License for the specific language governing permissions and
* limitations under the License.
*/
#define ATRACE_TAG ATRACE_TAG_GRAPHICS
#include <stdint.h>
#include <sys/types.h>
#include <errno.h>
#include <math.h>
#include <dlfcn.h>
#include <inttypes.h>
#include <stdatomic.h>
#include <EGL/egl.h>
#include <cutils/log.h>
#include <cutils/properties.h>
#include <binder/IPCThreadState.h>
#include <binder/IServiceManager.h>
#include <binder/MemoryHeapBase.h>
#include <binder/PermissionCache.h>
#include <ui/DisplayInfo.h>
#include <ui/DisplayStatInfo.h>
#include <gui/BitTube.h>
#include <gui/BufferQueue.h>
#include <gui/GuiConfig.h>
#include <gui/IDisplayEventConnection.h>
#include <gui/Surface.h>
#include <gui/GraphicBufferAlloc.h>
#include <ui/GraphicBufferAllocator.h>
#include <ui/PixelFormat.h>
#include <ui/UiConfig.h>
#include <utils/misc.h>
#include <utils/String8.h>
#include <utils/String16.h>
#include <utils/StopWatch.h>
#include <utils/Trace.h>
#include <private/android_filesystem_config.h>
#include <private/gui/SyncFeatures.h>
#include "Client.h"
#include "clz.h"
#include "Colorizer.h"
#include "DdmConnection.h"
#include "DisplayDevice.h"
#include "DispSync.h"
#include "EventControlThread.h"
#include "EventThread.h"
#include "Layer.h"
#include "LayerDim.h"
#include "SurfaceFlinger.h"
#include "DisplayHardware/FramebufferSurface.h"
#include "DisplayHardware/HWComposer.h"
#include "DisplayHardware/VirtualDisplaySurface.h"
#include "Effects/Daltonizer.h"
#include "RenderEngine/RenderEngine.h"
#include <cutils/compiler.h>
#define DISPLAY_COUNT 1
/*
* DEBUG_SCREENSHOTS: set to true to check that screenshots are not all
* black pixels.
*/
#define DEBUG_SCREENSHOTS false
EGLAPI const char* eglQueryStringImplementationANDROID(EGLDisplay dpy, EGLint name);
namespace android {
// This is the phase offset in nanoseconds of the software vsync event
// relative to the vsync event reported by HWComposer. The software vsync
// event is when SurfaceFlinger and Choreographer-based applications run each
// frame.
//
// This phase offset allows adjustment of the minimum latency from application
// wake-up (by Choregographer) time to the time at which the resulting window
// image is displayed. This value may be either positive (after the HW vsync)
// or negative (before the HW vsync). Setting it to 0 will result in a
// minimum latency of two vsync periods because the app and SurfaceFlinger
// will run just after the HW vsync. Setting it to a positive number will
// result in the minimum latency being:
//
// (2 * VSYNC_PERIOD - (vsyncPhaseOffsetNs % VSYNC_PERIOD))
//
// Note that reducing this latency makes it more likely for the applications
// to not have their window content image ready in time. When this happens
// the latency will end up being an additional vsync period, and animations
// will hiccup. Therefore, this latency should be tuned somewhat
// conservatively (or at least with awareness of the trade-off being made).
static const int64_t vsyncPhaseOffsetNs = VSYNC_EVENT_PHASE_OFFSET_NS;
// This is the phase offset at which SurfaceFlinger's composition runs.
static const int64_t sfVsyncPhaseOffsetNs = SF_VSYNC_EVENT_PHASE_OFFSET_NS;
// ---------------------------------------------------------------------------
const String16 sHardwareTest("android.permission.HARDWARE_TEST");
const String16 sAccessSurfaceFlinger("android.permission.ACCESS_SURFACE_FLINGER");
const String16 sReadFramebuffer("android.permission.READ_FRAME_BUFFER");
const String16 sDump("android.permission.DUMP");
// ---------------------------------------------------------------------------
SurfaceFlinger::SurfaceFlinger()
: BnSurfaceComposer(),
mTransactionFlags(0),
mTransactionPending(false),
mAnimTransactionPending(false),
mLayersRemoved(false),
mRepaintEverything(0),
mRenderEngine(NULL),
mBootTime(systemTime()),
mVisibleRegionsDirty(false),
mHwWorkListDirty(false),
mAnimCompositionPending(false),
mDebugRegion(0),
mDebugDDMS(0),
mDebugDisableHWC(0),
mDebugDisableTransformHint(0),
mDebugInSwapBuffers(0),
mLastSwapBufferTime(0),
mDebugInTransaction(0),
mLastTransactionTime(0),
mBootFinished(false),
mPrimaryHWVsyncEnabled(false),
mHWVsyncAvailable(false),
mDaltonize(false),
mHasColorMatrix(false)
{
ALOGI("SurfaceFlinger is starting");
// debugging stuff...
char value[PROPERTY_VALUE_MAX];
property_get("ro.bq.gpu_to_cpu_unsupported", value, "0");
mGpuToCpuSupported = !atoi(value);
property_get("debug.sf.showupdates", value, "0");
mDebugRegion = atoi(value);
property_get("debug.sf.ddms", value, "0");
mDebugDDMS = atoi(value);
if (mDebugDDMS) {
if (!startDdmConnection()) {
// start failed, and DDMS debugging not enabled
mDebugDDMS = 0;
}
}
ALOGI_IF(mDebugRegion, "showupdates enabled");
ALOGI_IF(mDebugDDMS, "DDMS debugging enabled");
}
void SurfaceFlinger::onFirstRef()
{
mEventQueue.init(this);
}
SurfaceFlinger::~SurfaceFlinger()
{
EGLDisplay display = eglGetDisplay(EGL_DEFAULT_DISPLAY);
eglMakeCurrent(display, EGL_NO_SURFACE, EGL_NO_SURFACE, EGL_NO_CONTEXT);
eglTerminate(display);
}
void SurfaceFlinger::binderDied(const wp<IBinder>& /* who */)
{
// the window manager died on us. prepare its eulogy.
// restore initial conditions (default device unblank, etc)
initializeDisplays();
// restart the boot-animation
startBootAnim();
}
sp<ISurfaceComposerClient> SurfaceFlinger::createConnection()
{
sp<ISurfaceComposerClient> bclient;
sp<Client> client(new Client(this));
status_t err = client->initCheck();
if (err == NO_ERROR) {
bclient = client;
}
return bclient;
}
sp<IBinder> SurfaceFlinger::createDisplay(const String8& displayName,
bool secure)
{
class DisplayToken : public BBinder {
sp<SurfaceFlinger> flinger;
virtual ~DisplayToken() {
// no more references, this display must be terminated
Mutex::Autolock _l(flinger->mStateLock);
flinger->mCurrentState.displays.removeItem(this);
flinger->setTransactionFlags(eDisplayTransactionNeeded);
}
public:
DisplayToken(const sp<SurfaceFlinger>& flinger)
: flinger(flinger) {
}
};
sp<BBinder> token = new DisplayToken(this);
Mutex::Autolock _l(mStateLock);
DisplayDeviceState info(DisplayDevice::DISPLAY_VIRTUAL);
info.displayName = displayName;
info.isSecure = secure;
mCurrentState.displays.add(token, info);
return token;
}
void SurfaceFlinger::destroyDisplay(const sp<IBinder>& display) {
Mutex::Autolock _l(mStateLock);
ssize_t idx = mCurrentState.displays.indexOfKey(display);
if (idx < 0) {
ALOGW("destroyDisplay: invalid display token");
return;
}
const DisplayDeviceState& info(mCurrentState.displays.valueAt(idx));
if (!info.isVirtualDisplay()) {
ALOGE("destroyDisplay called for non-virtual display");
return;
}
mCurrentState.displays.removeItemsAt(idx);
setTransactionFlags(eDisplayTransactionNeeded);
}
void SurfaceFlinger::createBuiltinDisplayLocked(DisplayDevice::DisplayType type) {
ALOGW_IF(mBuiltinDisplays[type],
"Overwriting display token for display type %d", type);
mBuiltinDisplays[type] = new BBinder();
DisplayDeviceState info(type);
// All non-virtual displays are currently considered secure.
info.isSecure = true;
mCurrentState.displays.add(mBuiltinDisplays[type], info);
}
sp<IBinder> SurfaceFlinger::getBuiltInDisplay(int32_t id) {
if (uint32_t(id) >= DisplayDevice::NUM_BUILTIN_DISPLAY_TYPES) {
ALOGE("getDefaultDisplay: id=%d is not a valid default display id", id);
return NULL;
}
return mBuiltinDisplays[id];
}
sp<IGraphicBufferAlloc> SurfaceFlinger::createGraphicBufferAlloc()
{
sp<GraphicBufferAlloc> gba(new GraphicBufferAlloc());
return gba;
}
void SurfaceFlinger::bootFinished()
{
const nsecs_t now = systemTime();
const nsecs_t duration = now - mBootTime;
ALOGI("Boot is finished (%ld ms)", long(ns2ms(duration)) );
mBootFinished = true;
// wait patiently for the window manager death
const String16 name("window");
sp<IBinder> window(defaultServiceManager()->getService(name));
if (window != 0) {
window->linkToDeath(static_cast<IBinder::DeathRecipient*>(this));
}
// stop boot animation
// formerly we would just kill the process, but we now ask it to exit so it
// can choose where to stop the animation.
property_set("service.bootanim.exit", "1");
}
void SurfaceFlinger::deleteTextureAsync(uint32_t texture) {
class MessageDestroyGLTexture : public MessageBase {
RenderEngine& engine;
uint32_t texture;
public:
MessageDestroyGLTexture(RenderEngine& engine, uint32_t texture)
: engine(engine), texture(texture) {
}
virtual bool handler() {
engine.deleteTextures(1, &texture);
return true;
}
};
postMessageAsync(new MessageDestroyGLTexture(getRenderEngine(), texture));
}
class DispSyncSource : public VSyncSource, private DispSync::Callback {
public:
DispSyncSource(DispSync* dispSync, nsecs_t phaseOffset, bool traceVsync,
const char* label) :
mValue(0),
mPhaseOffset(phaseOffset),
mTraceVsync(traceVsync),
mVsyncOnLabel(String8::format("VsyncOn-%s", label)),
mVsyncEventLabel(String8::format("VSYNC-%s", label)),
mDispSync(dispSync) {}
virtual ~DispSyncSource() {}
virtual void setVSyncEnabled(bool enable) {
// Do NOT lock the mutex here so as to avoid any mutex ordering issues
// with locking it in the onDispSyncEvent callback.
if (enable) {
status_t err = mDispSync->addEventListener(mPhaseOffset,
static_cast<DispSync::Callback*>(this));
if (err != NO_ERROR) {
ALOGE("error registering vsync callback: %s (%d)",
strerror(-err), err);
}
//ATRACE_INT(mVsyncOnLabel.string(), 1);
} else {
status_t err = mDispSync->removeEventListener(
static_cast<DispSync::Callback*>(this));
if (err != NO_ERROR) {
ALOGE("error unregistering vsync callback: %s (%d)",
strerror(-err), err);
}
//ATRACE_INT(mVsyncOnLabel.string(), 0);
}
}
virtual void setCallback(const sp<VSyncSource::Callback>& callback) {
Mutex::Autolock lock(mMutex);
mCallback = callback;
}
private:
virtual void onDispSyncEvent(nsecs_t when) {
sp<VSyncSource::Callback> callback;
{
Mutex::Autolock lock(mMutex);
callback = mCallback;
if (mTraceVsync) {
mValue = (mValue + 1) % 2;
ATRACE_INT(mVsyncEventLabel.string(), mValue);
}
}
if (callback != NULL) {
callback->onVSyncEvent(when);
}
}
int mValue;
const nsecs_t mPhaseOffset;
const bool mTraceVsync;
const String8 mVsyncOnLabel;
const String8 mVsyncEventLabel;
DispSync* mDispSync;
sp<VSyncSource::Callback> mCallback;
Mutex mMutex;
};
void SurfaceFlinger::init() {
ALOGI( "SurfaceFlinger's main thread ready to run. "
"Initializing graphics H/W...");
status_t err;
Mutex::Autolock _l(mStateLock);
// initialize EGL for the default display
mEGLDisplay = eglGetDisplay(EGL_DEFAULT_DISPLAY);
eglInitialize(mEGLDisplay, NULL, NULL);
// Initialize the H/W composer object. There may or may not be an
// actual hardware composer underneath.
mHwc = new HWComposer(this,
*static_cast<HWComposer::EventHandler *>(this));
// get a RenderEngine for the given display / config (can't fail)
mRenderEngine = RenderEngine::create(mEGLDisplay, mHwc->getVisualID());
// retrieve the EGL context that was selected/created
mEGLContext = mRenderEngine->getEGLContext();
LOG_ALWAYS_FATAL_IF(mEGLContext == EGL_NO_CONTEXT,
"couldn't create EGLContext");
// initialize our non-virtual displays
for (size_t i=0 ; i<DisplayDevice::NUM_BUILTIN_DISPLAY_TYPES ; i++) {
DisplayDevice::DisplayType type((DisplayDevice::DisplayType)i);
// set-up the displays that are already connected
if (mHwc->isConnected(i) || type==DisplayDevice::DISPLAY_PRIMARY) {
// All non-virtual displays are currently considered secure.
bool isSecure = true;
createBuiltinDisplayLocked(type);
wp<IBinder> token = mBuiltinDisplays[i];
sp<IGraphicBufferProducer> producer;
sp<IGraphicBufferConsumer> consumer;
BufferQueue::createBufferQueue(&producer, &consumer,
new GraphicBufferAlloc());
sp<FramebufferSurface> fbs = new FramebufferSurface(*mHwc, i,
consumer);
int32_t hwcId = allocateHwcDisplayId(type);
sp<DisplayDevice> hw = new DisplayDevice(this,
type, hwcId, mHwc->getFormat(hwcId), isSecure, token,
fbs, producer,
mRenderEngine->getEGLConfig());
if (i > DisplayDevice::DISPLAY_PRIMARY) {
// FIXME: currently we don't get blank/unblank requests
// for displays other than the main display, so we always
// assume a connected display is unblanked.
