blob: d3ed88d2eb821580d87e78e53181ece74328cca6 [file] [log] [blame]
/*
* Copyright 2015 The Android Open Source Project
*
* Licensed under the Apache License, Version 2.0 (the "License");
* you may not use this file except in compliance with the License.
* You may obtain a copy of the License at
*
* http://www.apache.org/licenses/LICENSE-2.0
*
* Unless required by applicable law or agreed to in writing, software
* distributed under the License is distributed on an "AS IS" BASIS,
* WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
* See the License for the specific language governing permissions and
* limitations under the License.
*/
#define ATRACE_TAG ATRACE_TAG_GRAPHICS
#include <android/hardware/graphics/common/1.0/types.h>
#include <grallocusage/GrallocUsageConversion.h>
#include <graphicsenv/GraphicsEnv.h>
#include <log/log.h>
#include <sync/sync.h>
#include <system/window.h>
#include <ui/BufferQueueDefs.h>
#include <utils/StrongPointer.h>
#include <utils/Timers.h>
#include <utils/Trace.h>
#include <algorithm>
#include <unordered_set>
#include <vector>
#include "driver.h"
using android::hardware::graphics::common::V1_0::BufferUsage;
namespace vulkan {
namespace driver {
namespace {
const VkSurfaceTransformFlagsKHR kSupportedTransforms =
VK_SURFACE_TRANSFORM_IDENTITY_BIT_KHR |
VK_SURFACE_TRANSFORM_ROTATE_90_BIT_KHR |
VK_SURFACE_TRANSFORM_ROTATE_180_BIT_KHR |
VK_SURFACE_TRANSFORM_ROTATE_270_BIT_KHR |
VK_SURFACE_TRANSFORM_HORIZONTAL_MIRROR_BIT_KHR |
VK_SURFACE_TRANSFORM_HORIZONTAL_MIRROR_ROTATE_90_BIT_KHR |
VK_SURFACE_TRANSFORM_HORIZONTAL_MIRROR_ROTATE_180_BIT_KHR |
VK_SURFACE_TRANSFORM_HORIZONTAL_MIRROR_ROTATE_270_BIT_KHR |
VK_SURFACE_TRANSFORM_INHERIT_BIT_KHR;
VkSurfaceTransformFlagBitsKHR TranslateNativeToVulkanTransform(int native) {
// Native and Vulkan transforms are isomorphic, but are represented
// differently. Vulkan transforms are built up of an optional horizontal
// mirror, followed by a clockwise 0/90/180/270-degree rotation. Native
// transforms are built up from a horizontal flip, vertical flip, and
// 90-degree rotation, all optional but always in that order.
switch (native) {
case 0:
return VK_SURFACE_TRANSFORM_IDENTITY_BIT_KHR;
case NATIVE_WINDOW_TRANSFORM_FLIP_H:
return VK_SURFACE_TRANSFORM_HORIZONTAL_MIRROR_BIT_KHR;
case NATIVE_WINDOW_TRANSFORM_FLIP_V:
return VK_SURFACE_TRANSFORM_HORIZONTAL_MIRROR_ROTATE_180_BIT_KHR;
case NATIVE_WINDOW_TRANSFORM_ROT_180:
return VK_SURFACE_TRANSFORM_ROTATE_180_BIT_KHR;
case NATIVE_WINDOW_TRANSFORM_ROT_90:
return VK_SURFACE_TRANSFORM_ROTATE_90_BIT_KHR;
case NATIVE_WINDOW_TRANSFORM_FLIP_H | NATIVE_WINDOW_TRANSFORM_ROT_90:
return VK_SURFACE_TRANSFORM_HORIZONTAL_MIRROR_ROTATE_90_BIT_KHR;
case NATIVE_WINDOW_TRANSFORM_FLIP_V | NATIVE_WINDOW_TRANSFORM_ROT_90:
