blob: 1d3a1d38ac6caf02cd1301cda6e7c018f59d5ef0 [file] [log] [blame]
/*
* Copyright (C) 2016 The Android Open Source Project
*
* Licensed under the Apache License, Version 2.0 (the "License");
* you may not use this file except in compliance with the License.
* You may obtain a copy of the License at
*
* http://www.apache.org/licenses/LICENSE-2.0
*
* Unless required by applicable law or agreed to in writing, software
* distributed under the License is distributed on an "AS IS" BASIS,
* WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
* See the License for the specific language governing permissions and
* limitations under the License.
*/
#include <mutex>
#include <array>
#include <sstream>
#include <algorithm>
#include <gui/Surface.h>
#include <gui/BufferItemConsumer.h>
#include <ui/GraphicBuffer.h>
#include <math/vec4.h>
#include <GLES3/gl3.h>
#include "Hwc2TestBuffer.h"
#include "Hwc2TestLayers.h"
using namespace android;
/* Returns a fence from egl */
typedef void (*FenceCallback)(int32_t fence, void* callbackArgs);
/* Returns fence to fence generator */
static void setFence(int32_t fence, void* fenceGenerator);
/* Used to receive the surfaces and fences from egl. The egl buffers are thrown
* away. The fences are sent to the requester via a callback */
class Hwc2TestSurfaceManager {
public:
/* Listens for a new frame, detaches the buffer and returns the fence
* through saved callback. */
class BufferListener : public ConsumerBase::FrameAvailableListener {
public:
BufferListener(sp<IGraphicBufferConsumer> consumer,
FenceCallback callback, void* callbackArgs)
: mConsumer(consumer),
mCallback(callback),
mCallbackArgs(callbackArgs) { }
void onFrameAvailable(const BufferItem& /*item*/)
{
BufferItem item;
if (mConsumer->acquireBuffer(&item, 0))
return;
if (mConsumer->detachBuffer(item.mSlot))
return;
mCallback(item.mFence->dup(), mCallbackArgs);
}
private:
sp<IGraphicBufferConsumer> mConsumer;
FenceCallback mCallback;
void* mCallbackArgs;
};
/* Creates a buffer listener that waits on a new frame from the buffer
* queue. */
void initialize(const Area& bufferArea, android_pixel_format_t format,
FenceCallback callback, void* callbackArgs)
{
sp<IGraphicBufferProducer> producer;
sp<IGraphicBufferConsumer> consumer;
BufferQueue::createBufferQueue(&producer, &consumer);
consumer->setDefaultBufferSize(bufferArea.width, bufferArea.height);
consumer->setDefaultBufferFormat(format);
mBufferItemConsumer = new BufferItemConsumer(consumer, 0);
mListener = new BufferListener(consumer, callback, callbackArgs);
mBufferItemConsumer->setFrameAvailableListener(mListener);
mSurface = new Surface(producer, true);
}
/* Used by Egl manager. The surface is never displayed. */
sp<Surface> getSurface() const
{
return mSurface;
}
private:
sp<BufferItemConsumer> mBufferItemConsumer;
sp<BufferListener> mListener;
/* Used by Egl manager. The surface is never displayed */
sp<Surface> mSurface;
};
/* Used to generate valid fences. It is not possible to create a dummy sync
* fence for testing. Egl can generate buffers along with a valid fence.