ALOGD("marking display %zu as acquired/unblanked", i);
hw->setPowerMode(HWC_POWER_MODE_NORMAL);
}
mDisplays.add(token, hw);
}
}
// make the GLContext current so that we can create textures when creating Layers
// (which may happens before we render something)
getDefaultDisplayDevice()->makeCurrent(mEGLDisplay, mEGLContext);
// start the EventThread
sp<VSyncSource> vsyncSrc = new DispSyncSource(&mPrimaryDispSync,
vsyncPhaseOffsetNs, true, "app");
mEventThread = new EventThread(vsyncSrc);
sp<VSyncSource> sfVsyncSrc = new DispSyncSource(&mPrimaryDispSync,
sfVsyncPhaseOffsetNs, true, "sf");
mSFEventThread = new EventThread(sfVsyncSrc);
mEventQueue.setEventThread(mSFEventThread);
mEventControlThread = new EventControlThread(this);
mEventControlThread->run("EventControl", PRIORITY_URGENT_DISPLAY);
// set a fake vsync period if there is no HWComposer
if (mHwc->initCheck() != NO_ERROR) {
mPrimaryDispSync.setPeriod(16666667);
}
// initialize our drawing state
mDrawingState = mCurrentState;
// set initial conditions (e.g. unblank default device)
initializeDisplays();
// start boot animation
startBootAnim();
}
int32_t SurfaceFlinger::allocateHwcDisplayId(DisplayDevice::DisplayType type) {
return (uint32_t(type) < DisplayDevice::NUM_BUILTIN_DISPLAY_TYPES) ?
type : mHwc->allocateDisplayId();
}
void SurfaceFlinger::startBootAnim() {
// start boot animation
property_set("service.bootanim.exit", "0");
property_set("ctl.start", "bootanim");
}
size_t SurfaceFlinger::getMaxTextureSize() const {
return mRenderEngine->getMaxTextureSize();
}
size_t SurfaceFlinger::getMaxViewportDims() const {
return mRenderEngine->getMaxViewportDims();
}
// ----------------------------------------------------------------------------
bool SurfaceFlinger::authenticateSurfaceTexture(
const sp<IGraphicBufferProducer>& bufferProducer) const {
Mutex::Autolock _l(mStateLock);
sp<IBinder> surfaceTextureBinder(bufferProducer->asBinder());
return mGraphicBufferProducerList.indexOf(surfaceTextureBinder) >= 0;
}
status_t SurfaceFlinger::getDisplayConfigs(const sp<IBinder>& display,
Vector<DisplayInfo>* configs) {
if (configs == NULL) {
return BAD_VALUE;
}
int32_t type = NAME_NOT_FOUND;
for (int i=0 ; i<DisplayDevice::NUM_BUILTIN_DISPLAY_TYPES ; i++) {
if (display == mBuiltinDisplays[i]) {
type = i;
break;
}
}
if (type < 0) {
return type;
}
// TODO: Not sure if display density should handled by SF any longer
class Density {
static int getDensityFromProperty(char const* propName) {
char property[PROPERTY_VALUE_MAX];
int density = 0;
if (property_get(propName, property, NULL) > 0) {
density = atoi(property);
}
return density;
}
public:
static int getEmuDensity() {
return getDensityFromProperty("qemu.sf.lcd_density"); }
static int getBuildDensity() {
return getDensityFromProperty("ro.sf.lcd_density"); }
};
configs->clear();
const Vector<HWComposer::DisplayConfig>& hwConfigs =
getHwComposer().getConfigs(type);
for (size_t c = 0; c < hwConfigs.size(); ++c) {
const HWComposer::DisplayConfig& hwConfig = hwConfigs[c];
DisplayInfo info = DisplayInfo();
float xdpi = hwConfig.xdpi;
float ydpi = hwConfig.ydpi;
if (type == DisplayDevice::DISPLAY_PRIMARY) {
// The density of the device is provided by a build property
float density = Density::getBuildDensity() / 160.0f;
if (density == 0) {
// the build doesn't provide a density -- this is wrong!
// use xdpi instead
ALOGE("ro.sf.lcd_density must be defined as a build property");
density = xdpi / 160.0f;
}
if (Density::getEmuDensity()) {
// if "qemu.sf.lcd_density" is specified, it overrides everything
xdpi = ydpi = density = Density::getEmuDensity();
density /= 160.0f;
}
info.density = density;
// TODO: this needs to go away (currently needed only by webkit)
sp<const DisplayDevice> hw(getDefaultDisplayDevice());
info.orientation = hw->getOrientation();
} else {
// TODO: where should this value come from?
static const int TV_DENSITY = 213;
info.density = TV_DENSITY / 160.0f;
info.orientation = 0;
}
info.w = hwConfig.width;
info.h = hwConfig.height;
info.xdpi = xdpi;
info.ydpi = ydpi;
info.fps = float(1e9 / hwConfig.refresh);
info.appVsyncOffset = VSYNC_EVENT_PHASE_OFFSET_NS;
// This is how far in advance a buffer must be queued for
// presentation at a given time. If you want a buffer to appear
// on the screen at time N, you must submit the buffer before
// (N - presentationDeadline).
//
// Normally it's one full refresh period (to give SF a chance to
// latch the buffer), but this can be reduced by configuring a
// DispSync offset. Any additional delays introduced by the hardware
// composer or panel must be accounted for here.
//
// We add an additional 1ms to allow for processing time and
// differences between the ideal and actual refresh rate.
info.presentationDeadline =
hwConfig.refresh - SF_VSYNC_EVENT_PHASE_OFFSET_NS + 1000000;
// All non-virtual displays are currently considered secure.
info.secure = true;
configs->push_back(info);
}
return NO_ERROR;
}
status_t SurfaceFlinger::getDisplayStats(const sp<IBinder>& display,
DisplayStatInfo* stats) {
if (stats == NULL) {
return BAD_VALUE;
}
// FIXME for now we always return stats for the primary display
memset(stats, 0, sizeof(*stats));
stats->vsyncTime = mPrimaryDispSync.computeNextRefresh(0);
stats->vsyncPeriod = mPrimaryDispSync.getPeriod();
return NO_ERROR;
}
int SurfaceFlinger::getActiveConfig(const sp<IBinder>& display) {
return getDisplayDevice(display)->getActiveConfig();
}
void SurfaceFlinger::setActiveConfigInternal(const sp<DisplayDevice>& hw, int mode) {
ALOGD("Set active config mode=%d, type=%d flinger=%p", mode, hw->getDisplayType(),
this);
int32_t type = hw->getDisplayType();
int currentMode = hw->getActiveConfig();
if (mode == currentMode) {
ALOGD("Screen type=%d is already mode=%d", hw->getDisplayType(), mode);
return;
}
if (type >= DisplayDevice::NUM_BUILTIN_DISPLAY_TYPES) {
ALOGW("Trying to set config for virtual display");
return;
}
hw->setActiveConfig(mode);
getHwComposer().setActiveConfig(type, mode);
}
status_t SurfaceFlinger::setActiveConfig(const sp<IBinder>& display, int mode) {
class MessageSetActiveConfig: public MessageBase {
SurfaceFlinger& mFlinger;
sp<IBinder> mDisplay;
int mMode;
public:
MessageSetActiveConfig(SurfaceFlinger& flinger, const sp<IBinder>& disp,
int mode) :
mFlinger(flinger), mDisplay(disp) { mMode = mode; }
virtual bool handler() {
Vector<DisplayInfo> configs;
mFlinger.getDisplayConfigs(mDisplay, &configs);
if(mMode < 0 || mMode >= configs.size()) {
ALOGE("Attempt to set active config = %d for display with %zu configs",
mMode, configs.size());
}
sp<DisplayDevice> hw(mFlinger.getDisplayDevice(mDisplay));
if (hw == NULL) {
ALOGE("Attempt to set active config = %d for null display %p",
mMode, mDisplay.get());
} else if (hw->getDisplayType() >= DisplayDevice::DISPLAY_VIRTUAL) {
ALOGW("Attempt to set active config = %d for virtual display",
mMode);
} else {
mFlinger.setActiveConfigInternal(hw, mMode);
}
return true;
}
};
sp<MessageBase> msg = new MessageSetActiveConfig(*this, display, mode);
postMessageSync(msg);
return NO_ERROR;
}
status_t SurfaceFlinger::clearAnimationFrameStats() {
Mutex::Autolock _l(mStateLock);
mAnimFrameTracker.clearStats();
return NO_ERROR;
}
status_t SurfaceFlinger::getAnimationFrameStats(FrameStats* outStats) const {
Mutex::Autolock _l(mStateLock);
mAnimFrameTracker.getStats(outStats);
return NO_ERROR;
}
// ----------------------------------------------------------------------------
sp<IDisplayEventConnection> SurfaceFlinger::createDisplayEventConnection() {
return mEventThread->createEventConnection();
}
// ----------------------------------------------------------------------------
void SurfaceFlinger::waitForEvent() {
mEventQueue.waitMessage();
}
void SurfaceFlinger::signalTransaction() {
mEventQueue.invalidate();
}
void SurfaceFlinger::signalLayerUpdate() {
mEventQueue.invalidate();
}
void SurfaceFlinger::signalRefresh() {
mEventQueue.refresh();
}
status_t SurfaceFlinger::postMessageAsync(const sp<MessageBase>& msg,
nsecs_t reltime, uint32_t /* flags */) {
return mEventQueue.postMessage(msg, reltime);
}
status_t SurfaceFlinger::postMessageSync(const sp<MessageBase>& msg,
nsecs_t reltime, uint32_t /* flags */) {
status_t res = mEventQueue.postMessage(msg, reltime);
if (res == NO_ERROR) {
msg->wait();
}
return res;
}
void SurfaceFlinger::run() {
do {
waitForEvent();
} while (true);
}
void SurfaceFlinger::enableHardwareVsync() {
Mutex::Autolock _l(mHWVsyncLock);
if (!mPrimaryHWVsyncEnabled && mHWVsyncAvailable) {
mPrimaryDispSync.beginResync();
//eventControl(HWC_DISPLAY_PRIMARY, SurfaceFlinger::EVENT_VSYNC, true);
mEventControlThread->setVsyncEnabled(true);
mPrimaryHWVsyncEnabled = true;
}
}
void SurfaceFlinger::resyncToHardwareVsync(bool makeAvailable) {
Mutex::Autolock _l(mHWVsyncLock);
if (makeAvailable) {
mHWVsyncAvailable = true;
} else if (!mHWVsyncAvailable) {
ALOGE("resyncToHardwareVsync called when HW vsync unavailable");
return;
}
const nsecs_t period =
getHwComposer().getRefreshPeriod(HWC_DISPLAY_PRIMARY);
mPrimaryDispSync.reset();
mPrimaryDispSync.setPeriod(period);
if (!mPrimaryHWVsyncEnabled) {
mPrimaryDispSync.beginResync();
//eventControl(HWC_DISPLAY_PRIMARY, SurfaceFlinger::EVENT_VSYNC, true);
mEventControlThread->setVsyncEnabled(true);
mPrimaryHWVsyncEnabled = true;
}
}
void SurfaceFlinger::disableHardwareVsync(bool makeUnavailable) {
Mutex::Autolock _l(mHWVsyncLock);
if (mPrimaryHWVsyncEnabled) {
//eventControl(HWC_DISPLAY_PRIMARY, SurfaceFlinger::EVENT_VSYNC, false);
mEventControlThread->setVsyncEnabled(false);
mPrimaryDispSync.endResync();
mPrimaryHWVsyncEnabled = false;
}
if (makeUnavailable) {
mHWVsyncAvailable = false;
}
}
void SurfaceFlinger::onVSyncReceived(int type, nsecs_t timestamp) {
bool needsHwVsync = false;
{ // Scope for the lock
Mutex::Autolock _l(mHWVsyncLock);
if (type == 0 && mPrimaryHWVsyncEnabled) {
needsHwVsync = mPrimaryDispSync.addResyncSample(timestamp);
}
}
if (needsHwVsync) {
enableHardwareVsync();
} else {
disableHardwareVsync(false);
}
}
void SurfaceFlinger::onHotplugReceived(int type, bool connected) {
if (mEventThread == NULL) {
// This is a temporary workaround for b/7145521. A non-null pointer
// does not mean EventThread has finished initializing, so this
// is not a correct fix.
ALOGW("WARNING: EventThread not started, ignoring hotplug");
return;
}
if (uint32_t(type) < DisplayDevice::NUM_BUILTIN_DISPLAY_TYPES) {
Mutex::Autolock _l(mStateLock);
if (connected) {
createBuiltinDisplayLocked((DisplayDevice::DisplayType)type);
} else {
mCurrentState.displays.removeItem(mBuiltinDisplays[type]);
mBuiltinDisplays[type].clear();
}
setTransactionFlags(eDisplayTransactionNeeded);
// Defer EventThread notification until SF has updated mDisplays.
