blob: ffb7012bb3a2aa72d90ae1452cba741003ee5a83 [file] [log] [blame]
/*
* Copyright (C) 2007 The Android Open Source Project
*
* Licensed under the Apache License, Version 2.0 (the "License");
* you may not use this file except in compliance with the License.
* You may obtain a copy of the License at
*
* http://www.apache.org/licenses/LICENSE-2.0
*
* Unless required by applicable law or agreed to in writing, software
* distributed under the License is distributed on an "AS IS" BASIS,
* WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
* See the License for the specific language governing permissions and
* limitations under the License.
*/
//#define LOG_NDEBUG 0
#define ATRACE_TAG ATRACE_TAG_GRAPHICS
#include <sys/types.h>
#include <errno.h>
#include <dlfcn.h>
#include <algorithm>
#include <cinttypes>
#include <cmath>
#include <cstdint>
#include <functional>
#include <mutex>
#include <optional>
#include <unordered_map>
#include <cutils/properties.h>
#include <log/log.h>
#include <binder/IPCThreadState.h>
#include <binder/IServiceManager.h>
#include <binder/PermissionCache.h>
#include <compositionengine/CompositionEngine.h>
#include <compositionengine/Display.h>
#include <compositionengine/DisplayColorProfile.h>
#include <compositionengine/Layer.h>
#include <compositionengine/OutputLayer.h>
#include <compositionengine/RenderSurface.h>
#include <compositionengine/impl/LayerCompositionState.h>
#include <compositionengine/impl/OutputCompositionState.h>
#include <compositionengine/impl/OutputLayerCompositionState.h>
#include <dvr/vr_flinger.h>
#include <gui/BufferQueue.h>
#include <gui/DebugEGLImageTracker.h>
#include <gui/GuiConfig.h>
#include <gui/IDisplayEventConnection.h>
#include <gui/IProducerListener.h>
#include <gui/LayerDebugInfo.h>
#include <gui/Surface.h>
#include <input/IInputFlinger.h>
#include <renderengine/RenderEngine.h>
#include <ui/ColorSpace.h>
#include <ui/DebugUtils.h>
#include <ui/DisplayInfo.h>
#include <ui/DisplayStatInfo.h>
#include <ui/GraphicBufferAllocator.h>
#include <ui/PixelFormat.h>
#include <ui/UiConfig.h>
#include <utils/StopWatch.h>
#include <utils/String16.h>
#include <utils/String8.h>
#include <utils/Timers.h>
#include <utils/Trace.h>
#include <utils/misc.h>
#include <private/android_filesystem_config.h>
#include <private/gui/SyncFeatures.h>
#include "BufferLayer.h"
#include "BufferQueueLayer.h"
#include "BufferStateLayer.h"
#include "Client.h"
#include "ColorLayer.h"
#include "Colorizer.h"
#include "ContainerLayer.h"
#include "DisplayDevice.h"
#include "Layer.h"
#include "LayerVector.h"
#include "MonitoredProducer.h"
#include "NativeWindowSurface.h"
#include "RefreshRateOverlay.h"
#include "StartPropertySetThread.h"
#include "SurfaceFlinger.h"
#include "SurfaceInterceptor.h"
#include "DisplayHardware/ComposerHal.h"
#include "DisplayHardware/DisplayIdentification.h"
#include "DisplayHardware/FramebufferSurface.h"
#include "DisplayHardware/HWComposer.h"
#include "DisplayHardware/VirtualDisplaySurface.h"
#include "Effects/Daltonizer.h"
#include "RegionSamplingThread.h"
#include "Scheduler/DispSync.h"
#include "Scheduler/DispSyncSource.h"
#include "Scheduler/EventControlThread.h"
#include "Scheduler/EventThread.h"
#include "Scheduler/InjectVSyncSource.h"
#include "Scheduler/MessageQueue.h"
#include "Scheduler/PhaseOffsets.h"
#include "Scheduler/Scheduler.h"
#include "TimeStats/TimeStats.h"
#include <cutils/compiler.h>
#include "android-base/stringprintf.h"
#include <android/hardware/configstore/1.0/ISurfaceFlingerConfigs.h>
#include <android/hardware/configstore/1.1/ISurfaceFlingerConfigs.h>
#include <android/hardware/configstore/1.1/types.h>
#include <android/hardware/power/1.0/IPower.h>
#include <configstore/Utils.h>
#include <layerproto/LayerProtoParser.h>
#include "SurfaceFlingerProperties.h"
namespace android {
using namespace android::hardware::configstore;
using namespace android::hardware::configstore::V1_0;
using namespace android::sysprop;
using android::hardware::power::V1_0::PowerHint;
using base::StringAppendF;
using ui::ColorMode;
using ui::Dataspace;
using ui::DisplayPrimaries;
using ui::Hdr;
using ui::RenderIntent;
namespace {
#pragma clang diagnostic push
#pragma clang diagnostic error "-Wswitch-enum"
bool isWideColorMode(const ColorMode colorMode) {
switch (colorMode) {
case ColorMode::DISPLAY_P3:
case ColorMode::ADOBE_RGB:
case ColorMode::DCI_P3:
case ColorMode::BT2020:
case ColorMode::DISPLAY_BT2020:
case ColorMode::BT2100_PQ:
case ColorMode::BT2100_HLG:
return true;
case ColorMode::NATIVE:
case ColorMode::STANDARD_BT601_625:
case ColorMode::STANDARD_BT601_625_UNADJUSTED:
case ColorMode::STANDARD_BT601_525:
case ColorMode::STANDARD_BT601_525_UNADJUSTED:
case ColorMode::STANDARD_BT709:
case ColorMode::SRGB:
return false;
}
return false;
}
bool isHdrColorMode(const ColorMode colorMode) {
switch (colorMode) {
case ColorMode::BT2100_PQ:
case ColorMode::BT2100_HLG:
return true;
case ColorMode::DISPLAY_P3:
case ColorMode::ADOBE_RGB:
case ColorMode::DCI_P3:
case ColorMode::BT2020:
case ColorMode::DISPLAY_BT2020:
case ColorMode::NATIVE:
case ColorMode::STANDARD_BT601_625:
case ColorMode::STANDARD_BT601_625_UNADJUSTED:
case ColorMode::STANDARD_BT601_525:
case ColorMode::STANDARD_BT601_525_UNADJUSTED:
case ColorMode::STANDARD_BT709:
case ColorMode::SRGB:
return false;
}
return false;
}
ui::Transform::orientation_flags fromSurfaceComposerRotation(ISurfaceComposer::Rotation rotation) {
switch (rotation) {
case ISurfaceComposer::eRotateNone:
return ui::Transform::ROT_0;
case ISurfaceComposer::eRotate90:
return ui::Transform::ROT_90;
case ISurfaceComposer::eRotate180:
return ui::Transform::ROT_180;
case ISurfaceComposer::eRotate270:
return ui::Transform::ROT_270;
}
ALOGE("Invalid rotation passed to captureScreen(): %d\n", rotation);
return ui::Transform::ROT_0;
}
#pragma clang diagnostic pop
class ConditionalLock {
public:
ConditionalLock(Mutex& mutex, bool lock) : mMutex(mutex), mLocked(lock) {
if (lock) {
mMutex.lock();
}
}
~ConditionalLock() { if (mLocked) mMutex.unlock(); }
private:
Mutex& mMutex;
bool mLocked;
};
// Currently we only support V0_SRGB and DISPLAY_P3 as composition preference.
bool validateCompositionDataspace(Dataspace dataspace) {
return dataspace == Dataspace::V0_SRGB || dataspace == Dataspace::DISPLAY_P3;
}
} // namespace anonymous
// ---------------------------------------------------------------------------
const String16 sHardwareTest("android.permission.HARDWARE_TEST");
const String16 sAccessSurfaceFlinger("android.permission.ACCESS_SURFACE_FLINGER");
const String16 sReadFramebuffer("android.permission.READ_FRAME_BUFFER");
const String16 sDump("android.permission.DUMP");
// ---------------------------------------------------------------------------
int64_t SurfaceFlinger::dispSyncPresentTimeOffset;
bool SurfaceFlinger::useHwcForRgbToYuv;
uint64_t SurfaceFlinger::maxVirtualDisplaySize;
bool SurfaceFlinger::hasSyncFramework;
bool SurfaceFlinger::useVrFlinger;
int64_t SurfaceFlinger::maxFrameBufferAcquiredBuffers;
bool SurfaceFlinger::hasWideColorDisplay;
int SurfaceFlinger::primaryDisplayOrientation = DisplayState::eOrientationDefault;
bool SurfaceFlinger::useColorManagement;
bool SurfaceFlinger::useContextPriority;
Dataspace SurfaceFlinger::defaultCompositionDataspace = Dataspace::V0_SRGB;
ui::PixelFormat SurfaceFlinger::defaultCompositionPixelFormat = ui::PixelFormat::RGBA_8888;
Dataspace SurfaceFlinger::wideColorGamutCompositionDataspace = Dataspace::V0_SRGB;
ui::PixelFormat SurfaceFlinger::wideColorGamutCompositionPixelFormat = ui::PixelFormat::RGBA_8888;
std::string getHwcServiceName() {
char value[PROPERTY_VALUE_MAX] = {};
property_get("debug.sf.hwc_service_name", value, "default");
ALOGI("Using HWComposer service: '%s'", value);
return std::string(value);
}
bool useTrebleTestingOverride() {
char value[PROPERTY_VALUE_MAX] = {};
property_get("debug.sf.treble_testing_override", value, "false");
ALOGI("Treble testing override: '%s'", value);
return std::string(value) == "true";
}
std::string decodeDisplayColorSetting(DisplayColorSetting displayColorSetting) {
switch(displayColorSetting) {
case DisplayColorSetting::MANAGED:
return std::string("Managed");
case DisplayColorSetting::UNMANAGED:
return std::string("Unmanaged");
case DisplayColorSetting::ENHANCED:
return std::string("Enhanced");
default:
return std::string("Unknown ") +
std::to_string(static_cast<int>(displayColorSetting));
}
}
SurfaceFlingerBE::SurfaceFlingerBE() : mHwcServiceName(getHwcServiceName()) {}
SurfaceFlinger::SurfaceFlinger(Factory& factory, SkipInitializationTag)
: mFactory(factory),
mPhaseOffsets(mFactory.createPhaseOffsets()),
mInterceptor(mFactory.createSurfaceInterceptor(this)),
mTimeStats(mFactory.createTimeStats()),
mEventQueue(mFactory.createMessageQueue()),
mCompositionEngine(mFactory.createCompositionEngine()) {}
SurfaceFlinger::SurfaceFlinger(Factory& factory) : SurfaceFlinger(factory, SkipInitialization) {
ALOGI("SurfaceFlinger is starting");
hasSyncFramework = running_without_sync_framework(true);
dispSyncPresentTimeOffset = present_time_offset_from_vsync_ns(0);
useHwcForRgbToYuv = force_hwc_copy_for_virtual_displays(false);
maxVirtualDisplaySize = max_virtual_display_dimension(0);
// Vr flinger is only enabled on Daydream ready devices.
useVrFlinger = use_vr_flinger(false);
maxFrameBufferAcquiredBuffers = max_frame_buffer_acquired_buffers(2);
hasWideColorDisplay = has_wide_color_display(false);
useColorManagement = use_color_management(false);
mDefaultCompositionDataspace =
static_cast<ui::Dataspace>(default_composition_dataspace(Dataspace::V0_SRGB));
mWideColorGamutCompositionDataspace = static_cast<ui::Dataspace>(wcg_composition_dataspace(
hasWideColorDisplay ? Dataspace::DISPLAY_P3 : Dataspace::V0_SRGB));
defaultCompositionDataspace = mDefaultCompositionDataspace;
wideColorGamutCompositionDataspace = mWideColorGamutCompositionDataspace;
defaultCompositionPixelFormat = static_cast<ui::PixelFormat>(
default_composition_pixel_format(ui::PixelFormat::RGBA_8888));
wideColorGamutCompositionPixelFormat =
static_cast<ui::PixelFormat>(wcg_composition_pixel_format(ui::PixelFormat::RGBA_8888));
mColorSpaceAgnosticDataspace =
static_cast<ui::Dataspace>(color_space_agnostic_dataspace(Dataspace::UNKNOWN));
useContextPriority = use_context_priority(true);
auto tmpPrimaryDisplayOrientation = primary_display_orientation(
SurfaceFlingerProperties::primary_display_orientation_values::ORIENTATION_0);
switch (tmpPrimaryDisplayOrientation) {
case SurfaceFlingerProperties::primary_display_orientation_values::ORIENTATION_90:
SurfaceFlinger::primaryDisplayOrientation = DisplayState::eOrientation90;
break;
case SurfaceFlingerProperties::primary_display_orientation_values::ORIENTATION_180:
SurfaceFlinger::primaryDisplayOrientation = DisplayState::eOrientation180;
break;
case SurfaceFlingerProperties::primary_display_orientation_values::ORIENTATION_270:
SurfaceFlinger::primaryDisplayOrientation = DisplayState::eOrientation270;
break;
default:
SurfaceFlinger::primaryDisplayOrientation = DisplayState::eOrientationDefault;
break;
}
ALOGV("Primary Display Orientation is set to %2d.", SurfaceFlinger::primaryDisplayOrientation);
mInternalDisplayPrimaries = sysprop::getDisplayNativePrimaries();
// debugging stuff...
char value[PROPERTY_VALUE_MAX];
property_get("ro.bq.gpu_to_cpu_unsupported", value, "0");
mGpuToCpuSupported = !atoi(value);
property_get("debug.sf.showupdates", value, "0");
mDebugRegion = atoi(value);
ALOGI_IF(mDebugRegion, "showupdates enabled");
// DDMS debugging deprecated (b/120782499)
property_get("debug.sf.ddms", value, "0");
int debugDdms = atoi(value);
ALOGI_IF(debugDdms, "DDMS debugging not supported");
property_get("debug.sf.disable_backpressure", value, "0");
mPropagateBackpressure = !atoi(value);
ALOGI_IF(!mPropagateBackpressure, "Disabling backpressure propagation");
property_get("debug.sf.enable_gl_backpressure", value, "0");
mPropagateBackpressureClientComposition = atoi(value);
ALOGI_IF(mPropagateBackpressureClientComposition,
"Enabling backpressure propagation for Client Composition");
property_get("debug.sf.enable_hwc_vds", value, "0");
mUseHwcVirtualDisplays = atoi(value);
ALOGI_IF(mUseHwcVirtualDisplays, "Enabling HWC virtual displays");
property_get("ro.sf.disable_triple_buffer", value, "0");
mLayerTripleBufferingDisabled = atoi(value);
ALOGI_IF(mLayerTripleBufferingDisabled, "Disabling Triple Buffering");
const size_t defaultListSize = MAX_LAYERS;
auto listSize = property_get_int32("debug.sf.max_igbp_list_size", int32_t(defaultListSize));
mMaxGraphicBufferProducerListSize = (listSize > 0) ? size_t(listSize) : defaultListSize;
mUseSmart90ForVideo = use_smart_90_for_video(false);
property_get("debug.sf.use_smart_90_for_video", value, "0");
int int_value = atoi(value);
if (int_value) {
mUseSmart90ForVideo = true;
}
property_get("debug.sf.luma_sampling", value, "1");
mLumaSampling = atoi(value);
const auto [early, gl, late] = mPhaseOffsets->getCurrentOffsets();
mVsyncModulator.setPhaseOffsets(early, gl, late,
mPhaseOffsets->getOffsetThresholdForNextVsync());
// We should be reading 'persist.sys.sf.color_saturation' here
// but since /data may be encrypted, we need to wait until after vold
// comes online to attempt to read the property. The property is
// instead read after the boot animation
if (useTrebleTestingOverride()) {
// Without the override SurfaceFlinger cannot connect to HIDL
// services that are not listed in the manifests. Considered
// deriving the setting from the set service name, but it
// would be brittle if the name that's not 'default' is used
// for production purposes later on.
setenv("TREBLE_TESTING_OVERRIDE", "true", true);
}
}
void SurfaceFlinger::onFirstRef()
{
mEventQueue->init(this);
}
SurfaceFlinger::~SurfaceFlinger() = default;
void SurfaceFlinger::binderDied(const wp<IBinder>& /* who */)
{
// the window manager died on us. prepare its eulogy.
// restore initial conditions (default device unblank, etc)
initializeDisplays();
// restart the boot-animation
startBootAnim();
}
static sp<ISurfaceComposerClient> initClient(const sp<Client>& client) {
status_t err = client->initCheck();
if (err == NO_ERROR) {
return client;
}
return nullptr;
}
sp<ISurfaceComposerClient> SurfaceFlinger::createConnection() {
return initClient(new Client(this));
}
sp<IBinder> SurfaceFlinger::createDisplay(const String8& displayName,
bool secure)
{
class DisplayToken : public BBinder {
sp<SurfaceFlinger> flinger;
virtual ~DisplayToken() {
// no more references, this display must be terminated
Mutex::Autolock _l(flinger->mStateLock);
flinger->mCurrentState.displays.removeItem(this);
flinger->setTransactionFlags(eDisplayTransactionNeeded);
}
public:
explicit DisplayToken(const sp<SurfaceFlinger>& flinger)
: flinger(flinger) {
}
};
sp<BBinder> token = new DisplayToken(this);
Mutex::Autolock _l(mStateLock);
// Display ID is assigned when virtual display is allocated by HWC.
DisplayDeviceState state;
state.isSecure = secure;
state.displayName = displayName;
mCurrentState.displays.add(token, state);
mInterceptor->saveDisplayCreation(state);
return token;
}
void SurfaceFlinger::destroyDisplay(const sp<IBinder>& displayToken) {
Mutex::Autolock _l(mStateLock);
ssize_t index = mCurrentState.displays.indexOfKey(displayToken);
if (index < 0) {
ALOGE("destroyDisplay: Invalid display token %p", displayToken.get());
return;
}
const DisplayDeviceState& state = mCurrentState.displays.valueAt(index);
if (!state.isVirtual()) {
ALOGE("destroyDisplay called for non-virtual display");
return;
}
mInterceptor->saveDisplayDeletion(state.sequenceId);
mCurrentState.displays.removeItemsAt(index);
setTransactionFlags(eDisplayTransactionNeeded);
}
std::vector<PhysicalDisplayId> SurfaceFlinger::getPhysicalDisplayIds() const {
Mutex::Autolock lock(mStateLock);
const auto internalDisplayId = getInternalDisplayIdLocked();
if (!internalDisplayId) {
return {};
}
std::vector<PhysicalDisplayId> displayIds;
displayIds.reserve(mPhysicalDisplayTokens.size());
displayIds.push_back(internalDisplayId->value);
for (const auto& [id, token] : mPhysicalDisplayTokens) {
if (id != *internalDisplayId) {
displayIds.push_back(id.value);
}
}
return displayIds;
}
sp<IBinder> SurfaceFlinger::getPhysicalDisplayToken(PhysicalDisplayId displayId) const {
Mutex::Autolock lock(mStateLock);
return getPhysicalDisplayTokenLocked(DisplayId{displayId});
}
status_t SurfaceFlinger::getColorManagement(bool* outGetColorManagement) const {
if (!outGetColorManagement) {
return BAD_VALUE;
}
*outGetColorManagement = useColorManagement;
return NO_ERROR;
}
HWComposer& SurfaceFlinger::getHwComposer() const {
return mCompositionEngine->getHwComposer();
}
renderengine::RenderEngine& SurfaceFlinger::getRenderEngine() const {
return mCompositionEngine->getRenderEngine();
}
compositionengine::CompositionEngine& SurfaceFlinger::getCompositionEngine() const {
return *mCompositionEngine.get();
}
void SurfaceFlinger::bootFinished()
{
if (mStartPropertySetThread->join() != NO_ERROR) {
ALOGE("Join StartPropertySetThread failed!");
}
const nsecs_t now = systemTime();
const nsecs_t duration = now - mBootTime;
ALOGI("Boot is finished (%ld ms)", long(ns2ms(duration)) );
// wait patiently for the window manager death
const String16 name("window");
sp<IBinder> window(defaultServiceManager()->getService(name));
if (window != 0) {
window->linkToDeath(static_cast<IBinder::DeathRecipient*>(this));
}
sp<IBinder> input(defaultServiceManager()->getService(
String16("inputflinger")));
if (input == nullptr) {
ALOGE("Failed to link to input service");
} else {
mInputFlinger = interface_cast<IInputFlinger>(input);
}
if (mVrFlinger) {
mVrFlinger->OnBootFinished();
}
// stop boot animation
// formerly we would just kill the process, but we now ask it to exit so it
// can choose where to stop the animation.
property_set("service.bootanim.exit", "1");
const int LOGTAG_SF_STOP_BOOTANIM = 60110;
LOG_EVENT_LONG(LOGTAG_SF_STOP_BOOTANIM,
ns2ms(systemTime(SYSTEM_TIME_MONOTONIC)));
postMessageAsync(new LambdaMessage([this]() NO_THREAD_SAFETY_ANALYSIS {
readPersistentProperties();
mBootStage = BootStage::FINISHED;
// set the refresh rate according to the policy
const auto& performanceRefreshRate =
mRefreshRateConfigs.getRefreshRate(RefreshRateType::PERFORMANCE);
if (performanceRefreshRate && isDisplayConfigAllowed(performanceRefreshRate->configId)) {
setRefreshRateTo(RefreshRateType::PERFORMANCE, Scheduler::ConfigEvent::None);
} else {
setRefreshRateTo(RefreshRateType::DEFAULT, Scheduler::ConfigEvent::None);
}
}));
}
uint32_t SurfaceFlinger::getNewTexture() {
{
std::lock_guard lock(mTexturePoolMutex);
if (!mTexturePool.empty()) {
uint32_t name = mTexturePool.back();
mTexturePool.pop_back();
ATRACE_INT("TexturePoolSize", mTexturePool.size());
return name;
}
// The pool was too small, so increase it for the future
++mTexturePoolSize;
}
// The pool was empty, so we need to get a new texture name directly using a
// blocking call to the main thread
uint32_t name = 0;
postMessageSync(new LambdaMessage([&]() { getRenderEngine().genTextures(1, &name); }));
return name;
}
void SurfaceFlinger::deleteTextureAsync(uint32_t texture) {
std::lock_guard lock(mTexturePoolMutex);
// We don't change the pool size, so the fix-up logic in postComposition will decide whether
// to actually delete this or not based on mTexturePoolSize
mTexturePool.push_back(texture);
ATRACE_INT("TexturePoolSize", mTexturePool.size());
}
// Do not call property_set on main thread which will be blocked by init
// Use StartPropertySetThread instead.
void SurfaceFlinger::init() {
ALOGI( "SurfaceFlinger's main thread ready to run. "
"Initializing graphics H/W...");
ALOGI("Phase offset NS: %" PRId64 "", mPhaseOffsets->getCurrentAppOffset());
Mutex::Autolock _l(mStateLock);
// start the EventThread
mScheduler =
getFactory().createScheduler([this](bool enabled) { setPrimaryVsyncEnabled(enabled); },
mRefreshRateConfigs);
auto resyncCallback =
mScheduler->makeResyncCallback(std::bind(&SurfaceFlinger::getVsyncPeriod, this));
mAppConnectionHandle =
mScheduler->createConnection("app", mVsyncModulator.getOffsets().app,
mPhaseOffsets->getOffsetThresholdForNextVsync(),
resyncCallback,
impl::EventThread::InterceptVSyncsCallback());
mSfConnectionHandle =
mScheduler->createConnection("sf", mVsyncModulator.getOffsets().sf,
mPhaseOffsets->getOffsetThresholdForNextVsync(),
resyncCallback, [this](nsecs_t timestamp) {
mInterceptor->saveVSyncEvent(timestamp);
});
mEventQueue->setEventConnection(mScheduler->getEventConnection(mSfConnectionHandle));
mVsyncModulator.setSchedulerAndHandles(mScheduler.get(), mAppConnectionHandle.get(),
mSfConnectionHandle.get());
mRegionSamplingThread =
new RegionSamplingThread(*this, *mScheduler,
RegionSamplingThread::EnvironmentTimingTunables());
// Get a RenderEngine for the given display / config (can't fail)
int32_t renderEngineFeature = 0;
renderEngineFeature |= (useColorManagement ?
renderengine::RenderEngine::USE_COLOR_MANAGEMENT : 0);
renderEngineFeature |= (useContextPriority ?
renderengine::RenderEngine::USE_HIGH_PRIORITY_CONTEXT : 0);
renderEngineFeature |=
(enable_protected_contents(false) ? renderengine::RenderEngine::ENABLE_PROTECTED_CONTEXT
: 0);
// TODO(b/77156734): We need to stop casting and use HAL types when possible.