return VK_SURFACE_TRANSFORM_HORIZONTAL_MIRROR_ROTATE_270_BIT_KHR;
case NATIVE_WINDOW_TRANSFORM_ROT_270:
return VK_SURFACE_TRANSFORM_ROTATE_270_BIT_KHR;
case NATIVE_WINDOW_TRANSFORM_INVERSE_DISPLAY:
default:
return VK_SURFACE_TRANSFORM_IDENTITY_BIT_KHR;
}
}
int TranslateVulkanToNativeTransform(VkSurfaceTransformFlagBitsKHR transform) {
switch (transform) {
case VK_SURFACE_TRANSFORM_ROTATE_90_BIT_KHR:
return NATIVE_WINDOW_TRANSFORM_ROT_90;
case VK_SURFACE_TRANSFORM_ROTATE_180_BIT_KHR:
return NATIVE_WINDOW_TRANSFORM_ROT_180;
case VK_SURFACE_TRANSFORM_ROTATE_270_BIT_KHR:
return NATIVE_WINDOW_TRANSFORM_ROT_270;
case VK_SURFACE_TRANSFORM_HORIZONTAL_MIRROR_BIT_KHR:
return NATIVE_WINDOW_TRANSFORM_FLIP_H;
case VK_SURFACE_TRANSFORM_HORIZONTAL_MIRROR_ROTATE_90_BIT_KHR:
return NATIVE_WINDOW_TRANSFORM_FLIP_H |
NATIVE_WINDOW_TRANSFORM_ROT_90;
case VK_SURFACE_TRANSFORM_HORIZONTAL_MIRROR_ROTATE_180_BIT_KHR:
return NATIVE_WINDOW_TRANSFORM_FLIP_V;
case VK_SURFACE_TRANSFORM_HORIZONTAL_MIRROR_ROTATE_270_BIT_KHR:
return NATIVE_WINDOW_TRANSFORM_FLIP_V |
NATIVE_WINDOW_TRANSFORM_ROT_90;
case VK_SURFACE_TRANSFORM_IDENTITY_BIT_KHR:
case VK_SURFACE_TRANSFORM_INHERIT_BIT_KHR:
default:
return 0;
}
}
int InvertTransformToNative(VkSurfaceTransformFlagBitsKHR transform) {
switch (transform) {
case VK_SURFACE_TRANSFORM_ROTATE_90_BIT_KHR:
return NATIVE_WINDOW_TRANSFORM_ROT_270;
case VK_SURFACE_TRANSFORM_ROTATE_180_BIT_KHR:
return NATIVE_WINDOW_TRANSFORM_ROT_180;
case VK_SURFACE_TRANSFORM_ROTATE_270_BIT_KHR:
return NATIVE_WINDOW_TRANSFORM_ROT_90;
case VK_SURFACE_TRANSFORM_HORIZONTAL_MIRROR_BIT_KHR:
return NATIVE_WINDOW_TRANSFORM_FLIP_H;
case VK_SURFACE_TRANSFORM_HORIZONTAL_MIRROR_ROTATE_90_BIT_KHR:
return NATIVE_WINDOW_TRANSFORM_FLIP_H |
NATIVE_WINDOW_TRANSFORM_ROT_90;
case VK_SURFACE_TRANSFORM_HORIZONTAL_MIRROR_ROTATE_180_BIT_KHR:
return NATIVE_WINDOW_TRANSFORM_FLIP_V;
case VK_SURFACE_TRANSFORM_HORIZONTAL_MIRROR_ROTATE_270_BIT_KHR:
return NATIVE_WINDOW_TRANSFORM_FLIP_V |
NATIVE_WINDOW_TRANSFORM_ROT_90;
case VK_SURFACE_TRANSFORM_IDENTITY_BIT_KHR:
case VK_SURFACE_TRANSFORM_INHERIT_BIT_KHR:
default:
return 0;
}
}
class TimingInfo {
public:
TimingInfo(const VkPresentTimeGOOGLE* qp, uint64_t nativeFrameId)
: vals_{qp->presentID, qp->desiredPresentTime, 0, 0, 0},
native_frame_id_(nativeFrameId) {}
bool ready() const {
return (timestamp_desired_present_time_ !=
NATIVE_WINDOW_TIMESTAMP_PENDING &&
timestamp_actual_present_time_ !=
NATIVE_WINDOW_TIMESTAMP_PENDING &&
timestamp_render_complete_time_ !=
NATIVE_WINDOW_TIMESTAMP_PENDING &&
timestamp_composition_latch_time_ !=
NATIVE_WINDOW_TIMESTAMP_PENDING);
}
void calculate(int64_t rdur) {
bool anyTimestampInvalid =
(timestamp_actual_present_time_ ==