}
}
void SurfaceFlinger::eventControl(int disp, int event, int enabled) {
ATRACE_CALL();
getHwComposer().eventControl(disp, event, enabled);
}
void SurfaceFlinger::onMessageReceived(int32_t what) {
ATRACE_CALL();
switch (what) {
case MessageQueue::TRANSACTION:
handleMessageTransaction();
break;
case MessageQueue::INVALIDATE:
handleMessageTransaction();
handleMessageInvalidate();
signalRefresh();
break;
case MessageQueue::REFRESH:
handleMessageRefresh();
break;
}
}
void SurfaceFlinger::handleMessageTransaction() {
uint32_t transactionFlags = peekTransactionFlags(eTransactionMask);
if (transactionFlags) {
handleTransaction(transactionFlags);
}
}
void SurfaceFlinger::handleMessageInvalidate() {
ATRACE_CALL();
handlePageFlip();
}
void SurfaceFlinger::handleMessageRefresh() {
ATRACE_CALL();
preComposition();
rebuildLayerStacks();
setUpHWComposer();
doDebugFlashRegions();
doComposition();
postComposition();
}
void SurfaceFlinger::doDebugFlashRegions()
{
// is debugging enabled
if (CC_LIKELY(!mDebugRegion))
return;
const bool repaintEverything = mRepaintEverything;
for (size_t dpy=0 ; dpy<mDisplays.size() ; dpy++) {
const sp<DisplayDevice>& hw(mDisplays[dpy]);
if (hw->isDisplayOn()) {
// transform the dirty region into this screen's coordinate space
const Region dirtyRegion(hw->getDirtyRegion(repaintEverything));
if (!dirtyRegion.isEmpty()) {
// redraw the whole screen
doComposeSurfaces(hw, Region(hw->bounds()));
// and draw the dirty region
const int32_t height = hw->getHeight();
RenderEngine& engine(getRenderEngine());
engine.fillRegionWithColor(dirtyRegion, height, 1, 0, 1, 1);
hw->compositionComplete();
hw->swapBuffers(getHwComposer());
}
}
}
postFramebuffer();
if (mDebugRegion > 1) {
usleep(mDebugRegion * 1000);
}
HWComposer& hwc(getHwComposer());
if (hwc.initCheck() == NO_ERROR) {
status_t err = hwc.prepare();
ALOGE_IF(err, "HWComposer::prepare failed (%s)", strerror(-err));
}
}
void SurfaceFlinger::preComposition()
{
bool needExtraInvalidate = false;
const LayerVector& layers(mDrawingState.layersSortedByZ);
const size_t count = layers.size();
for (size_t i=0 ; i<count ; i++) {
if (layers[i]->onPreComposition()) {
needExtraInvalidate = true;
}
}
if (needExtraInvalidate) {
signalLayerUpdate();
}
}
void SurfaceFlinger::postComposition()
{
const LayerVector& layers(mDrawingState.layersSortedByZ);
const size_t count = layers.size();
for (size_t i=0 ; i<count ; i++) {
layers[i]->onPostComposition();
}
const HWComposer& hwc = getHwComposer();
sp<Fence> presentFence = hwc.getDisplayFence(HWC_DISPLAY_PRIMARY);
if (presentFence->isValid()) {
if (mPrimaryDispSync.addPresentFence(presentFence)) {
enableHardwareVsync();
} else {
disableHardwareVsync(false);
}
}
if (kIgnorePresentFences) {
const sp<const DisplayDevice> hw(getDefaultDisplayDevice());
if (hw->isDisplayOn()) {
enableHardwareVsync();
}
}
if (mAnimCompositionPending) {
mAnimCompositionPending = false;
if (presentFence->isValid()) {
mAnimFrameTracker.setActualPresentFence(presentFence);
} else {
// The HWC doesn't support present fences, so use the refresh
// timestamp instead.
nsecs_t presentTime = hwc.getRefreshTimestamp(HWC_DISPLAY_PRIMARY);
mAnimFrameTracker.setActualPresentTime(presentTime);
}
mAnimFrameTracker.advanceFrame();
}
}
void SurfaceFlinger::rebuildLayerStacks() {
// rebuild the visible layer list per screen
if (CC_UNLIKELY(mVisibleRegionsDirty)) {
ATRACE_CALL();
mVisibleRegionsDirty = false;
invalidateHwcGeometry();
const LayerVector& layers(mDrawingState.layersSortedByZ);
for (size_t dpy=0 ; dpy<mDisplays.size() ; dpy++) {
Region opaqueRegion;
Region dirtyRegion;
Vector< sp<Layer> > layersSortedByZ;
const sp<DisplayDevice>& hw(mDisplays[dpy]);
const Transform& tr(hw->getTransform());
const Rect bounds(hw->getBounds());
if (hw->isDisplayOn()) {
SurfaceFlinger::computeVisibleRegions(layers,
hw->getLayerStack(), dirtyRegion, opaqueRegion);
const size_t count = layers.size();
for (size_t i=0 ; i<count ; i++) {
const sp<Layer>& layer(layers[i]);
const Layer::State& s(layer->getDrawingState());
if (s.layerStack == hw->getLayerStack()) {
Region drawRegion(tr.transform(
layer->visibleNonTransparentRegion));
drawRegion.andSelf(bounds);
if (!drawRegion.isEmpty()) {
layersSortedByZ.add(layer);
}
}
}
}
hw->setVisibleLayersSortedByZ(layersSortedByZ);
hw->undefinedRegion.set(bounds);
hw->undefinedRegion.subtractSelf(tr.transform(opaqueRegion));
hw->dirtyRegion.orSelf(dirtyRegion);
}
}
}
void SurfaceFlinger::setUpHWComposer() {
for (size_t dpy=0 ; dpy<mDisplays.size() ; dpy++) {
bool dirty = !mDisplays[dpy]->getDirtyRegion(false).isEmpty();
bool empty = mDisplays[dpy]->getVisibleLayersSortedByZ().size() == 0;
bool wasEmpty = !mDisplays[dpy]->lastCompositionHadVisibleLayers;
// If nothing has changed (!dirty), don't recompose.
// If something changed, but we don't currently have any visible layers,
// and didn't when we last did a composition, then skip it this time.
// The second rule does two things:
// - When all layers are removed from a display, we'll emit one black
// frame, then nothing more until we get new layers.
// - When a display is created with a private layer stack, we won't
// emit any black frames until a layer is added to the layer stack.
bool mustRecompose = dirty && !(empty && wasEmpty);
ALOGV_IF(mDisplays[dpy]->getDisplayType() == DisplayDevice::DISPLAY_VIRTUAL,
"dpy[%zu]: %s composition (%sdirty %sempty %swasEmpty)", dpy,
mustRecompose ? "doing" : "skipping",
dirty ? "+" : "-",
empty ? "+" : "-",
wasEmpty ? "+" : "-");
mDisplays[dpy]->beginFrame(mustRecompose);
if (mustRecompose) {
mDisplays[dpy]->lastCompositionHadVisibleLayers = !empty;
}
}
HWComposer& hwc(getHwComposer());
if (hwc.initCheck() == NO_ERROR) {
// build the h/w work list
if (CC_UNLIKELY(mHwWorkListDirty)) {
mHwWorkListDirty = false;
for (size_t dpy=0 ; dpy<mDisplays.size() ; dpy++) {
sp<const DisplayDevice> hw(mDisplays[dpy]);
const int32_t id = hw->getHwcDisplayId();
if (id >= 0) {
const Vector< sp<Layer> >& currentLayers(
hw->getVisibleLayersSortedByZ());
const size_t count = currentLayers.size();
if (hwc.createWorkList(id, count) == NO_ERROR) {
HWComposer::LayerListIterator cur = hwc.begin(id);
const HWComposer::LayerListIterator end = hwc.end(id);
for (size_t i=0 ; cur!=end && i<count ; ++i, ++cur) {
const sp<Layer>& layer(currentLayers[i]);
layer->setGeometry(hw, *cur);
if (mDebugDisableHWC || mDebugRegion || mDaltonize || mHasColorMatrix) {
cur->setSkip(true);
}
}
}
}
}
}
// set the per-frame data
for (size_t dpy=0 ; dpy<mDisplays.size() ; dpy++) {
sp<const DisplayDevice> hw(mDisplays[dpy]);
const int32_t id = hw->getHwcDisplayId();
if (id >= 0) {
const Vector< sp<Layer> >& currentLayers(
hw->getVisibleLayersSortedByZ());
const size_t count = currentLayers.size();
HWComposer::LayerListIterator cur = hwc.begin(id);
const HWComposer::LayerListIterator end = hwc.end(id);
for (size_t i=0 ; cur!=end && i<count ; ++i, ++cur) {
/*
* update the per-frame h/w composer data for each layer
* and build the transparent region of the FB
*/
const sp<Layer>& layer(currentLayers[i]);
layer->setPerFrameData(hw, *cur);
}
}
}
// If possible, attempt to use the cursor overlay on each display.
for (size_t dpy=0 ; dpy<mDisplays.size() ; dpy++) {
sp<const DisplayDevice> hw(mDisplays[dpy]);
const int32_t id = hw->getHwcDisplayId();
if (id >= 0) {
const Vector< sp<Layer> >& currentLayers(
hw->getVisibleLayersSortedByZ());
const size_t count = currentLayers.size();
HWComposer::LayerListIterator cur = hwc.begin(id);
const HWComposer::LayerListIterator end = hwc.end(id);
for (size_t i=0 ; cur!=end && i<count ; ++i, ++cur) {
const sp<Layer>& layer(currentLayers[i]);
if (layer->isPotentialCursor()) {
cur->setIsCursorLayerHint();
break;
}
}
}
}
status_t err = hwc.prepare();
ALOGE_IF(err, "HWComposer::prepare failed (%s)", strerror(-err));
for (size_t dpy=0 ; dpy<mDisplays.size() ; dpy++) {
sp<const DisplayDevice> hw(mDisplays[dpy]);
hw->prepareFrame(hwc);
}
}
}
void SurfaceFlinger::doComposition() {
ATRACE_CALL();
const bool repaintEverything = android_atomic_and(0, &mRepaintEverything);
for (size_t dpy=0 ; dpy<mDisplays.size() ; dpy++) {
const sp<DisplayDevice>& hw(mDisplays[dpy]);
if (hw->isDisplayOn()) {
// transform the dirty region into this screen's coordinate space
const Region dirtyRegion(hw->getDirtyRegion(repaintEverything));
// repaint the framebuffer (if needed)
doDisplayComposition(hw, dirtyRegion);
hw->dirtyRegion.clear();
hw->flip(hw->swapRegion);
hw->swapRegion.clear();
}
// inform the h/w that we're done compositing
hw->compositionComplete();
}
postFramebuffer();
}
void SurfaceFlinger::postFramebuffer()
{
ATRACE_CALL();
const nsecs_t now = systemTime();
mDebugInSwapBuffers = now;
HWComposer& hwc(getHwComposer());
if (hwc.initCheck() == NO_ERROR) {
if (!hwc.supportsFramebufferTarget()) {
// EGL spec says:
// "surface must be bound to the calling thread's current context,
// for the current rendering API."
getDefaultDisplayDevice()->makeCurrent(mEGLDisplay, mEGLContext);
}
hwc.commit();
}
// make the default display current because the VirtualDisplayDevice code cannot
// deal with dequeueBuffer() being called outside of the composition loop; however
// the code below can call glFlush() which is allowed (and does in some case) call
// dequeueBuffer().
getDefaultDisplayDevice()->makeCurrent(mEGLDisplay, mEGLContext);
for (size_t dpy=0 ; dpy<mDisplays.size() ; dpy++) {
sp<const DisplayDevice> hw(mDisplays[dpy]);
const Vector< sp<Layer> >& currentLayers(hw->getVisibleLayersSortedByZ());
hw->onSwapBuffersCompleted(hwc);
const size_t count = currentLayers.size();
int32_t id = hw->getHwcDisplayId();
if (id >=0 && hwc.initCheck() == NO_ERROR) {
HWComposer::LayerListIterator cur = hwc.begin(id);
const HWComposer::LayerListIterator end = hwc.end(id);
for (size_t i = 0; cur != end && i < count; ++i, ++cur) {
currentLayers[i]->onLayerDisplayed(hw, &*cur);
}
} else {
for (size_t i = 0; i < count; i++) {
currentLayers[i]->onLayerDisplayed(hw, NULL);
}
}
}
mLastSwapBufferTime = systemTime() - now;
mDebugInSwapBuffers = 0;
uint32_t flipCount = getDefaultDisplayDevice()->getPageFlipCount();
if (flipCount % LOG_FRAME_STATS_PERIOD == 0) {
logFrameStats();
}
}
void SurfaceFlinger::handleTransaction(uint32_t transactionFlags)
{
ATRACE_CALL();
// here we keep a copy of the drawing state (that is the state that's
// going to be overwritten by handleTransactionLocked()) outside of
// mStateLock so that the side-effects of the State assignment
// don't happen with mStateLock held (which can cause deadlocks).
State drawingState(mDrawingState);
Mutex::Autolock _l(mStateLock);
const nsecs_t now = systemTime();
mDebugInTransaction = now;
// Here we're guaranteed that some transaction flags are set
// so we can call handleTransactionLocked() unconditionally.