// Sending maxFrameBufferAcquiredBuffers as the cache size is tightly tuned to single-display.
mCompositionEngine->setRenderEngine(
renderengine::RenderEngine::create(static_cast<int32_t>(defaultCompositionPixelFormat),
renderEngineFeature, maxFrameBufferAcquiredBuffers));
LOG_ALWAYS_FATAL_IF(mVrFlingerRequestsDisplay,
"Starting with vr flinger active is not currently supported.");
mCompositionEngine->setHwComposer(getFactory().createHWComposer(getBE().mHwcServiceName));
mCompositionEngine->getHwComposer().registerCallback(this, getBE().mComposerSequenceId);
// Process any initial hotplug and resulting display changes.
processDisplayHotplugEventsLocked();
const auto display = getDefaultDisplayDeviceLocked();
LOG_ALWAYS_FATAL_IF(!display, "Missing internal display after registering composer callback.");
LOG_ALWAYS_FATAL_IF(!getHwComposer().isConnected(*display->getId()),
"Internal display is disconnected.");
if (useVrFlinger) {
auto vrFlingerRequestDisplayCallback = [this](bool requestDisplay) {
// This callback is called from the vr flinger dispatch thread. We
// need to call signalTransaction(), which requires holding
// mStateLock when we're not on the main thread. Acquiring
// mStateLock from the vr flinger dispatch thread might trigger a
// deadlock in surface flinger (see b/66916578), so post a message
// to be handled on the main thread instead.
postMessageAsync(new LambdaMessage([=] {
ALOGI("VR request display mode: requestDisplay=%d", requestDisplay);
mVrFlingerRequestsDisplay = requestDisplay;
signalTransaction();
}));
};
mVrFlinger = dvr::VrFlinger::Create(getHwComposer().getComposer(),
getHwComposer()
.fromPhysicalDisplayId(*display->getId())
.value_or(0),
vrFlingerRequestDisplayCallback);
if (!mVrFlinger) {
ALOGE("Failed to start vrflinger");
}
}
// initialize our drawing state
mDrawingState = mCurrentState;
// set initial conditions (e.g. unblank default device)
initializeDisplays();
getRenderEngine().primeCache();
// Inform native graphics APIs whether the present timestamp is supported:
const bool presentFenceReliable =
!getHwComposer().hasCapability(HWC2::Capability::PresentFenceIsNotReliable);
mStartPropertySetThread = getFactory().createStartPropertySetThread(presentFenceReliable);
if (mStartPropertySetThread->Start() != NO_ERROR) {
ALOGE("Run StartPropertySetThread failed!");
}
mScheduler->setChangeRefreshRateCallback(
[this](RefreshRateType type, Scheduler::ConfigEvent event) {
Mutex::Autolock lock(mStateLock);
setRefreshRateTo(type, event);
});
mScheduler->setGetCurrentRefreshRateTypeCallback([this] {
Mutex::Autolock lock(mStateLock);
const auto display = getDefaultDisplayDeviceLocked();
if (!display) {
// If we don't have a default display the fallback to the default
// refresh rate type
return RefreshRateType::DEFAULT;
}
const int configId = display->getActiveConfig();
for (const auto& [type, refresh] : mRefreshRateConfigs.getRefreshRates()) {
if (refresh && refresh->configId == configId) {
return type;
}
}
// This should never happen, but just gracefully fallback to default.
return RefreshRateType::DEFAULT;
});
mScheduler->setGetVsyncPeriodCallback([this] {
Mutex::Autolock lock(mStateLock);
return getVsyncPeriod();
});
mRefreshRateConfigs.populate(getHwComposer().getConfigs(*display->getId()));
mRefreshRateStats.setConfigMode(getHwComposer().getActiveConfigIndex(*display->getId()));
ALOGV("Done initializing");
}
void SurfaceFlinger::readPersistentProperties() {
Mutex::Autolock _l(mStateLock);
char value[PROPERTY_VALUE_MAX];
property_get("persist.sys.sf.color_saturation", value, "1.0");
mGlobalSaturationFactor = atof(value);
updateColorMatrixLocked();
ALOGV("Saturation is set to %.2f", mGlobalSaturationFactor);
property_get("persist.sys.sf.native_mode", value, "0");
mDisplayColorSetting = static_cast<DisplayColorSetting>(atoi(value));
property_get("persist.sys.sf.color_mode", value, "0");
mForceColorMode = static_cast<ColorMode>(atoi(value));
}
void SurfaceFlinger::startBootAnim() {
// Start boot animation service by setting a property mailbox
// if property setting thread is already running, Start() will be just a NOP
mStartPropertySetThread->Start();
// Wait until property was set
if (mStartPropertySetThread->join() != NO_ERROR) {
ALOGE("Join StartPropertySetThread failed!");
}
}
size_t SurfaceFlinger::getMaxTextureSize() const {
return getRenderEngine().getMaxTextureSize();
}
size_t SurfaceFlinger::getMaxViewportDims() const {
return getRenderEngine().getMaxViewportDims();
}
// ----------------------------------------------------------------------------
bool SurfaceFlinger::authenticateSurfaceTexture(
const sp<IGraphicBufferProducer>& bufferProducer) const {
Mutex::Autolock _l(mStateLock);
return authenticateSurfaceTextureLocked(bufferProducer);
}
bool SurfaceFlinger::authenticateSurfaceTextureLocked(
const sp<IGraphicBufferProducer>& bufferProducer) const {
sp<IBinder> surfaceTextureBinder(IInterface::asBinder(bufferProducer));
return mGraphicBufferProducerList.count(surfaceTextureBinder.get()) > 0;
}
status_t SurfaceFlinger::getSupportedFrameTimestamps(
std::vector<FrameEvent>* outSupported) const {
*outSupported = {
FrameEvent::REQUESTED_PRESENT,
FrameEvent::ACQUIRE,
FrameEvent::LATCH,
FrameEvent::FIRST_REFRESH_START,
FrameEvent::LAST_REFRESH_START,
FrameEvent::GPU_COMPOSITION_DONE,
FrameEvent::DEQUEUE_READY,
FrameEvent::RELEASE,
};
ConditionalLock _l(mStateLock,
std::this_thread::get_id() != mMainThreadId);
if (!getHwComposer().hasCapability(
HWC2::Capability::PresentFenceIsNotReliable)) {
outSupported->push_back(FrameEvent::DISPLAY_PRESENT);
}
return NO_ERROR;
}
status_t SurfaceFlinger::getDisplayConfigs(const sp<IBinder>& displayToken,
Vector<DisplayInfo>* configs) {
if (!displayToken || !configs) {
return BAD_VALUE;
}
Mutex::Autolock lock(mStateLock);
const auto displayId = getPhysicalDisplayIdLocked(displayToken);
if (!displayId) {
return NAME_NOT_FOUND;
}
// TODO: Not sure if display density should handled by SF any longer
class Density {
static float getDensityFromProperty(char const* propName) {
char property[PROPERTY_VALUE_MAX];
float density = 0.0f;
if (property_get(propName, property, nullptr) > 0) {
density = strtof(property, nullptr);
}
return density;
}
public:
static float getEmuDensity() {
return getDensityFromProperty("qemu.sf.lcd_density"); }
static float getBuildDensity() {
return getDensityFromProperty("ro.sf.lcd_density"); }
};
configs->clear();
for (const auto& hwConfig : getHwComposer().getConfigs(*displayId)) {
DisplayInfo info = DisplayInfo();
float xdpi = hwConfig->getDpiX();
float ydpi = hwConfig->getDpiY();
info.w = hwConfig->getWidth();
info.h = hwConfig->getHeight();
// Default display viewport to display width and height
info.viewportW = info.w;
info.viewportH = info.h;
if (displayId == getInternalDisplayIdLocked()) {
// The density of the device is provided by a build property
float density = Density::getBuildDensity() / 160.0f;
if (density == 0) {
// the build doesn't provide a density -- this is wrong!
// use xdpi instead
ALOGE("ro.sf.lcd_density must be defined as a build property");
density = xdpi / 160.0f;
}
if (Density::getEmuDensity()) {
// if "qemu.sf.lcd_density" is specified, it overrides everything
xdpi = ydpi = density = Density::getEmuDensity();
density /= 160.0f;
}
info.density = density;
// TODO: this needs to go away (currently needed only by webkit)
const auto display = getDefaultDisplayDeviceLocked();
info.orientation = display ? display->getOrientation() : 0;
// This is for screenrecord
const Rect viewport = display->getViewport();
if (viewport.isValid()) {
info.viewportW = uint32_t(viewport.getWidth());
info.viewportH = uint32_t(viewport.getHeight());
}
} else {
// TODO: where should this value come from?
static const int TV_DENSITY = 213;
info.density = TV_DENSITY / 160.0f;
info.orientation = 0;
}
info.xdpi = xdpi;
info.ydpi = ydpi;
info.fps = 1e9 / hwConfig->getVsyncPeriod();
const auto refreshRateType = mRefreshRateConfigs.getRefreshRateType(hwConfig->getId());
const auto offset = mPhaseOffsets->getOffsetsForRefreshRate(refreshRateType);
info.appVsyncOffset = offset.late.app;
// This is how far in advance a buffer must be queued for
// presentation at a given time. If you want a buffer to appear
// on the screen at time N, you must submit the buffer before
// (N - presentationDeadline).
//
// Normally it's one full refresh period (to give SF a chance to
// latch the buffer), but this can be reduced by configuring a
// DispSync offset. Any additional delays introduced by the hardware
// composer or panel must be accounted for here.
//
// We add an additional 1ms to allow for processing time and
// differences between the ideal and actual refresh rate.
info.presentationDeadline = hwConfig->getVsyncPeriod() - offset.late.sf + 1000000;
// All non-virtual displays are currently considered secure.
info.secure = true;
if (displayId == getInternalDisplayIdLocked() &&
primaryDisplayOrientation & DisplayState::eOrientationSwapMask) {
std::swap(info.w, info.h);
}
configs->push_back(info);
}
return NO_ERROR;
}
status_t SurfaceFlinger::getDisplayStats(const sp<IBinder>&, DisplayStatInfo* stats) {
if (!stats) {
return BAD_VALUE;
}
mScheduler->getDisplayStatInfo(stats);
return NO_ERROR;
}
int SurfaceFlinger::getActiveConfig(const sp<IBinder>& displayToken) {
const auto display = getDisplayDevice(displayToken);
if (!display) {
ALOGE("getActiveConfig: Invalid display token %p", displayToken.get());
return BAD_VALUE;
}
return display->getActiveConfig();
}
void SurfaceFlinger::setDesiredActiveConfig(const ActiveConfigInfo& info) {
ATRACE_CALL();
// Don't check against the current mode yet. Worst case we set the desired
// config twice. However event generation config might have changed so we need to update it
// accordingly
std::lock_guard<std::mutex> lock(mActiveConfigLock);
const Scheduler::ConfigEvent prevConfig = mDesiredActiveConfig.event;
mDesiredActiveConfig = info;
mDesiredActiveConfig.event = mDesiredActiveConfig.event | prevConfig;
if (!mDesiredActiveConfigChanged) {
// This will trigger HWC refresh without resetting the idle timer.
repaintEverythingForHWC();
// Start receiving vsync samples now, so that we can detect a period
// switch.
mScheduler->resyncToHardwareVsync(true, getVsyncPeriod());
// As we called to set period, we will call to onRefreshRateChangeCompleted once
// DispSync model is locked.
mVsyncModulator.onRefreshRateChangeInitiated();
mPhaseOffsets->setRefreshRateType(info.type);
const auto [early, gl, late] = mPhaseOffsets->getCurrentOffsets();
mVsyncModulator.setPhaseOffsets(early, gl, late,
mPhaseOffsets->getOffsetThresholdForNextVsync());
}
mDesiredActiveConfigChanged = true;
ATRACE_INT("DesiredActiveConfigChanged", mDesiredActiveConfigChanged);
if (mRefreshRateOverlay) {
mRefreshRateOverlay->changeRefreshRate(mDesiredActiveConfig.type);
}
}
status_t SurfaceFlinger::setActiveConfig(const sp<IBinder>& displayToken, int mode) {
ATRACE_CALL();
std::vector<int32_t> allowedConfig;
allowedConfig.push_back(mode);
return setAllowedDisplayConfigs(displayToken, allowedConfig);
}
void SurfaceFlinger::setActiveConfigInternal() {
ATRACE_CALL();
const auto display = getDefaultDisplayDeviceLocked();
if (!display) {
return;
}
std::lock_guard<std::mutex> lock(mActiveConfigLock);
mRefreshRateStats.setConfigMode(mUpcomingActiveConfig.configId);
display->setActiveConfig(mUpcomingActiveConfig.configId);
mPhaseOffsets->setRefreshRateType(mUpcomingActiveConfig.type);
const auto [early, gl, late] = mPhaseOffsets->getCurrentOffsets();
mVsyncModulator.setPhaseOffsets(early, gl, late,
mPhaseOffsets->getOffsetThresholdForNextVsync());
ATRACE_INT("ActiveConfigMode", mUpcomingActiveConfig.configId);
if (mUpcomingActiveConfig.event != Scheduler::ConfigEvent::None) {
mScheduler->onConfigChanged(mAppConnectionHandle, display->getId()->value,
mUpcomingActiveConfig.configId);
}
}
void SurfaceFlinger::desiredActiveConfigChangeDone() {
std::lock_guard<std::mutex> lock(mActiveConfigLock);
mDesiredActiveConfig.event = Scheduler::ConfigEvent::None;
mDesiredActiveConfigChanged = false;
ATRACE_INT("DesiredActiveConfigChanged", mDesiredActiveConfigChanged);
mScheduler->resyncToHardwareVsync(true, getVsyncPeriod());
mPhaseOffsets->setRefreshRateType(mUpcomingActiveConfig.type);
const auto [early, gl, late] = mPhaseOffsets->getCurrentOffsets();
mVsyncModulator.setPhaseOffsets(early, gl, late,
mPhaseOffsets->getOffsetThresholdForNextVsync());
}
bool SurfaceFlinger::performSetActiveConfig() {
ATRACE_CALL();
if (mCheckPendingFence) {
if (previousFrameMissed()) {
// fence has not signaled yet. wait for the next invalidate
mEventQueue->invalidate();
return true;
}
// We received the present fence from the HWC, so we assume it successfully updated
// the config, hence we update SF.
mCheckPendingFence = false;
setActiveConfigInternal();
}
// Store the local variable to release the lock.
ActiveConfigInfo desiredActiveConfig;
{
std::lock_guard<std::mutex> lock(mActiveConfigLock);
if (!mDesiredActiveConfigChanged) {
return false;
}
desiredActiveConfig = mDesiredActiveConfig;
}
const auto display = getDefaultDisplayDeviceLocked();
if (!display || display->getActiveConfig() == desiredActiveConfig.configId) {
// display is not valid or we are already in the requested mode
// on both cases there is nothing left to do
desiredActiveConfigChangeDone();
return false;
}
// Desired active config was set, it is different than the config currently in use, however
// allowed configs might have change by the time we process the refresh.
// Make sure the desired config is still allowed
if (!isDisplayConfigAllowed(desiredActiveConfig.configId)) {
desiredActiveConfigChangeDone();
return false;
}
mUpcomingActiveConfig = desiredActiveConfig;
const auto displayId = display->getId();
LOG_ALWAYS_FATAL_IF(!displayId);
ATRACE_INT("ActiveConfigModeHWC", mUpcomingActiveConfig.configId);
getHwComposer().setActiveConfig(*displayId, mUpcomingActiveConfig.configId);
// we need to submit an empty frame to HWC to start the process
mCheckPendingFence = true;
mEventQueue->invalidate();
return false;
}
status_t SurfaceFlinger::getDisplayColorModes(const sp<IBinder>& displayToken,
Vector<ColorMode>* outColorModes) {
if (!displayToken || !outColorModes) {
return BAD_VALUE;
}
std::vector<ColorMode> modes;
bool isInternalDisplay = false;
{
ConditionalLock lock(mStateLock, std::this_thread::get_id() != mMainThreadId);
const auto displayId = getPhysicalDisplayIdLocked(displayToken);
if (!displayId) {
return NAME_NOT_FOUND;
}
modes = getHwComposer().getColorModes(*displayId);
isInternalDisplay = displayId == getInternalDisplayIdLocked();
}
outColorModes->clear();
// If it's built-in display and the configuration claims it's not wide color capable,
// filter out all wide color modes. The typical reason why this happens is that the
// hardware is not good enough to support GPU composition of wide color, and thus the
// OEMs choose to disable this capability.
if (isInternalDisplay && !hasWideColorDisplay) {
std::remove_copy_if(modes.cbegin(), modes.cend(), std::back_inserter(*outColorModes),
isWideColorMode);
} else {
std::copy(modes.cbegin(), modes.cend(), std::back_inserter(*outColorModes));
}
return NO_ERROR;
}
status_t SurfaceFlinger::getDisplayNativePrimaries(const sp<IBinder>& displayToken,
ui::DisplayPrimaries &primaries) {
if (!displayToken) {
return BAD_VALUE;
}
// Currently we only support this API for a single internal display.
if (getInternalDisplayToken() != displayToken) {
return BAD_VALUE;
}
memcpy(&primaries, &mInternalDisplayPrimaries, sizeof(ui::DisplayPrimaries));
return NO_ERROR;
}
ColorMode SurfaceFlinger::getActiveColorMode(const sp<IBinder>& displayToken) {
if (const auto display = getDisplayDevice(displayToken)) {
return display->getCompositionDisplay()->getState().colorMode;
}
return static_cast<ColorMode>(BAD_VALUE);
}
status_t SurfaceFlinger::setActiveColorMode(const sp<IBinder>& displayToken, ColorMode mode) {
postMessageSync(new LambdaMessage([&] {
Vector<ColorMode> modes;
getDisplayColorModes(displayToken, &modes);
bool exists = std::find(std::begin(modes), std::end(modes), mode) != std::end(modes);
if (mode < ColorMode::NATIVE || !exists) {
ALOGE("Attempt to set invalid active color mode %s (%d) for display token %p",
decodeColorMode(mode).c_str(), mode, displayToken.get());
return;
}
const auto display = getDisplayDevice(displayToken);
if (!display) {
ALOGE("Attempt to set active color mode %s (%d) for invalid display token %p",
decodeColorMode(mode).c_str(), mode, displayToken.get());
} else if (display->isVirtual()) {
ALOGW("Attempt to set active color mode %s (%d) for virtual display",
decodeColorMode(mode).c_str(), mode);
} else {
display->getCompositionDisplay()->setColorMode(mode, Dataspace::UNKNOWN,
RenderIntent::COLORIMETRIC);
}
}));
return NO_ERROR;
}
status_t SurfaceFlinger::clearAnimationFrameStats() {
Mutex::Autolock _l(mStateLock);
mAnimFrameTracker.clearStats();
return NO_ERROR;
}
status_t SurfaceFlinger::getAnimationFrameStats(FrameStats* outStats) const {
Mutex::Autolock _l(mStateLock);
mAnimFrameTracker.getStats(outStats);
return NO_ERROR;
}
status_t SurfaceFlinger::getHdrCapabilities(const sp<IBinder>& displayToken,
HdrCapabilities* outCapabilities) const {
Mutex::Autolock _l(mStateLock);
const auto display = getDisplayDeviceLocked(displayToken);
if (!display) {
ALOGE("getHdrCapabilities: Invalid display token %p", displayToken.get());
return BAD_VALUE;
}
// At this point the DisplayDeivce should already be set up,
// meaning the luminance information is already queried from
// hardware composer and stored properly.
const HdrCapabilities& capabilities = display->getHdrCapabilities();
*outCapabilities = HdrCapabilities(capabilities.getSupportedHdrTypes(),
capabilities.getDesiredMaxLuminance(),
capabilities.getDesiredMaxAverageLuminance(),
capabilities.getDesiredMinLuminance());
return NO_ERROR;
}
status_t SurfaceFlinger::getDisplayedContentSamplingAttributes(const sp<IBinder>& displayToken,
ui::PixelFormat* outFormat,
ui::Dataspace* outDataspace,
uint8_t* outComponentMask) const {
if (!outFormat || !outDataspace || !outComponentMask) {
return BAD_VALUE;
}
const auto display = getDisplayDevice(displayToken);
if (!display || !display->getId()) {
ALOGE("getDisplayedContentSamplingAttributes: Bad display token: %p", display.get());
return BAD_VALUE;
}
return getHwComposer().getDisplayedContentSamplingAttributes(*display->getId(), outFormat,
outDataspace, outComponentMask);
}
status_t SurfaceFlinger::setDisplayContentSamplingEnabled(const sp<IBinder>& displayToken,
bool enable, uint8_t componentMask,
uint64_t maxFrames) const {
const auto display = getDisplayDevice(displayToken);
if (!display || !display->getId()) {
ALOGE("setDisplayContentSamplingEnabled: Bad display token: %p", display.get());
return BAD_VALUE;
}
return getHwComposer().setDisplayContentSamplingEnabled(*display->getId(), enable,
componentMask, maxFrames);
}
status_t SurfaceFlinger::getDisplayedContentSample(const sp<IBinder>& displayToken,
uint64_t maxFrames, uint64_t timestamp,
DisplayedFrameStats* outStats) const {
const auto display = getDisplayDevice(displayToken);
if (!display || !display->getId()) {
ALOGE("getDisplayContentSample: Bad display token: %p", displayToken.get());
return BAD_VALUE;
}
return getHwComposer().getDisplayedContentSample(*display->getId(), maxFrames, timestamp,
outStats);
}
status_t SurfaceFlinger::getProtectedContentSupport(bool* outSupported) const {
if (!outSupported) {
return BAD_VALUE;
}
*outSupported = getRenderEngine().supportsProtectedContent();
return NO_ERROR;
}
status_t SurfaceFlinger::isWideColorDisplay(const sp<IBinder>& displayToken,
bool* outIsWideColorDisplay) const {
if (!displayToken || !outIsWideColorDisplay) {
return BAD_VALUE;
}
Mutex::Autolock _l(mStateLock);
const auto display = getDisplayDeviceLocked(displayToken);
if (!display) {
return BAD_VALUE;
}
// Use hasWideColorDisplay to override built-in display.
const auto displayId = display->getId();
if (displayId && displayId == getInternalDisplayIdLocked()) {
*outIsWideColorDisplay = hasWideColorDisplay;
return NO_ERROR;
}
*outIsWideColorDisplay = display->hasWideColorGamut();
return NO_ERROR;
}
status_t SurfaceFlinger::enableVSyncInjections(bool enable) {
postMessageSync(new LambdaMessage([&] {
Mutex::Autolock _l(mStateLock);
if (mInjectVSyncs == enable) {
return;
}
auto resyncCallback =
mScheduler->makeResyncCallback(std::bind(&SurfaceFlinger::getVsyncPeriod, this));
// TODO(b/128863962): Part of the Injector should be refactored, so that it
// can be passed to Scheduler.
if (enable) {
ALOGV("VSync Injections enabled");
if (mVSyncInjector.get() == nullptr) {
mVSyncInjector = std::make_unique<InjectVSyncSource>();
mInjectorEventThread = std::make_unique<
impl::EventThread>(mVSyncInjector.get(),
impl::EventThread::InterceptVSyncsCallback(),
"injEventThread");
}
mEventQueue->setEventThread(mInjectorEventThread.get(), std::move(resyncCallback));
} else {
ALOGV("VSync Injections disabled");
mEventQueue->setEventThread(mScheduler->getEventThread(mSfConnectionHandle),
std::move(resyncCallback));
}
mInjectVSyncs = enable;
}));
return NO_ERROR;
}
status_t SurfaceFlinger::injectVSync(nsecs_t when) {
Mutex::Autolock _l(mStateLock);
if (!mInjectVSyncs) {
ALOGE("VSync Injections not enabled");
return BAD_VALUE;
}
if (mInjectVSyncs && mInjectorEventThread.get() != nullptr) {
ALOGV("Injecting VSync inside SurfaceFlinger");
mVSyncInjector->onInjectSyncEvent(when);
}
return NO_ERROR;
}
status_t SurfaceFlinger::getLayerDebugInfo(std::vector<LayerDebugInfo>* outLayers) const
NO_THREAD_SAFETY_ANALYSIS {
// Try to acquire a lock for 1s, fail gracefully
const status_t err = mStateLock.timedLock(s2ns(1));
const bool locked = (err == NO_ERROR);
if (!locked) {
ALOGE("LayerDebugInfo: SurfaceFlinger unresponsive (%s [%d]) - exit", strerror(-err), err);
return TIMED_OUT;
}
outLayers->clear();
mCurrentState.traverseInZOrder([&](Layer* layer) {
outLayers->push_back(layer->getLayerDebugInfo());
});
mStateLock.unlock();
return NO_ERROR;
}
status_t SurfaceFlinger::getCompositionPreference(
Dataspace* outDataspace, ui::PixelFormat* outPixelFormat,
Dataspace* outWideColorGamutDataspace,
ui::PixelFormat* outWideColorGamutPixelFormat) const {
*outDataspace = mDefaultCompositionDataspace;
*outPixelFormat = defaultCompositionPixelFormat;
*outWideColorGamutDataspace = mWideColorGamutCompositionDataspace;
*outWideColorGamutPixelFormat = wideColorGamutCompositionPixelFormat;
return NO_ERROR;
}
status_t SurfaceFlinger::addRegionSamplingListener(const Rect& samplingArea,
const sp<IBinder>& stopLayerHandle,
const sp<IRegionSamplingListener>& listener) {
if (!listener || samplingArea == Rect::INVALID_RECT) {
return BAD_VALUE;
}
mRegionSamplingThread->addListener(samplingArea, stopLayerHandle, listener);
return NO_ERROR;
}
status_t SurfaceFlinger::removeRegionSamplingListener(const sp<IRegionSamplingListener>& listener) {
if (!listener) {
return BAD_VALUE;
}
mRegionSamplingThread->removeListener(listener);
return NO_ERROR;
}
status_t SurfaceFlinger::getDisplayBrightnessSupport(const sp<IBinder>& displayToken,
bool* outSupport) const {
if (!displayToken || !outSupport) {
return BAD_VALUE;
}
const auto displayId = getPhysicalDisplayIdLocked(displayToken);
if (!displayId) {
return NAME_NOT_FOUND;
}
*outSupport =
getHwComposer().hasDisplayCapability(displayId, HWC2::DisplayCapability::Brightness);
return NO_ERROR;
}
status_t SurfaceFlinger::setDisplayBrightness(const sp<IBinder>& displayToken,
float brightness) const {
if (!displayToken) {
return BAD_VALUE;
}
const auto displayId = getPhysicalDisplayIdLocked(displayToken);
if (!displayId) {
return NAME_NOT_FOUND;
}
return getHwComposer().setDisplayBrightness(*displayId, brightness);
}
status_t SurfaceFlinger::notifyPowerHint(int32_t hintId) {
PowerHint powerHint = static_cast<PowerHint>(hintId);
if (powerHint == PowerHint::INTERACTION) {
mScheduler->notifyTouchEvent();
}
return NO_ERROR;
}
// ----------------------------------------------------------------------------
sp<IDisplayEventConnection> SurfaceFlinger::createDisplayEventConnection(
ISurfaceComposer::VsyncSource vsyncSource, ISurfaceComposer::ConfigChanged configChanged) {
auto resyncCallback = mScheduler->makeResyncCallback([this] {
Mutex::Autolock lock(mStateLock);
return getVsyncPeriod();
});
const auto& handle =
vsyncSource == eVsyncSourceSurfaceFlinger ? mSfConnectionHandle : mAppConnectionHandle;
return mScheduler->createDisplayEventConnection(handle, std::move(resyncCallback),
configChanged);
}
// ----------------------------------------------------------------------------
void SurfaceFlinger::waitForEvent() {
mEventQueue->waitMessage();
}
void SurfaceFlinger::signalTransaction() {
mScheduler->resetIdleTimer();
mEventQueue->invalidate();
}
void SurfaceFlinger::signalLayerUpdate() {
mScheduler->resetIdleTimer();
mEventQueue->invalidate();
}
void SurfaceFlinger::signalRefresh() {
mRefreshPending = true;
mEventQueue->refresh();
}
status_t SurfaceFlinger::postMessageAsync(const sp<MessageBase>& msg,
nsecs_t reltime, uint32_t /* flags */) {
return mEventQueue->postMessage(msg, reltime);
}
status_t SurfaceFlinger::postMessageSync(const sp<MessageBase>& msg,
nsecs_t reltime, uint32_t /* flags */) {
status_t res = mEventQueue->postMessage(msg, reltime);
if (res == NO_ERROR) {
msg->wait();
}
return res;
}
void SurfaceFlinger::run() {
do {
waitForEvent();
} while (true);
}
nsecs_t SurfaceFlinger::getVsyncPeriod() const {
const auto displayId = getInternalDisplayIdLocked();
if (!displayId || !getHwComposer().isConnected(*displayId)) {
return 0;
}
const auto config = getHwComposer().getActiveConfig(*displayId);
return config ? config->getVsyncPeriod() : 0;
}
void SurfaceFlinger::onVsyncReceived(int32_t sequenceId, hwc2_display_t hwcDisplayId,
int64_t timestamp) {
ATRACE_NAME("SF onVsync");
Mutex::Autolock lock(mStateLock);
// Ignore any vsyncs from a previous hardware composer.
if (sequenceId != getBE().mComposerSequenceId) {
return;
}
if (!getHwComposer().onVsync(hwcDisplayId, timestamp)) {
return;
}
if (hwcDisplayId != getHwComposer().getInternalHwcDisplayId()) {
// For now, we don't do anything with external display vsyncs.
return;
}
bool periodFlushed = false;
mScheduler->addResyncSample(timestamp, &periodFlushed);
if (periodFlushed) {
mVsyncModulator.onRefreshRateChangeCompleted();
}
}
void SurfaceFlinger::getCompositorTiming(CompositorTiming* compositorTiming) {
std::lock_guard<std::mutex> lock(getBE().mCompositorTimingLock);
*compositorTiming = getBE().mCompositorTiming;
}
bool SurfaceFlinger::isDisplayConfigAllowed(int32_t configId) {
return mAllowedDisplayConfigs.empty() || mAllowedDisplayConfigs.count(configId);
}
void SurfaceFlinger::setRefreshRateTo(RefreshRateType refreshRate, Scheduler::ConfigEvent event) {
const auto display = getDefaultDisplayDeviceLocked();
if (!display || mBootStage != BootStage::FINISHED) {
return;
}
ATRACE_CALL();
// Don't do any updating if the current fps is the same as the new one.
const auto& refreshRateConfig = mRefreshRateConfigs.getRefreshRate(refreshRate);
if (!refreshRateConfig) {
ALOGV("Skipping refresh rate change request for unsupported rate.");
return;
}
const int desiredConfigId = refreshRateConfig->configId;
if (!isDisplayConfigAllowed(desiredConfigId)) {
ALOGV("Skipping config %d as it is not part of allowed configs", desiredConfigId);
return;
}
setDesiredActiveConfig({refreshRate, desiredConfigId, event});
}
void SurfaceFlinger::onHotplugReceived(int32_t sequenceId, hwc2_display_t hwcDisplayId,
HWC2::Connection connection) {
ALOGV("%s(%d, %" PRIu64 ", %s)", __FUNCTION__, sequenceId, hwcDisplayId,
connection == HWC2::Connection::Connected ? "connected" : "disconnected");
// Ignore events that do not have the right sequenceId.
if (sequenceId != getBE().mComposerSequenceId) {
return;
}
// Only lock if we're not on the main thread. This function is normally
// called on a hwbinder thread, but for the primary display it's called on
// the main thread with the state lock already held, so don't attempt to
// acquire it here.
