blob: 1985756a669f3f0fa17f3de63caad4152f25a171 [file] [log] [blame]
/* Copyright 2008 The Android Open Source Project
*/
#include <stdio.h>
#include <stdlib.h>
#include <errno.h>
#include <unistd.h>
#include <fcntl.h>
#include <sys/mman.h>
#include "binder.h"
#define MAX_BIO_SIZE (1 << 30)
#define TRACE 0
#define LOG_TAG "Binder"
#include <cutils/log.h>
void bio_init_from_txn(struct binder_io *io, struct binder_txn *txn);
#if TRACE
void hexdump(void *_data, unsigned len)
{
unsigned char *data = _data;
unsigned count;
for (count = 0; count < len; count++) {
if ((count & 15) == 0)
fprintf(stderr,"%04x:", count);
fprintf(stderr," %02x %c", *data,
(*data < 32) || (*data > 126) ? '.' : *data);
data++;
if ((count & 15) == 15)
fprintf(stderr,"\n");
}
if ((count & 15) != 0)
fprintf(stderr,"\n");
}
void binder_dump_txn(struct binder_txn *txn)
{
struct binder_object *obj;
unsigned *offs = txn->offs;
unsigned count = txn->offs_size / 4;
fprintf(stderr," target %p cookie %p code %08x flags %08x\n",
txn->target, txn->cookie, txn->code, txn->flags);
fprintf(stderr," pid %8d uid %8d data %8d offs %8d\n",
txn->sender_pid, txn->sender_euid, txn->data_size, txn->offs_size);
hexdump(txn->data, txn->data_size);
while (count--) {
obj = (void*) (((char*) txn->data) + *offs++);
fprintf(stderr," - type %08x flags %08x ptr %p cookie %p\n",
obj->type, obj->flags, obj->pointer, obj->cookie);
}
}
#define NAME(n) case n: return #n
const char *cmd_name(uint32_t cmd)
{
switch(cmd) {
NAME(BR_NOOP);
NAME(BR_TRANSACTION_COMPLETE);
NAME(BR_INCREFS);
NAME(BR_ACQUIRE);
NAME(BR_RELEASE);
NAME(BR_DECREFS);
NAME(BR_TRANSACTION);
NAME(BR_REPLY);
NAME(BR_FAILED_REPLY);
NAME(BR_DEAD_REPLY);
NAME(BR_DEAD_BINDER);
default: return "???";
}
}
#else
#define hexdump(a,b) do{} while (0)
#define binder_dump_txn(txn) do{} while (0)
#endif
#define BIO_F_SHARED 0x01 /* needs to be buffer freed */
#define BIO_F_OVERFLOW 0x02 /* ran out of space */
#define BIO_F_IOERROR 0x04
#define BIO_F_MALLOCED 0x08 /* needs to be free()'d */
struct binder_state
{
int fd;
void *mapped;
unsigned mapsize;
};
struct binder_state *binder_open(unsigned mapsize)
{
struct binder_state *bs;
bs = malloc(sizeof(*bs));
if (!bs) {
errno = ENOMEM;
return 0;
}
bs->fd = open("/dev/binder", O_RDWR);
if (bs->fd < 0) {
fprintf(stderr,"binder: cannot open device (%s)\n",
strerror(errno));
goto fail_open;
}
bs->mapsize = mapsize;
bs->mapped = mmap(NULL, mapsize, PROT_READ, MAP_PRIVATE, bs->fd, 0);
if (bs->mapped == MAP_FAILED) {
fprintf(stderr,"binder: cannot map device (%s)\n",
strerror(errno));
goto fail_map;
}
/* TODO: check version */
return bs;
fail_map:
close(bs->fd);
fail_open:
free(bs);
return 0;
}
void binder_close(struct binder_state *bs)
{
munmap(bs->mapped, bs->mapsize);
close(bs->fd);
free(bs);
}
int binder_become_context_manager(struct binder_state *bs)
{
return ioctl(bs->fd, BINDER_SET_CONTEXT_MGR, 0);
}
int binder_write(struct binder_state *bs, void *data, unsigned len)
{
struct binder_write_read bwr;
int res;
bwr.write_size = len;
bwr.write_consumed = 0;