// We call getTransactionFlags(), which will also clear the flags,
// with mStateLock held to guarantee that mCurrentState won't change
// until the transaction is committed.
transactionFlags = getTransactionFlags(eTransactionMask);
handleTransactionLocked(transactionFlags);
mLastTransactionTime = systemTime() - now;
mDebugInTransaction = 0;
invalidateHwcGeometry();
// here the transaction has been committed
}
void SurfaceFlinger::handleTransactionLocked(uint32_t transactionFlags)
{
const LayerVector& currentLayers(mCurrentState.layersSortedByZ);
const size_t count = currentLayers.size();
/*
* Traversal of the children
* (perform the transaction for each of them if needed)
*/
if (transactionFlags & eTraversalNeeded) {
for (size_t i=0 ; i<count ; i++) {
const sp<Layer>& layer(currentLayers[i]);
uint32_t trFlags = layer->getTransactionFlags(eTransactionNeeded);
if (!trFlags) continue;
const uint32_t flags = layer->doTransaction(0);
if (flags & Layer::eVisibleRegion)
mVisibleRegionsDirty = true;
}
}
/*
* Perform display own transactions if needed
*/
if (transactionFlags & eDisplayTransactionNeeded) {
// here we take advantage of Vector's copy-on-write semantics to
// improve performance by skipping the transaction entirely when
// know that the lists are identical
const KeyedVector< wp<IBinder>, DisplayDeviceState>& curr(mCurrentState.displays);
const KeyedVector< wp<IBinder>, DisplayDeviceState>& draw(mDrawingState.displays);
if (!curr.isIdenticalTo(draw)) {
mVisibleRegionsDirty = true;
const size_t cc = curr.size();
size_t dc = draw.size();
// find the displays that were removed
// (ie: in drawing state but not in current state)
// also handle displays that changed
// (ie: displays that are in both lists)
for (size_t i=0 ; i<dc ; i++) {
const ssize_t j = curr.indexOfKey(draw.keyAt(i));
if (j < 0) {
// in drawing state but not in current state
if (!draw[i].isMainDisplay()) {
// Call makeCurrent() on the primary display so we can
// be sure that nothing associated with this display
// is current.
const sp<const DisplayDevice> defaultDisplay(getDefaultDisplayDevice());
defaultDisplay->makeCurrent(mEGLDisplay, mEGLContext);
sp<DisplayDevice> hw(getDisplayDevice(draw.keyAt(i)));
if (hw != NULL)
hw->disconnect(getHwComposer());
if (draw[i].type < DisplayDevice::NUM_BUILTIN_DISPLAY_TYPES)
mEventThread->onHotplugReceived(draw[i].type, false);
mDisplays.removeItem(draw.keyAt(i));
} else {
ALOGW("trying to remove the main display");
}
} else {
// this display is in both lists. see if something changed.
const DisplayDeviceState& state(curr[j]);
const wp<IBinder>& display(curr.keyAt(j));
if (state.surface->asBinder() != draw[i].surface->asBinder()) {
// changing the surface is like destroying and
// recreating the DisplayDevice, so we just remove it
// from the drawing state, so that it get re-added
// below.
sp<DisplayDevice> hw(getDisplayDevice(display));
if (hw != NULL)
hw->disconnect(getHwComposer());
mDisplays.removeItem(display);
mDrawingState.displays.removeItemsAt(i);
dc--; i--;
// at this point we must loop to the next item
continue;
}
const sp<DisplayDevice> disp(getDisplayDevice(display));
if (disp != NULL) {
if (state.layerStack != draw[i].layerStack) {
disp->setLayerStack(state.layerStack);
}
if ((state.orientation != draw[i].orientation)
|| (state.viewport != draw[i].viewport)
|| (state.frame != draw[i].frame))
{
disp->setProjection(state.orientation,
state.viewport, state.frame);
}
if (state.width != draw[i].width || state.height != draw[i].height) {
disp->setDisplaySize(state.width, state.height);
}
}
}
}
// find displays that were added
// (ie: in current state but not in drawing state)
for (size_t i=0 ; i<cc ; i++) {
if (draw.indexOfKey(curr.keyAt(i)) < 0) {
const DisplayDeviceState& state(curr[i]);
sp<DisplaySurface> dispSurface;
sp<IGraphicBufferProducer> producer;
sp<IGraphicBufferProducer> bqProducer;
sp<IGraphicBufferConsumer> bqConsumer;
BufferQueue::createBufferQueue(&bqProducer, &bqConsumer,
new GraphicBufferAlloc());
int32_t hwcDisplayId = -1;
if (state.isVirtualDisplay()) {
// Virtual displays without a surface are dormant:
// they have external state (layer stack, projection,
// etc.) but no internal state (i.e. a DisplayDevice).
if (state.surface != NULL) {
hwcDisplayId = allocateHwcDisplayId(state.type);
sp<VirtualDisplaySurface> vds = new VirtualDisplaySurface(
*mHwc, hwcDisplayId, state.surface,
bqProducer, bqConsumer, state.displayName);
dispSurface = vds;
producer = vds;
}
} else {
ALOGE_IF(state.surface!=NULL,
"adding a supported display, but rendering "
"surface is provided (%p), ignoring it",
state.surface.get());
hwcDisplayId = allocateHwcDisplayId(state.type);
// for supported (by hwc) displays we provide our
// own rendering surface
dispSurface = new FramebufferSurface(*mHwc, state.type,
bqConsumer);
producer = bqProducer;
}
const wp<IBinder>& display(curr.keyAt(i));
if (dispSurface != NULL) {
sp<DisplayDevice> hw = new DisplayDevice(this,
state.type, hwcDisplayId,
mHwc->getFormat(hwcDisplayId), state.isSecure,
display, dispSurface, producer,
mRenderEngine->getEGLConfig());
hw->setLayerStack(state.layerStack);
hw->setProjection(state.orientation,
state.viewport, state.frame);
hw->setDisplayName(state.displayName);
mDisplays.add(display, hw);
if (state.isVirtualDisplay()) {
if (hwcDisplayId >= 0) {
mHwc->setVirtualDisplayProperties(hwcDisplayId,
hw->getWidth(), hw->getHeight(),
hw->getFormat());
}
} else {
mEventThread->onHotplugReceived(state.type, true);
}
}
}
}
}
}
if (transactionFlags & (eTraversalNeeded|eDisplayTransactionNeeded)) {
// The transform hint might have changed for some layers
// (either because a display has changed, or because a layer
// as changed).
//
// Walk through all the layers in currentLayers,
// and update their transform hint.
//
// If a layer is visible only on a single display, then that
// display is used to calculate the hint, otherwise we use the
// default display.
//
// NOTE: we do this here, rather than in rebuildLayerStacks() so that
// the hint is set before we acquire a buffer from the surface texture.
//
// NOTE: layer transactions have taken place already, so we use their
// drawing state. However, SurfaceFlinger's own transaction has not
// happened yet, so we must use the current state layer list
// (soon to become the drawing state list).
//
sp<const DisplayDevice> disp;
uint32_t currentlayerStack = 0;
for (size_t i=0; i<count; i++) {
// NOTE: we rely on the fact that layers are sorted by
// layerStack first (so we don't have to traverse the list
// of displays for every layer).
const sp<Layer>& layer(currentLayers[i]);
uint32_t layerStack = layer->getDrawingState().layerStack;
if (i==0 || currentlayerStack != layerStack) {
currentlayerStack = layerStack;
// figure out if this layerstack is mirrored
// (more than one display) if so, pick the default display,
// if not, pick the only display it's on.
disp.clear();
for (size_t dpy=0 ; dpy<mDisplays.size() ; dpy++) {
sp<const DisplayDevice> hw(mDisplays[dpy]);
if (hw->getLayerStack() == currentlayerStack) {
if (disp == NULL) {
disp = hw;
} else {
disp = NULL;
break;
}
}
}
}
if (disp == NULL) {
// NOTE: TEMPORARY FIX ONLY. Real fix should cause layers to
// redraw after transform hint changes. See bug 8508397.
// could be null when this layer is using a layerStack
// that is not visible on any display. Also can occur at
// screen off/on times.
disp = getDefaultDisplayDevice();
}
layer->updateTransformHint(disp);
}
}
/*
* Perform our own transaction if needed
*/
const LayerVector& layers(mDrawingState.layersSortedByZ);
if (currentLayers.size() > layers.size()) {
// layers have been added
mVisibleRegionsDirty = true;
}
// some layers might have been removed, so
// we need to update the regions they're exposing.
if (mLayersRemoved) {
mLayersRemoved = false;
mVisibleRegionsDirty = true;
const size_t count = layers.size();
for (size_t i=0 ; i<count ; i++) {
const sp<Layer>& layer(layers[i]);
if (currentLayers.indexOf(layer) < 0) {
// this layer is not visible anymore
// TODO: we could traverse the tree from front to back and
// compute the actual visible region
// TODO: we could cache the transformed region
const Layer::State& s(layer->getDrawingState());
Region visibleReg = s.transform.transform(
Region(Rect(s.active.w, s.active.h)));
invalidateLayerStack(s.layerStack, visibleReg);
}
}
}
commitTransaction();
updateCursorAsync();
}
void SurfaceFlinger::updateCursorAsync()
{
HWComposer& hwc(getHwComposer());
for (size_t dpy=0 ; dpy<mDisplays.size() ; dpy++) {
sp<const DisplayDevice> hw(mDisplays[dpy]);
const int32_t id = hw->getHwcDisplayId();
if (id < 0) {
continue;
}
const Vector< sp<Layer> >& currentLayers(
hw->getVisibleLayersSortedByZ());
const size_t count = currentLayers.size();
HWComposer::LayerListIterator cur = hwc.begin(id);
const HWComposer::LayerListIterator end = hwc.end(id);
for (size_t i=0 ; cur!=end && i<count ; ++i, ++cur) {
if (cur->getCompositionType() != HWC_CURSOR_OVERLAY) {
continue;
}
const sp<Layer>& layer(currentLayers[i]);
Rect cursorPos = layer->getPosition(hw);
hwc.setCursorPositionAsync(id, cursorPos);
break;
}
}
}
void SurfaceFlinger::commitTransaction()
{
if (!mLayersPendingRemoval.isEmpty()) {
// Notify removed layers now that they can't be drawn from
for (size_t i = 0; i < mLayersPendingRemoval.size(); i++) {
mLayersPendingRemoval[i]->onRemoved();
}
mLayersPendingRemoval.clear();
}
// If this transaction is part of a window animation then the next frame
// we composite should be considered an animation as well.
mAnimCompositionPending = mAnimTransactionPending;
mDrawingState = mCurrentState;
mTransactionPending = false;
mAnimTransactionPending = false;
mTransactionCV.broadcast();
}
void SurfaceFlinger::computeVisibleRegions(
const LayerVector& currentLayers, uint32_t layerStack,
Region& outDirtyRegion, Region& outOpaqueRegion)
{
ATRACE_CALL();
Region aboveOpaqueLayers;
Region aboveCoveredLayers;
Region dirty;
outDirtyRegion.clear();
size_t i = currentLayers.size();
while (i--) {
const sp<Layer>& layer = currentLayers[i];
// start with the whole surface at its current location
const Layer::State& s(layer->getDrawingState());
// only consider the layers on the given layer stack
if (s.layerStack != layerStack)
continue;
/*
* opaqueRegion: area of a surface that is fully opaque.
*/
Region opaqueRegion;
/*
* visibleRegion: area of a surface that is visible on screen
* and not fully transparent. This is essentially the layer's
* footprint minus the opaque regions above it.
* Areas covered by a translucent surface are considered visible.
*/
Region visibleRegion;
/*
* coveredRegion: area of a surface that is covered by all
* visible regions above it (which includes the translucent areas).
*/
Region coveredRegion;
/*
* transparentRegion: area of a surface that is hinted to be completely
* transparent. This is only used to tell when the layer has no visible
* non-transparent regions and can be removed from the layer list. It
* does not affect the visibleRegion of this layer or any layers
* beneath it. The hint may not be correct if apps don't respect the
* SurfaceView restrictions (which, sadly, some don't).
*/
Region transparentRegion;
// handle hidden surfaces by setting the visible region to empty
if (CC_LIKELY(layer->isVisible())) {
const bool translucent = !layer->isOpaque(s);
Rect bounds(s.transform.transform(layer->computeBounds()));
visibleRegion.set(bounds);
if (!visibleRegion.isEmpty()) {
// Remove the transparent area from the visible region
if (translucent) {
const Transform tr(s.transform);
if (tr.transformed()) {
if (tr.preserveRects()) {
// transform the transparent region
transparentRegion = tr.transform(s.activeTransparentRegion);
} else {
// transformation too complex, can't do the
// transparent region optimization.
transparentRegion.clear();
}
} else {
transparentRegion = s.activeTransparentRegion;
}
}
// compute the opaque region
const int32_t layerOrientation = s.transform.getOrientation();
if (s.alpha==255 && !translucent &&
((layerOrientation & Transform::ROT_INVALID) == false)) {
// the opaque region is the layer's footprint
opaqueRegion = visibleRegion;
}
}
}
// Clip the covered region to the visible region
coveredRegion = aboveCoveredLayers.intersect(visibleRegion);
// Update aboveCoveredLayers for next (lower) layer
aboveCoveredLayers.orSelf(visibleRegion);
// subtract the opaque region covered by the layers above us
visibleRegion.subtractSelf(aboveOpaqueLayers);
// compute this layer's dirty region
if (layer->contentDirty) {
// we need to invalidate the whole region
dirty = visibleRegion;
// as well, as the old visible region
dirty.orSelf(layer->visibleRegion);
layer->contentDirty = false;
} else {
/* compute the exposed region:
* the exposed region consists of two components:
* 1) what's VISIBLE now and was COVERED before
* 2) what's EXPOSED now less what was EXPOSED before
*
* note that (1) is conservative, we start with the whole
* visible region but only keep what used to be covered by
* something -- which mean it may have been exposed.
*
* (2) handles areas that were not covered by anything but got
* exposed because of a resize.
*/
const Region newExposed = visibleRegion - coveredRegion;
const Region oldVisibleRegion = layer->visibleRegion;
const Region oldCoveredRegion = layer->coveredRegion;
const Region oldExposed = oldVisibleRegion - oldCoveredRegion;
dirty = (visibleRegion&oldCoveredRegion) | (newExposed-oldExposed);
}
dirty.subtractSelf(aboveOpaqueLayers);
// accumulate to the screen dirty region
outDirtyRegion.orSelf(dirty);
// Update aboveOpaqueLayers for next (lower) layer
aboveOpaqueLayers.orSelf(opaqueRegion);
// Store the visible region in screen space
layer->setVisibleRegion(visibleRegion);
layer->setCoveredRegion(coveredRegion);
layer->setVisibleNonTransparentRegion(
visibleRegion.subtract(transparentRegion));
}
outOpaqueRegion = aboveOpaqueLayers;
}
void SurfaceFlinger::invalidateLayerStack(uint32_t layerStack,
const Region& dirty) {
for (size_t dpy=0 ; dpy<mDisplays.size() ; dpy++) {
const sp<DisplayDevice>& hw(mDisplays[dpy]);
if (hw->getLayerStack() == layerStack) {
hw->dirtyRegion.orSelf(dirty);
}
}
}
void SurfaceFlinger::handlePageFlip()
{
Region dirtyRegion;
bool visibleRegions = false;
const LayerVector& layers(mDrawingState.layersSortedByZ);
// Store the set of layers that need updates. This set must not change as
// buffers are being latched, as this could result in a deadlock.
// Example: Two producers share the same command stream and:
// 1.) Layer 0 is latched
// 2.) Layer 0 gets a new frame
// 2.) Layer 1 gets a new frame
// 3.) Layer 1 is latched.
// Display is now waiting on Layer 1's frame, which is behind layer 0's
// second frame. But layer 0's second frame could be waiting on display.