ConditionalLock lock(mStateLock, std::this_thread::get_id() != mMainThreadId);
mPendingHotplugEvents.emplace_back(HotplugEvent{hwcDisplayId, connection});
if (std::this_thread::get_id() == mMainThreadId) {
// Process all pending hot plug events immediately if we are on the main thread.
processDisplayHotplugEventsLocked();
}
setTransactionFlags(eDisplayTransactionNeeded);
}
void SurfaceFlinger::onRefreshReceived(int sequenceId, hwc2_display_t /*hwcDisplayId*/) {
Mutex::Autolock lock(mStateLock);
if (sequenceId != getBE().mComposerSequenceId) {
return;
}
repaintEverythingForHWC();
}
void SurfaceFlinger::setPrimaryVsyncEnabled(bool enabled) {
ATRACE_CALL();
// Enable / Disable HWVsync from the main thread to avoid race conditions with
// display power state.
postMessageAsync(new LambdaMessage(
[=]() NO_THREAD_SAFETY_ANALYSIS { setPrimaryVsyncEnabledInternal(enabled); }));
}
void SurfaceFlinger::setPrimaryVsyncEnabledInternal(bool enabled) {
ATRACE_CALL();
mHWCVsyncPendingState = enabled ? HWC2::Vsync::Enable : HWC2::Vsync::Disable;
if (const auto displayId = getInternalDisplayIdLocked()) {
sp<DisplayDevice> display = getDefaultDisplayDeviceLocked();
if (display && display->isPoweredOn()) {
setVsyncEnabledInHWC(*displayId, mHWCVsyncPendingState);
}
}
}
// Note: it is assumed the caller holds |mStateLock| when this is called
void SurfaceFlinger::resetDisplayState() {
mScheduler->disableHardwareVsync(true);
// Clear the drawing state so that the logic inside of
// handleTransactionLocked will fire. It will determine the delta between
// mCurrentState and mDrawingState and re-apply all changes when we make the
// transition.
mDrawingState.displays.clear();
mDisplays.clear();
}
void SurfaceFlinger::updateVrFlinger() {
ATRACE_CALL();
if (!mVrFlinger)
return;
bool vrFlingerRequestsDisplay = mVrFlingerRequestsDisplay;
if (vrFlingerRequestsDisplay == getHwComposer().isUsingVrComposer()) {
return;
}
if (vrFlingerRequestsDisplay && !getHwComposer().getComposer()->isRemote()) {
ALOGE("Vr flinger is only supported for remote hardware composer"
" service connections. Ignoring request to transition to vr"
" flinger.");
mVrFlingerRequestsDisplay = false;
return;
}
Mutex::Autolock _l(mStateLock);
sp<DisplayDevice> display = getDefaultDisplayDeviceLocked();
LOG_ALWAYS_FATAL_IF(!display);
const int currentDisplayPowerMode = display->getPowerMode();
// Clear out all the output layers from the composition engine for all
// displays before destroying the hardware composer interface. This ensures
// any HWC layers are destroyed through that interface before it becomes
// invalid.
for (const auto& [token, displayDevice] : mDisplays) {
displayDevice->getCompositionDisplay()->setOutputLayersOrderedByZ(
compositionengine::Output::OutputLayers());
}
// This DisplayDevice will no longer be relevant once resetDisplayState() is
// called below. Clear the reference now so we don't accidentally use it
// later.
display.clear();
if (!vrFlingerRequestsDisplay) {
mVrFlinger->SeizeDisplayOwnership();
}
resetDisplayState();
// Delete the current instance before creating the new one
mCompositionEngine->setHwComposer(std::unique_ptr<HWComposer>());
mCompositionEngine->setHwComposer(getFactory().createHWComposer(
vrFlingerRequestsDisplay ? "vr" : getBE().mHwcServiceName));
getHwComposer().registerCallback(this, ++getBE().mComposerSequenceId);
LOG_ALWAYS_FATAL_IF(!getHwComposer().getComposer()->isRemote(),
"Switched to non-remote hardware composer");
if (vrFlingerRequestsDisplay) {
mVrFlinger->GrantDisplayOwnership();
}
mVisibleRegionsDirty = true;
invalidateHwcGeometry();
// Re-enable default display.
display = getDefaultDisplayDeviceLocked();
LOG_ALWAYS_FATAL_IF(!display);
setPowerModeInternal(display, currentDisplayPowerMode);
// Reset the timing values to account for the period of the swapped in HWC
const nsecs_t vsyncPeriod = getVsyncPeriod();
mAnimFrameTracker.setDisplayRefreshPeriod(vsyncPeriod);
// The present fences returned from vr_hwc are not an accurate
// representation of vsync times.
mScheduler->setIgnorePresentFences(getHwComposer().isUsingVrComposer() || !hasSyncFramework);
// Use phase of 0 since phase is not known.
// Use latency of 0, which will snap to the ideal latency.
DisplayStatInfo stats{0 /* vsyncTime */, vsyncPeriod};
setCompositorTimingSnapped(stats, 0);
mScheduler->resyncToHardwareVsync(false, vsyncPeriod);
mRepaintEverything = true;
setTransactionFlags(eDisplayTransactionNeeded);
}
bool SurfaceFlinger::previousFrameMissed() NO_THREAD_SAFETY_ANALYSIS {
// We are storing the last 2 present fences. If sf's phase offset is to be
// woken up before the actual vsync but targeting the next vsync, we need to check
// fence N-2
const sp<Fence>& fence =
mVsyncModulator.getOffsets().sf < mPhaseOffsets->getOffsetThresholdForNextVsync()
? mPreviousPresentFences[0]
: mPreviousPresentFences[1];
return fence != Fence::NO_FENCE && (fence->getStatus() == Fence::Status::Unsignaled);
}
void SurfaceFlinger::populateExpectedPresentTime() NO_THREAD_SAFETY_ANALYSIS {
DisplayStatInfo stats;
mScheduler->getDisplayStatInfo(&stats);
const nsecs_t presentTime = mScheduler->getDispSyncExpectedPresentTime();
// Inflate the expected present time if we're targetting the next vsync.
mExpectedPresentTime =
mVsyncModulator.getOffsets().sf < mPhaseOffsets->getOffsetThresholdForNextVsync()
? presentTime
: presentTime + stats.vsyncPeriod;
}
void SurfaceFlinger::onMessageReceived(int32_t what) NO_THREAD_SAFETY_ANALYSIS {
ATRACE_CALL();
switch (what) {
case MessageQueue::INVALIDATE: {
// calculate the expected present time once and use the cached
// value throughout this frame to make sure all layers are
// seeing this same value.
populateExpectedPresentTime();
bool frameMissed = previousFrameMissed();
bool hwcFrameMissed = mHadDeviceComposition && frameMissed;
bool gpuFrameMissed = mHadClientComposition && frameMissed;
ATRACE_INT("FrameMissed", static_cast<int>(frameMissed));
ATRACE_INT("HwcFrameMissed", static_cast<int>(hwcFrameMissed));
ATRACE_INT("GpuFrameMissed", static_cast<int>(gpuFrameMissed));
if (frameMissed) {
mFrameMissedCount++;
mTimeStats->incrementMissedFrames();
}
if (hwcFrameMissed) {
mHwcFrameMissedCount++;
}
if (gpuFrameMissed) {
mGpuFrameMissedCount++;
}
if (mUseSmart90ForVideo) {
// This call is made each time SF wakes up and creates a new frame. It is part
// of video detection feature.
mScheduler->updateFpsBasedOnContent();
}
if (performSetActiveConfig()) {
break;
}
if (frameMissed && mPropagateBackpressure) {
if ((hwcFrameMissed && !gpuFrameMissed) ||
mPropagateBackpressureClientComposition) {
signalLayerUpdate();
break;
}
}
// Now that we're going to make it to the handleMessageTransaction()
// call below it's safe to call updateVrFlinger(), which will
// potentially trigger a display handoff.
updateVrFlinger();
bool refreshNeeded = handleMessageTransaction();
refreshNeeded |= handleMessageInvalidate();
updateCursorAsync();
updateInputFlinger();
refreshNeeded |= mRepaintEverything;
if (refreshNeeded && CC_LIKELY(mBootStage != BootStage::BOOTLOADER)) {
// Signal a refresh if a transaction modified the window state,
// a new buffer was latched, or if HWC has requested a full
// repaint
signalRefresh();
}
break;
}
case MessageQueue::REFRESH: {
handleMessageRefresh();
break;
}
}
}
bool SurfaceFlinger::handleMessageTransaction() {
ATRACE_CALL();
uint32_t transactionFlags = peekTransactionFlags();
bool flushedATransaction = flushTransactionQueues();
bool runHandleTransaction = transactionFlags &&
((transactionFlags != eTransactionFlushNeeded) || flushedATransaction);
if (runHandleTransaction) {
handleTransaction(eTransactionMask);
} else {
getTransactionFlags(eTransactionFlushNeeded);
}
if (transactionFlushNeeded()) {
setTransactionFlags(eTransactionFlushNeeded);
}
return runHandleTransaction;
}
void SurfaceFlinger::handleMessageRefresh() {
ATRACE_CALL();
mRefreshPending = false;
const bool repaintEverything = mRepaintEverything.exchange(false);
preComposition();
rebuildLayerStacks();
calculateWorkingSet();
for (const auto& [token, display] : mDisplays) {
beginFrame(display);
prepareFrame(display);
doDebugFlashRegions(display, repaintEverything);
doComposition(display, repaintEverything);
}
logLayerStats();
postFrame();
postComposition();
mHadClientComposition = false;
mHadDeviceComposition = false;
for (const auto& [token, displayDevice] : mDisplays) {
auto display = displayDevice->getCompositionDisplay();
const auto displayId = display->getId();
mHadClientComposition =
mHadClientComposition || getHwComposer().hasClientComposition(displayId);
mHadDeviceComposition =
mHadDeviceComposition || getHwComposer().hasDeviceComposition(displayId);
}
mVsyncModulator.onRefreshed(mHadClientComposition);
mLayersWithQueuedFrames.clear();
}
bool SurfaceFlinger::handleMessageInvalidate() {
ATRACE_CALL();
bool refreshNeeded = handlePageFlip();
if (mVisibleRegionsDirty) {
computeLayerBounds();
if (mTracingEnabled) {
mTracing.notify("visibleRegionsDirty");
}
}
for (auto& layer : mLayersPendingRefresh) {
Region visibleReg;
visibleReg.set(layer->getScreenBounds());
invalidateLayerStack(layer, visibleReg);
}
mLayersPendingRefresh.clear();
return refreshNeeded;
}
void SurfaceFlinger::calculateWorkingSet() {
ATRACE_CALL();
ALOGV(__FUNCTION__);
// build the h/w work list
if (CC_UNLIKELY(mGeometryInvalid)) {
mGeometryInvalid = false;
for (const auto& [token, displayDevice] : mDisplays) {
auto display = displayDevice->getCompositionDisplay();
uint32_t zOrder = 0;
for (auto& layer : display->getOutputLayersOrderedByZ()) {
auto& compositionState = layer->editState();
compositionState.forceClientComposition = false;
if (!compositionState.hwc || mDebugDisableHWC || mDebugRegion) {
compositionState.forceClientComposition = true;
}
// The output Z order is set here based on a simple counter.
compositionState.z = zOrder++;
// Update the display independent composition state. This goes
// to the general composition layer state structure.
// TODO: Do this once per compositionengine::CompositionLayer.
layer->getLayerFE().latchCompositionState(layer->getLayer().editState().frontEnd,
true);
// Recalculate the geometry state of the output layer.
layer->updateCompositionState(true);
// Write the updated geometry state to the HWC
layer->writeStateToHWC(true);
}
}
}
// Set the per-frame data
for (const auto& [token, displayDevice] : mDisplays) {
auto display = displayDevice->getCompositionDisplay();
const auto displayId = display->getId();
if (!displayId) {
continue;
}
auto* profile = display->getDisplayColorProfile();
if (mDrawingState.colorMatrixChanged) {
display->setColorTransform(mDrawingState.colorMatrix);
}
Dataspace targetDataspace = Dataspace::UNKNOWN;
if (useColorManagement) {
ColorMode colorMode;
RenderIntent renderIntent;
pickColorMode(displayDevice, &colorMode, &targetDataspace, &renderIntent);
display->setColorMode(colorMode, targetDataspace, renderIntent);
if (isHdrColorMode(colorMode)) {
targetDataspace = Dataspace::UNKNOWN;
} else if (mColorSpaceAgnosticDataspace != Dataspace::UNKNOWN) {
targetDataspace = mColorSpaceAgnosticDataspace;
}
}
for (auto& layer : displayDevice->getVisibleLayersSortedByZ()) {
if (layer->isHdrY410()) {
layer->forceClientComposition(displayDevice);
} else if ((layer->getDataSpace() == Dataspace::BT2020_PQ ||
layer->getDataSpace() == Dataspace::BT2020_ITU_PQ) &&
!profile->hasHDR10Support()) {
layer->forceClientComposition(displayDevice);
} else if ((layer->getDataSpace() == Dataspace::BT2020_HLG ||
layer->getDataSpace() == Dataspace::BT2020_ITU_HLG) &&
!profile->hasHLGSupport()) {
layer->forceClientComposition(displayDevice);
}
if (layer->getRoundedCornerState().radius > 0.0f) {
layer->forceClientComposition(displayDevice);
}
if (layer->getForceClientComposition(displayDevice)) {
ALOGV("[%s] Requesting Client composition", layer->getName().string());
layer->setCompositionType(displayDevice,
Hwc2::IComposerClient::Composition::CLIENT);
continue;
}
const auto& displayState = display->getState();
layer->setPerFrameData(displayDevice, displayState.transform, displayState.viewport,
displayDevice->getSupportedPerFrameMetadata(), targetDataspace);
}
}
mDrawingState.colorMatrixChanged = false;
for (const auto& [token, displayDevice] : mDisplays) {
auto display = displayDevice->getCompositionDisplay();
for (auto& layer : displayDevice->getVisibleLayersSortedByZ()) {
auto& layerState = layer->getCompositionLayer()->editState().frontEnd;
layerState.compositionType = static_cast<Hwc2::IComposerClient::Composition>(
layer->getCompositionType(displayDevice));
}
}
}
void SurfaceFlinger::doDebugFlashRegions(const sp<DisplayDevice>& displayDevice,
bool repaintEverything) {
auto display = displayDevice->getCompositionDisplay();
const auto& displayState = display->getState();
// is debugging enabled
if (CC_LIKELY(!mDebugRegion))
return;
if (displayState.isEnabled) {
// transform the dirty region into this screen's coordinate space
const Region dirtyRegion = display->getDirtyRegion(repaintEverything);
if (!dirtyRegion.isEmpty()) {
base::unique_fd readyFence;
// redraw the whole screen
doComposeSurfaces(displayDevice, dirtyRegion, &readyFence);
display->getRenderSurface()->queueBuffer(std::move(readyFence));
}
}
postFramebuffer(displayDevice);
if (mDebugRegion > 1) {
usleep(mDebugRegion * 1000);
}
prepareFrame(displayDevice);
}
void SurfaceFlinger::logLayerStats() {
ATRACE_CALL();
if (CC_UNLIKELY(mLayerStats.isEnabled())) {
for (const auto& [token, display] : mDisplays) {
if (display->isPrimary()) {
mLayerStats.logLayerStats(dumpVisibleLayersProtoInfo(display));
return;
}
}
ALOGE("logLayerStats: no primary display");
}
}
void SurfaceFlinger::preComposition()
{
ATRACE_CALL();
ALOGV("preComposition");
mRefreshStartTime = systemTime(SYSTEM_TIME_MONOTONIC);
bool needExtraInvalidate = false;
mDrawingState.traverseInZOrder([&](Layer* layer) {
if (layer->onPreComposition(mRefreshStartTime)) {
needExtraInvalidate = true;
}
});
if (needExtraInvalidate) {
signalLayerUpdate();
}
}
void SurfaceFlinger::updateCompositorTiming(const DisplayStatInfo& stats, nsecs_t compositeTime,
std::shared_ptr<FenceTime>& presentFenceTime) {
// Update queue of past composite+present times and determine the
// most recently known composite to present latency.
getBE().mCompositePresentTimes.push({compositeTime, presentFenceTime});
nsecs_t compositeToPresentLatency = -1;
while (!getBE().mCompositePresentTimes.empty()) {
SurfaceFlingerBE::CompositePresentTime& cpt = getBE().mCompositePresentTimes.front();
// Cached values should have been updated before calling this method,
// which helps avoid duplicate syscalls.
nsecs_t displayTime = cpt.display->getCachedSignalTime();
if (displayTime == Fence::SIGNAL_TIME_PENDING) {
break;
}
compositeToPresentLatency = displayTime - cpt.composite;
getBE().mCompositePresentTimes.pop();
}
// Don't let mCompositePresentTimes grow unbounded, just in case.
while (getBE().mCompositePresentTimes.size() > 16) {
getBE().mCompositePresentTimes.pop();
}
setCompositorTimingSnapped(stats, compositeToPresentLatency);
}
void SurfaceFlinger::setCompositorTimingSnapped(const DisplayStatInfo& stats,
nsecs_t compositeToPresentLatency) {
// Integer division and modulo round toward 0 not -inf, so we need to
// treat negative and positive offsets differently.
nsecs_t idealLatency = (mPhaseOffsets->getCurrentSfOffset() > 0)
? (stats.vsyncPeriod - (mPhaseOffsets->getCurrentSfOffset() % stats.vsyncPeriod))
: ((-mPhaseOffsets->getCurrentSfOffset()) % stats.vsyncPeriod);
// Just in case mPhaseOffsets->getCurrentSfOffset() == -vsyncInterval.
if (idealLatency <= 0) {
idealLatency = stats.vsyncPeriod;
}
// Snap the latency to a value that removes scheduling jitter from the
// composition and present times, which often have >1ms of jitter.
// Reducing jitter is important if an app attempts to extrapolate
// something (such as user input) to an accurate diasplay time.
// Snapping also allows an app to precisely calculate mPhaseOffsets->getCurrentSfOffset()
// with (presentLatency % interval).
nsecs_t bias = stats.vsyncPeriod / 2;
int64_t extraVsyncs = (compositeToPresentLatency - idealLatency + bias) / stats.vsyncPeriod;
nsecs_t snappedCompositeToPresentLatency =
(extraVsyncs > 0) ? idealLatency + (extraVsyncs * stats.vsyncPeriod) : idealLatency;
std::lock_guard<std::mutex> lock(getBE().mCompositorTimingLock);
getBE().mCompositorTiming.deadline = stats.vsyncTime - idealLatency;
getBE().mCompositorTiming.interval = stats.vsyncPeriod;
getBE().mCompositorTiming.presentLatency = snappedCompositeToPresentLatency;
}
void SurfaceFlinger::postComposition()
{
ATRACE_CALL();
ALOGV("postComposition");
// Release any buffers which were replaced this frame
nsecs_t dequeueReadyTime = systemTime();
for (auto& layer : mLayersWithQueuedFrames) {
layer->releasePendingBuffer(dequeueReadyTime);
}
// |mStateLock| not needed as we are on the main thread
const auto displayDevice = getDefaultDisplayDeviceLocked();
getBE().mGlCompositionDoneTimeline.updateSignalTimes();
std::shared_ptr<FenceTime> glCompositionDoneFenceTime;
if (displayDevice && getHwComposer().hasClientComposition(displayDevice->getId())) {
glCompositionDoneFenceTime =
std::make_shared<FenceTime>(displayDevice->getCompositionDisplay()
->getRenderSurface()
->getClientTargetAcquireFence());
getBE().mGlCompositionDoneTimeline.push(glCompositionDoneFenceTime);
} else {
glCompositionDoneFenceTime = FenceTime::NO_FENCE;
}
getBE().mDisplayTimeline.updateSignalTimes();
mPreviousPresentFences[1] = mPreviousPresentFences[0];
mPreviousPresentFences[0] = displayDevice
? getHwComposer().getPresentFence(*displayDevice->getId())
: Fence::NO_FENCE;
auto presentFenceTime = std::make_shared<FenceTime>(mPreviousPresentFences[0]);
getBE().mDisplayTimeline.push(presentFenceTime);
DisplayStatInfo stats;
mScheduler->getDisplayStatInfo(&stats);
// We use the mRefreshStartTime which might be sampled a little later than
// when we started doing work for this frame, but that should be okay
// since updateCompositorTiming has snapping logic.
updateCompositorTiming(stats, mRefreshStartTime, presentFenceTime);
CompositorTiming compositorTiming;
{
std::lock_guard<std::mutex> lock(getBE().mCompositorTimingLock);
compositorTiming = getBE().mCompositorTiming;
}
mDrawingState.traverseInZOrder([&](Layer* layer) {
bool frameLatched =
layer->onPostComposition(displayDevice->getId(), glCompositionDoneFenceTime,
presentFenceTime, compositorTiming);
if (frameLatched) {
recordBufferingStats(layer->getName().string(),
layer->getOccupancyHistory(false));
}
});
if (presentFenceTime->isValid()) {
mScheduler->addPresentFence(presentFenceTime);
}
if (!hasSyncFramework) {
if (displayDevice && getHwComposer().isConnected(*displayDevice->getId()) &&
displayDevice->isPoweredOn()) {
mScheduler->enableHardwareVsync();
}
}
if (mAnimCompositionPending) {
mAnimCompositionPending = false;
if (presentFenceTime->isValid()) {
mAnimFrameTracker.setActualPresentFence(
std::move(presentFenceTime));
} else if (displayDevice && getHwComposer().isConnected(*displayDevice->getId())) {
// The HWC doesn't support present fences, so use the refresh
// timestamp instead.
const nsecs_t presentTime =
getHwComposer().getRefreshTimestamp(*displayDevice->getId());
mAnimFrameTracker.setActualPresentTime(presentTime);
}
mAnimFrameTracker.advanceFrame();
}
mTimeStats->incrementTotalFrames();
if (mHadClientComposition) {
mTimeStats->incrementClientCompositionFrames();
}
mTimeStats->setPresentFenceGlobal(presentFenceTime);
if (displayDevice && getHwComposer().isConnected(*displayDevice->getId()) &&
!displayDevice->isPoweredOn()) {
return;
}
nsecs_t currentTime = systemTime();
if (mHasPoweredOff) {
mHasPoweredOff = false;
} else {
nsecs_t elapsedTime = currentTime - getBE().mLastSwapTime;
size_t numPeriods = static_cast<size_t>(elapsedTime / stats.vsyncPeriod);
if (numPeriods < SurfaceFlingerBE::NUM_BUCKETS - 1) {
getBE().mFrameBuckets[numPeriods] += elapsedTime;
} else {
getBE().mFrameBuckets[SurfaceFlingerBE::NUM_BUCKETS - 1] += elapsedTime;
}
getBE().mTotalTime += elapsedTime;
}
getBE().mLastSwapTime = currentTime;
{
std::lock_guard lock(mTexturePoolMutex);
if (mTexturePool.size() < mTexturePoolSize) {
const size_t refillCount = mTexturePoolSize - mTexturePool.size();
const size_t offset = mTexturePool.size();
mTexturePool.resize(mTexturePoolSize);
getRenderEngine().genTextures(refillCount, mTexturePool.data() + offset);
ATRACE_INT("TexturePoolSize", mTexturePool.size());
} else if (mTexturePool.size() > mTexturePoolSize) {
const size_t deleteCount = mTexturePool.size() - mTexturePoolSize;
const size_t offset = mTexturePoolSize;
getRenderEngine().deleteTextures(deleteCount, mTexturePool.data() + offset);
mTexturePool.resize(mTexturePoolSize);
ATRACE_INT("TexturePoolSize", mTexturePool.size());
}
}
mTransactionCompletedThread.addPresentFence(mPreviousPresentFences[0]);
// Lock the mStateLock in case SurfaceFlinger is in the middle of applying a transaction.
// If we do not lock here, a callback could be sent without all of its SurfaceControls and
// metrics.
{
Mutex::Autolock _l(mStateLock);
mTransactionCompletedThread.sendCallbacks();
}
if (mLumaSampling && mRegionSamplingThread) {
mRegionSamplingThread->notifyNewContent();
}
// Even though ATRACE_INT64 already checks if tracing is enabled, it doesn't prevent the
// side-effect of getTotalSize(), so we check that again here
if (ATRACE_ENABLED()) {
ATRACE_INT64("Total Buffer Size", GraphicBufferAllocator::get().getTotalSize());
}
}
void SurfaceFlinger::computeLayerBounds() {
for (const auto& pair : mDisplays) {
const auto& displayDevice = pair.second;
const auto display = displayDevice->getCompositionDisplay();
for (const auto& layer : mDrawingState.layersSortedByZ) {
// only consider the layers on the given layer stack
if (!display->belongsInOutput(layer->getLayerStack(), layer->getPrimaryDisplayOnly())) {
continue;
}
layer->computeBounds(displayDevice->getViewport().toFloatRect(), ui::Transform());
}
}
}
void SurfaceFlinger::rebuildLayerStacks() {
ATRACE_CALL();
ALOGV("rebuildLayerStacks");
// rebuild the visible layer list per screen
if (CC_UNLIKELY(mVisibleRegionsDirty)) {
ATRACE_NAME("rebuildLayerStacks VR Dirty");
mVisibleRegionsDirty = false;
invalidateHwcGeometry();
for (const auto& pair : mDisplays) {
const auto& displayDevice = pair.second;
auto display = displayDevice->getCompositionDisplay();
const auto& displayState = display->getState();
Region opaqueRegion;
Region dirtyRegion;
compositionengine::Output::OutputLayers layersSortedByZ;
Vector<sp<Layer>> deprecated_layersSortedByZ;
Vector<sp<Layer>> layersNeedingFences;
const ui::Transform& tr = displayState.transform;
const Rect bounds = displayState.bounds;
if (displayState.isEnabled) {
computeVisibleRegions(displayDevice, dirtyRegion, opaqueRegion);
mDrawingState.traverseInZOrder([&](Layer* layer) {
auto compositionLayer = layer->getCompositionLayer();
if (compositionLayer == nullptr) {
return;
}
const auto displayId = displayDevice->getId();
sp<compositionengine::LayerFE> layerFE = compositionLayer->getLayerFE();
LOG_ALWAYS_FATAL_IF(layerFE.get() == nullptr);
bool needsOutputLayer = false;
if (display->belongsInOutput(layer->getLayerStack(),
layer->getPrimaryDisplayOnly())) {
Region drawRegion(tr.transform(
layer->visibleNonTransparentRegion));
drawRegion.andSelf(bounds);
if (!drawRegion.isEmpty()) {
needsOutputLayer = true;
}
}
if (needsOutputLayer) {
layersSortedByZ.emplace_back(
display->getOrCreateOutputLayer(displayId, compositionLayer,
layerFE));
deprecated_layersSortedByZ.add(layer);
auto& outputLayerState = layersSortedByZ.back()->editState();
outputLayerState.visibleRegion =
tr.transform(layer->visibleRegion.intersect(displayState.viewport));
} else if (displayId) {
// For layers that are being removed from a HWC display,
// and that have queued frames, add them to a a list of
// released layers so we can properly set a fence.
bool hasExistingOutputLayer =
display->getOutputLayerForLayer(compositionLayer.get()) != nullptr;
bool hasQueuedFrames = std::find(mLayersWithQueuedFrames.cbegin(),
mLayersWithQueuedFrames.cend(),
layer) != mLayersWithQueuedFrames.cend();
if (hasExistingOutputLayer && hasQueuedFrames) {
layersNeedingFences.add(layer);
}
}
});
}
display->setOutputLayersOrderedByZ(std::move(layersSortedByZ));
displayDevice->setVisibleLayersSortedByZ(deprecated_layersSortedByZ);
displayDevice->setLayersNeedingFences(layersNeedingFences);
Region undefinedRegion{bounds};
undefinedRegion.subtractSelf(tr.transform(opaqueRegion));
display->editState().undefinedRegion = undefinedRegion;
display->editState().dirtyRegion.orSelf(dirtyRegion);
}
}
}
// Returns a data space that fits all visible layers. The returned data space
// can only be one of
// - Dataspace::SRGB (use legacy dataspace and let HWC saturate when colors are enhanced)
// - Dataspace::DISPLAY_P3
// - Dataspace::DISPLAY_BT2020
// The returned HDR data space is one of
// - Dataspace::UNKNOWN
// - Dataspace::BT2020_HLG
// - Dataspace::BT2020_PQ
Dataspace SurfaceFlinger::getBestDataspace(const sp<DisplayDevice>& display,
Dataspace* outHdrDataSpace,
bool* outIsHdrClientComposition) const {
Dataspace bestDataSpace = Dataspace::V0_SRGB;
*outHdrDataSpace = Dataspace::UNKNOWN;
for (const auto& layer : display->getVisibleLayersSortedByZ()) {
switch (layer->getDataSpace()) {
case Dataspace::V0_SCRGB:
case Dataspace::V0_SCRGB_LINEAR:
case Dataspace::BT2020:
case Dataspace::BT2020_ITU:
case Dataspace::BT2020_LINEAR:
case Dataspace::DISPLAY_BT2020:
bestDataSpace = Dataspace::DISPLAY_BT2020;
break;
case Dataspace::DISPLAY_P3:
bestDataSpace = Dataspace::DISPLAY_P3;
break;
case Dataspace::BT2020_PQ:
case Dataspace::BT2020_ITU_PQ:
bestDataSpace = Dataspace::DISPLAY_P3;
*outHdrDataSpace = Dataspace::BT2020_PQ;
*outIsHdrClientComposition = layer->getForceClientComposition(display);
break;
case Dataspace::BT2020_HLG:
case Dataspace::BT2020_ITU_HLG:
bestDataSpace = Dataspace::DISPLAY_P3;
// When there's mixed PQ content and HLG content, we set the HDR
// data space to be BT2020_PQ and convert HLG to PQ.
if (*outHdrDataSpace == Dataspace::UNKNOWN) {
*outHdrDataSpace = Dataspace::BT2020_HLG;
}
break;
default:
break;
}
}
return bestDataSpace;
}
// Pick the ColorMode / Dataspace for the display device.
void SurfaceFlinger::pickColorMode(const sp<DisplayDevice>& display, ColorMode* outMode,
Dataspace* outDataSpace, RenderIntent* outRenderIntent) const {
if (mDisplayColorSetting == DisplayColorSetting::UNMANAGED) {
*outMode = ColorMode::NATIVE;
*outDataSpace = Dataspace::UNKNOWN;
*outRenderIntent = RenderIntent::COLORIMETRIC;
return;
}
Dataspace hdrDataSpace;
bool isHdrClientComposition = false;
Dataspace bestDataSpace = getBestDataspace(display, &hdrDataSpace, &isHdrClientComposition);
auto* profile = display->getCompositionDisplay()->getDisplayColorProfile();
switch (mForceColorMode) {
case ColorMode::SRGB:
bestDataSpace = Dataspace::V0_SRGB;
break;
case ColorMode::DISPLAY_P3:
bestDataSpace = Dataspace::DISPLAY_P3;
break;
default:
break;
}
// respect hdrDataSpace only when there is no legacy HDR support
const bool isHdr = hdrDataSpace != Dataspace::UNKNOWN &&
!profile->hasLegacyHdrSupport(hdrDataSpace) && !isHdrClientComposition;
if (isHdr) {
bestDataSpace = hdrDataSpace;
}
RenderIntent intent;
switch (mDisplayColorSetting) {
case DisplayColorSetting::MANAGED:
case DisplayColorSetting::UNMANAGED:
intent = isHdr ? RenderIntent::TONE_MAP_COLORIMETRIC : RenderIntent::COLORIMETRIC;
break;
case DisplayColorSetting::ENHANCED:
intent = isHdr ? RenderIntent::TONE_MAP_ENHANCE : RenderIntent::ENHANCE;
break;
default: // vendor display color setting
intent = static_cast<RenderIntent>(mDisplayColorSetting);
break;
}
profile->getBestColorMode(bestDataSpace, intent, outDataSpace, outMode, outRenderIntent);
}
void SurfaceFlinger::beginFrame(const sp<DisplayDevice>& displayDevice) {
auto display = displayDevice->getCompositionDisplay();
const auto& displayState = display->getState();
bool dirty = !display->getDirtyRegion(false).isEmpty();
bool empty = displayDevice->getVisibleLayersSortedByZ().size() == 0;
bool wasEmpty = !displayState.lastCompositionHadVisibleLayers;
// If nothing has changed (!dirty), don't recompose.