bwr.write_buffer = (unsigned) data;
bwr.read_size = 0;
bwr.read_consumed = 0;
bwr.read_buffer = 0;
res = ioctl(bs->fd, BINDER_WRITE_READ, &bwr);
if (res < 0) {
fprintf(stderr,"binder_write: ioctl failed (%s)\n",
strerror(errno));
}
return res;
}
void binder_send_reply(struct binder_state *bs,
struct binder_io *reply,
void *buffer_to_free,
int status)
{
struct {
uint32_t cmd_free;
void *buffer;
uint32_t cmd_reply;
struct binder_txn txn;
} __attribute__((packed)) data;
data.cmd_free = BC_FREE_BUFFER;
data.buffer = buffer_to_free;
data.cmd_reply = BC_REPLY;
data.txn.target = 0;
data.txn.cookie = 0;
data.txn.code = 0;
if (status) {
data.txn.flags = TF_STATUS_CODE;
data.txn.data_size = sizeof(int);
data.txn.offs_size = 0;
data.txn.data = &status;
data.txn.offs = 0;
} else {
data.txn.flags = 0;
data.txn.data_size = reply->data - reply->data0;
data.txn.offs_size = ((char*) reply->offs) - ((char*) reply->offs0);
data.txn.data = reply->data0;
data.txn.offs = reply->offs0;
}
binder_write(bs, &data, sizeof(data));
}
int binder_parse(struct binder_state *bs, struct binder_io *bio,
uint32_t *ptr, uint32_t size, binder_handler func)
{
int r = 1;
uint32_t *end = ptr + (size / 4);
while (ptr < end) {
uint32_t cmd = *ptr++;
#if TRACE
fprintf(stderr,"%s:\n", cmd_name(cmd));
#endif
switch(cmd) {
case BR_NOOP:
break;
case BR_TRANSACTION_COMPLETE:
break;
case BR_INCREFS:
case BR_ACQUIRE:
case BR_RELEASE:
case BR_DECREFS:
#if TRACE
fprintf(stderr," %08x %08x\n", ptr[0], ptr[1]);
#endif
ptr += 2;
break;
case BR_TRANSACTION: {
struct binder_txn *txn = (void *) ptr;
if ((end - ptr) * sizeof(uint32_t) < sizeof(struct binder_txn)) {
ALOGE("parse: txn too small!\n");
return -1;
}
binder_dump_txn(txn);
if (func) {
unsigned rdata[256/4];
struct binder_io msg;
struct binder_io reply;
int res;
bio_init(&reply, rdata, sizeof(rdata), 4);
bio_init_from_txn(&msg, txn);
res = func(bs, txn, &msg, &reply);
binder_send_reply(bs, &reply, txn->data, res);
}
ptr += sizeof(*txn) / sizeof(uint32_t);
break;
}
case BR_REPLY: {
struct binder_txn *txn = (void*) ptr;
if ((end - ptr) * sizeof(uint32_t) < sizeof(struct binder_txn)) {
ALOGE("parse: reply too small!\n");
return -1;
}
binder_dump_txn(txn);
if (bio) {
bio_init_from_txn(bio, txn);
bio = 0;
} else {
/* todo FREE BUFFER */
}
ptr += (sizeof(*txn) / sizeof(uint32_t));
r = 0;
break;
}
case BR_DEAD_BINDER: {
struct binder_death *death = (void*) *ptr++;
death->func(bs, death->ptr);
break;
}
case BR_FAILED_REPLY:
r = -1;
break;
case BR_DEAD_REPLY:
r = -1;
break;
default:
ALOGE("parse: OOPS %d\n", cmd);
return -1;
}
}
return r;
}
void binder_acquire(struct binder_state *bs, void *ptr)
{
uint32_t cmd[2];
cmd[0] = BC_ACQUIRE;
cmd[1] = (uint32_t) ptr;
binder_write(bs, cmd, sizeof(cmd));
}
void binder_release(struct binder_state *bs, void *ptr)
{
uint32_t cmd[2];
cmd[0] = BC_RELEASE;
cmd[1] = (uint32_t) ptr;
binder_write(bs, cmd, sizeof(cmd));
}
void binder_link_to_death(struct binder_state *bs, void *ptr, struct binder_death *death)
{
uint32_t cmd[3];