Vector<Layer*> layersWithQueuedFrames;
for (size_t i = 0, count = layers.size(); i<count ; i++) {
const sp<Layer>& layer(layers[i]);
if (layer->hasQueuedFrame())
layersWithQueuedFrames.push_back(layer.get());
}
for (size_t i = 0, count = layersWithQueuedFrames.size() ; i<count ; i++) {
Layer* layer = layersWithQueuedFrames[i];
const Region dirty(layer->latchBuffer(visibleRegions));
const Layer::State& s(layer->getDrawingState());
invalidateLayerStack(s.layerStack, dirty);
}
mVisibleRegionsDirty |= visibleRegions;
}
void SurfaceFlinger::invalidateHwcGeometry()
{
mHwWorkListDirty = true;
}
void SurfaceFlinger::doDisplayComposition(const sp<const DisplayDevice>& hw,
const Region& inDirtyRegion)
{
// We only need to actually compose the display if:
// 1) It is being handled by hardware composer, which may need this to
// keep its virtual display state machine in sync, or
// 2) There is work to be done (the dirty region isn't empty)
bool isHwcDisplay = hw->getHwcDisplayId() >= 0;
if (!isHwcDisplay && inDirtyRegion.isEmpty()) {
return;
}
Region dirtyRegion(inDirtyRegion);
// compute the invalid region
hw->swapRegion.orSelf(dirtyRegion);
uint32_t flags = hw->getFlags();
if (flags & DisplayDevice::SWAP_RECTANGLE) {
// we can redraw only what's dirty, but since SWAP_RECTANGLE only
// takes a rectangle, we must make sure to update that whole
// rectangle in that case
dirtyRegion.set(hw->swapRegion.bounds());
} else {
if (flags & DisplayDevice::PARTIAL_UPDATES) {
// We need to redraw the rectangle that will be updated
// (pushed to the framebuffer).
// This is needed because PARTIAL_UPDATES only takes one
// rectangle instead of a region (see DisplayDevice::flip())
dirtyRegion.set(hw->swapRegion.bounds());
} else {
// we need to redraw everything (the whole screen)
dirtyRegion.set(hw->bounds());
hw->swapRegion = dirtyRegion;
}
}
if (CC_LIKELY(!mDaltonize && !mHasColorMatrix)) {
if (!doComposeSurfaces(hw, dirtyRegion)) return;
} else {
RenderEngine& engine(getRenderEngine());
mat4 colorMatrix = mColorMatrix;
if (mDaltonize) {
colorMatrix = colorMatrix * mDaltonizer();
}
engine.beginGroup(colorMatrix);
doComposeSurfaces(hw, dirtyRegion);
engine.endGroup();
}
// update the swap region and clear the dirty region
hw->swapRegion.orSelf(dirtyRegion);
// swap buffers (presentation)
hw->swapBuffers(getHwComposer());
}
bool SurfaceFlinger::doComposeSurfaces(const sp<const DisplayDevice>& hw, const Region& dirty)
{
RenderEngine& engine(getRenderEngine());
const int32_t id = hw->getHwcDisplayId();
HWComposer& hwc(getHwComposer());
HWComposer::LayerListIterator cur = hwc.begin(id);
const HWComposer::LayerListIterator end = hwc.end(id);
bool hasGlesComposition = hwc.hasGlesComposition(id);
if (hasGlesComposition) {
if (!hw->makeCurrent(mEGLDisplay, mEGLContext)) {
ALOGW("DisplayDevice::makeCurrent failed. Aborting surface composition for display %s",
hw->getDisplayName().string());
eglMakeCurrent(mEGLDisplay, EGL_NO_SURFACE, EGL_NO_SURFACE, EGL_NO_CONTEXT);
if(!getDefaultDisplayDevice()->makeCurrent(mEGLDisplay, mEGLContext)) {
ALOGE("DisplayDevice::makeCurrent on default display failed. Aborting.");
}
return false;
}
// Never touch the framebuffer if we don't have any framebuffer layers
const bool hasHwcComposition = hwc.hasHwcComposition(id);
if (hasHwcComposition) {
// when using overlays, we assume a fully transparent framebuffer
// NOTE: we could reduce how much we need to clear, for instance
// remove where there are opaque FB layers. however, on some
// GPUs doing a "clean slate" clear might be more efficient.
// We'll revisit later if needed.
engine.clearWithColor(0, 0, 0, 0);
} else {
// we start with the whole screen area
const Region bounds(hw->getBounds());
// we remove the scissor part
// we're left with the letterbox region
// (common case is that letterbox ends-up being empty)
const Region letterbox(bounds.subtract(hw->getScissor()));
// compute the area to clear
Region region(hw->undefinedRegion.merge(letterbox));
// but limit it to the dirty region
region.andSelf(dirty);
// screen is already cleared here
if (!region.isEmpty()) {
// can happen with SurfaceView
drawWormhole(hw, region);
}
}
if (hw->getDisplayType() != DisplayDevice::DISPLAY_PRIMARY) {
// just to be on the safe side, we don't set the
// scissor on the main display. It should never be needed
// anyways (though in theory it could since the API allows it).
const Rect& bounds(hw->getBounds());
const Rect& scissor(hw->getScissor());
if (scissor != bounds) {
// scissor doesn't match the screen's dimensions, so we
// need to clear everything outside of it and enable
// the GL scissor so we don't draw anything where we shouldn't
// enable scissor for this frame
const uint32_t height = hw->getHeight();
engine.setScissor(scissor.left, height - scissor.bottom,
scissor.getWidth(), scissor.getHeight());
}
}
}
/*
* and then, render the layers targeted at the framebuffer
*/
const Vector< sp<Layer> >& layers(hw->getVisibleLayersSortedByZ());
const size_t count = layers.size();
const Transform& tr = hw->getTransform();
if (cur != end) {
// we're using h/w composer
for (size_t i=0 ; i<count && cur!=end ; ++i, ++cur) {
const sp<Layer>& layer(layers[i]);
const Region clip(dirty.intersect(tr.transform(layer->visibleRegion)));
if (!clip.isEmpty()) {
switch (cur->getCompositionType()) {
case HWC_CURSOR_OVERLAY:
case HWC_OVERLAY: {
const Layer::State& state(layer->getDrawingState());
if ((cur->getHints() & HWC_HINT_CLEAR_FB)
&& i
&& layer->isOpaque(state) && (state.alpha == 0xFF)
&& hasGlesComposition) {
// never clear the very first layer since we're
// guaranteed the FB is already cleared
layer->clearWithOpenGL(hw, clip);
}
break;
}
case HWC_FRAMEBUFFER: {
layer->draw(hw, clip);
break;
}
case HWC_FRAMEBUFFER_TARGET: {
// this should not happen as the iterator shouldn't
// let us get there.
ALOGW("HWC_FRAMEBUFFER_TARGET found in hwc list (index=%zu)", i);
break;
}
}
}
layer->setAcquireFence(hw, *cur);
}
} else {
// we're not using h/w composer
for (size_t i=0 ; i<count ; ++i) {
const sp<Layer>& layer(layers[i]);
const Region clip(dirty.intersect(
tr.transform(layer->visibleRegion)));
if (!clip.isEmpty()) {
layer->draw(hw, clip);
}
}
}
// disable scissor at the end of the frame
engine.disableScissor();
return true;
}
void SurfaceFlinger::drawWormhole(const sp<const DisplayDevice>& hw, const Region& region) const {
const int32_t height = hw->getHeight();
RenderEngine& engine(getRenderEngine());
engine.fillRegionWithColor(region, height, 0, 0, 0, 0);
}
void SurfaceFlinger::addClientLayer(const sp<Client>& client,
const sp<IBinder>& handle,
const sp<IGraphicBufferProducer>& gbc,
const sp<Layer>& lbc)
{
// attach this layer to the client
client->attachLayer(handle, lbc);
// add this layer to the current state list
Mutex::Autolock _l(mStateLock);
mCurrentState.layersSortedByZ.add(lbc);
mGraphicBufferProducerList.add(gbc->asBinder());
}
status_t SurfaceFlinger::removeLayer(const sp<Layer>& layer) {
Mutex::Autolock _l(mStateLock);
ssize_t index = mCurrentState.layersSortedByZ.remove(layer);
if (index >= 0) {
mLayersPendingRemoval.push(layer);
mLayersRemoved = true;
setTransactionFlags(eTransactionNeeded);
return NO_ERROR;
}
return status_t(index);
}
uint32_t SurfaceFlinger::peekTransactionFlags(uint32_t /* flags */) {
return android_atomic_release_load(&mTransactionFlags);
}
uint32_t SurfaceFlinger::getTransactionFlags(uint32_t flags) {
return android_atomic_and(~flags, &mTransactionFlags) & flags;
}
uint32_t SurfaceFlinger::setTransactionFlags(uint32_t flags) {
uint32_t old = android_atomic_or(flags, &mTransactionFlags);
if ((old & flags)==0) { // wake the server up
signalTransaction();
}
return old;
}
void SurfaceFlinger::setTransactionState(
const Vector<ComposerState>& state,
const Vector<DisplayState>& displays,
uint32_t flags)
{
ATRACE_CALL();
Mutex::Autolock _l(mStateLock);
uint32_t transactionFlags = 0;
if (flags & eAnimation) {
// For window updates that are part of an animation we must wait for
// previous animation "frames" to be handled.
while (mAnimTransactionPending) {
status_t err = mTransactionCV.waitRelative(mStateLock, s2ns(5));
if (CC_UNLIKELY(err != NO_ERROR)) {
// just in case something goes wrong in SF, return to the
// caller after a few seconds.
ALOGW_IF(err == TIMED_OUT, "setTransactionState timed out "
"waiting for previous animation frame");
mAnimTransactionPending = false;
break;
}
}
}
size_t count = displays.size();
for (size_t i=0 ; i<count ; i++) {
const DisplayState& s(displays[i]);
transactionFlags |= setDisplayStateLocked(s);
}
count = state.size();
for (size_t i=0 ; i<count ; i++) {
const ComposerState& s(state[i]);
// Here we need to check that the interface we're given is indeed
// one of our own. A malicious client could give us a NULL
// IInterface, or one of its own or even one of our own but a
// different type. All these situations would cause us to crash.
//
// NOTE: it would be better to use RTTI as we could directly check
// that we have a Client*. however, RTTI is disabled in Android.
if (s.client != NULL) {
sp<IBinder> binder = s.client->asBinder();
if (binder != NULL) {
String16 desc(binder->getInterfaceDescriptor());
if (desc == ISurfaceComposerClient::descriptor) {
sp<Client> client( static_cast<Client *>(s.client.get()) );
transactionFlags |= setClientStateLocked(client, s.state);
}
}
}
}
if (transactionFlags) {
// this triggers the transaction
setTransactionFlags(transactionFlags);
// if this is a synchronous transaction, wait for it to take effect
// before returning.
if (flags & eSynchronous) {
mTransactionPending = true;
}
if (flags & eAnimation) {
mAnimTransactionPending = true;
}
while (mTransactionPending) {
status_t err = mTransactionCV.waitRelative(mStateLock, s2ns(5));
if (CC_UNLIKELY(err != NO_ERROR)) {
// just in case something goes wrong in SF, return to the
// called after a few seconds.
ALOGW_IF(err == TIMED_OUT, "setTransactionState timed out!");
mTransactionPending = false;
break;
}
}
}
}
uint32_t SurfaceFlinger::setDisplayStateLocked(const DisplayState& s)
{
ssize_t dpyIdx = mCurrentState.displays.indexOfKey(s.token);
if (dpyIdx < 0)
return 0;
uint32_t flags = 0;
DisplayDeviceState& disp(mCurrentState.displays.editValueAt(dpyIdx));
if (disp.isValid()) {
const uint32_t what = s.what;
if (what & DisplayState::eSurfaceChanged) {
if (disp.surface->asBinder() != s.surface->asBinder()) {
disp.surface = s.surface;
flags |= eDisplayTransactionNeeded;
}
}
if (what & DisplayState::eLayerStackChanged) {
if (disp.layerStack != s.layerStack) {
disp.layerStack = s.layerStack;
flags |= eDisplayTransactionNeeded;
}
}
if (what & DisplayState::eDisplayProjectionChanged) {
if (disp.orientation != s.orientation) {
disp.orientation = s.orientation;
flags |= eDisplayTransactionNeeded;
}
if (disp.frame != s.frame) {
disp.frame = s.frame;
flags |= eDisplayTransactionNeeded;
}
if (disp.viewport != s.viewport) {
disp.viewport = s.viewport;
flags |= eDisplayTransactionNeeded;
}
}
if (what & DisplayState::eDisplaySizeChanged) {
if (disp.width != s.width) {
disp.width = s.width;
flags |= eDisplayTransactionNeeded;
}
if (disp.height != s.height) {
disp.height = s.height;
flags |= eDisplayTransactionNeeded;
}
}
}
return flags;
}
uint32_t SurfaceFlinger::setClientStateLocked(
const sp<Client>& client,
const layer_state_t& s)
{
uint32_t flags = 0;
sp<Layer> layer(client->getLayerUser(s.surface));
if (layer != 0) {
const uint32_t what = s.what;
if (what & layer_state_t::ePositionChanged) {
if (layer->setPosition(s.x, s.y))
flags |= eTraversalNeeded;
}
if (what & layer_state_t::eLayerChanged) {
// NOTE: index needs to be calculated before we update the state
ssize_t idx = mCurrentState.layersSortedByZ.indexOf(layer);
if (layer->setLayer(s.z)) {
mCurrentState.layersSortedByZ.removeAt(idx);
mCurrentState.layersSortedByZ.add(layer);
// we need traversal (state changed)
// AND transaction (list changed)
flags |= eTransactionNeeded|eTraversalNeeded;
}
}
if (what & layer_state_t::eSizeChanged) {
if (layer->setSize(s.w, s.h)) {
flags |= eTraversalNeeded;
}
}
if (what & layer_state_t::eAlphaChanged) {
if (layer->setAlpha(uint8_t(255.0f*s.alpha+0.5f)))
flags |= eTraversalNeeded;
}
if (what & layer_state_t::eMatrixChanged) {
if (layer->setMatrix(s.matrix))
flags |= eTraversalNeeded;
}
if (what & layer_state_t::eTransparentRegionChanged) {
if (layer->setTransparentRegionHint(s.transparentRegion))
flags |= eTraversalNeeded;
}
if ((what & layer_state_t::eVisibilityChanged) ||
(what & layer_state_t::eOpacityChanged)) {
// TODO: should we just use an eFlagsChanged for this?