// If something changed, but we don't currently have any visible layers,
// and didn't when we last did a composition, then skip it this time.
// The second rule does two things:
// - When all layers are removed from a display, we'll emit one black
// frame, then nothing more until we get new layers.
// - When a display is created with a private layer stack, we won't
// emit any black frames until a layer is added to the layer stack.
bool mustRecompose = dirty && !(empty && wasEmpty);
const char flagPrefix[] = {'-', '+'};
static_cast<void>(flagPrefix);
ALOGV_IF(displayDevice->isVirtual(), "%s: %s composition for %s (%cdirty %cempty %cwasEmpty)",
__FUNCTION__, mustRecompose ? "doing" : "skipping",
displayDevice->getDebugName().c_str(), flagPrefix[dirty], flagPrefix[empty],
flagPrefix[wasEmpty]);
display->getRenderSurface()->beginFrame(mustRecompose);
if (mustRecompose) {
display->editState().lastCompositionHadVisibleLayers = !empty;
}
}
void SurfaceFlinger::prepareFrame(const sp<DisplayDevice>& displayDevice) {
auto display = displayDevice->getCompositionDisplay();
const auto& displayState = display->getState();
if (!displayState.isEnabled) {
return;
}
status_t result = display->getRenderSurface()->prepareFrame();
ALOGE_IF(result != NO_ERROR, "prepareFrame failed for %s: %d (%s)",
displayDevice->getDebugName().c_str(), result, strerror(-result));
}
void SurfaceFlinger::doComposition(const sp<DisplayDevice>& displayDevice, bool repaintEverything) {
ATRACE_CALL();
ALOGV("doComposition");
auto display = displayDevice->getCompositionDisplay();
const auto& displayState = display->getState();
if (displayState.isEnabled) {
// transform the dirty region into this screen's coordinate space
const Region dirtyRegion = display->getDirtyRegion(repaintEverything);
// repaint the framebuffer (if needed)
doDisplayComposition(displayDevice, dirtyRegion);
display->editState().dirtyRegion.clear();
display->getRenderSurface()->flip();
}
postFramebuffer(displayDevice);
}
void SurfaceFlinger::postFrame()
{
// |mStateLock| not needed as we are on the main thread
const auto display = getDefaultDisplayDeviceLocked();
if (display && getHwComposer().isConnected(*display->getId())) {
uint32_t flipCount = display->getPageFlipCount();
if (flipCount % LOG_FRAME_STATS_PERIOD == 0) {
logFrameStats();
}
}
}
void SurfaceFlinger::postFramebuffer(const sp<DisplayDevice>& displayDevice) {
ATRACE_CALL();
ALOGV("postFramebuffer");
auto display = displayDevice->getCompositionDisplay();
const auto& displayState = display->getState();
const auto displayId = display->getId();
if (displayState.isEnabled) {
if (displayId) {
getHwComposer().presentAndGetReleaseFences(*displayId);
}
display->getRenderSurface()->onPresentDisplayCompleted();
for (auto& layer : display->getOutputLayersOrderedByZ()) {
sp<Fence> releaseFence = Fence::NO_FENCE;
bool usedClientComposition = true;
// The layer buffer from the previous frame (if any) is released
// by HWC only when the release fence from this frame (if any) is
// signaled. Always get the release fence from HWC first.
if (layer->getState().hwc) {
const auto& hwcState = *layer->getState().hwc;
releaseFence =
getHwComposer().getLayerReleaseFence(*displayId, hwcState.hwcLayer.get());
usedClientComposition =
hwcState.hwcCompositionType == Hwc2::IComposerClient::Composition::CLIENT;
}
// If the layer was client composited in the previous frame, we
// need to merge with the previous client target acquire fence.
// Since we do not track that, always merge with the current
// client target acquire fence when it is available, even though
// this is suboptimal.
if (usedClientComposition) {
releaseFence =
Fence::merge("LayerRelease", releaseFence,
display->getRenderSurface()->getClientTargetAcquireFence());
}
layer->getLayerFE().onLayerDisplayed(releaseFence);
}
// We've got a list of layers needing fences, that are disjoint with
// display->getVisibleLayersSortedByZ. The best we can do is to
// supply them with the present fence.
if (!displayDevice->getLayersNeedingFences().isEmpty()) {
sp<Fence> presentFence =
displayId ? getHwComposer().getPresentFence(*displayId) : Fence::NO_FENCE;
for (auto& layer : displayDevice->getLayersNeedingFences()) {
layer->getCompositionLayer()->getLayerFE()->onLayerDisplayed(presentFence);
}
}
if (displayId) {
getHwComposer().clearReleaseFences(*displayId);
}
}
}
void SurfaceFlinger::handleTransaction(uint32_t transactionFlags)
{
ATRACE_CALL();
// here we keep a copy of the drawing state (that is the state that's
// going to be overwritten by handleTransactionLocked()) outside of
// mStateLock so that the side-effects of the State assignment
// don't happen with mStateLock held (which can cause deadlocks).
State drawingState(mDrawingState);
Mutex::Autolock _l(mStateLock);
mDebugInTransaction = systemTime();
// Here we're guaranteed that some transaction flags are set
// so we can call handleTransactionLocked() unconditionally.
// We call getTransactionFlags(), which will also clear the flags,
// with mStateLock held to guarantee that mCurrentState won't change
// until the transaction is committed.
mVsyncModulator.onTransactionHandled();
transactionFlags = getTransactionFlags(eTransactionMask);
handleTransactionLocked(transactionFlags);
mDebugInTransaction = 0;
invalidateHwcGeometry();
// here the transaction has been committed
}
void SurfaceFlinger::processDisplayHotplugEventsLocked() {
for (const auto& event : mPendingHotplugEvents) {
const std::optional<DisplayIdentificationInfo> info =
getHwComposer().onHotplug(event.hwcDisplayId, event.connection);
if (!info) {
continue;
}
if (event.connection == HWC2::Connection::Connected) {
if (!mPhysicalDisplayTokens.count(info->id)) {
ALOGV("Creating display %s", to_string(info->id).c_str());
mPhysicalDisplayTokens[info->id] = new BBinder();
DisplayDeviceState state;
state.displayId = info->id;
state.isSecure = true; // All physical displays are currently considered secure.
state.displayName = info->name;
mCurrentState.displays.add(mPhysicalDisplayTokens[info->id], state);
mInterceptor->saveDisplayCreation(state);
}
} else {
ALOGV("Removing display %s", to_string(info->id).c_str());
ssize_t index = mCurrentState.displays.indexOfKey(mPhysicalDisplayTokens[info->id]);
if (index >= 0) {
const DisplayDeviceState& state = mCurrentState.displays.valueAt(index);
mInterceptor->saveDisplayDeletion(state.sequenceId);
mCurrentState.displays.removeItemsAt(index);
}
mPhysicalDisplayTokens.erase(info->id);
}
processDisplayChangesLocked();
}
mPendingHotplugEvents.clear();
}
void SurfaceFlinger::dispatchDisplayHotplugEvent(PhysicalDisplayId displayId, bool connected) {
mScheduler->hotplugReceived(mAppConnectionHandle, displayId, connected);
mScheduler->hotplugReceived(mSfConnectionHandle, displayId, connected);
}
sp<DisplayDevice> SurfaceFlinger::setupNewDisplayDeviceInternal(
const wp<IBinder>& displayToken, const std::optional<DisplayId>& displayId,
const DisplayDeviceState& state, const sp<compositionengine::DisplaySurface>& dispSurface,
const sp<IGraphicBufferProducer>& producer) {
DisplayDeviceCreationArgs creationArgs(this, displayToken, displayId);
creationArgs.sequenceId = state.sequenceId;
creationArgs.isVirtual = state.isVirtual();
creationArgs.isSecure = state.isSecure;
creationArgs.displaySurface = dispSurface;
creationArgs.hasWideColorGamut = false;
creationArgs.supportedPerFrameMetadata = 0;
const bool isInternalDisplay = displayId && displayId == getInternalDisplayIdLocked();
creationArgs.isPrimary = isInternalDisplay;
if (useColorManagement && displayId) {
std::vector<ColorMode> modes = getHwComposer().getColorModes(*displayId);
for (ColorMode colorMode : modes) {
if (isWideColorMode(colorMode)) {
creationArgs.hasWideColorGamut = true;
}
std::vector<RenderIntent> renderIntents =
getHwComposer().getRenderIntents(*displayId, colorMode);
creationArgs.hwcColorModes.emplace(colorMode, renderIntents);
}
}
if (displayId) {
getHwComposer().getHdrCapabilities(*displayId, &creationArgs.hdrCapabilities);
creationArgs.supportedPerFrameMetadata =
getHwComposer().getSupportedPerFrameMetadata(*displayId);
}
auto nativeWindowSurface = getFactory().createNativeWindowSurface(producer);
auto nativeWindow = nativeWindowSurface->getNativeWindow();
creationArgs.nativeWindow = nativeWindow;
// Make sure that composition can never be stalled by a virtual display
// consumer that isn't processing buffers fast enough. We have to do this
// here, in case the display is composed entirely by HWC.
if (state.isVirtual()) {
nativeWindow->setSwapInterval(nativeWindow.get(), 0);
}
creationArgs.displayInstallOrientation =
isInternalDisplay ? primaryDisplayOrientation : DisplayState::eOrientationDefault;
// virtual displays are always considered enabled
creationArgs.initialPowerMode = state.isVirtual() ? HWC_POWER_MODE_NORMAL : HWC_POWER_MODE_OFF;
sp<DisplayDevice> display = getFactory().createDisplayDevice(std::move(creationArgs));
if (maxFrameBufferAcquiredBuffers >= 3) {
nativeWindowSurface->preallocateBuffers();
}
ColorMode defaultColorMode = ColorMode::NATIVE;
Dataspace defaultDataSpace = Dataspace::UNKNOWN;
if (display->hasWideColorGamut()) {
defaultColorMode = ColorMode::SRGB;
defaultDataSpace = Dataspace::V0_SRGB;
}
display->getCompositionDisplay()->setColorMode(defaultColorMode, defaultDataSpace,
RenderIntent::COLORIMETRIC);
if (!state.isVirtual()) {
LOG_ALWAYS_FATAL_IF(!displayId);
display->setActiveConfig(getHwComposer().getActiveConfigIndex(*displayId));
}
display->setLayerStack(state.layerStack);
display->setProjection(state.orientation, state.viewport, state.frame);
display->setDisplayName(state.displayName);
return display;
}
void SurfaceFlinger::processDisplayChangesLocked() {
// here we take advantage of Vector's copy-on-write semantics to
// improve performance by skipping the transaction entirely when
// know that the lists are identical
const KeyedVector<wp<IBinder>, DisplayDeviceState>& curr(mCurrentState.displays);
const KeyedVector<wp<IBinder>, DisplayDeviceState>& draw(mDrawingState.displays);
if (!curr.isIdenticalTo(draw)) {
mVisibleRegionsDirty = true;
const size_t cc = curr.size();
size_t dc = draw.size();
// find the displays that were removed
// (ie: in drawing state but not in current state)
// also handle displays that changed
// (ie: displays that are in both lists)
for (size_t i = 0; i < dc;) {
const ssize_t j = curr.indexOfKey(draw.keyAt(i));
if (j < 0) {
// in drawing state but not in current state
if (const auto display = getDisplayDeviceLocked(draw.keyAt(i))) {
// Save display ID before disconnecting.
const auto displayId = display->getId();
display->disconnect();
if (!display->isVirtual()) {
LOG_ALWAYS_FATAL_IF(!displayId);
dispatchDisplayHotplugEvent(displayId->value, false);
}
}
mDisplays.erase(draw.keyAt(i));
} else {
// this display is in both lists. see if something changed.
const DisplayDeviceState& state(curr[j]);
const wp<IBinder>& displayToken = curr.keyAt(j);
const sp<IBinder> state_binder = IInterface::asBinder(state.surface);
const sp<IBinder> draw_binder = IInterface::asBinder(draw[i].surface);
if (state_binder != draw_binder) {
// changing the surface is like destroying and
// recreating the DisplayDevice, so we just remove it
// from the drawing state, so that it get re-added
// below.
if (const auto display = getDisplayDeviceLocked(displayToken)) {
display->disconnect();
}
mDisplays.erase(displayToken);
mDrawingState.displays.removeItemsAt(i);
dc--;
// at this point we must loop to the next item
continue;
}
if (const auto display = getDisplayDeviceLocked(displayToken)) {
if (state.layerStack != draw[i].layerStack) {
display->setLayerStack(state.layerStack);
}
if ((state.orientation != draw[i].orientation) ||
(state.viewport != draw[i].viewport) || (state.frame != draw[i].frame)) {
display->setProjection(state.orientation, state.viewport, state.frame);
}
if (state.width != draw[i].width || state.height != draw[i].height) {
display->setDisplaySize(state.width, state.height);
}
}
}
++i;
}
// find displays that were added
// (ie: in current state but not in drawing state)
for (size_t i = 0; i < cc; i++) {
if (draw.indexOfKey(curr.keyAt(i)) < 0) {
const DisplayDeviceState& state(curr[i]);
sp<compositionengine::DisplaySurface> dispSurface;
sp<IGraphicBufferProducer> producer;
sp<IGraphicBufferProducer> bqProducer;
sp<IGraphicBufferConsumer> bqConsumer;
getFactory().createBufferQueue(&bqProducer, &bqConsumer, false);
std::optional<DisplayId> displayId;
if (state.isVirtual()) {
// Virtual displays without a surface are dormant:
// they have external state (layer stack, projection,
// etc.) but no internal state (i.e. a DisplayDevice).
if (state.surface != nullptr) {
// Allow VR composer to use virtual displays.
if (mUseHwcVirtualDisplays || getHwComposer().isUsingVrComposer()) {
int width = 0;
int status = state.surface->query(NATIVE_WINDOW_WIDTH, &width);
ALOGE_IF(status != NO_ERROR, "Unable to query width (%d)", status);
int height = 0;
status = state.surface->query(NATIVE_WINDOW_HEIGHT, &height);
ALOGE_IF(status != NO_ERROR, "Unable to query height (%d)", status);
int intFormat = 0;
status = state.surface->query(NATIVE_WINDOW_FORMAT, &intFormat);
ALOGE_IF(status != NO_ERROR, "Unable to query format (%d)", status);
auto format = static_cast<ui::PixelFormat>(intFormat);
displayId =
getHwComposer().allocateVirtualDisplay(width, height, &format);
}
// TODO: Plumb requested format back up to consumer
sp<VirtualDisplaySurface> vds =
new VirtualDisplaySurface(getHwComposer(), displayId, state.surface,
bqProducer, bqConsumer,
state.displayName);
dispSurface = vds;
producer = vds;
}
} else {
ALOGE_IF(state.surface != nullptr,
"adding a supported display, but rendering "
"surface is provided (%p), ignoring it",
state.surface.get());
displayId = state.displayId;
LOG_ALWAYS_FATAL_IF(!displayId);
dispSurface = new FramebufferSurface(getHwComposer(), *displayId, bqConsumer);
producer = bqProducer;
}
const wp<IBinder>& displayToken = curr.keyAt(i);
if (dispSurface != nullptr) {
mDisplays.emplace(displayToken,
setupNewDisplayDeviceInternal(displayToken, displayId, state,
dispSurface, producer));
if (!state.isVirtual()) {
LOG_ALWAYS_FATAL_IF(!displayId);
dispatchDisplayHotplugEvent(displayId->value, true);
}
}
}
}
}
mDrawingState.displays = mCurrentState.displays;
}
void SurfaceFlinger::handleTransactionLocked(uint32_t transactionFlags)
{
// Notify all layers of available frames
mCurrentState.traverseInZOrder([](Layer* layer) {
layer->notifyAvailableFrames();
});
/*
* Traversal of the children
* (perform the transaction for each of them if needed)
*/
if ((transactionFlags & eTraversalNeeded) || mTraversalNeededMainThread) {
mCurrentState.traverseInZOrder([&](Layer* layer) {
uint32_t trFlags = layer->getTransactionFlags(eTransactionNeeded);
if (!trFlags) return;
const uint32_t flags = layer->doTransaction(0);
if (flags & Layer::eVisibleRegion)
mVisibleRegionsDirty = true;
if (flags & Layer::eInputInfoChanged) {
mInputInfoChanged = true;
}
});
mTraversalNeededMainThread = false;
}
/*
* Perform display own transactions if needed
*/
if (transactionFlags & eDisplayTransactionNeeded) {
processDisplayChangesLocked();
processDisplayHotplugEventsLocked();
}
if (transactionFlags & (eDisplayLayerStackChanged|eDisplayTransactionNeeded)) {
// The transform hint might have changed for some layers
// (either because a display has changed, or because a layer
// as changed).
//
// Walk through all the layers in currentLayers,
// and update their transform hint.
//
// If a layer is visible only on a single display, then that
// display is used to calculate the hint, otherwise we use the
// default display.
//
// NOTE: we do this here, rather than in rebuildLayerStacks() so that
// the hint is set before we acquire a buffer from the surface texture.
//
// NOTE: layer transactions have taken place already, so we use their
// drawing state. However, SurfaceFlinger's own transaction has not
// happened yet, so we must use the current state layer list
// (soon to become the drawing state list).
//
sp<const DisplayDevice> hintDisplay;
uint32_t currentlayerStack = 0;
bool first = true;
mCurrentState.traverseInZOrder([&](Layer* layer) {
// NOTE: we rely on the fact that layers are sorted by
// layerStack first (so we don't have to traverse the list
// of displays for every layer).
uint32_t layerStack = layer->getLayerStack();
if (first || currentlayerStack != layerStack) {
currentlayerStack = layerStack;
// figure out if this layerstack is mirrored
// (more than one display) if so, pick the default display,
// if not, pick the only display it's on.
hintDisplay = nullptr;
for (const auto& [token, display] : mDisplays) {
if (display->getCompositionDisplay()
->belongsInOutput(layer->getLayerStack(),
layer->getPrimaryDisplayOnly())) {
if (hintDisplay) {
hintDisplay = nullptr;
break;
} else {
hintDisplay = display;
}
}
}
}
if (!hintDisplay) {
// NOTE: TEMPORARY FIX ONLY. Real fix should cause layers to
// redraw after transform hint changes. See bug 8508397.
// could be null when this layer is using a layerStack
// that is not visible on any display. Also can occur at
// screen off/on times.
hintDisplay = getDefaultDisplayDeviceLocked();
}
// could be null if there is no display available at all to get
// the transform hint from.
if (hintDisplay) {
layer->updateTransformHint(hintDisplay);
}
first = false;
});
}
/*
* Perform our own transaction if needed
*/
if (mLayersAdded) {
mLayersAdded = false;
// Layers have been added.
mVisibleRegionsDirty = true;
}
// some layers might have been removed, so
// we need to update the regions they're exposing.
if (mLayersRemoved) {
mLayersRemoved = false;
mVisibleRegionsDirty = true;
mDrawingState.traverseInZOrder([&](Layer* layer) {
if (mLayersPendingRemoval.indexOf(layer) >= 0) {
// this layer is not visible anymore
Region visibleReg;
visibleReg.set(layer->getScreenBounds());
invalidateLayerStack(layer, visibleReg);
}
});
}
commitInputWindowCommands();
commitTransaction();
}
void SurfaceFlinger::updateInputFlinger() {
ATRACE_CALL();
if (!mInputFlinger) {
return;
}
if (mVisibleRegionsDirty || mInputInfoChanged) {
mInputInfoChanged = false;
updateInputWindowInfo();
} else if (mInputWindowCommands.syncInputWindows) {
// If the caller requested to sync input windows, but there are no
// changes to input windows, notify immediately.
setInputWindowsFinished();
}
executeInputWindowCommands();
}
void SurfaceFlinger::updateInputWindowInfo() {
std::vector<InputWindowInfo> inputHandles;
mDrawingState.traverseInReverseZOrder([&](Layer* layer) {
if (layer->hasInput()) {
// When calculating the screen bounds we ignore the transparent region since it may
// result in an unwanted offset.
inputHandles.push_back(layer->fillInputInfo());
}
});
mInputFlinger->setInputWindows(inputHandles,
mInputWindowCommands.syncInputWindows ? mSetInputWindowsListener
: nullptr);
}
void SurfaceFlinger::commitInputWindowCommands() {
mInputWindowCommands = mPendingInputWindowCommands;
mPendingInputWindowCommands.clear();
}
void SurfaceFlinger::executeInputWindowCommands() {
for (const auto& transferTouchFocusCommand : mInputWindowCommands.transferTouchFocusCommands) {
if (transferTouchFocusCommand.fromToken != nullptr &&
transferTouchFocusCommand.toToken != nullptr &&
transferTouchFocusCommand.fromToken != transferTouchFocusCommand.toToken) {
mInputFlinger->transferTouchFocus(transferTouchFocusCommand.fromToken,
transferTouchFocusCommand.toToken);
}
}
mInputWindowCommands.clear();
}
void SurfaceFlinger::updateCursorAsync()
{
for (const auto& [token, display] : mDisplays) {
if (!display->getId()) {
continue;
}
for (auto& layer : display->getVisibleLayersSortedByZ()) {
layer->updateCursorPosition(display);
}
}
}
void SurfaceFlinger::latchAndReleaseBuffer(const sp<Layer>& layer) {
if (layer->hasReadyFrame()) {
bool ignored = false;
layer->latchBuffer(ignored, systemTime());
}
layer->releasePendingBuffer(systemTime());
}
void SurfaceFlinger::commitTransaction()
{
if (!mLayersPendingRemoval.isEmpty()) {
// Notify removed layers now that they can't be drawn from
for (const auto& l : mLayersPendingRemoval) {
recordBufferingStats(l->getName().string(),
l->getOccupancyHistory(true));
// Ensure any buffers set to display on any children are released.
if (l->isRemovedFromCurrentState()) {
latchAndReleaseBuffer(l);
}
// If the layer has been removed and has no parent, then it will not be reachable
// when traversing layers on screen. Add the layer to the offscreenLayers set to
// ensure we can copy its current to drawing state.
if (!l->getParent()) {
mOffscreenLayers.emplace(l.get());
}
}
mLayersPendingRemoval.clear();
}
// If this transaction is part of a window animation then the next frame
// we composite should be considered an animation as well.
mAnimCompositionPending = mAnimTransactionPending;
withTracingLock([&]() {
mDrawingState = mCurrentState;
// clear the "changed" flags in current state
mCurrentState.colorMatrixChanged = false;
mDrawingState.traverseInZOrder([&](Layer* layer) {
layer->commitChildList();
// If the layer can be reached when traversing mDrawingState, then the layer is no
// longer offscreen. Remove the layer from the offscreenLayer set.
if (mOffscreenLayers.count(layer)) {
mOffscreenLayers.erase(layer);
}
});
commitOffscreenLayers();
});
mTransactionPending = false;
mAnimTransactionPending = false;
mTransactionCV.broadcast();
}
void SurfaceFlinger::withTracingLock(std::function<void()> lockedOperation) {
if (mTracingEnabledChanged) {
mTracingEnabled = mTracing.isEnabled();
mTracingEnabledChanged = false;
}
// Synchronize with Tracing thread
std::unique_lock<std::mutex> lock;
if (mTracingEnabled) {
lock = std::unique_lock<std::mutex>(mDrawingStateLock);
}
lockedOperation();
// Synchronize with Tracing thread
if (mTracingEnabled) {
lock.unlock();
}
}
void SurfaceFlinger::commitOffscreenLayers() {
for (Layer* offscreenLayer : mOffscreenLayers) {
offscreenLayer->traverseInZOrder(LayerVector::StateSet::Drawing, [](Layer* layer) {
uint32_t trFlags = layer->getTransactionFlags(eTransactionNeeded);
if (!trFlags) return;
layer->doTransaction(0);
layer->commitChildList();
});
}
}
void SurfaceFlinger::computeVisibleRegions(const sp<const DisplayDevice>& displayDevice,
Region& outDirtyRegion, Region& outOpaqueRegion) {
ATRACE_CALL();
ALOGV("computeVisibleRegions");
auto display = displayDevice->getCompositionDisplay();
Region aboveOpaqueLayers;
Region aboveCoveredLayers;
Region dirty;
outDirtyRegion.clear();
mDrawingState.traverseInReverseZOrder([&](Layer* layer) {
// start with the whole surface at its current location
const Layer::State& s(layer->getDrawingState());
// only consider the layers on the given layer stack
if (!display->belongsInOutput(layer->getLayerStack(), layer->getPrimaryDisplayOnly())) {
return;
}
/*
* opaqueRegion: area of a surface that is fully opaque.