* The buffer cannot be guaranteed to be the same format across all devices so
* a CPU filled buffer is used instead. The Egl fence is used along with the
* CPU filled buffer. */
class Hwc2TestEglManager {
public:
Hwc2TestEglManager()
: mEglDisplay(EGL_NO_DISPLAY),
mEglSurface(EGL_NO_SURFACE),
mEglContext(EGL_NO_CONTEXT) { }
~Hwc2TestEglManager()
{
cleanup();
}
int initialize(sp<Surface> surface)
{
mSurface = surface;
mEglDisplay = eglGetDisplay(EGL_DEFAULT_DISPLAY);
if (mEglDisplay == EGL_NO_DISPLAY) return false;
EGLint major;
EGLint minor;
if (!eglInitialize(mEglDisplay, &major, &minor)) {
ALOGW("Could not initialize EGL");
return false;
}
/* We're going to use a 1x1 pbuffer surface later on
* The configuration distance doesn't really matter for what we're
* trying to do */
EGLint configAttrs[] = {
EGL_RENDERABLE_TYPE, EGL_OPENGL_ES2_BIT,
EGL_RED_SIZE, 8,
EGL_GREEN_SIZE, 8,
EGL_BLUE_SIZE, 8,
EGL_ALPHA_SIZE, 0,
EGL_DEPTH_SIZE, 24,
EGL_STENCIL_SIZE, 0,
EGL_NONE
};
EGLConfig configs[1];
EGLint configCnt;
if (!eglChooseConfig(mEglDisplay, configAttrs, configs, 1,
&configCnt)) {
ALOGW("Could not select EGL configuration");
eglReleaseThread();
eglTerminate(mEglDisplay);
return false;
}
if (configCnt <= 0) {
ALOGW("Could not find EGL configuration");
eglReleaseThread();
eglTerminate(mEglDisplay);
return false;
}
/* These objects are initialized below but the default "null" values are
* used to cleanup properly at any point in the initialization sequence */
EGLint attrs[] = { EGL_CONTEXT_CLIENT_VERSION, 2, EGL_NONE };
mEglContext = eglCreateContext(mEglDisplay, configs[0], EGL_NO_CONTEXT,
attrs);
if (mEglContext == EGL_NO_CONTEXT) {
ALOGW("Could not create EGL context");
cleanup();
return false;
}
EGLint surfaceAttrs[] = { EGL_NONE };
mEglSurface = eglCreateWindowSurface(mEglDisplay, configs[0],
mSurface.get(), surfaceAttrs);
if (mEglSurface == EGL_NO_SURFACE) {
ALOGW("Could not create EGL surface");
cleanup();
return false;
}
if (!eglMakeCurrent(mEglDisplay, mEglSurface, mEglSurface, mEglContext)) {
ALOGW("Could not change current EGL context");
cleanup();
return false;
}
return true;
}
void makeCurrent() const
{
eglMakeCurrent(mEglDisplay, mEglSurface, mEglSurface, mEglContext);
}
void present() const
{
eglSwapBuffers(mEglDisplay, mEglSurface);
}
private:
void cleanup()
{
if (mEglDisplay == EGL_NO_DISPLAY)
return;
if (mEglSurface != EGL_NO_SURFACE)
eglDestroySurface(mEglDisplay, mEglSurface);
if (mEglContext != EGL_NO_CONTEXT)
eglDestroyContext(mEglDisplay, mEglContext);
eglMakeCurrent(mEglDisplay, EGL_NO_SURFACE, EGL_NO_SURFACE,
EGL_NO_CONTEXT);
eglReleaseThread();
eglTerminate(mEglDisplay);
}
sp<Surface> mSurface;
EGLDisplay mEglDisplay;
EGLSurface mEglSurface;
EGLContext mEglContext;
};
static const std::array<vec2, 4> triangles = {{
{ 1.0f, 1.0f },
{ -1.0f, 1.0f },
{ 1.0f, -1.0f },
{ -1.0f, -1.0f },
}};
class Hwc2TestFenceGenerator {
public:
Hwc2TestFenceGenerator()
{
mSurfaceManager.initialize({1, 1}, HAL_PIXEL_FORMAT_RGBA_8888,
setFence, this);
if (!mEglManager.initialize(mSurfaceManager.getSurface()))
return;
mEglManager.makeCurrent();
glClearColor(0.0, 0.0, 0.0, 1.0);
glEnableVertexAttribArray(0);
}
~Hwc2TestFenceGenerator()
{
if (mFence >= 0)
close(mFence);
mFence = -1;
mEglManager.makeCurrent();
}
/* It is not possible to simply generate a fence. The easiest way is to
* generate a buffer using egl and use the associated fence. The buffer
* cannot be guaranteed to be a certain format across all devices using this
* method. Instead the buffer is generated using the CPU */
int32_t get()
{
if (mFence >= 0) {
return dup(mFence);
}
std::unique_lock<std::mutex> lock(mMutex);
/* If the pending is still set to false and times out, we cannot recover.