if (layer->setFlags(s.flags, s.mask))
flags |= eTraversalNeeded;
}
if (what & layer_state_t::eCropChanged) {
if (layer->setCrop(s.crop))
flags |= eTraversalNeeded;
}
if (what & layer_state_t::eLayerStackChanged) {
// NOTE: index needs to be calculated before we update the state
ssize_t idx = mCurrentState.layersSortedByZ.indexOf(layer);
if (layer->setLayerStack(s.layerStack)) {
mCurrentState.layersSortedByZ.removeAt(idx);
mCurrentState.layersSortedByZ.add(layer);
// we need traversal (state changed)
// AND transaction (list changed)
flags |= eTransactionNeeded|eTraversalNeeded;
}
}
}
return flags;
}
status_t SurfaceFlinger::createLayer(
const String8& name,
const sp<Client>& client,
uint32_t w, uint32_t h, PixelFormat format, uint32_t flags,
sp<IBinder>* handle, sp<IGraphicBufferProducer>* gbp)
{
//ALOGD("createLayer for (%d x %d), name=%s", w, h, name.string());
if (int32_t(w|h) < 0) {
ALOGE("createLayer() failed, w or h is negative (w=%d, h=%d)",
int(w), int(h));
return BAD_VALUE;
}
status_t result = NO_ERROR;
sp<Layer> layer;
switch (flags & ISurfaceComposerClient::eFXSurfaceMask) {
case ISurfaceComposerClient::eFXSurfaceNormal:
result = createNormalLayer(client,
name, w, h, flags, format,
handle, gbp, &layer);
break;
case ISurfaceComposerClient::eFXSurfaceDim:
result = createDimLayer(client,
name, w, h, flags,
handle, gbp, &layer);
break;
default:
result = BAD_VALUE;
break;
}
if (result == NO_ERROR) {
addClientLayer(client, *handle, *gbp, layer);
setTransactionFlags(eTransactionNeeded);
}
return result;
}
status_t SurfaceFlinger::createNormalLayer(const sp<Client>& client,
const String8& name, uint32_t w, uint32_t h, uint32_t flags, PixelFormat& format,
sp<IBinder>* handle, sp<IGraphicBufferProducer>* gbp, sp<Layer>* outLayer)
{
// initialize the surfaces
switch (format) {
case PIXEL_FORMAT_TRANSPARENT:
case PIXEL_FORMAT_TRANSLUCENT:
format = PIXEL_FORMAT_RGBA_8888;
break;
case PIXEL_FORMAT_OPAQUE:
format = PIXEL_FORMAT_RGBX_8888;
break;
}
*outLayer = new Layer(this, client, name, w, h, flags);
status_t err = (*outLayer)->setBuffers(w, h, format, flags);
if (err == NO_ERROR) {
*handle = (*outLayer)->getHandle();
*gbp = (*outLayer)->getProducer();
}
ALOGE_IF(err, "createNormalLayer() failed (%s)", strerror(-err));
return err;
}
status_t SurfaceFlinger::createDimLayer(const sp<Client>& client,
const String8& name, uint32_t w, uint32_t h, uint32_t flags,
sp<IBinder>* handle, sp<IGraphicBufferProducer>* gbp, sp<Layer>* outLayer)
{
*outLayer = new LayerDim(this, client, name, w, h, flags);
*handle = (*outLayer)->getHandle();
*gbp = (*outLayer)->getProducer();
return NO_ERROR;
}
status_t SurfaceFlinger::onLayerRemoved(const sp<Client>& client, const sp<IBinder>& handle)
{
// called by the window manager when it wants to remove a Layer
status_t err = NO_ERROR;
sp<Layer> l(client->getLayerUser(handle));
if (l != NULL) {
err = removeLayer(l);
ALOGE_IF(err<0 && err != NAME_NOT_FOUND,
"error removing layer=%p (%s)", l.get(), strerror(-err));
}
return err;
}
status_t SurfaceFlinger::onLayerDestroyed(const wp<Layer>& layer)
{
// called by ~LayerCleaner() when all references to the IBinder (handle)
// are gone
status_t err = NO_ERROR;
sp<Layer> l(layer.promote());
if (l != NULL) {
err = removeLayer(l);
ALOGE_IF(err<0 && err != NAME_NOT_FOUND,
"error removing layer=%p (%s)", l.get(), strerror(-err));
}
return err;
}
// ---------------------------------------------------------------------------
void SurfaceFlinger::onInitializeDisplays() {
// reset screen orientation and use primary layer stack
Vector<ComposerState> state;
Vector<DisplayState> displays;
DisplayState d;
d.what = DisplayState::eDisplayProjectionChanged |
DisplayState::eLayerStackChanged;
d.token = mBuiltinDisplays[DisplayDevice::DISPLAY_PRIMARY];
d.layerStack = 0;
d.orientation = DisplayState::eOrientationDefault;
d.frame.makeInvalid();
d.viewport.makeInvalid();
d.width = 0;
d.height = 0;
displays.add(d);
setTransactionState(state, displays, 0);
setPowerModeInternal(getDisplayDevice(d.token), HWC_POWER_MODE_NORMAL);
const nsecs_t period =
getHwComposer().getRefreshPeriod(HWC_DISPLAY_PRIMARY);
mAnimFrameTracker.setDisplayRefreshPeriod(period);
}
void SurfaceFlinger::initializeDisplays() {
class MessageScreenInitialized : public MessageBase {
SurfaceFlinger* flinger;
public:
MessageScreenInitialized(SurfaceFlinger* flinger) : flinger(flinger) { }
virtual bool handler() {
flinger->onInitializeDisplays();
return true;
}
};
sp<MessageBase> msg = new MessageScreenInitialized(this);
postMessageAsync(msg); // we may be called from main thread, use async message
}
void SurfaceFlinger::setPowerModeInternal(const sp<DisplayDevice>& hw,
int mode) {
ALOGD("Set power mode=%d, type=%d flinger=%p", mode, hw->getDisplayType(),
this);
int32_t type = hw->getDisplayType();
int currentMode = hw->getPowerMode();
if (mode == currentMode) {
ALOGD("Screen type=%d is already mode=%d", hw->getDisplayType(), mode);
return;
}
hw->setPowerMode(mode);
if (type >= DisplayDevice::NUM_BUILTIN_DISPLAY_TYPES) {
ALOGW("Trying to set power mode for virtual display");
return;
}
if (currentMode == HWC_POWER_MODE_OFF) {
getHwComposer().setPowerMode(type, mode);
if (type == DisplayDevice::DISPLAY_PRIMARY) {
// FIXME: eventthread only knows about the main display right now
mEventThread->onScreenAcquired();
resyncToHardwareVsync(true);
}
mVisibleRegionsDirty = true;
repaintEverything();
} else if (mode == HWC_POWER_MODE_OFF) {
if (type == DisplayDevice::DISPLAY_PRIMARY) {
disableHardwareVsync(true); // also cancels any in-progress resync
// FIXME: eventthread only knows about the main display right now
mEventThread->onScreenReleased();
}
getHwComposer().setPowerMode(type, mode);
mVisibleRegionsDirty = true;
// from this point on, SF will stop drawing on this display
} else {
getHwComposer().setPowerMode(type, mode);
}
}
void SurfaceFlinger::setPowerMode(const sp<IBinder>& display, int mode) {
class MessageSetPowerMode: public MessageBase {
SurfaceFlinger& mFlinger;
sp<IBinder> mDisplay;
int mMode;
public:
MessageSetPowerMode(SurfaceFlinger& flinger,
const sp<IBinder>& disp, int mode) : mFlinger(flinger),
mDisplay(disp) { mMode = mode; }
virtual bool handler() {
sp<DisplayDevice> hw(mFlinger.getDisplayDevice(mDisplay));
if (hw == NULL) {
ALOGE("Attempt to set power mode = %d for null display %p",
mMode, mDisplay.get());
} else if (hw->getDisplayType() >= DisplayDevice::DISPLAY_VIRTUAL) {
ALOGW("Attempt to set power mode = %d for virtual display",
mMode);
} else {
mFlinger.setPowerModeInternal(hw, mMode);
}
return true;
}
};
sp<MessageBase> msg = new MessageSetPowerMode(*this, display, mode);
postMessageSync(msg);
}
// ---------------------------------------------------------------------------
status_t SurfaceFlinger::dump(int fd, const Vector<String16>& args)
{
String8 result;
IPCThreadState* ipc = IPCThreadState::self();
const int pid = ipc->getCallingPid();
const int uid = ipc->getCallingUid();
if ((uid != AID_SHELL) &&
!PermissionCache::checkPermission(sDump, pid, uid)) {
result.appendFormat("Permission Denial: "
"can't dump SurfaceFlinger from pid=%d, uid=%d\n", pid, uid);
} else {
// Try to get the main lock, but don't insist if we can't
// (this would indicate SF is stuck, but we want to be able to
// print something in dumpsys).
int retry = 3;
while (mStateLock.tryLock()<0 && --retry>=0) {
usleep(1000000);
}
const bool locked(retry >= 0);
if (!locked) {
result.append(
"SurfaceFlinger appears to be unresponsive, "
"dumping anyways (no locks held)\n");
}
bool dumpAll = true;
size_t index = 0;
size_t numArgs = args.size();
if (numArgs) {
if ((index < numArgs) &&
(args[index] == String16("--list"))) {
index++;
listLayersLocked(args, index, result);
dumpAll = false;
}
if ((index < numArgs) &&
(args[index] == String16("--latency"))) {
index++;
dumpStatsLocked(args, index, result);
dumpAll = false;
}
if ((index < numArgs) &&
(args[index] == String16("--latency-clear"))) {
index++;
clearStatsLocked(args, index, result);
dumpAll = false;
}
if ((index < numArgs) &&
(args[index] == String16("--dispsync"))) {
index++;
mPrimaryDispSync.dump(result);
dumpAll = false;
}
}
if (dumpAll) {
dumpAllLocked(args, index, result);
}
if (locked) {
mStateLock.unlock();
}
}
write(fd, result.string(), result.size());
return NO_ERROR;
}
void SurfaceFlinger::listLayersLocked(const Vector<String16>& /* args */,
size_t& /* index */, String8& result) const
{
const LayerVector& currentLayers = mCurrentState.layersSortedByZ;
const size_t count = currentLayers.size();
for (size_t i=0 ; i<count ; i++) {
const sp<Layer>& layer(currentLayers[i]);
result.appendFormat("%s\n", layer->getName().string());
}
}
void SurfaceFlinger::dumpStatsLocked(const Vector<String16>& args, size_t& index,
String8& result) const
{
String8 name;
if (index < args.size()) {
name = String8(args[index]);
index++;
}
const nsecs_t period =
getHwComposer().getRefreshPeriod(HWC_DISPLAY_PRIMARY);
result.appendFormat("%" PRId64 "\n", period);
if (name.isEmpty()) {
mAnimFrameTracker.dumpStats(result);
} else {
const LayerVector& currentLayers = mCurrentState.layersSortedByZ;
const size_t count = currentLayers.size();
for (size_t i=0 ; i<count ; i++) {
const sp<Layer>& layer(currentLayers[i]);
if (name == layer->getName()) {
layer->dumpFrameStats(result);
}
}
}
}
void SurfaceFlinger::clearStatsLocked(const Vector<String16>& args, size_t& index,
String8& /* result */)
{
String8 name;
if (index < args.size()) {
name = String8(args[index]);
index++;
}
const LayerVector& currentLayers = mCurrentState.layersSortedByZ;
const size_t count = currentLayers.size();
for (size_t i=0 ; i<count ; i++) {
const sp<Layer>& layer(currentLayers[i]);
if (name.isEmpty() || (name == layer->getName())) {
layer->clearFrameStats();
}
}
mAnimFrameTracker.clearStats();
}
// This should only be called from the main thread. Otherwise it would need
// the lock and should use mCurrentState rather than mDrawingState.
void SurfaceFlinger::logFrameStats() {
const LayerVector& drawingLayers = mDrawingState.layersSortedByZ;
const size_t count = drawingLayers.size();
for (size_t i=0 ; i<count ; i++) {
const sp<Layer>& layer(drawingLayers[i]);
layer->logFrameStats();
}
mAnimFrameTracker.logAndResetStats(String8("<win-anim>"));
}
/*static*/ void SurfaceFlinger::appendSfConfigString(String8& result)
{
static const char* config =
" [sf"
#ifdef HAS_CONTEXT_PRIORITY
" HAS_CONTEXT_PRIORITY"
#endif
#ifdef NEVER_DEFAULT_TO_ASYNC_MODE
" NEVER_DEFAULT_TO_ASYNC_MODE"
#endif
#ifdef TARGET_DISABLE_TRIPLE_BUFFERING
" TARGET_DISABLE_TRIPLE_BUFFERING"
#endif
"]";
result.append(config);
}
void SurfaceFlinger::dumpAllLocked(const Vector<String16>& args, size_t& index,
String8& result) const
{
bool colorize = false;
if (index < args.size()
&& (args[index] == String16("--color"))) {
colorize = true;
index++;
}
Colorizer colorizer(colorize);
// figure out if we're stuck somewhere
const nsecs_t now = systemTime();
const nsecs_t inSwapBuffers(mDebugInSwapBuffers);
const nsecs_t inTransaction(mDebugInTransaction);
nsecs_t inSwapBuffersDuration = (inSwapBuffers) ? now-inSwapBuffers : 0;
nsecs_t inTransactionDuration = (inTransaction) ? now-inTransaction : 0;
/*
* Dump library configuration.