*/
Region opaqueRegion;
/*
* visibleRegion: area of a surface that is visible on screen
* and not fully transparent. This is essentially the layer's
* footprint minus the opaque regions above it.
* Areas covered by a translucent surface are considered visible.
*/
Region visibleRegion;
/*
* coveredRegion: area of a surface that is covered by all
* visible regions above it (which includes the translucent areas).
*/
Region coveredRegion;
/*
* transparentRegion: area of a surface that is hinted to be completely
* transparent. This is only used to tell when the layer has no visible
* non-transparent regions and can be removed from the layer list. It
* does not affect the visibleRegion of this layer or any layers
* beneath it. The hint may not be correct if apps don't respect the
* SurfaceView restrictions (which, sadly, some don't).
*/
Region transparentRegion;
// handle hidden surfaces by setting the visible region to empty
if (CC_LIKELY(layer->isVisible())) {
const bool translucent = !layer->isOpaque(s);
Rect bounds(layer->getScreenBounds());
visibleRegion.set(bounds);
ui::Transform tr = layer->getTransform();
if (!visibleRegion.isEmpty()) {
// Remove the transparent area from the visible region
if (translucent) {
if (tr.preserveRects()) {
// transform the transparent region
transparentRegion = tr.transform(layer->getActiveTransparentRegion(s));
} else {
// transformation too complex, can't do the
// transparent region optimization.
transparentRegion.clear();
}
}
// compute the opaque region
const int32_t layerOrientation = tr.getOrientation();
if (layer->getAlpha() == 1.0f && !translucent &&
layer->getRoundedCornerState().radius == 0.0f &&
((layerOrientation & ui::Transform::ROT_INVALID) == false)) {
// the opaque region is the layer's footprint
opaqueRegion = visibleRegion;
}
}
}
if (visibleRegion.isEmpty()) {
layer->clearVisibilityRegions();
return;
}
// Clip the covered region to the visible region
coveredRegion = aboveCoveredLayers.intersect(visibleRegion);
// Update aboveCoveredLayers for next (lower) layer
aboveCoveredLayers.orSelf(visibleRegion);
// subtract the opaque region covered by the layers above us
visibleRegion.subtractSelf(aboveOpaqueLayers);
// compute this layer's dirty region
if (layer->contentDirty) {
// we need to invalidate the whole region
dirty = visibleRegion;
// as well, as the old visible region
dirty.orSelf(layer->visibleRegion);
layer->contentDirty = false;
} else {
/* compute the exposed region:
* the exposed region consists of two components:
* 1) what's VISIBLE now and was COVERED before
* 2) what's EXPOSED now less what was EXPOSED before
*
* note that (1) is conservative, we start with the whole
* visible region but only keep what used to be covered by
* something -- which mean it may have been exposed.
*
* (2) handles areas that were not covered by anything but got
* exposed because of a resize.
*/
const Region newExposed = visibleRegion - coveredRegion;
const Region oldVisibleRegion = layer->visibleRegion;
const Region oldCoveredRegion = layer->coveredRegion;
const Region oldExposed = oldVisibleRegion - oldCoveredRegion;
dirty = (visibleRegion&oldCoveredRegion) | (newExposed-oldExposed);
}
dirty.subtractSelf(aboveOpaqueLayers);
// accumulate to the screen dirty region
outDirtyRegion.orSelf(dirty);
// Update aboveOpaqueLayers for next (lower) layer
aboveOpaqueLayers.orSelf(opaqueRegion);
// Store the visible region in screen space
layer->setVisibleRegion(visibleRegion);
layer->setCoveredRegion(coveredRegion);
layer->setVisibleNonTransparentRegion(
visibleRegion.subtract(transparentRegion));
});
outOpaqueRegion = aboveOpaqueLayers;
}
void SurfaceFlinger::invalidateLayerStack(const sp<const Layer>& layer, const Region& dirty) {
for (const auto& [token, displayDevice] : mDisplays) {
auto display = displayDevice->getCompositionDisplay();
if (display->belongsInOutput(layer->getLayerStack(), layer->getPrimaryDisplayOnly())) {
display->editState().dirtyRegion.orSelf(dirty);
}
}
}
bool SurfaceFlinger::handlePageFlip()
{
ATRACE_CALL();
ALOGV("handlePageFlip");
nsecs_t latchTime = systemTime();
bool visibleRegions = false;
bool frameQueued = false;
bool newDataLatched = false;
// Store the set of layers that need updates. This set must not change as
// buffers are being latched, as this could result in a deadlock.
// Example: Two producers share the same command stream and:
// 1.) Layer 0 is latched
// 2.) Layer 0 gets a new frame
// 2.) Layer 1 gets a new frame
// 3.) Layer 1 is latched.
// Display is now waiting on Layer 1's frame, which is behind layer 0's
// second frame. But layer 0's second frame could be waiting on display.
mDrawingState.traverseInZOrder([&](Layer* layer) {
if (layer->hasReadyFrame()) {
frameQueued = true;
const nsecs_t expectedPresentTime = getExpectedPresentTime();
if (layer->shouldPresentNow(expectedPresentTime)) {
mLayersWithQueuedFrames.push_back(layer);
} else {
ATRACE_NAME("!layer->shouldPresentNow()");
layer->useEmptyDamage();
}
} else {
layer->useEmptyDamage();
}
});
if (!mLayersWithQueuedFrames.empty()) {
// mStateLock is needed for latchBuffer as LayerRejecter::reject()
// writes to Layer current state. See also b/119481871
Mutex::Autolock lock(mStateLock);
for (auto& layer : mLayersWithQueuedFrames) {
if (layer->latchBuffer(visibleRegions, latchTime)) {
mLayersPendingRefresh.push_back(layer);
}
layer->useSurfaceDamage();
if (layer->isBufferLatched()) {
newDataLatched = true;
}
}
}
mVisibleRegionsDirty |= visibleRegions;
// If we will need to wake up at some time in the future to deal with a
// queued frame that shouldn't be displayed during this vsync period, wake
// up during the next vsync period to check again.
if (frameQueued && (mLayersWithQueuedFrames.empty() || !newDataLatched)) {
signalLayerUpdate();
}
// enter boot animation on first buffer latch
if (CC_UNLIKELY(mBootStage == BootStage::BOOTLOADER && newDataLatched)) {
ALOGI("Enter boot animation");
mBootStage = BootStage::BOOTANIMATION;
}
// Only continue with the refresh if there is actually new work to do
return !mLayersWithQueuedFrames.empty() && newDataLatched;
}
void SurfaceFlinger::invalidateHwcGeometry()
{
mGeometryInvalid = true;
}
void SurfaceFlinger::doDisplayComposition(const sp<DisplayDevice>& displayDevice,
const Region& inDirtyRegion) {
auto display = displayDevice->getCompositionDisplay();
// We only need to actually compose the display if:
// 1) It is being handled by hardware composer, which may need this to
// keep its virtual display state machine in sync, or
// 2) There is work to be done (the dirty region isn't empty)
if (!displayDevice->getId() && inDirtyRegion.isEmpty()) {
ALOGV("Skipping display composition");
return;
}
ALOGV("doDisplayComposition");
base::unique_fd readyFence;
if (!doComposeSurfaces(displayDevice, Region::INVALID_REGION, &readyFence)) return;
// swap buffers (presentation)
display->getRenderSurface()->queueBuffer(std::move(readyFence));
}
bool SurfaceFlinger::doComposeSurfaces(const sp<DisplayDevice>& displayDevice,
const Region& debugRegion, base::unique_fd* readyFence) {
ATRACE_CALL();
ALOGV("doComposeSurfaces");
auto display = displayDevice->getCompositionDisplay();
const auto& displayState = display->getState();
const auto displayId = display->getId();
auto& renderEngine = getRenderEngine();
const bool supportProtectedContent = renderEngine.supportsProtectedContent();
const Region bounds(displayState.bounds);
const DisplayRenderArea renderArea(displayDevice);
const bool hasClientComposition = getHwComposer().hasClientComposition(displayId);
ATRACE_INT("hasClientComposition", hasClientComposition);
bool applyColorMatrix = false;
renderengine::DisplaySettings clientCompositionDisplay;
std::vector<renderengine::LayerSettings> clientCompositionLayers;
sp<GraphicBuffer> buf;
base::unique_fd fd;
if (hasClientComposition) {
ALOGV("hasClientComposition");
if (displayDevice->isPrimary() && supportProtectedContent) {
bool needsProtected = false;
for (auto& layer : displayDevice->getVisibleLayersSortedByZ()) {
// If the layer is a protected layer, mark protected context is needed.
if (layer->isProtected()) {
needsProtected = true;
break;
}
}
if (needsProtected != renderEngine.isProtected()) {
renderEngine.useProtectedContext(needsProtected);
}
if (needsProtected != display->getRenderSurface()->isProtected() &&
needsProtected == renderEngine.isProtected()) {
display->getRenderSurface()->setProtected(needsProtected);
}
}
buf = display->getRenderSurface()->dequeueBuffer(&fd);
if (buf == nullptr) {
ALOGW("Dequeuing buffer for display [%s] failed, bailing out of "
"client composition for this frame",
displayDevice->getDisplayName().c_str());
return false;
}
clientCompositionDisplay.physicalDisplay = displayState.scissor;
clientCompositionDisplay.clip = displayState.scissor;
const ui::Transform& displayTransform = displayState.transform;
clientCompositionDisplay.globalTransform = displayTransform.asMatrix4();
clientCompositionDisplay.orientation = displayState.orientation;
const auto* profile = display->getDisplayColorProfile();
Dataspace outputDataspace = Dataspace::UNKNOWN;
if (profile->hasWideColorGamut()) {
outputDataspace = displayState.dataspace;
}
clientCompositionDisplay.outputDataspace = outputDataspace;
clientCompositionDisplay.maxLuminance =
profile->getHdrCapabilities().getDesiredMaxLuminance();
const bool hasDeviceComposition = getHwComposer().hasDeviceComposition(displayId);
const bool skipClientColorTransform =
getHwComposer()
.hasDisplayCapability(displayId,
HWC2::DisplayCapability::SkipClientColorTransform);
// Compute the global color transform matrix.
applyColorMatrix = !hasDeviceComposition && !skipClientColorTransform;
if (applyColorMatrix) {
clientCompositionDisplay.colorTransform = displayState.colorTransformMat;
}
}
/*
* and then, render the layers targeted at the framebuffer
*/
ALOGV("Rendering client layers");
bool firstLayer = true;
Region clearRegion = Region::INVALID_REGION;
for (auto& layer : displayDevice->getVisibleLayersSortedByZ()) {
const Region viewportRegion(displayState.viewport);
const Region clip(viewportRegion.intersect(layer->visibleRegion));
ALOGV("Layer: %s", layer->getName().string());
ALOGV(" Composition type: %s", toString(layer->getCompositionType(displayDevice)).c_str());
if (!clip.isEmpty()) {
switch (layer->getCompositionType(displayDevice)) {
case Hwc2::IComposerClient::Composition::CURSOR:
case Hwc2::IComposerClient::Composition::DEVICE:
case Hwc2::IComposerClient::Composition::SIDEBAND:
case Hwc2::IComposerClient::Composition::SOLID_COLOR: {
LOG_ALWAYS_FATAL_IF(!displayId);
const Layer::State& state(layer->getDrawingState());
if (layer->getClearClientTarget(displayDevice) && !firstLayer &&
layer->isOpaque(state) && (layer->getAlpha() == 1.0f) &&
layer->getRoundedCornerState().radius == 0.0f && hasClientComposition) {
// never clear the very first layer since we're
// guaranteed the FB is already cleared
renderengine::LayerSettings layerSettings;
Region dummyRegion;
bool prepared =
layer->prepareClientLayer(renderArea, clip, dummyRegion,
supportProtectedContent, layerSettings);
if (prepared) {
layerSettings.source.buffer.buffer = nullptr;
layerSettings.source.solidColor = half3(0.0, 0.0, 0.0);
layerSettings.alpha = half(0.0);
layerSettings.disableBlending = true;
clientCompositionLayers.push_back(layerSettings);
}
}
break;
}
case Hwc2::IComposerClient::Composition::CLIENT: {
renderengine::LayerSettings layerSettings;
bool prepared =
layer->prepareClientLayer(renderArea, clip, clearRegion,
supportProtectedContent, layerSettings);
if (prepared) {
clientCompositionLayers.push_back(layerSettings);
}
break;
}
default:
break;
}
} else {
ALOGV(" Skipping for empty clip");
}
firstLayer = false;
}
// Perform some cleanup steps if we used client composition.
if (hasClientComposition) {
clientCompositionDisplay.clearRegion = clearRegion;
// We boost GPU frequency here because there will be color spaces conversion
// and it's expensive. We boost the GPU frequency so that GPU composition can
// finish in time. We must reset GPU frequency afterwards, because high frequency
// consumes extra battery.
const bool expensiveRenderingExpected =
clientCompositionDisplay.outputDataspace == Dataspace::DISPLAY_P3;
if (expensiveRenderingExpected && displayId) {
mPowerAdvisor.setExpensiveRenderingExpected(*displayId, true);
}
if (!debugRegion.isEmpty()) {
Region::const_iterator it = debugRegion.begin();
Region::const_iterator end = debugRegion.end();
while (it != end) {
const Rect& rect = *it++;
renderengine::LayerSettings layerSettings;
layerSettings.source.buffer.buffer = nullptr;
layerSettings.source.solidColor = half3(1.0, 0.0, 1.0);
layerSettings.geometry.boundaries = rect.toFloatRect();
layerSettings.alpha = half(1.0);
clientCompositionLayers.push_back(layerSettings);
}
}
renderEngine.drawLayers(clientCompositionDisplay, clientCompositionLayers,
buf->getNativeBuffer(), /*useFramebufferCache=*/true, std::move(fd),
readyFence);
} else if (displayId) {
mPowerAdvisor.setExpensiveRenderingExpected(*displayId, false);
}
return true;
}
void SurfaceFlinger::drawWormhole(const Region& region) const {
auto& engine(getRenderEngine());
engine.fillRegionWithColor(region, 0, 0, 0, 0);
}
status_t SurfaceFlinger::addClientLayer(const sp<Client>& client, const sp<IBinder>& handle,
const sp<IGraphicBufferProducer>& gbc, const sp<Layer>& lbc,
const sp<IBinder>& parentHandle,
const sp<Layer>& parentLayer, bool addToCurrentState) {
// add this layer to the current state list
{
Mutex::Autolock _l(mStateLock);
sp<Layer> parent;
if (parentHandle != nullptr) {
parent = fromHandle(parentHandle);
if (parent == nullptr) {
return NAME_NOT_FOUND;
}
} else {
parent = parentLayer;
}
if (mNumLayers >= MAX_LAYERS) {
ALOGE("AddClientLayer failed, mNumLayers (%zu) >= MAX_LAYERS (%zu)", mNumLayers,
MAX_LAYERS);
return NO_MEMORY;
}
mLayersByLocalBinderToken.emplace(handle->localBinder(), lbc);
if (parent == nullptr && addToCurrentState) {
mCurrentState.layersSortedByZ.add(lbc);
} else if (parent == nullptr) {
lbc->onRemovedFromCurrentState();
} else if (parent->isRemovedFromCurrentState()) {
parent->addChild(lbc);
lbc->onRemovedFromCurrentState();
} else {
parent->addChild(lbc);
}
if (gbc != nullptr) {
mGraphicBufferProducerList.insert(IInterface::asBinder(gbc).get());
LOG_ALWAYS_FATAL_IF(mGraphicBufferProducerList.size() >
mMaxGraphicBufferProducerListSize,
"Suspected IGBP leak: %zu IGBPs (%zu max), %zu Layers",
mGraphicBufferProducerList.size(),
mMaxGraphicBufferProducerListSize, mNumLayers);
}
mLayersAdded = true;
}
// attach this layer to the client
client->attachLayer(handle, lbc);
return NO_ERROR;
}
uint32_t SurfaceFlinger::peekTransactionFlags() {
return mTransactionFlags;
}
uint32_t SurfaceFlinger::getTransactionFlags(uint32_t flags) {
return mTransactionFlags.fetch_and(~flags) & flags;
}
uint32_t SurfaceFlinger::setTransactionFlags(uint32_t flags) {
return setTransactionFlags(flags, Scheduler::TransactionStart::NORMAL);
}
uint32_t SurfaceFlinger::setTransactionFlags(uint32_t flags,
Scheduler::TransactionStart transactionStart) {
uint32_t old = mTransactionFlags.fetch_or(flags);
mVsyncModulator.setTransactionStart(transactionStart);
if ((old & flags)==0) { // wake the server up
signalTransaction();
}
return old;
}
bool SurfaceFlinger::flushTransactionQueues() {
// to prevent onHandleDestroyed from being called while the lock is held,
// we must keep a copy of the transactions (specifically the composer
// states) around outside the scope of the lock
std::vector<const TransactionState> transactions;
bool flushedATransaction = false;
{
Mutex::Autolock _l(mStateLock);
auto it = mTransactionQueues.begin();
while (it != mTransactionQueues.end()) {
auto& [applyToken, transactionQueue] = *it;
while (!transactionQueue.empty()) {
const auto& transaction = transactionQueue.front();
if (!transactionIsReadyToBeApplied(transaction.desiredPresentTime,
transaction.states)) {
setTransactionFlags(eTransactionFlushNeeded);
break;
}
transactions.push_back(transaction);
applyTransactionState(transaction.states, transaction.displays, transaction.flags,
mPendingInputWindowCommands, transaction.desiredPresentTime,
transaction.buffer, transaction.callback,
transaction.postTime, transaction.privileged,
/*isMainThread*/ true);
transactionQueue.pop();
flushedATransaction = true;
}
if (transactionQueue.empty()) {
it = mTransactionQueues.erase(it);
mTransactionCV.broadcast();
} else {
it = std::next(it, 1);
}
}
}
return flushedATransaction;
}
bool SurfaceFlinger::transactionFlushNeeded() {
return !mTransactionQueues.empty();
}
bool SurfaceFlinger::containsAnyInvalidClientState(const Vector<ComposerState>& states) {
for (const ComposerState& state : states) {
// Here we need to check that the interface we're given is indeed
// one of our own. A malicious client could give us a nullptr
// IInterface, or one of its own or even one of our own but a
// different type. All these situations would cause us to crash.
if (state.client == nullptr) {
return true;
}
sp<IBinder> binder = IInterface::asBinder(state.client);
if (binder == nullptr) {
return true;
}
if (binder->queryLocalInterface(ISurfaceComposerClient::descriptor) == nullptr) {
return true;
}
}
return false;
}
bool SurfaceFlinger::transactionIsReadyToBeApplied(int64_t desiredPresentTime,
const Vector<ComposerState>& states) {
nsecs_t expectedPresentTime = getExpectedPresentTime();
// Do not present if the desiredPresentTime has not passed unless it is more than one second
// in the future. We ignore timestamps more than 1 second in the future for stability reasons.
if (desiredPresentTime >= 0 && desiredPresentTime >= expectedPresentTime &&
desiredPresentTime < expectedPresentTime + s2ns(1)) {
return false;
}
for (const ComposerState& state : states) {
const layer_state_t& s = state.state;
if (!(s.what & layer_state_t::eAcquireFenceChanged)) {
continue;
}
if (s.acquireFence && s.acquireFence->getStatus() == Fence::Status::Unsignaled) {
return false;
}
}
return true;
}
void SurfaceFlinger::setTransactionState(const Vector<ComposerState>& states,
const Vector<DisplayState>& displays, uint32_t flags,
const sp<IBinder>& applyToken,
const InputWindowCommands& inputWindowCommands,
int64_t desiredPresentTime,
const client_cache_t& uncacheBuffer,
const std::vector<ListenerCallbacks>& listenerCallbacks) {
ATRACE_CALL();
const int64_t postTime = systemTime();
bool privileged = callingThreadHasUnscopedSurfaceFlingerAccess();
Mutex::Autolock _l(mStateLock);
if (containsAnyInvalidClientState(states)) {
return;
}
// If its TransactionQueue already has a pending TransactionState or if it is pending
auto itr = mTransactionQueues.find(applyToken);
// if this is an animation frame, wait until prior animation frame has
// been applied by SF
if (flags & eAnimation) {
while (itr != mTransactionQueues.end()) {
status_t err = mTransactionCV.waitRelative(mStateLock, s2ns(5));
if (CC_UNLIKELY(err != NO_ERROR)) {
ALOGW_IF(err == TIMED_OUT,
"setTransactionState timed out "
"waiting for animation frame to apply");
break;
}
itr = mTransactionQueues.find(applyToken);
}
}
if (itr != mTransactionQueues.end() ||
!transactionIsReadyToBeApplied(desiredPresentTime, states)) {
mTransactionQueues[applyToken].emplace(states, displays, flags, desiredPresentTime,
uncacheBuffer, listenerCallbacks, postTime,
privileged);
setTransactionFlags(eTransactionFlushNeeded);
return;
}
applyTransactionState(states, displays, flags, inputWindowCommands, desiredPresentTime,
uncacheBuffer, listenerCallbacks, postTime, privileged);
}
void SurfaceFlinger::applyTransactionState(const Vector<ComposerState>& states,
const Vector<DisplayState>& displays, uint32_t flags,
const InputWindowCommands& inputWindowCommands,
const int64_t desiredPresentTime,
const client_cache_t& uncacheBuffer,
const std::vector<ListenerCallbacks>& listenerCallbacks,
const int64_t postTime, bool privileged,
bool isMainThread) {
uint32_t transactionFlags = 0;
if (flags & eAnimation) {
// For window updates that are part of an animation we must wait for
// previous animation "frames" to be handled.
while (!isMainThread && mAnimTransactionPending) {
status_t err = mTransactionCV.waitRelative(mStateLock, s2ns(5));
if (CC_UNLIKELY(err != NO_ERROR)) {
// just in case something goes wrong in SF, return to the
// caller after a few seconds.
ALOGW_IF(err == TIMED_OUT, "setTransactionState timed out "
"waiting for previous animation frame");
mAnimTransactionPending = false;
break;
}
}
}
for (const DisplayState& display : displays) {
transactionFlags |= setDisplayStateLocked(display);
}
// In case the client has sent a Transaction that should receive callbacks but without any
// SurfaceControls that should be included in the callback, send the listener and callbackIds
// to the callback thread so it can send an empty callback
if (!listenerCallbacks.empty()) {
mTransactionCompletedThread.run();
}
for (const auto& [listener, callbackIds] : listenerCallbacks) {
mTransactionCompletedThread.addCallback(listener, callbackIds);
}
uint32_t clientStateFlags = 0;
for (const ComposerState& state : states) {
clientStateFlags |= setClientStateLocked(state, desiredPresentTime, listenerCallbacks,
postTime, privileged);
}
// If the state doesn't require a traversal and there are callbacks, send them now
if (!(clientStateFlags & eTraversalNeeded) && !listenerCallbacks.empty()) {
mTransactionCompletedThread.sendCallbacks();
}
transactionFlags |= clientStateFlags;
transactionFlags |= addInputWindowCommands(inputWindowCommands);
if (uncacheBuffer.isValid()) {
ClientCache::getInstance().erase(uncacheBuffer);
getRenderEngine().unbindExternalTextureBuffer(uncacheBuffer.id);
}
// If a synchronous transaction is explicitly requested without any changes, force a transaction
// anyway. This can be used as a flush mechanism for previous async transactions.
// Empty animation transaction can be used to simulate back-pressure, so also force a
// transaction for empty animation transactions.
if (transactionFlags == 0 &&
((flags & eSynchronous) || (flags & eAnimation))) {
transactionFlags = eTransactionNeeded;
}
// If we are on the main thread, we are about to preform a traversal. Clear the traversal bit
// so we don't have to wake up again next frame to preform an uneeded traversal.
if (isMainThread && (transactionFlags & eTraversalNeeded)) {
transactionFlags = transactionFlags & (~eTraversalNeeded);
mTraversalNeededMainThread = true;
}
if (transactionFlags) {
if (mInterceptor->isEnabled()) {
mInterceptor->saveTransaction(states, mCurrentState.displays, displays, flags);
}
// this triggers the transaction
const auto start = (flags & eEarlyWakeup) ? Scheduler::TransactionStart::EARLY
: Scheduler::TransactionStart::NORMAL;
setTransactionFlags(transactionFlags, start);
// if this is a synchronous transaction, wait for it to take effect
// before returning.
if (flags & eSynchronous) {
mTransactionPending = true;
}
if (flags & eAnimation) {
mAnimTransactionPending = true;
}
if (mPendingInputWindowCommands.syncInputWindows) {
mPendingSyncInputWindows = true;
}
// applyTransactionState can be called by either the main SF thread or by
// another process through setTransactionState. While a given process may wish
// to wait on synchronous transactions, the main SF thread should never
// be blocked. Therefore, we only wait if isMainThread is false.
while (!isMainThread && (mTransactionPending || mPendingSyncInputWindows)) {
status_t err = mTransactionCV.waitRelative(mStateLock, s2ns(5));
if (CC_UNLIKELY(err != NO_ERROR)) {
// just in case something goes wrong in SF, return to the
// called after a few seconds.
ALOGW_IF(err == TIMED_OUT, "setTransactionState timed out!");
mTransactionPending = false;
mPendingSyncInputWindows = false;
break;
}
}
}
}
uint32_t SurfaceFlinger::setDisplayStateLocked(const DisplayState& s) {
const ssize_t index = mCurrentState.displays.indexOfKey(s.token);
if (index < 0) return 0;
uint32_t flags = 0;
DisplayDeviceState& state = mCurrentState.displays.editValueAt(index);
const uint32_t what = s.what;
if (what & DisplayState::eSurfaceChanged) {
if (IInterface::asBinder(state.surface) != IInterface::asBinder(s.surface)) {
state.surface = s.surface;
flags |= eDisplayTransactionNeeded;
}
}
if (what & DisplayState::eLayerStackChanged) {
if (state.layerStack != s.layerStack) {
state.layerStack = s.layerStack;
flags |= eDisplayTransactionNeeded;
}
}
if (what & DisplayState::eDisplayProjectionChanged) {
if (state.orientation != s.orientation) {
state.orientation = s.orientation;
flags |= eDisplayTransactionNeeded;
}
if (state.frame != s.frame) {
state.frame = s.frame;
flags |= eDisplayTransactionNeeded;
}
if (state.viewport != s.viewport) {
state.viewport = s.viewport;
flags |= eDisplayTransactionNeeded;
}
}
if (what & DisplayState::eDisplaySizeChanged) {
if (state.width != s.width) {
state.width = s.width;
flags |= eDisplayTransactionNeeded;
}
if (state.height != s.height) {
state.height = s.height;
flags |= eDisplayTransactionNeeded;
}
}
return flags;
}
bool SurfaceFlinger::callingThreadHasUnscopedSurfaceFlingerAccess() {
IPCThreadState* ipc = IPCThreadState::self();
const int pid = ipc->getCallingPid();
const int uid = ipc->getCallingUid();
if ((uid != AID_GRAPHICS && uid != AID_SYSTEM) &&
!PermissionCache::checkPermission(sAccessSurfaceFlinger, pid, uid)) {
return false;
}
return true;
}
uint32_t SurfaceFlinger::setClientStateLocked(
const ComposerState& composerState, int64_t desiredPresentTime,
const std::vector<ListenerCallbacks>& listenerCallbacks, int64_t postTime,
bool privileged) {
const layer_state_t& s = composerState.state;
sp<Client> client(static_cast<Client*>(composerState.client.get()));
sp<Layer> layer(client->getLayerUser(s.surface));
if (layer == nullptr) {
return 0;
}
uint32_t flags = 0;
const uint64_t what = s.what;
bool geometryAppliesWithResize =
what & layer_state_t::eGeometryAppliesWithResize;
// If we are deferring transaction, make sure to push the pending state, as otherwise the
// pending state will also be deferred.
if (what & layer_state_t::eDeferTransaction_legacy) {
layer->pushPendingState();
}
if (what & layer_state_t::ePositionChanged) {
if (layer->setPosition(s.x, s.y, !geometryAppliesWithResize)) {
flags |= eTraversalNeeded;
}
}
if (what & layer_state_t::eLayerChanged) {
// NOTE: index needs to be calculated before we update the state
const auto& p = layer->getParent();
if (p == nullptr) {
ssize_t idx = mCurrentState.layersSortedByZ.indexOf(layer);
if (layer->setLayer(s.z) && idx >= 0) {
mCurrentState.layersSortedByZ.removeAt(idx);
mCurrentState.layersSortedByZ.add(layer);
// we need traversal (state changed)
// AND transaction (list changed)
flags |= eTransactionNeeded|eTraversalNeeded;
}
} else {
if (p->setChildLayer(layer, s.z)) {
flags |= eTransactionNeeded|eTraversalNeeded;
}
}
}
if (what & layer_state_t::eRelativeLayerChanged) {
// NOTE: index needs to be calculated before we update the state
const auto& p = layer->getParent();
if (p == nullptr) {
ssize_t idx = mCurrentState.layersSortedByZ.indexOf(layer);
if (layer->setRelativeLayer(s.relativeLayerHandle, s.z) && idx >= 0) {
mCurrentState.layersSortedByZ.removeAt(idx);
mCurrentState.layersSortedByZ.add(layer);
// we need traversal (state changed)
// AND transaction (list changed)
flags |= eTransactionNeeded|eTraversalNeeded;
}
} else {
if (p->setChildRelativeLayer(layer, s.relativeLayerHandle, s.z)) {
flags |= eTransactionNeeded|eTraversalNeeded;
}
}
}
if (what & layer_state_t::eSizeChanged) {
if (layer->setSize(s.w, s.h)) {
flags |= eTraversalNeeded;
}
}
if (what & layer_state_t::eAlphaChanged) {
if (layer->setAlpha(s.alpha))
flags |= eTraversalNeeded;
}
if (what & layer_state_t::eColorChanged) {
if (layer->setColor(s.color))
flags |= eTraversalNeeded;
}
if (what & layer_state_t::eColorTransformChanged) {
if (layer->setColorTransform(s.colorTransform)) {
flags |= eTraversalNeeded;
}
}
if (what & layer_state_t::eBackgroundColorChanged) {
if (layer->setBackgroundColor(s.color, s.bgColorAlpha, s.bgColorDataspace)) {
flags |= eTraversalNeeded;
}
}
if (what & layer_state_t::eMatrixChanged) {
// TODO: b/109894387
//
// SurfaceFlinger's renderer is not prepared to handle cropping in the face of arbitrary
// rotation. To see the problem observe that if we have a square parent, and a child
// of the same size, then we rotate the child 45 degrees around it's center, the child
// must now be cropped to a non rectangular 8 sided region.