* Set an error and return */
while (mPending != false) {
if (mCv.wait_for(lock, std::chrono::seconds(2)) == std::cv_status::timeout)
return -ETIME;
}
/* Generate a fence. The fence will be returned through the setFence
* callback */
mEglManager.makeCurrent();
glVertexAttribPointer(0, 2, GL_FLOAT, GL_FALSE, 0, triangles.data());
glClear(GL_COLOR_BUFFER_BIT);
mEglManager.present();
/* Wait for the setFence callback */
while (mPending != true) {
if (mCv.wait_for(lock, std::chrono::seconds(2)) == std::cv_status::timeout)
return -ETIME;
}
mPending = false;
return dup(mFence);
}
/* Callback that sets the fence */
void set(int32_t fence)
{
mFence = fence;
mPending = true;
mCv.notify_all();
}
private:
Hwc2TestSurfaceManager mSurfaceManager;
Hwc2TestEglManager mEglManager;
std::mutex mMutex;
std::condition_variable mCv;
int32_t mFence = -1;
bool mPending = false;
};
static void setFence(int32_t fence, void* fenceGenerator)
{
static_cast<Hwc2TestFenceGenerator*>(fenceGenerator)->set(fence);
}
/* Sets the pixel of a buffer given the location, format, stride and color.
* Currently only supports RGBA_8888 */
static void setColor(int32_t x, int32_t y,
android_pixel_format_t format, uint32_t stride, uint8_t* img, uint8_t r,
uint8_t g, uint8_t b, uint8_t a)
{
switch (format) {
case HAL_PIXEL_FORMAT_RGBA_8888:
img[(y * stride + x) * 4 + 0] = r;
img[(y * stride + x) * 4 + 1] = g;
img[(y * stride + x) * 4 + 2] = b;
img[(y * stride + x) * 4 + 3] = a;
break;
default:
break;
}
}
Hwc2TestBuffer::Hwc2TestBuffer()
: mFenceGenerator(new Hwc2TestFenceGenerator()) { }
Hwc2TestBuffer::~Hwc2TestBuffer() = default;
/* When the buffer changes sizes, save the new size and invalidate the current
* buffer */
void Hwc2TestBuffer::updateBufferArea(const Area& bufferArea)
{
if (mBufferArea.width == bufferArea.width
&& mBufferArea.height == bufferArea.height)
return;
mBufferArea.width = bufferArea.width;
mBufferArea.height = bufferArea.height;
mValidBuffer = false;
}
/* Returns a valid buffer handle and fence. The handle is filled using the CPU
* to ensure the correct format across all devices. The fence is created using
* egl. */
int Hwc2TestBuffer::get(buffer_handle_t* outHandle, int32_t* outFence)
{
if (mBufferArea.width == -1 || mBufferArea.height == -1)
return -EINVAL;
/* If the current buffer is valid, the previous buffer can be reused.
* Otherwise, create new buffer */
if (!mValidBuffer) {
int ret = generateBuffer();
if (ret)
return ret;
}
*outFence = mFenceGenerator->get();
*outHandle = mHandle;
mValidBuffer = true;
return 0;
}
/* CPU fills a buffer to guarantee the correct buffer format across all
* devices */
int Hwc2TestBuffer::generateBuffer()
{
/* Create new graphic buffer with correct dimensions */
mGraphicBuffer = new GraphicBuffer(mBufferArea.width, mBufferArea.height,
mFormat, GRALLOC_USAGE_SW_READ_OFTEN | GRALLOC_USAGE_HW_RENDER,
"hwc2_test_buffer");
int ret = mGraphicBuffer->initCheck();
if (ret) {
return ret;
}
if (!mGraphicBuffer->handle) {
return -EINVAL;
}
/* Locks the buffer for writing */
uint8_t* img;
mGraphicBuffer->lock(GRALLOC_USAGE_SW_WRITE_OFTEN, (void**)(&img));
uint32_t stride = mGraphicBuffer->getStride();
/* Iterate from the top row of the buffer to the bottom row */
for (int32_t y = 0; y < mBufferArea.height; y++) {
/* Will be used as R, G and B values for pixel colors */
uint8_t max = 255;
uint8_t min = 0;
/* Divide the rows into 3 sections. The first section will contain
* the lighest colors. The last section will contain the darkest
* colors. */
if (y < mBufferArea.height * 1.0 / 3.0) {
min = 255 / 2;
} else if (y >= mBufferArea.height * 2.0 / 3.0) {
max = 255 / 2;
}
/* Divide the columns into 3 sections. The first section is red,
* the second is green and the third is blue */
int32_t x = 0;
for (; x < mBufferArea.width / 3; x++) {
setColor(x, y, mFormat, stride, img, max, min, min, 255);
}
for (; x < mBufferArea.width * 2 / 3; x++) {
setColor(x, y, mFormat, stride, img, min, max, min, 255);
}
for (; x < mBufferArea.width; x++) {
setColor(x, y, mFormat, stride, img, min, min, max, 255);
}
}