*/
colorizer.bold(result);
result.append("Build configuration:");
colorizer.reset(result);
appendSfConfigString(result);
appendUiConfigString(result);
appendGuiConfigString(result);
result.append("\n");
colorizer.bold(result);
result.append("Sync configuration: ");
colorizer.reset(result);
result.append(SyncFeatures::getInstance().toString());
result.append("\n");
colorizer.bold(result);
result.append("DispSync configuration: ");
colorizer.reset(result);
result.appendFormat("app phase %" PRId64 " ns, sf phase %" PRId64 " ns, "
"present offset %d ns (refresh %" PRId64 " ns)",
vsyncPhaseOffsetNs, sfVsyncPhaseOffsetNs, PRESENT_TIME_OFFSET_FROM_VSYNC_NS,
mHwc->getRefreshPeriod(HWC_DISPLAY_PRIMARY));
result.append("\n");
/*
* Dump the visible layer list
*/
const LayerVector& currentLayers = mCurrentState.layersSortedByZ;
const size_t count = currentLayers.size();
colorizer.bold(result);
result.appendFormat("Visible layers (count = %zu)\n", count);
colorizer.reset(result);
for (size_t i=0 ; i<count ; i++) {
const sp<Layer>& layer(currentLayers[i]);
layer->dump(result, colorizer);
}
/*
* Dump Display state
*/
colorizer.bold(result);
result.appendFormat("Displays (%zu entries)\n", mDisplays.size());
colorizer.reset(result);
for (size_t dpy=0 ; dpy<mDisplays.size() ; dpy++) {
const sp<const DisplayDevice>& hw(mDisplays[dpy]);
hw->dump(result);
}
/*
* Dump SurfaceFlinger global state
*/
colorizer.bold(result);
result.append("SurfaceFlinger global state:\n");
colorizer.reset(result);
HWComposer& hwc(getHwComposer());
sp<const DisplayDevice> hw(getDefaultDisplayDevice());
colorizer.bold(result);
result.appendFormat("EGL implementation : %s\n",
eglQueryStringImplementationANDROID(mEGLDisplay, EGL_VERSION));
colorizer.reset(result);
result.appendFormat("%s\n",
eglQueryStringImplementationANDROID(mEGLDisplay, EGL_EXTENSIONS));
mRenderEngine->dump(result);
hw->undefinedRegion.dump(result, "undefinedRegion");
result.appendFormat(" orientation=%d, isDisplayOn=%d\n",
hw->getOrientation(), hw->isDisplayOn());
result.appendFormat(
" last eglSwapBuffers() time: %f us\n"
" last transaction time : %f us\n"
" transaction-flags : %08x\n"
" refresh-rate : %f fps\n"
" x-dpi : %f\n"
" y-dpi : %f\n"
" gpu_to_cpu_unsupported : %d\n"
,
mLastSwapBufferTime/1000.0,
mLastTransactionTime/1000.0,
mTransactionFlags,
1e9 / hwc.getRefreshPeriod(HWC_DISPLAY_PRIMARY),
hwc.getDpiX(HWC_DISPLAY_PRIMARY),
hwc.getDpiY(HWC_DISPLAY_PRIMARY),
!mGpuToCpuSupported);
result.appendFormat(" eglSwapBuffers time: %f us\n",
inSwapBuffersDuration/1000.0);
result.appendFormat(" transaction time: %f us\n",
inTransactionDuration/1000.0);
/*
* VSYNC state
*/
mEventThread->dump(result);
/*
* Dump HWComposer state
*/
colorizer.bold(result);
result.append("h/w composer state:\n");
colorizer.reset(result);
result.appendFormat(" h/w composer %s and %s\n",
hwc.initCheck()==NO_ERROR ? "present" : "not present",
(mDebugDisableHWC || mDebugRegion || mDaltonize
|| mHasColorMatrix) ? "disabled" : "enabled");
hwc.dump(result);
/*
* Dump gralloc state
*/
const GraphicBufferAllocator& alloc(GraphicBufferAllocator::get());
alloc.dump(result);
}
const Vector< sp<Layer> >&
SurfaceFlinger::getLayerSortedByZForHwcDisplay(int id) {
// Note: mStateLock is held here
wp<IBinder> dpy;
for (size_t i=0 ; i<mDisplays.size() ; i++) {
if (mDisplays.valueAt(i)->getHwcDisplayId() == id) {
dpy = mDisplays.keyAt(i);
break;
}
}
if (dpy == NULL) {
ALOGE("getLayerSortedByZForHwcDisplay: invalid hwc display id %d", id);
// Just use the primary display so we have something to return
dpy = getBuiltInDisplay(DisplayDevice::DISPLAY_PRIMARY);
}
return getDisplayDevice(dpy)->getVisibleLayersSortedByZ();
}
bool SurfaceFlinger::startDdmConnection()
{
void* libddmconnection_dso =
dlopen("libsurfaceflinger_ddmconnection.so", RTLD_NOW);
if (!libddmconnection_dso) {
return false;
}
void (*DdmConnection_start)(const char* name);
DdmConnection_start =
(decltype(DdmConnection_start))dlsym(libddmconnection_dso, "DdmConnection_start");
if (!DdmConnection_start) {
dlclose(libddmconnection_dso);
return false;
}
(*DdmConnection_start)(getServiceName());
return true;
}
status_t SurfaceFlinger::onTransact(
uint32_t code, const Parcel& data, Parcel* reply, uint32_t flags)
{
switch (code) {
case CREATE_CONNECTION:
case CREATE_DISPLAY:
case SET_TRANSACTION_STATE:
case BOOT_FINISHED:
case CLEAR_ANIMATION_FRAME_STATS:
case GET_ANIMATION_FRAME_STATS:
case SET_POWER_MODE:
{
// codes that require permission check
IPCThreadState* ipc = IPCThreadState::self();
const int pid = ipc->getCallingPid();
const int uid = ipc->getCallingUid();
if ((uid != AID_GRAPHICS) &&
!PermissionCache::checkPermission(sAccessSurfaceFlinger, pid, uid)) {
ALOGE("Permission Denial: "
"can't access SurfaceFlinger pid=%d, uid=%d", pid, uid);
return PERMISSION_DENIED;
}
break;
}
case CAPTURE_SCREEN:
{
// codes that require permission check
IPCThreadState* ipc = IPCThreadState::self();
const int pid = ipc->getCallingPid();
const int uid = ipc->getCallingUid();
if ((uid != AID_GRAPHICS) &&
!PermissionCache::checkPermission(sReadFramebuffer, pid, uid)) {
ALOGE("Permission Denial: "
"can't read framebuffer pid=%d, uid=%d", pid, uid);
return PERMISSION_DENIED;
}
break;
}
}
status_t err = BnSurfaceComposer::onTransact(code, data, reply, flags);
if (err == UNKNOWN_TRANSACTION || err == PERMISSION_DENIED) {
CHECK_INTERFACE(ISurfaceComposer, data, reply);
if (CC_UNLIKELY(!PermissionCache::checkCallingPermission(sHardwareTest))) {
IPCThreadState* ipc = IPCThreadState::self();
const int pid = ipc->getCallingPid();
const int uid = ipc->getCallingUid();
ALOGE("Permission Denial: "
"can't access SurfaceFlinger pid=%d, uid=%d", pid, uid);
return PERMISSION_DENIED;
}
int n;
switch (code) {
case 1000: // SHOW_CPU, NOT SUPPORTED ANYMORE
case 1001: // SHOW_FPS, NOT SUPPORTED ANYMORE
return NO_ERROR;
case 1002: // SHOW_UPDATES
n = data.readInt32();
mDebugRegion = n ? n : (mDebugRegion ? 0 : 1);
invalidateHwcGeometry();
repaintEverything();
return NO_ERROR;
case 1004:{ // repaint everything
repaintEverything();
return NO_ERROR;
}
case 1005:{ // force transaction
setTransactionFlags(
eTransactionNeeded|
eDisplayTransactionNeeded|
eTraversalNeeded);
return NO_ERROR;
}
case 1006:{ // send empty update
signalRefresh();
return NO_ERROR;
}
case 1008: // toggle use of hw composer
n = data.readInt32();
mDebugDisableHWC = n ? 1 : 0;
invalidateHwcGeometry();
repaintEverything();
return NO_ERROR;
case 1009: // toggle use of transform hint
n = data.readInt32();
mDebugDisableTransformHint = n ? 1 : 0;
invalidateHwcGeometry();
repaintEverything();
return NO_ERROR;
case 1010: // interrogate.
reply->writeInt32(0);
reply->writeInt32(0);
reply->writeInt32(mDebugRegion);
reply->writeInt32(0);
reply->writeInt32(mDebugDisableHWC);
return NO_ERROR;
case 1013: {
Mutex::Autolock _l(mStateLock);
sp<const DisplayDevice> hw(getDefaultDisplayDevice());
reply->writeInt32(hw->getPageFlipCount());
return NO_ERROR;
}
case 1014: {
// daltonize
n = data.readInt32();
switch (n % 10) {
case 1: mDaltonizer.setType(Daltonizer::protanomaly); break;
case 2: mDaltonizer.setType(Daltonizer::deuteranomaly); break;
case 3: mDaltonizer.setType(Daltonizer::tritanomaly); break;
}
if (n >= 10) {
mDaltonizer.setMode(Daltonizer::correction);
} else {
mDaltonizer.setMode(Daltonizer::simulation);
}
mDaltonize = n > 0;
invalidateHwcGeometry();
repaintEverything();
return NO_ERROR;
}
case 1015: {
// apply a color matrix
n = data.readInt32();
mHasColorMatrix = n ? 1 : 0;
if (n) {
// color matrix is sent as mat3 matrix followed by vec3
// offset, then packed into a mat4 where the last row is
// the offset and extra values are 0
for (size_t i = 0 ; i < 4; i++) {
for (size_t j = 0; j < 4; j++) {
mColorMatrix[i][j] = data.readFloat();
}
}
} else {
mColorMatrix = mat4();
}
invalidateHwcGeometry();
repaintEverything();
return NO_ERROR;
}
// This is an experimental interface
// Needs to be shifted to proper binder interface when we productize
case 1016: {
n = data.readInt32();
mPrimaryDispSync.setRefreshSkipCount(n);
return NO_ERROR;
}
}
}
return err;
}
void SurfaceFlinger::repaintEverything() {
android_atomic_or(1, &mRepaintEverything);
signalTransaction();
}
// ---------------------------------------------------------------------------
// Capture screen into an IGraphiBufferProducer
// ---------------------------------------------------------------------------
/* The code below is here to handle b/8734824
*
* We create a IGraphicBufferProducer wrapper that forwards all calls
* from the surfaceflinger thread to the calling binder thread, where they
* are executed. This allows the calling thread in the calling process to be
* reused and not depend on having "enough" binder threads to handle the
* requests.
*/
class GraphicProducerWrapper : public BBinder, public MessageHandler {
/* Parts of GraphicProducerWrapper are run on two different threads,
* communicating by sending messages via Looper but also by shared member
* data. Coherence maintenance is subtle and in places implicit (ugh).
*
* Don't rely on Looper's sendMessage/handleMessage providing
* release/acquire semantics for any data not actually in the Message.
* Data going from surfaceflinger to binder threads needs to be
* synchronized explicitly.
*
* Barrier open/wait do provide release/acquire semantics. This provides
* implicit synchronization for data coming back from binder to
* surfaceflinger threads.
*/
sp<IGraphicBufferProducer> impl;
sp<Looper> looper;
status_t result;
bool exitPending;
bool exitRequested;
Barrier barrier;
uint32_t code;
Parcel const* data;
Parcel* reply;
enum {
MSG_API_CALL,
MSG_EXIT
};
/*
* Called on surfaceflinger thread. This is called by our "fake"
* BpGraphicBufferProducer. We package the data and reply Parcel and
* forward them to the binder thread.
*/
virtual status_t transact(uint32_t code,
const Parcel& data, Parcel* reply, uint32_t /* flags */) {
this->code = code;
this->data = &data;
this->reply = reply;
if (exitPending) {
// if we've exited, we run the message synchronously right here.
// note (JH): as far as I can tell from looking at the code, this
// never actually happens. if it does, i'm not sure if it happens
// on the surfaceflinger or binder thread.
handleMessage(Message(MSG_API_CALL));
} else {
barrier.close();
// Prevent stores to this->{code, data, reply} from being
// reordered later than the construction of Message.
atomic_thread_fence(memory_order_release);
looper->sendMessage(this, Message(MSG_API_CALL));
barrier.wait();
}
return result;
}
/*
* here we run on the binder thread. All we've got to do is
* call the real BpGraphicBufferProducer.
*/
virtual void handleMessage(const Message& message) {
int what = message.what;
// Prevent reads below from happening before the read from Message
atomic_thread_fence(memory_order_acquire);
if (what == MSG_API_CALL) {
result = impl->asBinder()->transact(code, data[0], reply);
barrier.open();
} else if (what == MSG_EXIT) {
exitRequested = true;
}
}
public:
GraphicProducerWrapper(const sp<IGraphicBufferProducer>& impl)
: impl(impl),
looper(new Looper(true)),
exitPending(false),
exitRequested(false)
{}
// Binder thread
status_t waitForResponse() {
do {
looper->pollOnce(-1);
} while (!exitRequested);
return result;
}
// Client thread
void exit(status_t result) {
this->result = result;
exitPending = true;
// Ensure this->result is visible to the binder thread before it
// handles the message.
atomic_thread_fence(memory_order_release);
looper->sendMessage(this, Message(MSG_EXIT));
}
};
status_t SurfaceFlinger::captureScreen(const sp<IBinder>& display,
const sp<IGraphicBufferProducer>& producer,
Rect sourceCrop, uint32_t reqWidth, uint32_t reqHeight,
uint32_t minLayerZ, uint32_t maxLayerZ,
bool useIdentityTransform, ISurfaceComposer::Rotation rotation) {
if (CC_UNLIKELY(display == 0))
return BAD_VALUE;
if (CC_UNLIKELY(producer == 0))
return BAD_VALUE;
// if we have secure windows on this display, never allow the screen capture
// unless the producer interface is local (i.e.: we can take a screenshot for
// ourselves).
if (!producer->asBinder()->localBinder()) {
Mutex::Autolock _l(mStateLock);
sp<const DisplayDevice> hw(getDisplayDevice(display));
if (hw->getSecureLayerVisible()) {
ALOGW("FB is protected: PERMISSION_DENIED");
return PERMISSION_DENIED;
}
}
// Convert to surfaceflinger's internal rotation type.