//
// Of course we can fix this in the future. For now, we are lucky, SurfaceControl is
// private API, and the WindowManager only uses rotation in one case, which is on a top
// level layer in which cropping is not an issue.
//
// However given that abuse of rotation matrices could lead to surfaces extending outside
// of cropped areas, we need to prevent non-root clients without permission ACCESS_SURFACE_FLINGER
// (a.k.a. everyone except WindowManager and tests) from setting non rectangle preserving
// transformations.
if (layer->setMatrix(s.matrix, privileged))
flags |= eTraversalNeeded;
}
if (what & layer_state_t::eTransparentRegionChanged) {
if (layer->setTransparentRegionHint(s.transparentRegion))
flags |= eTraversalNeeded;
}
if (what & layer_state_t::eFlagsChanged) {
if (layer->setFlags(s.flags, s.mask))
flags |= eTraversalNeeded;
}
if (what & layer_state_t::eCropChanged_legacy) {
if (layer->setCrop_legacy(s.crop_legacy, !geometryAppliesWithResize))
flags |= eTraversalNeeded;
}
if (what & layer_state_t::eCornerRadiusChanged) {
if (layer->setCornerRadius(s.cornerRadius))
flags |= eTraversalNeeded;
}
if (what & layer_state_t::eLayerStackChanged) {
ssize_t idx = mCurrentState.layersSortedByZ.indexOf(layer);
// We only allow setting layer stacks for top level layers,
// everything else inherits layer stack from its parent.
if (layer->hasParent()) {
ALOGE("Attempt to set layer stack on layer with parent (%s) is invalid",
layer->getName().string());
} else if (idx < 0) {
ALOGE("Attempt to set layer stack on layer without parent (%s) that "
"that also does not appear in the top level layer list. Something"
" has gone wrong.", layer->getName().string());
} else if (layer->setLayerStack(s.layerStack)) {
mCurrentState.layersSortedByZ.removeAt(idx);
mCurrentState.layersSortedByZ.add(layer);
// we need traversal (state changed)
// AND transaction (list changed)
flags |= eTransactionNeeded|eTraversalNeeded|eDisplayLayerStackChanged;
}
}
if (what & layer_state_t::eDeferTransaction_legacy) {
if (s.barrierHandle_legacy != nullptr) {
layer->deferTransactionUntil_legacy(s.barrierHandle_legacy, s.frameNumber_legacy);
} else if (s.barrierGbp_legacy != nullptr) {
const sp<IGraphicBufferProducer>& gbp = s.barrierGbp_legacy;
if (authenticateSurfaceTextureLocked(gbp)) {
const auto& otherLayer =
(static_cast<MonitoredProducer*>(gbp.get()))->getLayer();
layer->deferTransactionUntil_legacy(otherLayer, s.frameNumber_legacy);
} else {
ALOGE("Attempt to defer transaction to to an"
" unrecognized GraphicBufferProducer");
}
}
// We don't trigger a traversal here because if no other state is
// changed, we don't want this to cause any more work
}
if (what & layer_state_t::eReparent) {
bool hadParent = layer->hasParent();
if (layer->reparent(s.parentHandleForChild)) {
if (!hadParent) {
mCurrentState.layersSortedByZ.remove(layer);
}
flags |= eTransactionNeeded|eTraversalNeeded;
}
}
if (what & layer_state_t::eReparentChildren) {
if (layer->reparentChildren(s.reparentHandle)) {
flags |= eTransactionNeeded|eTraversalNeeded;
}
}
if (what & layer_state_t::eDetachChildren) {
layer->detachChildren();
}
if (what & layer_state_t::eOverrideScalingModeChanged) {
layer->setOverrideScalingMode(s.overrideScalingMode);
// We don't trigger a traversal here because if no other state is
// changed, we don't want this to cause any more work
}
if (what & layer_state_t::eTransformChanged) {
if (layer->setTransform(s.transform)) flags |= eTraversalNeeded;
}
if (what & layer_state_t::eTransformToDisplayInverseChanged) {
if (layer->setTransformToDisplayInverse(s.transformToDisplayInverse))
flags |= eTraversalNeeded;
}
if (what & layer_state_t::eCropChanged) {
if (layer->setCrop(s.crop)) flags |= eTraversalNeeded;
}
if (what & layer_state_t::eFrameChanged) {
if (layer->setFrame(s.frame)) flags |= eTraversalNeeded;
}
if (what & layer_state_t::eAcquireFenceChanged) {
if (layer->setAcquireFence(s.acquireFence)) flags |= eTraversalNeeded;
}
if (what & layer_state_t::eDataspaceChanged) {
if (layer->setDataspace(s.dataspace)) flags |= eTraversalNeeded;
}
if (what & layer_state_t::eHdrMetadataChanged) {
if (layer->setHdrMetadata(s.hdrMetadata)) flags |= eTraversalNeeded;
}
if (what & layer_state_t::eSurfaceDamageRegionChanged) {
if (layer->setSurfaceDamageRegion(s.surfaceDamageRegion)) flags |= eTraversalNeeded;
}
if (what & layer_state_t::eApiChanged) {
if (layer->setApi(s.api)) flags |= eTraversalNeeded;
}
if (what & layer_state_t::eSidebandStreamChanged) {
if (layer->setSidebandStream(s.sidebandStream)) flags |= eTraversalNeeded;
}
if (what & layer_state_t::eInputInfoChanged) {
if (privileged) {
layer->setInputInfo(s.inputInfo);
flags |= eTraversalNeeded;
} else {
ALOGE("Attempt to update InputWindowInfo without permission ACCESS_SURFACE_FLINGER");
}
}
if (what & layer_state_t::eMetadataChanged) {
if (layer->setMetadata(s.metadata)) flags |= eTraversalNeeded;
}
if (what & layer_state_t::eColorSpaceAgnosticChanged) {
if (layer->setColorSpaceAgnostic(s.colorSpaceAgnostic)) {
flags |= eTraversalNeeded;
}
}
std::vector<sp<CallbackHandle>> callbackHandles;
if ((what & layer_state_t::eHasListenerCallbacksChanged) && (!listenerCallbacks.empty())) {
for (const auto& [listener, callbackIds] : listenerCallbacks) {
callbackHandles.emplace_back(new CallbackHandle(listener, callbackIds, s.surface));
}
}
bool bufferChanged = what & layer_state_t::eBufferChanged;
bool cacheIdChanged = what & layer_state_t::eCachedBufferChanged;
sp<GraphicBuffer> buffer;
if (bufferChanged && cacheIdChanged && s.buffer != nullptr) {
buffer = s.buffer;
bool success = ClientCache::getInstance().add(s.cachedBuffer, s.buffer);
if (success) {
getRenderEngine().cacheExternalTextureBuffer(s.buffer);
success = ClientCache::getInstance()
.registerErasedRecipient(s.cachedBuffer,
wp<ClientCache::ErasedRecipient>(this));
if (!success) {
getRenderEngine().unbindExternalTextureBuffer(s.buffer->getId());
}
}
} else if (cacheIdChanged) {
buffer = ClientCache::getInstance().get(s.cachedBuffer);
} else if (bufferChanged) {
buffer = s.buffer;
}
if (buffer) {
if (layer->setBuffer(buffer, postTime, desiredPresentTime, s.cachedBuffer)) {
flags |= eTraversalNeeded;
}
}
if (layer->setTransactionCompletedListeners(callbackHandles)) flags |= eTraversalNeeded;
// Do not put anything that updates layer state or modifies flags after
// setTransactionCompletedListener
return flags;
}
uint32_t SurfaceFlinger::addInputWindowCommands(const InputWindowCommands& inputWindowCommands) {
uint32_t flags = 0;
if (!inputWindowCommands.transferTouchFocusCommands.empty()) {
flags |= eTraversalNeeded;
}
if (inputWindowCommands.syncInputWindows) {
flags |= eTraversalNeeded;
}
mPendingInputWindowCommands.merge(inputWindowCommands);
return flags;
}
status_t SurfaceFlinger::createLayer(const String8& name, const sp<Client>& client, uint32_t w,
uint32_t h, PixelFormat format, uint32_t flags,
LayerMetadata metadata, sp<IBinder>* handle,
sp<IGraphicBufferProducer>* gbp,
const sp<IBinder>& parentHandle,
const sp<Layer>& parentLayer) {
if (int32_t(w|h) < 0) {
ALOGE("createLayer() failed, w or h is negative (w=%d, h=%d)",
int(w), int(h));
return BAD_VALUE;
}
ALOG_ASSERT(parentLayer == nullptr || parentHandle == nullptr,
"Expected only one of parentLayer or parentHandle to be non-null. "
"Programmer error?");
status_t result = NO_ERROR;
sp<Layer> layer;
String8 uniqueName = getUniqueLayerName(name);
bool primaryDisplayOnly = false;
// window type is WINDOW_TYPE_DONT_SCREENSHOT from SurfaceControl.java
// TODO b/64227542
if (metadata.has(METADATA_WINDOW_TYPE)) {
int32_t windowType = metadata.getInt32(METADATA_WINDOW_TYPE, 0);
if (windowType == 441731) {
metadata.setInt32(METADATA_WINDOW_TYPE, InputWindowInfo::TYPE_NAVIGATION_BAR_PANEL);
primaryDisplayOnly = true;
}
}
switch (flags & ISurfaceComposerClient::eFXSurfaceMask) {
case ISurfaceComposerClient::eFXSurfaceBufferQueue:
result = createBufferQueueLayer(client, uniqueName, w, h, flags, std::move(metadata),
format, handle, gbp, &layer);
break;
case ISurfaceComposerClient::eFXSurfaceBufferState:
result = createBufferStateLayer(client, uniqueName, w, h, flags, std::move(metadata),
handle, &layer);
break;
case ISurfaceComposerClient::eFXSurfaceColor:
// check if buffer size is set for color layer.
if (w > 0 || h > 0) {
ALOGE("createLayer() failed, w or h cannot be set for color layer (w=%d, h=%d)",
int(w), int(h));
return BAD_VALUE;
}
result = createColorLayer(client, uniqueName, w, h, flags, std::move(metadata), handle,
&layer);
break;
case ISurfaceComposerClient::eFXSurfaceContainer:
// check if buffer size is set for container layer.
if (w > 0 || h > 0) {
ALOGE("createLayer() failed, w or h cannot be set for container layer (w=%d, h=%d)",
int(w), int(h));
return BAD_VALUE;
}
result = createContainerLayer(client, uniqueName, w, h, flags, std::move(metadata),
handle, &layer);
break;
default:
result = BAD_VALUE;
break;
}
if (result != NO_ERROR) {
return result;
}
if (primaryDisplayOnly) {
layer->setPrimaryDisplayOnly();
}
bool addToCurrentState = callingThreadHasUnscopedSurfaceFlingerAccess();
result = addClientLayer(client, *handle, *gbp, layer, parentHandle, parentLayer,
addToCurrentState);
if (result != NO_ERROR) {
return result;
}
mInterceptor->saveSurfaceCreation(layer);
setTransactionFlags(eTransactionNeeded);
return result;
}
String8 SurfaceFlinger::getUniqueLayerName(const String8& name)
{
bool matchFound = true;
uint32_t dupeCounter = 0;
// Tack on our counter whether there is a hit or not, so everyone gets a tag
String8 uniqueName = name + "#" + String8(std::to_string(dupeCounter).c_str());
// Grab the state lock since we're accessing mCurrentState
Mutex::Autolock lock(mStateLock);
// Loop over layers until we're sure there is no matching name
while (matchFound) {
matchFound = false;
mCurrentState.traverseInZOrder([&](Layer* layer) {
if (layer->getName() == uniqueName) {
matchFound = true;
uniqueName = name + "#" + String8(std::to_string(++dupeCounter).c_str());
}
});
}
ALOGV_IF(dupeCounter > 0, "duplicate layer name: changing %s to %s", name.c_str(),
uniqueName.c_str());
return uniqueName;
}
status_t SurfaceFlinger::createBufferQueueLayer(const sp<Client>& client, const String8& name,
uint32_t w, uint32_t h, uint32_t flags,
LayerMetadata metadata, PixelFormat& format,
sp<IBinder>* handle,
sp<IGraphicBufferProducer>* gbp,
sp<Layer>* outLayer) {
// initialize the surfaces
switch (format) {
case PIXEL_FORMAT_TRANSPARENT:
case PIXEL_FORMAT_TRANSLUCENT:
format = PIXEL_FORMAT_RGBA_8888;
break;
case PIXEL_FORMAT_OPAQUE:
format = PIXEL_FORMAT_RGBX_8888;
break;
}
sp<BufferQueueLayer> layer = getFactory().createBufferQueueLayer(
LayerCreationArgs(this, client, name, w, h, flags, std::move(metadata)));
status_t err = layer->setDefaultBufferProperties(w, h, format);
if (err == NO_ERROR) {
*handle = layer->getHandle();
*gbp = layer->getProducer();
*outLayer = layer;
}
ALOGE_IF(err, "createBufferQueueLayer() failed (%s)", strerror(-err));
return err;
}
status_t SurfaceFlinger::createBufferStateLayer(const sp<Client>& client, const String8& name,
uint32_t w, uint32_t h, uint32_t flags,
LayerMetadata metadata, sp<IBinder>* handle,
sp<Layer>* outLayer) {
sp<BufferStateLayer> layer = getFactory().createBufferStateLayer(
LayerCreationArgs(this, client, name, w, h, flags, std::move(metadata)));
*handle = layer->getHandle();
*outLayer = layer;
return NO_ERROR;
}
status_t SurfaceFlinger::createColorLayer(const sp<Client>& client, const String8& name, uint32_t w,
uint32_t h, uint32_t flags, LayerMetadata metadata,
sp<IBinder>* handle, sp<Layer>* outLayer) {
*outLayer = getFactory().createColorLayer(
LayerCreationArgs(this, client, name, w, h, flags, std::move(metadata)));
*handle = (*outLayer)->getHandle();
return NO_ERROR;
}
status_t SurfaceFlinger::createContainerLayer(const sp<Client>& client, const String8& name,
uint32_t w, uint32_t h, uint32_t flags,
LayerMetadata metadata, sp<IBinder>* handle,
sp<Layer>* outLayer) {
*outLayer = getFactory().createContainerLayer(
LayerCreationArgs(this, client, name, w, h, flags, std::move(metadata)));
*handle = (*outLayer)->getHandle();
return NO_ERROR;
}
void SurfaceFlinger::markLayerPendingRemovalLocked(const sp<Layer>& layer) {
mLayersPendingRemoval.add(layer);
mLayersRemoved = true;
setTransactionFlags(eTransactionNeeded);
}
void SurfaceFlinger::onHandleDestroyed(sp<Layer>& layer)
{
Mutex::Autolock lock(mStateLock);
// If a layer has a parent, we allow it to out-live it's handle
// with the idea that the parent holds a reference and will eventually
// be cleaned up. However no one cleans up the top-level so we do so
// here.
if (layer->getParent() == nullptr) {
mCurrentState.layersSortedByZ.remove(layer);
}
markLayerPendingRemovalLocked(layer);
auto it = mLayersByLocalBinderToken.begin();
while (it != mLayersByLocalBinderToken.end()) {
if (it->second == layer) {
it = mLayersByLocalBinderToken.erase(it);
} else {
it++;
}
}
layer.clear();
}
// ---------------------------------------------------------------------------
void SurfaceFlinger::onInitializeDisplays() {
const auto display = getDefaultDisplayDeviceLocked();
if (!display) return;
const sp<IBinder> token = display->getDisplayToken().promote();
LOG_ALWAYS_FATAL_IF(token == nullptr);
// reset screen orientation and use primary layer stack
Vector<ComposerState> state;
Vector<DisplayState> displays;
DisplayState d;
d.what = DisplayState::eDisplayProjectionChanged |
DisplayState::eLayerStackChanged;
d.token = token;
d.layerStack = 0;
d.orientation = DisplayState::eOrientationDefault;
d.frame.makeInvalid();
d.viewport.makeInvalid();
d.width = 0;
d.height = 0;
displays.add(d);
setTransactionState(state, displays, 0, nullptr, mPendingInputWindowCommands, -1, {}, {});
setPowerModeInternal(display, HWC_POWER_MODE_NORMAL);
const nsecs_t vsyncPeriod = getVsyncPeriod();
mAnimFrameTracker.setDisplayRefreshPeriod(vsyncPeriod);
// Use phase of 0 since phase is not known.
// Use latency of 0, which will snap to the ideal latency.
DisplayStatInfo stats{0 /* vsyncTime */, vsyncPeriod};
setCompositorTimingSnapped(stats, 0);
}
void SurfaceFlinger::initializeDisplays() {
// Async since we may be called from the main thread.
postMessageAsync(
new LambdaMessage([this]() NO_THREAD_SAFETY_ANALYSIS { onInitializeDisplays(); }));
}
void SurfaceFlinger::setVsyncEnabledInHWC(DisplayId displayId, HWC2::Vsync enabled) {
if (mHWCVsyncState != enabled) {
getHwComposer().setVsyncEnabled(displayId, enabled);
mHWCVsyncState = enabled;
}
}
void SurfaceFlinger::setPowerModeInternal(const sp<DisplayDevice>& display, int mode) {
if (display->isVirtual()) {
ALOGE("%s: Invalid operation on virtual display", __FUNCTION__);
return;
}
const auto displayId = display->getId();
LOG_ALWAYS_FATAL_IF(!displayId);
ALOGD("Setting power mode %d on display %s", mode, to_string(*displayId).c_str());
int currentMode = display->getPowerMode();
if (mode == currentMode) {
return;
}
display->setPowerMode(mode);
if (mInterceptor->isEnabled()) {
mInterceptor->savePowerModeUpdate(display->getSequenceId(), mode);
}
if (currentMode == HWC_POWER_MODE_OFF) {
// Turn on the display
getHwComposer().setPowerMode(*displayId, mode);
if (display->isPrimary() && mode != HWC_POWER_MODE_DOZE_SUSPEND) {
setVsyncEnabledInHWC(*displayId, mHWCVsyncPendingState);
mScheduler->onScreenAcquired(mAppConnectionHandle);
mScheduler->resyncToHardwareVsync(true, getVsyncPeriod());
}
mVisibleRegionsDirty = true;
mHasPoweredOff = true;
repaintEverything();
struct sched_param param = {0};
param.sched_priority = 1;
if (sched_setscheduler(0, SCHED_FIFO, &param) != 0) {
ALOGW("Couldn't set SCHED_FIFO on display on");
}
} else if (mode == HWC_POWER_MODE_OFF) {
// Turn off the display
struct sched_param param = {0};
if (sched_setscheduler(0, SCHED_OTHER, &param) != 0) {
ALOGW("Couldn't set SCHED_OTHER on display off");
}
if (display->isPrimary() && currentMode != HWC_POWER_MODE_DOZE_SUSPEND) {
mScheduler->disableHardwareVsync(true);
mScheduler->onScreenReleased(mAppConnectionHandle);
}
// Make sure HWVsync is disabled before turning off the display
setVsyncEnabledInHWC(*displayId, HWC2::Vsync::Disable);
getHwComposer().setPowerMode(*displayId, mode);
mVisibleRegionsDirty = true;
// from this point on, SF will stop drawing on this display
} else if (mode == HWC_POWER_MODE_DOZE ||
mode == HWC_POWER_MODE_NORMAL) {
// Update display while dozing
getHwComposer().setPowerMode(*displayId, mode);
if (display->isPrimary() && currentMode == HWC_POWER_MODE_DOZE_SUSPEND) {
mScheduler->onScreenAcquired(mAppConnectionHandle);
mScheduler->resyncToHardwareVsync(true, getVsyncPeriod());
}
} else if (mode == HWC_POWER_MODE_DOZE_SUSPEND) {
// Leave display going to doze
if (display->isPrimary()) {
mScheduler->disableHardwareVsync(true);
mScheduler->onScreenReleased(mAppConnectionHandle);
}
getHwComposer().setPowerMode(*displayId, mode);
} else {
ALOGE("Attempting to set unknown power mode: %d\n", mode);
getHwComposer().setPowerMode(*displayId, mode);
}
if (display->isPrimary()) {
mTimeStats->setPowerMode(mode);
mRefreshRateStats.setPowerMode(mode);
mScheduler->setDisplayPowerState(mode == HWC_POWER_MODE_NORMAL);
}
ALOGD("Finished setting power mode %d on display %s", mode, to_string(*displayId).c_str());
}
void SurfaceFlinger::setPowerMode(const sp<IBinder>& displayToken, int mode) {
postMessageSync(new LambdaMessage([&]() NO_THREAD_SAFETY_ANALYSIS {
const auto display = getDisplayDevice(displayToken);
if (!display) {
ALOGE("Attempt to set power mode %d for invalid display token %p", mode,
displayToken.get());
} else if (display->isVirtual()) {
ALOGW("Attempt to set power mode %d for virtual display", mode);
} else {
setPowerModeInternal(display, mode);
}
}));
}
// ---------------------------------------------------------------------------
status_t SurfaceFlinger::doDump(int fd, const DumpArgs& args,
bool asProto) NO_THREAD_SAFETY_ANALYSIS {
std::string result;
IPCThreadState* ipc = IPCThreadState::self();
const int pid = ipc->getCallingPid();
const int uid = ipc->getCallingUid();
if ((uid != AID_SHELL) &&
!PermissionCache::checkPermission(sDump, pid, uid)) {
StringAppendF(&result, "Permission Denial: can't dump SurfaceFlinger from pid=%d, uid=%d\n",
pid, uid);
} else {
// Try to get the main lock, but give up after one second
// (this would indicate SF is stuck, but we want to be able to
// print something in dumpsys).
status_t err = mStateLock.timedLock(s2ns(1));
bool locked = (err == NO_ERROR);
if (!locked) {
StringAppendF(&result,
"SurfaceFlinger appears to be unresponsive (%s [%d]), dumping anyways "
"(no locks held)\n",
strerror(-err), err);
}
using namespace std::string_literals;
static const std::unordered_map<std::string, Dumper> dumpers = {
{"--clear-layer-stats"s, dumper([this](std::string&) { mLayerStats.clear(); })},
{"--disable-layer-stats"s, dumper([this](std::string&) { mLayerStats.disable(); })},
{"--display-id"s, dumper(&SurfaceFlinger::dumpDisplayIdentificationData)},
{"--dispsync"s, dumper([this](std::string& s) {
mScheduler->dumpPrimaryDispSync(s);
})},
{"--dump-layer-stats"s, dumper([this](std::string& s) { mLayerStats.dump(s); })},
{"--enable-layer-stats"s, dumper([this](std::string&) { mLayerStats.enable(); })},
{"--frame-events"s, dumper(&SurfaceFlinger::dumpFrameEventsLocked)},
{"--latency"s, argsDumper(&SurfaceFlinger::dumpStatsLocked)},
{"--latency-clear"s, argsDumper(&SurfaceFlinger::clearStatsLocked)},
{"--list"s, dumper(&SurfaceFlinger::listLayersLocked)},
{"--static-screen"s, dumper(&SurfaceFlinger::dumpStaticScreenStats)},
{"--timestats"s, protoDumper(&SurfaceFlinger::dumpTimeStats)},
{"--vsync"s, dumper(&SurfaceFlinger::dumpVSync)},
{"--wide-color"s, dumper(&SurfaceFlinger::dumpWideColorInfo)},
};
const auto flag = args.empty() ? ""s : std::string(String8(args[0]));
if (const auto it = dumpers.find(flag); it != dumpers.end()) {
(it->second)(args, asProto, result);
} else {
if (asProto) {
LayersProto layersProto = dumpProtoInfo(LayerVector::StateSet::Current);
result.append(layersProto.SerializeAsString().c_str(), layersProto.ByteSize());
} else {
dumpAllLocked(args, result);
}
}
if (locked) {
mStateLock.unlock();
}
}
write(fd, result.c_str(), result.size());
return NO_ERROR;
}
status_t SurfaceFlinger::dumpCritical(int fd, const DumpArgs&, bool asProto) {
if (asProto && mTracing.isEnabled()) {
mTracing.writeToFileAsync();
}
return doDump(fd, DumpArgs(), asProto);
}
void SurfaceFlinger::listLayersLocked(std::string& result) const {
mCurrentState.traverseInZOrder(
[&](Layer* layer) { StringAppendF(&result, "%s\n", layer->getName().string()); });
}
void SurfaceFlinger::dumpStatsLocked(const DumpArgs& args, std::string& result) const {
StringAppendF(&result, "%" PRId64 "\n", getVsyncPeriod());
if (args.size() > 1) {
const auto name = String8(args[1]);
mCurrentState.traverseInZOrder([&](Layer* layer) {
if (name == layer->getName()) {
layer->dumpFrameStats(result);
}
});
} else {
mAnimFrameTracker.dumpStats(result);
}
}
void SurfaceFlinger::clearStatsLocked(const DumpArgs& args, std::string&) {
mCurrentState.traverseInZOrder([&](Layer* layer) {
if (args.size() < 2 || String8(args[1]) == layer->getName()) {
layer->clearFrameStats();
}
});
mAnimFrameTracker.clearStats();
}
void SurfaceFlinger::dumpTimeStats(const DumpArgs& args, bool asProto, std::string& result) const {
mTimeStats->parseArgs(asProto, args, result);
}
// This should only be called from the main thread. Otherwise it would need
// the lock and should use mCurrentState rather than mDrawingState.