/* Unlock the buffer for reading */
mGraphicBuffer->unlock();
mHandle = mGraphicBuffer->handle;
return 0;
}
Hwc2TestClientTargetBuffer::Hwc2TestClientTargetBuffer()
: mFenceGenerator(new Hwc2TestFenceGenerator()) { }
Hwc2TestClientTargetBuffer::~Hwc2TestClientTargetBuffer() { }
/* Generates a client target buffer using the layers assigned for client
* composition. Takes into account the individual layer properties such as
* transform, blend mode, source crop, etc. */
int Hwc2TestClientTargetBuffer::get(buffer_handle_t* outHandle,
int32_t* outFence, const Area& bufferArea,
const Hwc2TestLayers* testLayers,
const std::set<hwc2_layer_t>* clientLayers,
const std::set<hwc2_layer_t>* clearLayers)
{
/* Create new graphic buffer with correct dimensions */
mGraphicBuffer = new GraphicBuffer(bufferArea.width, bufferArea.height,
mFormat, GRALLOC_USAGE_SW_READ_OFTEN | GRALLOC_USAGE_HW_RENDER,
"hwc2_test_buffer");
int ret = mGraphicBuffer->initCheck();
if (ret) {
return ret;
}
if (!mGraphicBuffer->handle) {
return -EINVAL;
}
uint8_t* img;
mGraphicBuffer->lock(GRALLOC_USAGE_SW_WRITE_OFTEN, (void**)(&img));
uint32_t stride = mGraphicBuffer->getStride();
float bWDiv3 = bufferArea.width / 3;
float bW2Div3 = bufferArea.width * 2 / 3;
float bHDiv3 = bufferArea.height / 3;
float bH2Div3 = bufferArea.height * 2 / 3;
/* Cycle through every pixel in the buffer and determine what color it
* should be. */
for (int32_t y = 0; y < bufferArea.height; y++) {
for (int32_t x = 0; x < bufferArea.width; x++) {
uint8_t r = 0, g = 0, b = 0;
float a = 0.0f;
/* Cycle through each client layer from back to front and
* update the pixel color. */
for (auto layer = clientLayers->rbegin();
layer != clientLayers->rend(); ++layer) {
const hwc_rect_t df = testLayers->getDisplayFrame(*layer);
float dfL = df.left;
float dfT = df.top;
float dfR = df.right;
float dfB = df.bottom;
/* If the pixel location falls outside of the layer display
* frame, skip the layer. */
if (x < dfL || x >= dfR || y < dfT || y >= dfB)
continue;
/* If the device has requested the layer be clear, clear
* the pixel and continue. */
if (clearLayers->count(*layer) != 0) {
r = 0;
g = 0;
b = 0;
a = 0.0f;
continue;
}
float planeAlpha = testLayers->getPlaneAlpha(*layer);
/* If the layer is a solid color, fill the color and
* continue. */
if (testLayers->getComposition(*layer)
== HWC2_COMPOSITION_SOLID_COLOR) {
const auto color = testLayers->getColor(*layer);
r = color.r;
g = color.g;
b = color.b;
a = color.a * planeAlpha;
continue;
}
float xPos = x;
float yPos = y;
hwc_transform_t transform = testLayers->getTransform(*layer);
float dfW = dfR - dfL;
float dfH = dfB - dfT;
/* If a layer has a transform, find which location on the
* layer will end up in the current pixel location. We
* can calculate the color of the current pixel using that
* location. */
if (transform > 0) {
/* Change origin to be the center of the layer. */
xPos = xPos - dfL - dfW / 2.0;
yPos = yPos - dfT - dfH / 2.0;
/* Flip Horizontal by reflecting across the y axis. */
if (transform & HWC_TRANSFORM_FLIP_H)
xPos = -xPos;
/* Flip vertical by reflecting across the x axis. */
if (transform & HWC_TRANSFORM_FLIP_V)
yPos = -yPos;
/* Rotate 90 by using a basic linear algebra rotation
* and scaling the result so the display frame remains
* the same. For example, a buffer of size 100x50 should
* rotate 90 degress but remain the same dimension
* (100x50) at the end of the transformation. */
if (transform & HWC_TRANSFORM_ROT_90) {
float tmp = xPos;
xPos = -yPos * dfW / dfH;
yPos = tmp * dfH / dfW;
}
/* Change origin back to the top left corner of the
* layer. */
xPos = xPos + dfL + dfW / 2.0;
yPos = yPos + dfT + dfH / 2.0;
}
hwc_frect_t sc = testLayers->getSourceCrop(*layer);
float scL = sc.left, scT = sc.top;
float dfWDivScW = dfW / (sc.right - scL);
float dfHDivScH = dfH / (sc.bottom - scT);
float max = 255, min = 0;
/* Choose the pixel color. Similar to generateBuffer,
* each layer will be divided into 3x3 colors. Because
* both the source crop and display frame must be taken into
* account, the formulas are more complicated.