cmd[0] = BC_REQUEST_DEATH_NOTIFICATION;
cmd[1] = (uint32_t) ptr;
cmd[2] = (uint32_t) death;
binder_write(bs, cmd, sizeof(cmd));
}
int binder_call(struct binder_state *bs,
struct binder_io *msg, struct binder_io *reply,
void *target, uint32_t code)
{
int res;
struct binder_write_read bwr;
struct {
uint32_t cmd;
struct binder_txn txn;
} writebuf;
unsigned readbuf[32];
if (msg->flags & BIO_F_OVERFLOW) {
fprintf(stderr,"binder: txn buffer overflow\n");
goto fail;
}
writebuf.cmd = BC_TRANSACTION;
writebuf.txn.target = target;
writebuf.txn.code = code;
writebuf.txn.flags = 0;
writebuf.txn.data_size = msg->data - msg->data0;
writebuf.txn.offs_size = ((char*) msg->offs) - ((char*) msg->offs0);
writebuf.txn.data = msg->data0;
writebuf.txn.offs = msg->offs0;
bwr.write_size = sizeof(writebuf);
bwr.write_consumed = 0;
bwr.write_buffer = (unsigned) &writebuf;
hexdump(msg->data0, msg->data - msg->data0);
for (;;) {
bwr.read_size = sizeof(readbuf);
bwr.read_consumed = 0;
bwr.read_buffer = (unsigned) readbuf;
res = ioctl(bs->fd, BINDER_WRITE_READ, &bwr);
if (res < 0) {
fprintf(stderr,"binder: ioctl failed (%s)\n", strerror(errno));
goto fail;
}
res = binder_parse(bs, reply, readbuf, bwr.read_consumed, 0);
if (res == 0) return 0;
if (res < 0) goto fail;
}
fail:
memset(reply, 0, sizeof(*reply));
reply->flags |= BIO_F_IOERROR;
return -1;
}
void binder_loop(struct binder_state *bs, binder_handler func)
{
int res;
struct binder_write_read bwr;
unsigned readbuf[32];
bwr.write_size = 0;
bwr.write_consumed = 0;
bwr.write_buffer = 0;
readbuf[0] = BC_ENTER_LOOPER;
binder_write(bs, readbuf, sizeof(unsigned));
for (;;) {
bwr.read_size = sizeof(readbuf);
bwr.read_consumed = 0;
bwr.read_buffer = (unsigned) readbuf;
res = ioctl(bs->fd, BINDER_WRITE_READ, &bwr);
if (res < 0) {
ALOGE("binder_loop: ioctl failed (%s)\n", strerror(errno));
break;
}
res = binder_parse(bs, 0, readbuf, bwr.read_consumed, func);
if (res == 0) {
ALOGE("binder_loop: unexpected reply?!\n");
break;
}
if (res < 0) {
ALOGE("binder_loop: io error %d %s\n", res, strerror(errno));
break;
}
}
}
void bio_init_from_txn(struct binder_io *bio, struct binder_txn *txn)
{
bio->data = bio->data0 = txn->data;
bio->offs = bio->offs0 = txn->offs;
bio->data_avail = txn->data_size;
bio->offs_avail = txn->offs_size / 4;
bio->flags = BIO_F_SHARED;
}
void bio_init(struct binder_io *bio, void *data,
uint32_t maxdata, uint32_t maxoffs)
{
uint32_t n = maxoffs * sizeof(uint32_t);
if (n > maxdata) {
bio->flags = BIO_F_OVERFLOW;
bio->data_avail = 0;
bio->offs_avail = 0;
return;
}
bio->data = bio->data0 = (char *) data + n;
bio->offs = bio->offs0 = data;
bio->data_avail = maxdata - n;
bio->offs_avail = maxoffs;
bio->flags = 0;
}
static void *bio_alloc(struct binder_io *bio, uint32_t size)
{
size = (size + 3) & (~3);
if (size > bio->data_avail) {
bio->flags |= BIO_F_OVERFLOW;
return 0;
} else {
void *ptr = bio->data;
bio->data += size;
bio->data_avail -= size;
return ptr;
}
}
void binder_done(struct binder_state *bs,
struct binder_io *msg,
struct binder_io *reply)
{