void SurfaceFlinger::logFrameStats() {
mDrawingState.traverseInZOrder([&](Layer* layer) {
layer->logFrameStats();
});
mAnimFrameTracker.logAndResetStats(String8("<win-anim>"));
}
void SurfaceFlinger::appendSfConfigString(std::string& result) const {
result.append(" [sf");
if (isLayerTripleBufferingDisabled())
result.append(" DISABLE_TRIPLE_BUFFERING");
StringAppendF(&result, " PRESENT_TIME_OFFSET=%" PRId64, dispSyncPresentTimeOffset);
StringAppendF(&result, " FORCE_HWC_FOR_RBG_TO_YUV=%d", useHwcForRgbToYuv);
StringAppendF(&result, " MAX_VIRT_DISPLAY_DIM=%" PRIu64, maxVirtualDisplaySize);
StringAppendF(&result, " RUNNING_WITHOUT_SYNC_FRAMEWORK=%d", !hasSyncFramework);
StringAppendF(&result, " NUM_FRAMEBUFFER_SURFACE_BUFFERS=%" PRId64,
maxFrameBufferAcquiredBuffers);
result.append("]");
}
void SurfaceFlinger::dumpVSync(std::string& result) const {
mPhaseOffsets->dump(result);
StringAppendF(&result,
" present offset: %9" PRId64 " ns\t VSYNC period: %9" PRId64 " ns\n\n",
dispSyncPresentTimeOffset, getVsyncPeriod());
StringAppendF(&result, "Scheduler enabled.");
StringAppendF(&result, "+ Smart 90 for video detection: %s\n\n",
mUseSmart90ForVideo ? "on" : "off");
StringAppendF(&result, "Allowed Display Configs: ");
for (int32_t configId : mAllowedDisplayConfigs) {
for (auto refresh : mRefreshRateConfigs.getRefreshRates()) {
if (refresh.second && refresh.second->configId == configId) {
StringAppendF(&result, "%dHz, ", refresh.second->fps);
}
}
}
StringAppendF(&result, "(config override by backdoor: %s)\n\n",
mDebugDisplayConfigSetByBackdoor ? "yes" : "no");
mScheduler->dump(mAppConnectionHandle, result);
}
void SurfaceFlinger::dumpStaticScreenStats(std::string& result) const {
result.append("Static screen stats:\n");
for (size_t b = 0; b < SurfaceFlingerBE::NUM_BUCKETS - 1; ++b) {
float bucketTimeSec = getBE().mFrameBuckets[b] / 1e9;
float percent = 100.0f *
static_cast<float>(getBE().mFrameBuckets[b]) / getBE().mTotalTime;
StringAppendF(&result, " < %zd frames: %.3f s (%.1f%%)\n", b + 1, bucketTimeSec, percent);
}
float bucketTimeSec = getBE().mFrameBuckets[SurfaceFlingerBE::NUM_BUCKETS - 1] / 1e9;
float percent = 100.0f *
static_cast<float>(getBE().mFrameBuckets[SurfaceFlingerBE::NUM_BUCKETS - 1]) / getBE().mTotalTime;
StringAppendF(&result, " %zd+ frames: %.3f s (%.1f%%)\n", SurfaceFlingerBE::NUM_BUCKETS - 1,
bucketTimeSec, percent);
}
void SurfaceFlinger::recordBufferingStats(const char* layerName,
std::vector<OccupancyTracker::Segment>&& history) {
Mutex::Autolock lock(getBE().mBufferingStatsMutex);
auto& stats = getBE().mBufferingStats[layerName];
for (const auto& segment : history) {
if (!segment.usedThirdBuffer) {
stats.twoBufferTime += segment.totalTime;
}
if (segment.occupancyAverage < 1.0f) {
stats.doubleBufferedTime += segment.totalTime;
} else if (segment.occupancyAverage < 2.0f) {
stats.tripleBufferedTime += segment.totalTime;
}
++stats.numSegments;
stats.totalTime += segment.totalTime;
}
}
void SurfaceFlinger::dumpFrameEventsLocked(std::string& result) {
result.append("Layer frame timestamps:\n");
const LayerVector& currentLayers = mCurrentState.layersSortedByZ;
const size_t count = currentLayers.size();
for (size_t i=0 ; i<count ; i++) {
currentLayers[i]->dumpFrameEvents(result);
}
}
void SurfaceFlinger::dumpBufferingStats(std::string& result) const {
result.append("Buffering stats:\n");
result.append(" [Layer name] <Active time> <Two buffer> "
"<Double buffered> <Triple buffered>\n");
Mutex::Autolock lock(getBE().mBufferingStatsMutex);
typedef std::tuple<std::string, float, float, float> BufferTuple;
std::map<float, BufferTuple, std::greater<float>> sorted;
for (const auto& statsPair : getBE().mBufferingStats) {
const char* name = statsPair.first.c_str();
const SurfaceFlingerBE::BufferingStats& stats = statsPair.second;
if (stats.numSegments == 0) {
continue;
}
float activeTime = ns2ms(stats.totalTime) / 1000.0f;
float twoBufferRatio = static_cast<float>(stats.twoBufferTime) /
stats.totalTime;
float doubleBufferRatio = static_cast<float>(
stats.doubleBufferedTime) / stats.totalTime;
float tripleBufferRatio = static_cast<float>(
stats.tripleBufferedTime) / stats.totalTime;
sorted.insert({activeTime, {name, twoBufferRatio,
doubleBufferRatio, tripleBufferRatio}});
}
for (const auto& sortedPair : sorted) {
float activeTime = sortedPair.first;
const BufferTuple& values = sortedPair.second;
StringAppendF(&result, " [%s] %.2f %.3f %.3f %.3f\n", std::get<0>(values).c_str(),
activeTime, std::get<1>(values), std::get<2>(values), std::get<3>(values));
}
result.append("\n");
}
void SurfaceFlinger::dumpDisplayIdentificationData(std::string& result) const {
for (const auto& [token, display] : mDisplays) {
const auto displayId = display->getId();
if (!displayId) {
continue;
}
const auto hwcDisplayId = getHwComposer().fromPhysicalDisplayId(*displayId);
if (!hwcDisplayId) {
continue;
}
StringAppendF(&result,
"Display %s (HWC display %" PRIu64 "): ", to_string(*displayId).c_str(),
*hwcDisplayId);
uint8_t port;
DisplayIdentificationData data;
if (!getHwComposer().getDisplayIdentificationData(*hwcDisplayId, &port, &data)) {
result.append("no identification data\n");
continue;
}
if (!isEdid(data)) {
result.append("unknown identification data: ");
for (uint8_t byte : data) {
StringAppendF(&result, "%x ", byte);
}
result.append("\n");
continue;
}
const auto edid = parseEdid(data);
if (!edid) {
result.append("invalid EDID: ");
for (uint8_t byte : data) {
StringAppendF(&result, "%x ", byte);
}
result.append("\n");
continue;
}
StringAppendF(&result, "port=%u pnpId=%s displayName=\"", port, edid->pnpId.data());
result.append(edid->displayName.data(), edid->displayName.length());
result.append("\"\n");
}
}
void SurfaceFlinger::dumpWideColorInfo(std::string& result) const {
StringAppendF(&result, "Device has wide color built-in display: %d\n", hasWideColorDisplay);
StringAppendF(&result, "Device uses color management: %d\n", useColorManagement);
StringAppendF(&result, "DisplayColorSetting: %s\n",
decodeDisplayColorSetting(mDisplayColorSetting).c_str());
// TODO: print out if wide-color mode is active or not
for (const auto& [token, display] : mDisplays) {
const auto displayId = display->getId();
if (!displayId) {
continue;
}
StringAppendF(&result, "Display %s color modes:\n", to_string(*displayId).c_str());
std::vector<ColorMode> modes = getHwComposer().getColorModes(*displayId);
for (auto&& mode : modes) {
StringAppendF(&result, " %s (%d)\n", decodeColorMode(mode).c_str(), mode);
}
ColorMode currentMode = display->getCompositionDisplay()->getState().colorMode;
StringAppendF(&result, " Current color mode: %s (%d)\n",
decodeColorMode(currentMode).c_str(), currentMode);
}
result.append("\n");
}
LayersProto SurfaceFlinger::dumpProtoInfo(LayerVector::StateSet stateSet,
uint32_t traceFlags) const {
LayersProto layersProto;
const bool useDrawing = stateSet == LayerVector::StateSet::Drawing;
const State& state = useDrawing ? mDrawingState : mCurrentState;
state.traverseInZOrder([&](Layer* layer) {
LayerProto* layerProto = layersProto.add_layers();
layer->writeToProto(layerProto, stateSet, traceFlags);
});
return layersProto;
}
LayersProto SurfaceFlinger::dumpVisibleLayersProtoInfo(
const sp<DisplayDevice>& displayDevice) const {
LayersProto layersProto;
SizeProto* resolution = layersProto.mutable_resolution();
resolution->set_w(displayDevice->getWidth());
resolution->set_h(displayDevice->getHeight());
auto display = displayDevice->getCompositionDisplay();
const auto& displayState = display->getState();
layersProto.set_color_mode(decodeColorMode(displayState.colorMode));
layersProto.set_color_transform(decodeColorTransform(displayState.colorTransform));
layersProto.set_global_transform(displayState.orientation);
const auto displayId = displayDevice->getId();
LOG_ALWAYS_FATAL_IF(!displayId);
mDrawingState.traverseInZOrder([&](Layer* layer) {
if (!layer->visibleRegion.isEmpty() && !display->getOutputLayersOrderedByZ().empty()) {
LayerProto* layerProto = layersProto.add_layers();
layer->writeToProto(layerProto, displayDevice);
}
});
return layersProto;
}
void SurfaceFlinger::dumpAllLocked(const DumpArgs& args, std::string& result) const {
const bool colorize = !args.empty() && args[0] == String16("--color");
Colorizer colorizer(colorize);
// figure out if we're stuck somewhere
const nsecs_t now = systemTime();
const nsecs_t inTransaction(mDebugInTransaction);
nsecs_t inTransactionDuration = (inTransaction) ? now-inTransaction : 0;
/*
* Dump library configuration.
*/
colorizer.bold(result);
result.append("Build configuration:");
colorizer.reset(result);
appendSfConfigString(result);
appendUiConfigString(result);
appendGuiConfigString(result);
result.append("\n");
result.append("\nDisplay identification data:\n");
dumpDisplayIdentificationData(result);
result.append("\nWide-Color information:\n");
dumpWideColorInfo(result);
colorizer.bold(result);
result.append("Sync configuration: ");
colorizer.reset(result);
result.append(SyncFeatures::getInstance().toString());
result.append("\n\n");
colorizer.bold(result);
result.append("VSYNC configuration:\n");
colorizer.reset(result);
dumpVSync(result);
result.append("\n");
dumpStaticScreenStats(result);
result.append("\n");
StringAppendF(&result, "Total missed frame count: %u\n", mFrameMissedCount.load());
StringAppendF(&result, "HWC missed frame count: %u\n", mHwcFrameMissedCount.load());
StringAppendF(&result, "GPU missed frame count: %u\n\n", mGpuFrameMissedCount.load());
dumpBufferingStats(result);
/*
* Dump the visible layer list
*/
colorizer.bold(result);
StringAppendF(&result, "Visible layers (count = %zu)\n", mNumLayers);
StringAppendF(&result, "GraphicBufferProducers: %zu, max %zu\n",
mGraphicBufferProducerList.size(), mMaxGraphicBufferProducerListSize);
colorizer.reset(result);
{
LayersProto layersProto = dumpProtoInfo(LayerVector::StateSet::Current);
auto layerTree = LayerProtoParser::generateLayerTree(layersProto);
result.append(LayerProtoParser::layerTreeToString(layerTree));
result.append("\n");
}
{
StringAppendF(&result, "Composition layers\n");
mDrawingState.traverseInZOrder([&](Layer* layer) {
auto compositionLayer = layer->getCompositionLayer();
if (compositionLayer) compositionLayer->dump(result);
});
}
/*
* Dump Display state
*/
colorizer.bold(result);
StringAppendF(&result, "Displays (%zu entries)\n", mDisplays.size());
colorizer.reset(result);
for (const auto& [token, display] : mDisplays) {
display->dump(result);
}
result.append("\n");
/*
* Dump SurfaceFlinger global state
*/
colorizer.bold(result);
result.append("SurfaceFlinger global state:\n");
colorizer.reset(result);
getRenderEngine().dump(result);
DebugEGLImageTracker::getInstance()->dump(result);
if (const auto display = getDefaultDisplayDeviceLocked()) {
display->getCompositionDisplay()->getState().undefinedRegion.dump(result,
"undefinedRegion");
StringAppendF(&result, " orientation=%d, isPoweredOn=%d\n", display->getOrientation(),
display->isPoweredOn());
}
StringAppendF(&result,
" transaction-flags : %08x\n"
" gpu_to_cpu_unsupported : %d\n",
mTransactionFlags.load(), !mGpuToCpuSupported);
if (const auto displayId = getInternalDisplayIdLocked();
displayId && getHwComposer().isConnected(*displayId)) {
const auto activeConfig = getHwComposer().getActiveConfig(*displayId);
StringAppendF(&result,
" refresh-rate : %f fps\n"
" x-dpi : %f\n"
" y-dpi : %f\n",
1e9 / activeConfig->getVsyncPeriod(), activeConfig->getDpiX(),
activeConfig->getDpiY());
}
StringAppendF(&result, " transaction time: %f us\n", inTransactionDuration / 1000.0);
/*
* Tracing state
*/
mTracing.dump(result);
result.append("\n");
/*
* HWC layer minidump
*/
for (const auto& [token, display] : mDisplays) {
const auto displayId = display->getId();
if (!displayId) {
continue;
}
StringAppendF(&result, "Display %s HWC layers:\n", to_string(*displayId).c_str());
Layer::miniDumpHeader(result);
const sp<DisplayDevice> displayDevice = display;
mCurrentState.traverseInZOrder(
[&](Layer* layer) { layer->miniDump(result, displayDevice); });
result.append("\n");
}
/*
* Dump HWComposer state
*/
colorizer.bold(result);
result.append("h/w composer state:\n");
colorizer.reset(result);
bool hwcDisabled = mDebugDisableHWC || mDebugRegion;
StringAppendF(&result, " h/w composer %s\n", hwcDisabled ? "disabled" : "enabled");
getHwComposer().dump(result);
/*
* Dump gralloc state
*/
const GraphicBufferAllocator& alloc(GraphicBufferAllocator::get());
alloc.dump(result);
/*
* Dump VrFlinger state if in use.
*/
if (mVrFlingerRequestsDisplay && mVrFlinger) {
result.append("VrFlinger state:\n");
result.append(mVrFlinger->Dump());
result.append("\n");
}
/**
* Scheduler dump state.
*/
result.append("\nScheduler state:\n");
result.append(mScheduler->doDump() + "\n");
StringAppendF(&result, "+ Smart video mode: %s\n\n", mUseSmart90ForVideo ? "on" : "off");
result.append(mRefreshRateStats.doDump() + "\n");
result.append(mTimeStats->miniDump());
result.append("\n");
}
const Vector<sp<Layer>>& SurfaceFlinger::getLayerSortedByZForHwcDisplay(DisplayId displayId) {
// Note: mStateLock is held here
for (const auto& [token, display] : mDisplays) {
if (display->getId() == displayId) {
return getDisplayDeviceLocked(token)->getVisibleLayersSortedByZ();
}
}
ALOGE("%s: Invalid display %s", __FUNCTION__, to_string(displayId).c_str());
static const Vector<sp<Layer>> empty;
return empty;
}
void SurfaceFlinger::updateColorMatrixLocked() {
mat4 colorMatrix;
if (mGlobalSaturationFactor != 1.0f) {
// Rec.709 luma coefficients
float3 luminance{0.213f, 0.715f, 0.072f};
luminance *= 1.0f - mGlobalSaturationFactor;
mat4 saturationMatrix = mat4(
vec4{luminance.r + mGlobalSaturationFactor, luminance.r, luminance.r, 0.0f},
vec4{luminance.g, luminance.g + mGlobalSaturationFactor, luminance.g, 0.0f},
vec4{luminance.b, luminance.b, luminance.b + mGlobalSaturationFactor, 0.0f},
vec4{0.0f, 0.0f, 0.0f, 1.0f}
);
colorMatrix = mClientColorMatrix * saturationMatrix * mDaltonizer();
} else {
colorMatrix = mClientColorMatrix * mDaltonizer();
}
if (mCurrentState.colorMatrix != colorMatrix) {
mCurrentState.colorMatrix = colorMatrix;
mCurrentState.colorMatrixChanged = true;
setTransactionFlags(eTransactionNeeded);
}
}
status_t SurfaceFlinger::CheckTransactCodeCredentials(uint32_t code) {
#pragma clang diagnostic push
#pragma clang diagnostic error "-Wswitch-enum"
switch (static_cast<ISurfaceComposerTag>(code)) {
// These methods should at minimum make sure that the client requested
// access to SF.
case BOOT_FINISHED:
case CLEAR_ANIMATION_FRAME_STATS:
case CREATE_DISPLAY:
case DESTROY_DISPLAY:
case ENABLE_VSYNC_INJECTIONS:
case GET_ANIMATION_FRAME_STATS:
case GET_HDR_CAPABILITIES:
case SET_ACTIVE_CONFIG:
case SET_ALLOWED_DISPLAY_CONFIGS:
case GET_ALLOWED_DISPLAY_CONFIGS:
case SET_ACTIVE_COLOR_MODE:
case INJECT_VSYNC:
case SET_POWER_MODE:
case GET_DISPLAYED_CONTENT_SAMPLING_ATTRIBUTES:
case SET_DISPLAY_CONTENT_SAMPLING_ENABLED:
case GET_DISPLAYED_CONTENT_SAMPLE:
case NOTIFY_POWER_HINT: {
if (!callingThreadHasUnscopedSurfaceFlingerAccess()) {
IPCThreadState* ipc = IPCThreadState::self();
ALOGE("Permission Denial: can't access SurfaceFlinger pid=%d, uid=%d",
ipc->getCallingPid(), ipc->getCallingUid());
return PERMISSION_DENIED;
}
return OK;
}
case GET_LAYER_DEBUG_INFO: {
IPCThreadState* ipc = IPCThreadState::self();
const int pid = ipc->getCallingPid();
const int uid = ipc->getCallingUid();
if ((uid != AID_SHELL) && !PermissionCache::checkPermission(sDump, pid, uid)) {
ALOGE("Layer debug info permission denied for pid=%d, uid=%d", pid, uid);
return PERMISSION_DENIED;
}
return OK;
}
// Used by apps to hook Choreographer to SurfaceFlinger.
case CREATE_DISPLAY_EVENT_CONNECTION:
// The following calls are currently used by clients that do not
// request necessary permissions. However, they do not expose any secret
// information, so it is OK to pass them.
case AUTHENTICATE_SURFACE:
case GET_ACTIVE_COLOR_MODE:
case GET_ACTIVE_CONFIG:
case GET_PHYSICAL_DISPLAY_IDS:
case GET_PHYSICAL_DISPLAY_TOKEN:
case GET_DISPLAY_COLOR_MODES:
case GET_DISPLAY_NATIVE_PRIMARIES:
case GET_DISPLAY_CONFIGS:
case GET_DISPLAY_STATS:
case GET_SUPPORTED_FRAME_TIMESTAMPS:
// Calling setTransactionState is safe, because you need to have been
// granted a reference to Client* and Handle* to do anything with it.
case SET_TRANSACTION_STATE:
case CREATE_CONNECTION:
case GET_COLOR_MANAGEMENT:
case GET_COMPOSITION_PREFERENCE:
case GET_PROTECTED_CONTENT_SUPPORT:
case IS_WIDE_COLOR_DISPLAY:
case GET_DISPLAY_BRIGHTNESS_SUPPORT:
case SET_DISPLAY_BRIGHTNESS: {
return OK;
}
case CAPTURE_LAYERS:
case CAPTURE_SCREEN:
case ADD_REGION_SAMPLING_LISTENER:
case REMOVE_REGION_SAMPLING_LISTENER: {
// codes that require permission check
IPCThreadState* ipc = IPCThreadState::self();
const int pid = ipc->getCallingPid();
const int uid = ipc->getCallingUid();
if ((uid != AID_GRAPHICS) &&
!PermissionCache::checkPermission(sReadFramebuffer, pid, uid)) {
ALOGE("Permission Denial: can't read framebuffer pid=%d, uid=%d", pid, uid);
return PERMISSION_DENIED;
}
return OK;
}
// The following codes are deprecated and should never be allowed to access SF.
case CONNECT_DISPLAY_UNUSED:
case CREATE_GRAPHIC_BUFFER_ALLOC_UNUSED: {
ALOGE("Attempting to access SurfaceFlinger with unused code: %u", code);
return PERMISSION_DENIED;
}
case CAPTURE_SCREEN_BY_ID: {
IPCThreadState* ipc = IPCThreadState::self();
const int uid = ipc->getCallingUid();
if (uid == AID_ROOT || uid == AID_GRAPHICS || uid == AID_SYSTEM || uid == AID_SHELL) {
return OK;
}
return PERMISSION_DENIED;
}
}
// These codes are used for the IBinder protocol to either interrogate the recipient
// side of the transaction for its canonical interface descriptor or to dump its state.
// We let them pass by default.
if (code == IBinder::INTERFACE_TRANSACTION || code == IBinder::DUMP_TRANSACTION ||
code == IBinder::PING_TRANSACTION || code == IBinder::SHELL_COMMAND_TRANSACTION ||
code == IBinder::SYSPROPS_TRANSACTION) {
return OK;
}
// Numbers from 1000 to 1034 are currently used for backdoors. The code
// in onTransact verifies that the user is root, and has access to use SF.
if (code >= 1000 && code <= 1035) {
ALOGV("Accessing SurfaceFlinger through backdoor code: %u", code);
return OK;
}
ALOGE("Permission Denial: SurfaceFlinger did not recognize request code: %u", code);
return PERMISSION_DENIED;
#pragma clang diagnostic pop
}
status_t SurfaceFlinger::onTransact(uint32_t code, const Parcel& data, Parcel* reply,
uint32_t flags) {
status_t credentialCheck = CheckTransactCodeCredentials(code);
if (credentialCheck != OK) {
return credentialCheck;
}
status_t err = BnSurfaceComposer::onTransact(code, data, reply, flags);
if (err == UNKNOWN_TRANSACTION || err == PERMISSION_DENIED) {
CHECK_INTERFACE(ISurfaceComposer, data, reply);
IPCThreadState* ipc = IPCThreadState::self();
const int uid = ipc->getCallingUid();
if (CC_UNLIKELY(uid != AID_SYSTEM
&& !PermissionCache::checkCallingPermission(sHardwareTest))) {
const int pid = ipc->getCallingPid();
ALOGE("Permission Denial: "
"can't access SurfaceFlinger pid=%d, uid=%d", pid, uid);
return PERMISSION_DENIED;
}
int n;
switch (code) {
case 1000: // SHOW_CPU, NOT SUPPORTED ANYMORE
case 1001: // SHOW_FPS, NOT SUPPORTED ANYMORE
return NO_ERROR;
case 1002: // SHOW_UPDATES
n = data.readInt32();
mDebugRegion = n ? n : (mDebugRegion ? 0 : 1);
invalidateHwcGeometry();
repaintEverything();
return NO_ERROR;
case 1004:{ // repaint everything
repaintEverything();
return NO_ERROR;
}
case 1005:{ // force transaction
Mutex::Autolock _l(mStateLock);
setTransactionFlags(
eTransactionNeeded|
eDisplayTransactionNeeded|
eTraversalNeeded);
return NO_ERROR;
}
case 1006:{ // send empty update
signalRefresh();
return NO_ERROR;
}
case 1008: // toggle use of hw composer
n = data.readInt32();
mDebugDisableHWC = n != 0;
invalidateHwcGeometry();
repaintEverything();
return NO_ERROR;
case 1009: // toggle use of transform hint
n = data.readInt32();
mDebugDisableTransformHint = n != 0;
invalidateHwcGeometry();
repaintEverything();
return NO_ERROR;
case 1010: // interrogate.
reply->writeInt32(0);
reply->writeInt32(0);
reply->writeInt32(mDebugRegion);
reply->writeInt32(0);
reply->writeInt32(mDebugDisableHWC);
return NO_ERROR;
case 1013: {
const auto display = getDefaultDisplayDevice();
if (!display) {
return NAME_NOT_FOUND;
}
reply->writeInt32(display->getPageFlipCount());
return NO_ERROR;
}
case 1014: {
Mutex::Autolock _l(mStateLock);
// daltonize
n = data.readInt32();
switch (n % 10) {
case 1:
mDaltonizer.setType(ColorBlindnessType::Protanomaly);
break;
case 2:
mDaltonizer.setType(ColorBlindnessType::Deuteranomaly);
break;
case 3:
mDaltonizer.setType(ColorBlindnessType::Tritanomaly);
break;
default:
mDaltonizer.setType(ColorBlindnessType::None);
break;
}
if (n >= 10) {
mDaltonizer.setMode(ColorBlindnessMode::Correction);
} else {
mDaltonizer.setMode(ColorBlindnessMode::Simulation);
}
updateColorMatrixLocked();
return NO_ERROR;
}
case 1015: {
Mutex::Autolock _l(mStateLock);
// apply a color matrix
n = data.readInt32();
if (n) {
// color matrix is sent as a column-major mat4 matrix
for (size_t i = 0 ; i < 4; i++) {
for (size_t j = 0; j < 4; j++) {
mClientColorMatrix[i][j] = data.readFloat();
}
}
} else {
mClientColorMatrix = mat4();
}
// Check that supplied matrix's last row is {0,0,0,1} so we can avoid
// the division by w in the fragment shader
float4 lastRow(transpose(mClientColorMatrix)[3]);
if (any(greaterThan(abs(lastRow - float4{0, 0, 0, 1}), float4{1e-4f}))) {
ALOGE("The color transform's last row must be (0, 0, 0, 1)");
}
updateColorMatrixLocked();
return NO_ERROR;
}
// This is an experimental interface
// Needs to be shifted to proper binder interface when we productize
case 1016: {
n = data.readInt32();
// TODO(b/113612090): Evaluate if this can be removed.
mScheduler->setRefreshSkipCount(n);
return NO_ERROR;
}
case 1017: {
n = data.readInt32();
mForceFullDamage = n != 0;
return NO_ERROR;
}
case 1018: { // Modify Choreographer's phase offset
n = data.readInt32();
mScheduler->setPhaseOffset(mAppConnectionHandle, static_cast<nsecs_t>(n));
return NO_ERROR;
}
case 1019: { // Modify SurfaceFlinger's phase offset
n = data.readInt32();
mScheduler->setPhaseOffset(mSfConnectionHandle, static_cast<nsecs_t>(n));
return NO_ERROR;
}
case 1020: { // Layer updates interceptor
n = data.readInt32();
if (n) {
ALOGV("Interceptor enabled");
mInterceptor->enable(mDrawingState.layersSortedByZ, mDrawingState.displays);
}
else{
ALOGV("Interceptor disabled");
mInterceptor->disable();
}
return NO_ERROR;
}
case 1021: { // Disable HWC virtual displays
n = data.readInt32();
mUseHwcVirtualDisplays = !n;
return NO_ERROR;
}
case 1022: { // Set saturation boost
Mutex::Autolock _l(mStateLock);
mGlobalSaturationFactor = std::max(0.0f, std::min(data.readFloat(), 2.0f));
updateColorMatrixLocked();
return NO_ERROR;
}
case 1023: { // Set native mode
int32_t colorMode;
mDisplayColorSetting = static_cast<DisplayColorSetting>(data.readInt32());
if (data.readInt32(&colorMode) == NO_ERROR) {
mForceColorMode = static_cast<ColorMode>(colorMode);
}
invalidateHwcGeometry();
repaintEverything();
return NO_ERROR;
}
// Deprecate, use 1030 to check whether the device is color managed.
case 1024: {
return NAME_NOT_FOUND;
}
case 1025: { // Set layer tracing
n = data.readInt32();
if (n) {
ALOGD("LayerTracing enabled");
Mutex::Autolock lock(mStateLock);
mTracingEnabledChanged = true;
mTracing.enable();
reply->writeInt32(NO_ERROR);
} else {
ALOGD("LayerTracing disabled");
bool writeFile = false;
{
Mutex::Autolock lock(mStateLock);
mTracingEnabledChanged = true;
writeFile = mTracing.disable();
}
if (writeFile) {
reply->writeInt32(mTracing.writeToFile());
} else {
reply->writeInt32(NO_ERROR);
}
}
return NO_ERROR;
}
case 1026: { // Get layer tracing status
reply->writeBool(mTracing.isEnabled());
return NO_ERROR;
}
// Is a DisplayColorSetting supported?