*
* If the source crop and display frame were not taken into
* account, we would simply divide the buffer into three
* sections by height. Each section would get one color.
* For example the formula for the first section would be:
*
* if (yPos < bufferArea.height / 3)
* //Select first section color
*
* However the pixel color is chosen based on the source
* crop and displayed based on the display frame.
*
* If the display frame top was 0 and the source crop height
* and display frame height were the same. The only factor
* would be the source crop top. To calculate the new
* section boundary, the section boundary would be moved up
* by the height of the source crop top. The formula would
* be:
* if (yPos < (bufferArea.height / 3 - sourceCrop.top)
* //Select first section color
*
* If the display frame top could also vary but source crop
* and display frame heights were the same, the formula
* would be:
* if (yPos < (bufferArea.height / 3 - sourceCrop.top
* + displayFrameTop)
* //Select first section color
*
* If the heights were not the same, the conversion between
* the source crop and display frame dimensions must be
* taken into account. The formula would be:
* if (yPos < ((bufferArea.height / 3) - sourceCrop.top)
* * displayFrameHeight / sourceCropHeight
* + displayFrameTop)
* //Select first section color
*/
if (yPos < ((bHDiv3) - scT) * dfHDivScH + dfT) {
min = 255 / 2;
} else if (yPos >= ((bH2Div3) - scT) * dfHDivScH + dfT) {
max = 255 / 2;
}
uint8_t rCur = min, gCur = min, bCur = min;
float aCur = 1.0f;
/* This further divides the color sections from 3 to 3x3.
* The math behind it follows the same logic as the previous
* comment */
if (xPos < ((bWDiv3) - scL) * (dfWDivScW) + dfL) {
rCur = max;
} else if (xPos < ((bW2Div3) - scL) * (dfWDivScW) + dfL) {
gCur = max;
} else {
bCur = max;
}
/* Blend the pixel color with the previous layers' pixel
* colors using the plane alpha and blend mode. The final
* pixel color is chosen using the plane alpha and blend
* mode formulas found in hwcomposer2.h */
hwc2_blend_mode_t blendMode = testLayers->getBlendMode(*layer);
if (blendMode == HWC2_BLEND_MODE_PREMULTIPLIED) {
rCur *= planeAlpha;
gCur *= planeAlpha;
bCur *= planeAlpha;
}
aCur *= planeAlpha;
if (blendMode == HWC2_BLEND_MODE_PREMULTIPLIED) {
r = rCur + r * (1.0 - aCur);
g = gCur + g * (1.0 - aCur);
b = bCur + b * (1.0 - aCur);
a = aCur + a * (1.0 - aCur);
} else if (blendMode == HWC2_BLEND_MODE_COVERAGE) {
r = rCur * aCur + r * (1.0 - aCur);
g = gCur * aCur + g * (1.0 - aCur);
b = bCur * aCur + b * (1.0 - aCur);
a = aCur * aCur + a * (1.0 - aCur);
} else {
r = rCur;
g = gCur;
b = bCur;
a = aCur;
}
}
/* Set the pixel color */
setColor(x, y, mFormat, stride, img, r, g, b, a * 255);
}
}
mGraphicBuffer->unlock();
*outFence = mFenceGenerator->get();
*outHandle = mGraphicBuffer->handle;
return 0;
}