Transform::orientation_flags rotationFlags;
switch (rotation) {
case ISurfaceComposer::eRotateNone:
rotationFlags = Transform::ROT_0;
break;
case ISurfaceComposer::eRotate90:
rotationFlags = Transform::ROT_90;
break;
case ISurfaceComposer::eRotate180:
rotationFlags = Transform::ROT_180;
break;
case ISurfaceComposer::eRotate270:
rotationFlags = Transform::ROT_270;
break;
default:
rotationFlags = Transform::ROT_0;
ALOGE("Invalid rotation passed to captureScreen(): %d\n", rotation);
break;
}
class MessageCaptureScreen : public MessageBase {
SurfaceFlinger* flinger;
sp<IBinder> display;
sp<IGraphicBufferProducer> producer;
Rect sourceCrop;
uint32_t reqWidth, reqHeight;
uint32_t minLayerZ,maxLayerZ;
bool useIdentityTransform;
Transform::orientation_flags rotation;
status_t result;
public:
MessageCaptureScreen(SurfaceFlinger* flinger,
const sp<IBinder>& display,
const sp<IGraphicBufferProducer>& producer,
Rect sourceCrop, uint32_t reqWidth, uint32_t reqHeight,
uint32_t minLayerZ, uint32_t maxLayerZ,
bool useIdentityTransform, Transform::orientation_flags rotation)
: flinger(flinger), display(display), producer(producer),
sourceCrop(sourceCrop), reqWidth(reqWidth), reqHeight(reqHeight),
minLayerZ(minLayerZ), maxLayerZ(maxLayerZ),
useIdentityTransform(useIdentityTransform),
rotation(rotation),
result(PERMISSION_DENIED)
{
}
status_t getResult() const {
return result;
}
virtual bool handler() {
Mutex::Autolock _l(flinger->mStateLock);
sp<const DisplayDevice> hw(flinger->getDisplayDevice(display));
result = flinger->captureScreenImplLocked(hw, producer,
sourceCrop, reqWidth, reqHeight, minLayerZ, maxLayerZ,
useIdentityTransform, rotation);
static_cast<GraphicProducerWrapper*>(producer->asBinder().get())->exit(result);
return true;
}
};
// make sure to process transactions before screenshots -- a transaction
// might already be pending but scheduled for VSYNC; this guarantees we
// will handle it before the screenshot. When VSYNC finally arrives
// the scheduled transaction will be a no-op. If no transactions are
// scheduled at this time, this will end-up being a no-op as well.
mEventQueue.invalidateTransactionNow();
// this creates a "fake" BBinder which will serve as a "fake" remote
// binder to receive the marshaled calls and forward them to the
// real remote (a BpGraphicBufferProducer)
sp<GraphicProducerWrapper> wrapper = new GraphicProducerWrapper(producer);
// the asInterface() call below creates our "fake" BpGraphicBufferProducer
// which does the marshaling work forwards to our "fake remote" above.
sp<MessageBase> msg = new MessageCaptureScreen(this,
display, IGraphicBufferProducer::asInterface( wrapper ),
sourceCrop, reqWidth, reqHeight, minLayerZ, maxLayerZ,
useIdentityTransform, rotationFlags);
status_t res = postMessageAsync(msg);
if (res == NO_ERROR) {
res = wrapper->waitForResponse();
}
return res;
}
void SurfaceFlinger::renderScreenImplLocked(
const sp<const DisplayDevice>& hw,
Rect sourceCrop, uint32_t reqWidth, uint32_t reqHeight,
uint32_t minLayerZ, uint32_t maxLayerZ,
bool yswap, bool useIdentityTransform, Transform::orientation_flags rotation)
{
ATRACE_CALL();
RenderEngine& engine(getRenderEngine());
// get screen geometry
const uint32_t hw_w = hw->getWidth();
const uint32_t hw_h = hw->getHeight();
const bool filtering = reqWidth != hw_w || reqWidth != hw_h;
// if a default or invalid sourceCrop is passed in, set reasonable values
if (sourceCrop.width() == 0 || sourceCrop.height() == 0 ||
!sourceCrop.isValid()) {
sourceCrop.setLeftTop(Point(0, 0));
sourceCrop.setRightBottom(Point(hw_w, hw_h));
}
// ensure that sourceCrop is inside screen
if (sourceCrop.left < 0) {
ALOGE("Invalid crop rect: l = %d (< 0)", sourceCrop.left);
}
if (sourceCrop.right > hw_w) {
ALOGE("Invalid crop rect: r = %d (> %d)", sourceCrop.right, hw_w);
}
if (sourceCrop.top < 0) {
ALOGE("Invalid crop rect: t = %d (< 0)", sourceCrop.top);
}
if (sourceCrop.bottom > hw_h) {
ALOGE("Invalid crop rect: b = %d (> %d)", sourceCrop.bottom, hw_h);
}
// make sure to clear all GL error flags
engine.checkErrors();
// set-up our viewport
engine.setViewportAndProjection(
reqWidth, reqHeight, sourceCrop, hw_h, yswap, rotation);
engine.disableTexturing();
// redraw the screen entirely...
engine.clearWithColor(0, 0, 0, 1);
const LayerVector& layers( mDrawingState.layersSortedByZ );
const size_t count = layers.size();
for (size_t i=0 ; i<count ; ++i) {
const sp<Layer>& layer(layers[i]);
const Layer::State& state(layer->getDrawingState());
if (state.layerStack == hw->getLayerStack()) {
if (state.z >= minLayerZ && state.z <= maxLayerZ) {
if (layer->isVisible()) {
if (filtering) layer->setFiltering(true);
layer->draw(hw, useIdentityTransform);
if (filtering) layer->setFiltering(false);
}
}
}
}
// compositionComplete is needed for older driver
hw->compositionComplete();
hw->setViewportAndProjection();
}
status_t SurfaceFlinger::captureScreenImplLocked(
const sp<const DisplayDevice>& hw,
const sp<IGraphicBufferProducer>& producer,
Rect sourceCrop, uint32_t reqWidth, uint32_t reqHeight,
uint32_t minLayerZ, uint32_t maxLayerZ,
bool useIdentityTransform, Transform::orientation_flags rotation)
{
ATRACE_CALL();
// get screen geometry
const uint32_t hw_w = hw->getWidth();
const uint32_t hw_h = hw->getHeight();
if ((reqWidth > hw_w) || (reqHeight > hw_h)) {
ALOGE("size mismatch (%d, %d) > (%d, %d)",
reqWidth, reqHeight, hw_w, hw_h);
return BAD_VALUE;
}
reqWidth = (!reqWidth) ? hw_w : reqWidth;
reqHeight = (!reqHeight) ? hw_h : reqHeight;
// create a surface (because we're a producer, and we need to
// dequeue/queue a buffer)
sp<Surface> sur = new Surface(producer, false);
ANativeWindow* window = sur.get();
status_t result = NO_ERROR;
if (native_window_api_connect(window, NATIVE_WINDOW_API_EGL) == NO_ERROR) {
uint32_t usage = GRALLOC_USAGE_SW_READ_OFTEN | GRALLOC_USAGE_SW_WRITE_OFTEN |
GRALLOC_USAGE_HW_RENDER | GRALLOC_USAGE_HW_TEXTURE;
int err = 0;
err = native_window_set_buffers_dimensions(window, reqWidth, reqHeight);
err |= native_window_set_scaling_mode(window, NATIVE_WINDOW_SCALING_MODE_SCALE_TO_WINDOW);
err |= native_window_set_buffers_format(window, HAL_PIXEL_FORMAT_RGBA_8888);
err |= native_window_set_usage(window, usage);
if (err == NO_ERROR) {
ANativeWindowBuffer* buffer;
/* TODO: Once we have the sync framework everywhere this can use
* server-side waits on the fence that dequeueBuffer returns.
*/
result = native_window_dequeue_buffer_and_wait(window, &buffer);
if (result == NO_ERROR) {
int syncFd = -1;
// create an EGLImage from the buffer so we can later
// turn it into a texture
EGLImageKHR image = eglCreateImageKHR(mEGLDisplay, EGL_NO_CONTEXT,
EGL_NATIVE_BUFFER_ANDROID, buffer, NULL);
if (image != EGL_NO_IMAGE_KHR) {
// this binds the given EGLImage as a framebuffer for the
// duration of this scope.
RenderEngine::BindImageAsFramebuffer imageBond(getRenderEngine(), image);
if (imageBond.getStatus() == NO_ERROR) {
// this will in fact render into our dequeued buffer
// via an FBO, which means we didn't have to create
// an EGLSurface and therefore we're not
// dependent on the context's EGLConfig.
renderScreenImplLocked(
hw, sourceCrop, reqWidth, reqHeight, minLayerZ, maxLayerZ, true,
useIdentityTransform, rotation);
// Attempt to create a sync khr object that can produce a sync point. If that
// isn't available, create a non-dupable sync object in the fallback path and
// wait on it directly.
EGLSyncKHR sync;
if (!DEBUG_SCREENSHOTS) {
sync = eglCreateSyncKHR(mEGLDisplay, EGL_SYNC_NATIVE_FENCE_ANDROID, NULL);
} else {
sync = EGL_NO_SYNC_KHR;
}
if (sync != EGL_NO_SYNC_KHR) {
// get the sync fd
syncFd = eglDupNativeFenceFDANDROID(mEGLDisplay, sync);
if (syncFd == EGL_NO_NATIVE_FENCE_FD_ANDROID) {
ALOGW("captureScreen: failed to dup sync khr object");
syncFd = -1;
}
eglDestroySyncKHR(mEGLDisplay, sync);
} else {
// fallback path
sync = eglCreateSyncKHR(mEGLDisplay, EGL_SYNC_FENCE_KHR, NULL);
if (sync != EGL_NO_SYNC_KHR) {
EGLint result = eglClientWaitSyncKHR(mEGLDisplay, sync,
EGL_SYNC_FLUSH_COMMANDS_BIT_KHR, 2000000000 /*2 sec*/);
EGLint eglErr = eglGetError();
if (result == EGL_TIMEOUT_EXPIRED_KHR) {
ALOGW("captureScreen: fence wait timed out");
} else {
ALOGW_IF(eglErr != EGL_SUCCESS,
"captureScreen: error waiting on EGL fence: %#x", eglErr);
}
eglDestroySyncKHR(mEGLDisplay, sync);
} else {
ALOGW("captureScreen: error creating EGL fence: %#x", eglGetError());
}
}
if (DEBUG_SCREENSHOTS) {
uint32_t* pixels = new uint32_t[reqWidth*reqHeight];
getRenderEngine().readPixels(0, 0, reqWidth, reqHeight, pixels);
checkScreenshot(reqWidth, reqHeight, reqWidth, pixels,
hw, minLayerZ, maxLayerZ);
delete [] pixels;
}
} else {
ALOGE("got GL_FRAMEBUFFER_COMPLETE_OES error while taking screenshot");
result = INVALID_OPERATION;
}
// destroy our image
eglDestroyImageKHR(mEGLDisplay, image);
} else {
result = BAD_VALUE;
}
// queueBuffer takes ownership of syncFd
window->queueBuffer(window, buffer, syncFd);
}
} else {
result = BAD_VALUE;
}
native_window_api_disconnect(window, NATIVE_WINDOW_API_EGL);
}
return result;
}
void SurfaceFlinger::checkScreenshot(size_t w, size_t s, size_t h, void const* vaddr,
const sp<const DisplayDevice>& hw, uint32_t minLayerZ, uint32_t maxLayerZ) {
if (DEBUG_SCREENSHOTS) {
for (size_t y=0 ; y<h ; y++) {
uint32_t const * p = (uint32_t const *)vaddr + y*s;
for (size_t x=0 ; x<w ; x++) {
if (p[x] != 0xFF000000) return;
}
}
ALOGE("*** we just took a black screenshot ***\n"
"requested minz=%d, maxz=%d, layerStack=%d",
minLayerZ, maxLayerZ, hw->getLayerStack());
const LayerVector& layers( mDrawingState.layersSortedByZ );
const size_t count = layers.size();
for (size_t i=0 ; i<count ; ++i) {
const sp<Layer>& layer(layers[i]);
const Layer::State& state(layer->getDrawingState());
const bool visible = (state.layerStack == hw->getLayerStack())
&& (state.z >= minLayerZ && state.z <= maxLayerZ)
&& (layer->isVisible());
ALOGE("%c index=%zu, name=%s, layerStack=%d, z=%d, visible=%d, flags=%x, alpha=%x",
visible ? '+' : '-',
i, layer->getName().string(), state.layerStack, state.z,
layer->isVisible(), state.flags, state.alpha);
}
}
}
// ---------------------------------------------------------------------------
SurfaceFlinger::LayerVector::LayerVector() {
}
SurfaceFlinger::LayerVector::LayerVector(const LayerVector& rhs)
: SortedVector<sp<Layer> >(rhs) {
}
int SurfaceFlinger::LayerVector::do_compare(const void* lhs,
const void* rhs) const
{
// sort layers per layer-stack, then by z-order and finally by sequence
const sp<Layer>& l(*reinterpret_cast<const sp<Layer>*>(lhs));
const sp<Layer>& r(*reinterpret_cast<const sp<Layer>*>(rhs));
uint32_t ls = l->getCurrentState().layerStack;
uint32_t rs = r->getCurrentState().layerStack;
if (ls != rs)
return ls - rs;
uint32_t lz = l->getCurrentState().z;
uint32_t rz = r->getCurrentState().z;
if (lz != rz)
return lz - rz;
return l->sequence - r->sequence;
}
// ---------------------------------------------------------------------------
SurfaceFlinger::DisplayDeviceState::DisplayDeviceState()
: type(DisplayDevice::DISPLAY_ID_INVALID), width(0), height(0) {
}
SurfaceFlinger::DisplayDeviceState::DisplayDeviceState(DisplayDevice::DisplayType type)
: type(type), layerStack(DisplayDevice::NO_LAYER_STACK), orientation(0), width(0), height(0) {
viewport.makeInvalid();
frame.makeInvalid();
}
// ---------------------------------------------------------------------------
}; // namespace android
#if defined(__gl_h_)
#error "don't include gl/gl.h in this file"
#endif
#if defined(__gl2_h_)
#error "don't include gl2/gl2.h in this file"
#endif