case 1027: {
const auto display = getDefaultDisplayDevice();
if (!display) {
return NAME_NOT_FOUND;
}
DisplayColorSetting setting = static_cast<DisplayColorSetting>(data.readInt32());
switch (setting) {
case DisplayColorSetting::MANAGED:
reply->writeBool(useColorManagement);
break;
case DisplayColorSetting::UNMANAGED:
reply->writeBool(true);
break;
case DisplayColorSetting::ENHANCED:
reply->writeBool(display->hasRenderIntent(RenderIntent::ENHANCE));
break;
default: // vendor display color setting
reply->writeBool(
display->hasRenderIntent(static_cast<RenderIntent>(setting)));
break;
}
return NO_ERROR;
}
// Is VrFlinger active?
case 1028: {
Mutex::Autolock _l(mStateLock);
reply->writeBool(getHwComposer().isUsingVrComposer());
return NO_ERROR;
}
// Set buffer size for SF tracing (value in KB)
case 1029: {
n = data.readInt32();
if (n <= 0 || n > MAX_TRACING_MEMORY) {
ALOGW("Invalid buffer size: %d KB", n);
reply->writeInt32(BAD_VALUE);
return BAD_VALUE;
}
ALOGD("Updating trace buffer to %d KB", n);
mTracing.setBufferSize(n * 1024);
reply->writeInt32(NO_ERROR);
return NO_ERROR;
}
// Is device color managed?
case 1030: {
reply->writeBool(useColorManagement);
return NO_ERROR;
}
// Override default composition data space
// adb shell service call SurfaceFlinger 1031 i32 1 DATASPACE_NUMBER DATASPACE_NUMBER \
// && adb shell stop zygote && adb shell start zygote
// to restore: adb shell service call SurfaceFlinger 1031 i32 0 && \
// adb shell stop zygote && adb shell start zygote
case 1031: {
Mutex::Autolock _l(mStateLock);
n = data.readInt32();
if (n) {
n = data.readInt32();
if (n) {
Dataspace dataspace = static_cast<Dataspace>(n);
if (!validateCompositionDataspace(dataspace)) {
return BAD_VALUE;
}
mDefaultCompositionDataspace = dataspace;
}
n = data.readInt32();
if (n) {
Dataspace dataspace = static_cast<Dataspace>(n);
if (!validateCompositionDataspace(dataspace)) {
return BAD_VALUE;
}
mWideColorGamutCompositionDataspace = dataspace;
}
} else {
// restore composition data space.
mDefaultCompositionDataspace = defaultCompositionDataspace;
mWideColorGamutCompositionDataspace = wideColorGamutCompositionDataspace;
}
return NO_ERROR;
}
// Set trace flags
case 1033: {
n = data.readUint32();
ALOGD("Updating trace flags to 0x%x", n);
mTracing.setTraceFlags(n);
reply->writeInt32(NO_ERROR);
return NO_ERROR;
}
case 1034: {
// TODO(b/129297325): expose this via developer menu option
n = data.readInt32();
if (n && !mRefreshRateOverlay) {
RefreshRateType type;
{
std::lock_guard<std::mutex> lock(mActiveConfigLock);
type = mDesiredActiveConfig.type;
}
mRefreshRateOverlay = std::make_unique<RefreshRateOverlay>(*this);
mRefreshRateOverlay->changeRefreshRate(type);
} else if (!n) {
mRefreshRateOverlay.reset();
}
return NO_ERROR;
}
case 1035: {
n = data.readInt32();
mDebugDisplayConfigSetByBackdoor = false;
if (n >= 0) {
const auto displayToken = getInternalDisplayToken();
status_t result = setAllowedDisplayConfigs(displayToken, {n});
if (result != NO_ERROR) {
return result;
}
mDebugDisplayConfigSetByBackdoor = true;
}
return NO_ERROR;
}
}
}
return err;
}
void SurfaceFlinger::repaintEverything() {
mRepaintEverything = true;
signalTransaction();
}
void SurfaceFlinger::repaintEverythingForHWC() {
mRepaintEverything = true;
mEventQueue->invalidate();
}
// A simple RAII class to disconnect from an ANativeWindow* when it goes out of scope
class WindowDisconnector {
public:
WindowDisconnector(ANativeWindow* window, int api) : mWindow(window), mApi(api) {}
~WindowDisconnector() {
native_window_api_disconnect(mWindow, mApi);
}
private:
ANativeWindow* mWindow;
const int mApi;
};
status_t SurfaceFlinger::captureScreen(const sp<IBinder>& displayToken,
sp<GraphicBuffer>* outBuffer, bool& outCapturedSecureLayers,
const Dataspace reqDataspace,
const ui::PixelFormat reqPixelFormat, Rect sourceCrop,
uint32_t reqWidth, uint32_t reqHeight,
bool useIdentityTransform,
ISurfaceComposer::Rotation rotation,
bool captureSecureLayers) {
ATRACE_CALL();
if (!displayToken) return BAD_VALUE;
auto renderAreaRotation = fromSurfaceComposerRotation(rotation);
sp<DisplayDevice> display;
{
Mutex::Autolock _l(mStateLock);
display = getDisplayDeviceLocked(displayToken);
if (!display) return BAD_VALUE;
// set the requested width/height to the logical display viewport size
// by default
if (reqWidth == 0 || reqHeight == 0) {
reqWidth = uint32_t(display->getViewport().width());
reqHeight = uint32_t(display->getViewport().height());
}
}
DisplayRenderArea renderArea(display, sourceCrop, reqWidth, reqHeight, reqDataspace,
renderAreaRotation, captureSecureLayers);
auto traverseLayers = std::bind(&SurfaceFlinger::traverseLayersInDisplay, this, display,
std::placeholders::_1);
return captureScreenCommon(renderArea, traverseLayers, outBuffer, reqPixelFormat,
useIdentityTransform, outCapturedSecureLayers);
}
static Dataspace pickDataspaceFromColorMode(const ColorMode colorMode) {
switch (colorMode) {
case ColorMode::DISPLAY_P3:
case ColorMode::BT2100_PQ:
case ColorMode::BT2100_HLG:
case ColorMode::DISPLAY_BT2020:
return Dataspace::DISPLAY_P3;
default:
return Dataspace::V0_SRGB;
}
}
const sp<DisplayDevice> SurfaceFlinger::getDisplayByIdOrLayerStack(uint64_t displayOrLayerStack) {
const sp<IBinder> displayToken = getPhysicalDisplayTokenLocked(DisplayId{displayOrLayerStack});
if (displayToken) {
return getDisplayDeviceLocked(displayToken);
}
// Couldn't find display by displayId. Try to get display by layerStack since virtual displays
// may not have a displayId.
for (const auto& [token, display] : mDisplays) {
if (display->getLayerStack() == displayOrLayerStack) {
return display;
}
}
return nullptr;
}
status_t SurfaceFlinger::captureScreen(uint64_t displayOrLayerStack, Dataspace* outDataspace,
sp<GraphicBuffer>* outBuffer) {
sp<DisplayDevice> display;
uint32_t width;
uint32_t height;
ui::Transform::orientation_flags captureOrientation;
{
Mutex::Autolock _l(mStateLock);
display = getDisplayByIdOrLayerStack(displayOrLayerStack);
if (!display) {
return BAD_VALUE;
}
width = uint32_t(display->getViewport().width());
height = uint32_t(display->getViewport().height());
captureOrientation = fromSurfaceComposerRotation(
static_cast<ISurfaceComposer::Rotation>(display->getOrientation()));
if (captureOrientation == ui::Transform::orientation_flags::ROT_90) {
captureOrientation = ui::Transform::orientation_flags::ROT_270;
} else if (captureOrientation == ui::Transform::orientation_flags::ROT_270) {
captureOrientation = ui::Transform::orientation_flags::ROT_90;
}
*outDataspace =
pickDataspaceFromColorMode(display->getCompositionDisplay()->getState().colorMode);
}
DisplayRenderArea renderArea(display, Rect(), width, height, *outDataspace, captureOrientation,
false /* captureSecureLayers */);
auto traverseLayers = std::bind(&SurfaceFlinger::traverseLayersInDisplay, this, display,
std::placeholders::_1);
bool ignored = false;
return captureScreenCommon(renderArea, traverseLayers, outBuffer, ui::PixelFormat::RGBA_8888,
false /* useIdentityTransform */,
ignored /* outCapturedSecureLayers */);
}
status_t SurfaceFlinger::captureLayers(
const sp<IBinder>& layerHandleBinder, sp<GraphicBuffer>* outBuffer,
const Dataspace reqDataspace, const ui::PixelFormat reqPixelFormat, const Rect& sourceCrop,
const std::unordered_set<sp<IBinder>, ISurfaceComposer::SpHash<IBinder>>& excludeHandles,
float frameScale, bool childrenOnly) {
ATRACE_CALL();
class LayerRenderArea : public RenderArea {
public:
LayerRenderArea(SurfaceFlinger* flinger, const sp<Layer>& layer, const Rect crop,
int32_t reqWidth, int32_t reqHeight, Dataspace reqDataSpace,
bool childrenOnly)
: RenderArea(reqWidth, reqHeight, CaptureFill::CLEAR, reqDataSpace),
mLayer(layer),
mCrop(crop),
mNeedsFiltering(false),
mFlinger(flinger),
mChildrenOnly(childrenOnly) {}
const ui::Transform& getTransform() const override { return mTransform; }
Rect getBounds() const override {
const Layer::State& layerState(mLayer->getDrawingState());
return mLayer->getBufferSize(layerState);
}
int getHeight() const override {
return mLayer->getBufferSize(mLayer->getDrawingState()).getHeight();
}
int getWidth() const override {
return mLayer->getBufferSize(mLayer->getDrawingState()).getWidth();
}
bool isSecure() const override { return false; }
bool needsFiltering() const override { return mNeedsFiltering; }
const sp<const DisplayDevice> getDisplayDevice() const override { return nullptr; }
Rect getSourceCrop() const override {
if (mCrop.isEmpty()) {
return getBounds();
} else {
return mCrop;
}
}
class ReparentForDrawing {
public:
const sp<Layer>& oldParent;
const sp<Layer>& newParent;
ReparentForDrawing(const sp<Layer>& oldParent, const sp<Layer>& newParent,
const Rect& drawingBounds)
: oldParent(oldParent), newParent(newParent) {
// Compute and cache the bounds for the new parent layer.
newParent->computeBounds(drawingBounds.toFloatRect(), ui::Transform());
oldParent->setChildrenDrawingParent(newParent);
}
~ReparentForDrawing() { oldParent->setChildrenDrawingParent(oldParent); }
};
void render(std::function<void()> drawLayers) override {
const Rect sourceCrop = getSourceCrop();
// no need to check rotation because there is none
mNeedsFiltering = sourceCrop.width() != getReqWidth() ||
sourceCrop.height() != getReqHeight();
if (!mChildrenOnly) {
mTransform = mLayer->getTransform().inverse();
drawLayers();
} else {
Rect bounds = getBounds();
screenshotParentLayer = mFlinger->getFactory().createContainerLayer(
LayerCreationArgs(mFlinger, nullptr, String8("Screenshot Parent"),
bounds.getWidth(), bounds.getHeight(), 0,
LayerMetadata()));
ReparentForDrawing reparent(mLayer, screenshotParentLayer, sourceCrop);
drawLayers();
}
}
private:
const sp<Layer> mLayer;
const Rect mCrop;
// In the "childrenOnly" case we reparent the children to a screenshot
// layer which has no properties set and which does not draw.
sp<ContainerLayer> screenshotParentLayer;
ui::Transform mTransform;
bool mNeedsFiltering;
SurfaceFlinger* mFlinger;
const bool mChildrenOnly;
};
int reqWidth = 0;
int reqHeight = 0;
sp<Layer> parent;
Rect crop(sourceCrop);
std::unordered_set<sp<Layer>, ISurfaceComposer::SpHash<Layer>> excludeLayers;
{
Mutex::Autolock _l(mStateLock);
parent = fromHandle(layerHandleBinder);
if (parent == nullptr || parent->isRemovedFromCurrentState()) {
ALOGE("captureLayers called with an invalid or removed parent");
return NAME_NOT_FOUND;
}
const int uid = IPCThreadState::self()->getCallingUid();
const bool forSystem = uid == AID_GRAPHICS || uid == AID_SYSTEM;
if (!forSystem && parent->getCurrentState().flags & layer_state_t::eLayerSecure) {
ALOGW("Attempting to capture secure layer: PERMISSION_DENIED");
return PERMISSION_DENIED;
}
if (sourceCrop.width() <= 0) {
crop.left = 0;
crop.right = parent->getBufferSize(parent->getCurrentState()).getWidth();
}
if (sourceCrop.height() <= 0) {
crop.top = 0;
crop.bottom = parent->getBufferSize(parent->getCurrentState()).getHeight();
}
reqWidth = crop.width() * frameScale;
reqHeight = crop.height() * frameScale;
for (const auto& handle : excludeHandles) {
sp<Layer> excludeLayer = fromHandle(handle);
if (excludeLayer != nullptr) {
excludeLayers.emplace(excludeLayer);
} else {
ALOGW("Invalid layer handle passed as excludeLayer to captureLayers");
return NAME_NOT_FOUND;
}
}
} // mStateLock
// really small crop or frameScale
if (reqWidth <= 0) {
reqWidth = 1;
}
if (reqHeight <= 0) {
reqHeight = 1;
}
LayerRenderArea renderArea(this, parent, crop, reqWidth, reqHeight, reqDataspace, childrenOnly);
auto traverseLayers = [parent, childrenOnly,
&excludeLayers](const LayerVector::Visitor& visitor) {
parent->traverseChildrenInZOrder(LayerVector::StateSet::Drawing, [&](Layer* layer) {
if (!layer->isVisible()) {
return;
} else if (childrenOnly && layer == parent.get()) {
return;
}
sp<Layer> p = layer;
while (p != nullptr) {
if (excludeLayers.count(p) != 0) {
return;
}
p = p->getParent();
}
visitor(layer);
});
};
bool outCapturedSecureLayers = false;
return captureScreenCommon(renderArea, traverseLayers, outBuffer, reqPixelFormat, false,
outCapturedSecureLayers);
}
status_t SurfaceFlinger::captureScreenCommon(RenderArea& renderArea,
TraverseLayersFunction traverseLayers,
sp<GraphicBuffer>* outBuffer,
const ui::PixelFormat reqPixelFormat,
bool useIdentityTransform,
bool& outCapturedSecureLayers) {
ATRACE_CALL();
// TODO(b/116112787) Make buffer usage a parameter.
const uint32_t usage = GRALLOC_USAGE_SW_READ_OFTEN | GRALLOC_USAGE_SW_WRITE_OFTEN |
GRALLOC_USAGE_HW_RENDER | GRALLOC_USAGE_HW_TEXTURE;
*outBuffer =
getFactory().createGraphicBuffer(renderArea.getReqWidth(), renderArea.getReqHeight(),
static_cast<android_pixel_format>(reqPixelFormat), 1,
usage, "screenshot");
return captureScreenCommon(renderArea, traverseLayers, *outBuffer, useIdentityTransform,
outCapturedSecureLayers);
}
status_t SurfaceFlinger::captureScreenCommon(RenderArea& renderArea,
TraverseLayersFunction traverseLayers,
const sp<GraphicBuffer>& buffer,
bool useIdentityTransform,
bool& outCapturedSecureLayers) {
// This mutex protects syncFd and captureResult for communication of the return values from the
// main thread back to this Binder thread
std::mutex captureMutex;
std::condition_variable captureCondition;
std::unique_lock<std::mutex> captureLock(captureMutex);
int syncFd = -1;
std::optional<status_t> captureResult;
const int uid = IPCThreadState::self()->getCallingUid();
const bool forSystem = uid == AID_GRAPHICS || uid == AID_SYSTEM;
sp<LambdaMessage> message = new LambdaMessage([&] {
// If there is a refresh pending, bug out early and tell the binder thread to try again
// after the refresh.
if (mRefreshPending) {
ATRACE_NAME("Skipping screenshot for now");
std::unique_lock<std::mutex> captureLock(captureMutex);
captureResult = std::make_optional<status_t>(EAGAIN);
captureCondition.notify_one();
return;
}
status_t result = NO_ERROR;
int fd = -1;
{
Mutex::Autolock _l(mStateLock);
renderArea.render([&] {
result = captureScreenImplLocked(renderArea, traverseLayers, buffer.get(),
useIdentityTransform, forSystem, &fd,
outCapturedSecureLayers);
});
}
{
std::unique_lock<std::mutex> captureLock(captureMutex);
syncFd = fd;
captureResult = std::make_optional<status_t>(result);
captureCondition.notify_one();
}
});
status_t result = postMessageAsync(message);
if (result == NO_ERROR) {
captureCondition.wait(captureLock, [&] { return captureResult; });
while (*captureResult == EAGAIN) {
captureResult.reset();
result = postMessageAsync(message);
if (result != NO_ERROR) {
return result;
}
captureCondition.wait(captureLock, [&] { return captureResult; });
}
result = *captureResult;
}
if (result == NO_ERROR) {
sync_wait(syncFd, -1);
close(syncFd);
}
return result;
}
void SurfaceFlinger::renderScreenImplLocked(const RenderArea& renderArea,
TraverseLayersFunction traverseLayers,
ANativeWindowBuffer* buffer, bool useIdentityTransform,
int* outSyncFd) {
ATRACE_CALL();
const auto reqWidth = renderArea.getReqWidth();
const auto reqHeight = renderArea.getReqHeight();
const auto rotation = renderArea.getRotationFlags();
const auto transform = renderArea.getTransform();
const auto sourceCrop = renderArea.getSourceCrop();
renderengine::DisplaySettings clientCompositionDisplay;
std::vector<renderengine::LayerSettings> clientCompositionLayers;
// assume that bounds are never offset, and that they are the same as the
// buffer bounds.
clientCompositionDisplay.physicalDisplay = Rect(reqWidth, reqHeight);
clientCompositionDisplay.clip = sourceCrop;
clientCompositionDisplay.globalTransform = transform.asMatrix4();
// Now take into account the rotation flag. We append a transform that
// rotates the layer stack about the origin, then translate by buffer
// boundaries to be in the right quadrant.
mat4 rotMatrix;
int displacementX = 0;
int displacementY = 0;
float rot90InRadians = 2.0f * static_cast<float>(M_PI) / 4.0f;
switch (rotation) {
case ui::Transform::ROT_90:
rotMatrix = mat4::rotate(rot90InRadians, vec3(0, 0, 1));
displacementX = renderArea.getBounds().getHeight();
break;
case ui::Transform::ROT_180:
rotMatrix = mat4::rotate(rot90InRadians * 2.0f, vec3(0, 0, 1));
displacementY = renderArea.getBounds().getWidth();
displacementX = renderArea.getBounds().getHeight();
break;
case ui::Transform::ROT_270:
rotMatrix = mat4::rotate(rot90InRadians * 3.0f, vec3(0, 0, 1));
displacementY = renderArea.getBounds().getWidth();
break;
default:
break;
}
// We need to transform the clipping window into the right spot.
// First, rotate the clipping rectangle by the rotation hint to get the
// right orientation
const vec4 clipTL = vec4(sourceCrop.left, sourceCrop.top, 0, 1);
const vec4 clipBR = vec4(sourceCrop.right, sourceCrop.bottom, 0, 1);
const vec4 rotClipTL = rotMatrix * clipTL;
const vec4 rotClipBR = rotMatrix * clipBR;
const int newClipLeft = std::min(rotClipTL[0], rotClipBR[0]);
const int newClipTop = std::min(rotClipTL[1], rotClipBR[1]);
const int newClipRight = std::max(rotClipTL[0], rotClipBR[0]);
const int newClipBottom = std::max(rotClipTL[1], rotClipBR[1]);
// Now reposition the clipping rectangle with the displacement vector
// computed above.
const mat4 displacementMat = mat4::translate(vec4(displacementX, displacementY, 0, 1));
clientCompositionDisplay.clip =
Rect(newClipLeft + displacementX, newClipTop + displacementY,
newClipRight + displacementX, newClipBottom + displacementY);
mat4 clipTransform = displacementMat * rotMatrix;
clientCompositionDisplay.globalTransform =
clipTransform * clientCompositionDisplay.globalTransform;
clientCompositionDisplay.outputDataspace = renderArea.getReqDataSpace();
clientCompositionDisplay.maxLuminance = DisplayDevice::sDefaultMaxLumiance;
const float alpha = RenderArea::getCaptureFillValue(renderArea.getCaptureFill());
renderengine::LayerSettings fillLayer;
fillLayer.source.buffer.buffer = nullptr;
fillLayer.source.solidColor = half3(0.0, 0.0, 0.0);
fillLayer.geometry.boundaries = FloatRect(0.0, 0.0, 1.0, 1.0);
fillLayer.alpha = half(alpha);
clientCompositionLayers.push_back(fillLayer);
Region clearRegion = Region::INVALID_REGION;
traverseLayers([&](Layer* layer) {
renderengine::LayerSettings layerSettings;
bool prepared = layer->prepareClientLayer(renderArea, useIdentityTransform, clearRegion,
false, layerSettings);
if (prepared) {
clientCompositionLayers.push_back(layerSettings);
}
});
clientCompositionDisplay.clearRegion = clearRegion;
// Use an empty fence for the buffer fence, since we just created the buffer so
// there is no need for synchronization with the GPU.
base::unique_fd bufferFence;
base::unique_fd drawFence;
getRenderEngine().useProtectedContext(false);
getRenderEngine().drawLayers(clientCompositionDisplay, clientCompositionLayers, buffer,
/*useFramebufferCache=*/false, std::move(bufferFence), &drawFence);
*outSyncFd = drawFence.release();
}
status_t SurfaceFlinger::captureScreenImplLocked(const RenderArea& renderArea,
TraverseLayersFunction traverseLayers,
ANativeWindowBuffer* buffer,
bool useIdentityTransform, bool forSystem,
int* outSyncFd, bool& outCapturedSecureLayers) {
ATRACE_CALL();
traverseLayers([&](Layer* layer) {
outCapturedSecureLayers =
outCapturedSecureLayers || (layer->isVisible() && layer->isSecure());
});
// We allow the system server to take screenshots of secure layers for
// use in situations like the Screen-rotation animation and place
// the impetus on WindowManager to not persist them.
if (outCapturedSecureLayers && !forSystem) {
ALOGW("FB is protected: PERMISSION_DENIED");
return PERMISSION_DENIED;
}
renderScreenImplLocked(renderArea, traverseLayers, buffer, useIdentityTransform, outSyncFd);
return NO_ERROR;
}
void SurfaceFlinger::setInputWindowsFinished() {
Mutex::Autolock _l(mStateLock);
mPendingSyncInputWindows = false;
mTransactionCV.broadcast();
}
// ---------------------------------------------------------------------------
void SurfaceFlinger::State::traverseInZOrder(const LayerVector::Visitor& visitor) const {
layersSortedByZ.traverseInZOrder(stateSet, visitor);
}
void SurfaceFlinger::State::traverseInReverseZOrder(const LayerVector::Visitor& visitor) const {
layersSortedByZ.traverseInReverseZOrder(stateSet, visitor);
}
void SurfaceFlinger::traverseLayersInDisplay(const sp<const DisplayDevice>& display,
const LayerVector::Visitor& visitor) {
// We loop through the first level of layers without traversing,
// as we need to determine which layers belong to the requested display.
for (const auto& layer : mDrawingState.layersSortedByZ) {
if (!layer->belongsToDisplay(display->getLayerStack(), false)) {
continue;
}
// relative layers are traversed in Layer::traverseInZOrder
layer->traverseInZOrder(LayerVector::StateSet::Drawing, [&](Layer* layer) {
if (!layer->belongsToDisplay(display->getLayerStack(), false)) {
return;
}
if (!layer->isVisible()) {
return;
}
visitor(layer);
});
}
}
void SurfaceFlinger::setPreferredDisplayConfig() {
const auto& type = mScheduler->getPreferredRefreshRateType();
const auto& config = mRefreshRateConfigs.getRefreshRate(type);
if (config && isDisplayConfigAllowed(config->configId)) {
ALOGV("switching to Scheduler preferred config %d", config->configId);
setDesiredActiveConfig({type, config->configId, Scheduler::ConfigEvent::Changed});
} else {
// Set the highest allowed config by iterating backwards on available refresh rates
const auto& refreshRates = mRefreshRateConfigs.getRefreshRates();
for (auto iter = refreshRates.crbegin(); iter != refreshRates.crend(); ++iter) {
if (iter->second && isDisplayConfigAllowed(iter->second->configId)) {
ALOGV("switching to allowed config %d", iter->second->configId);
setDesiredActiveConfig({iter->first, iter->second->configId,
Scheduler::ConfigEvent::Changed});
}
}
}
}
void SurfaceFlinger::setAllowedDisplayConfigsInternal(const sp<DisplayDevice>& display,
const std::vector<int32_t>& allowedConfigs) {
if (!display->isPrimary()) {
return;
}
const auto allowedDisplayConfigs = DisplayConfigs(allowedConfigs.begin(),
allowedConfigs.end());
if (allowedDisplayConfigs == mAllowedDisplayConfigs) {
return;
}
ALOGV("Updating allowed configs");
mAllowedDisplayConfigs = std::move(allowedDisplayConfigs);
// TODO(b/140204874): This hack triggers a notification that something has changed, so
// that listeners that care about a change in allowed configs can get the notification.
// Giving current ActiveConfig so that most other listeners would just drop the event
mScheduler->onConfigChanged(mAppConnectionHandle, display->getId()->value,
display->getActiveConfig());
setPreferredDisplayConfig();
}
status_t SurfaceFlinger::setAllowedDisplayConfigs(const sp<IBinder>& displayToken,
const std::vector<int32_t>& allowedConfigs) {
ATRACE_CALL();
if (!displayToken || allowedConfigs.empty()) {
return BAD_VALUE;
}
if (mDebugDisplayConfigSetByBackdoor) {
// ignore this request as config is overridden by backdoor
return NO_ERROR;
}
postMessageSync(new LambdaMessage([&]() NO_THREAD_SAFETY_ANALYSIS {
const auto display = getDisplayDeviceLocked(displayToken);
if (!display) {
ALOGE("Attempt to set allowed display configs for invalid display token %p",
displayToken.get());
} else if (display->isVirtual()) {
ALOGW("Attempt to set allowed display configs for virtual display");
} else {
setAllowedDisplayConfigsInternal(display, allowedConfigs);
}
}));
return NO_ERROR;
}
status_t SurfaceFlinger::getAllowedDisplayConfigs(const sp<IBinder>& displayToken,
std::vector<int32_t>* outAllowedConfigs) {
ATRACE_CALL();
if (!displayToken || !outAllowedConfigs) {
return BAD_VALUE;
}
Mutex::Autolock lock(mStateLock);
const auto display = getDisplayDeviceLocked(displayToken);
if (!display) {
return NAME_NOT_FOUND;
}
if (display->isPrimary()) {
outAllowedConfigs->assign(mAllowedDisplayConfigs.begin(), mAllowedDisplayConfigs.end());
}
return NO_ERROR;
}
void SurfaceFlinger::SetInputWindowsListener::onSetInputWindowsFinished() {
mFlinger->setInputWindowsFinished();
}
sp<Layer> SurfaceFlinger::fromHandle(const sp<IBinder>& handle) {
BBinder *b = handle->localBinder();
if (b == nullptr) {
return nullptr;
}
auto it = mLayersByLocalBinderToken.find(b);
if (it != mLayersByLocalBinderToken.end()) {
return it->second.promote();
}
return nullptr;
}
void SurfaceFlinger::bufferErased(const client_cache_t& clientCacheId) {
getRenderEngine().unbindExternalTextureBuffer(clientCacheId.id);
}
} // namespace android
#if defined(__gl_h_)
#error "don't include gl/gl.h in this file"
#endif
#if defined(__gl2_h_)
#error "don't include gl2/gl2.h in this file"
#endif