if (reply->flags & BIO_F_SHARED) {
uint32_t cmd[2];
cmd[0] = BC_FREE_BUFFER;
cmd[1] = (uint32_t) reply->data0;
binder_write(bs, cmd, sizeof(cmd));
reply->flags = 0;
}
}
static struct binder_object *bio_alloc_obj(struct binder_io *bio)
{
struct binder_object *obj;
obj = bio_alloc(bio, sizeof(*obj));
if (obj && bio->offs_avail) {
bio->offs_avail--;
*bio->offs++ = ((char*) obj) - ((char*) bio->data0);
return obj;
}
bio->flags |= BIO_F_OVERFLOW;
return 0;
}
void bio_put_uint32(struct binder_io *bio, uint32_t n)
{
uint32_t *ptr = bio_alloc(bio, sizeof(n));
if (ptr)
*ptr = n;
}
void bio_put_obj(struct binder_io *bio, void *ptr)
{
struct binder_object *obj;
obj = bio_alloc_obj(bio);
if (!obj)
return;
obj->flags = 0x7f | FLAT_BINDER_FLAG_ACCEPTS_FDS;
obj->type = BINDER_TYPE_BINDER;
obj->pointer = ptr;
obj->cookie = 0;
}
void bio_put_ref(struct binder_io *bio, void *ptr)
{
struct binder_object *obj;
if (ptr)
obj = bio_alloc_obj(bio);
else
obj = bio_alloc(bio, sizeof(*obj));
if (!obj)
return;
obj->flags = 0x7f | FLAT_BINDER_FLAG_ACCEPTS_FDS;
obj->type = BINDER_TYPE_HANDLE;
obj->pointer = ptr;
obj->cookie = 0;
}
void bio_put_string16(struct binder_io *bio, const uint16_t *str)
{
uint32_t len;
uint16_t *ptr;
if (!str) {
bio_put_uint32(bio, 0xffffffff);
return;
}
len = 0;
while (str[len]) len++;
if (len >= (MAX_BIO_SIZE / sizeof(uint16_t))) {
bio_put_uint32(bio, 0xffffffff);
return;
}
bio_put_uint32(bio, len);
len = (len + 1) * sizeof(uint16_t);
ptr = bio_alloc(bio, len);
if (ptr)
memcpy(ptr, str, len);
}
void bio_put_string16_x(struct binder_io *bio, const char *_str)
{
unsigned char *str = (unsigned char*) _str;
uint32_t len;
uint16_t *ptr;
if (!str) {
bio_put_uint32(bio, 0xffffffff);
return;
}
len = strlen(_str);
if (len >= (MAX_BIO_SIZE / sizeof(uint16_t))) {
bio_put_uint32(bio, 0xffffffff);
return;
}
bio_put_uint32(bio, len);
ptr = bio_alloc(bio, (len + 1) * sizeof(uint16_t));
if (!ptr)
return;
while (*str)
*ptr++ = *str++;
*ptr++ = 0;
}
static void *bio_get(struct binder_io *bio, uint32_t size)
{
size = (size + 3) & (~3);
if (bio->data_avail < size){
bio->data_avail = 0;
bio->flags |= BIO_F_OVERFLOW;
return 0;
} else {
void *ptr = bio->data;
bio->data += size;
bio->data_avail -= size;
return ptr;
}
}
uint32_t bio_get_uint32(struct binder_io *bio)
{
uint32_t *ptr = bio_get(bio, sizeof(*ptr));
return ptr ? *ptr : 0;
}
uint16_t *bio_get_string16(struct binder_io *bio, unsigned *sz)
{
unsigned len;
len = bio_get_uint32(bio);
if (sz)
*sz = len;
return bio_get(bio, (len + 1) * sizeof(uint16_t));
}
static struct binder_object *_bio_get_obj(struct binder_io *bio)
{
unsigned n;
unsigned off = bio->data - bio->data0;
/* TODO: be smarter about this? */
for (n = 0; n < bio->offs_avail; n++) {
if (bio->offs[n] == off)
return bio_get(bio, sizeof(struct binder_object));
}
bio->data_avail = 0;
bio->flags |= BIO_F_OVERFLOW;
return 0;
}
void *bio_get_ref(struct binder_io *bio)
{
struct binder_object *obj;
obj = _bio_get_obj(bio);
if (!obj)
return 0;
if (obj->type == BINDER_TYPE_HANDLE)
return obj->pointer;
return 0;
}