NATIVE_WINDOW_TIMESTAMP_INVALID) ||
(timestamp_render_complete_time_ ==
NATIVE_WINDOW_TIMESTAMP_INVALID) ||
(timestamp_composition_latch_time_ ==
NATIVE_WINDOW_TIMESTAMP_INVALID);
if (anyTimestampInvalid) {
ALOGE("Unexpectedly received invalid timestamp.");
vals_.actualPresentTime = 0;
vals_.earliestPresentTime = 0;
vals_.presentMargin = 0;
return;
}
vals_.actualPresentTime =
static_cast<uint64_t>(timestamp_actual_present_time_);
int64_t margin = (timestamp_composition_latch_time_ -
timestamp_render_complete_time_);
// Calculate vals_.earliestPresentTime, and potentially adjust
// vals_.presentMargin. The initial value of vals_.earliestPresentTime
// is vals_.actualPresentTime. If we can subtract rdur (the duration
// of a refresh cycle) from vals_.earliestPresentTime (and also from
// vals_.presentMargin) and still leave a positive margin, then we can
// report to the application that it could have presented earlier than
// it did (per the extension specification). If for some reason, we
// can do this subtraction repeatedly, we do, since
// vals_.earliestPresentTime really is supposed to be the "earliest".
int64_t early_time = timestamp_actual_present_time_;
while ((margin > rdur) &&
((early_time - rdur) > timestamp_composition_latch_time_)) {
early_time -= rdur;
margin -= rdur;
}
vals_.earliestPresentTime = static_cast<uint64_t>(early_time);
vals_.presentMargin = static_cast<uint64_t>(margin);
}
void get_values(VkPastPresentationTimingGOOGLE* values) const {
*values = vals_;
}
public:
VkPastPresentationTimingGOOGLE vals_ { 0, 0, 0, 0, 0 };
uint64_t native_frame_id_ { 0 };
int64_t timestamp_desired_present_time_{ NATIVE_WINDOW_TIMESTAMP_PENDING };
int64_t timestamp_actual_present_time_ { NATIVE_WINDOW_TIMESTAMP_PENDING };
int64_t timestamp_render_complete_time_ { NATIVE_WINDOW_TIMESTAMP_PENDING };
int64_t timestamp_composition_latch_time_
{ NATIVE_WINDOW_TIMESTAMP_PENDING };
};
struct Surface {
android::sp<ANativeWindow> window;
VkSwapchainKHR swapchain_handle;
uint64_t consumer_usage;
};
VkSurfaceKHR HandleFromSurface(Surface* surface) {
return VkSurfaceKHR(reinterpret_cast<uint64_t>(surface));
}
Surface* SurfaceFromHandle(VkSurfaceKHR handle) {
return reinterpret_cast<Surface*>(handle);
}
// Maximum number of TimingInfo structs to keep per swapchain:
enum { MAX_TIMING_INFOS = 10 };
// Minimum number of frames to look for in the past (so we don't cause
// syncronous requests to Surface Flinger):
enum { MIN_NUM_FRAMES_AGO = 5 };
struct Swapchain {
Swapchain(Surface& surface_,
uint32_t num_images_,
VkPresentModeKHR present_mode,
int pre_transform_)
: surface(surface_),
num_images(num_images_),
mailbox_mode(present_mode == VK_PRESENT_MODE_MAILBOX_KHR),
pre_transform(pre_transform_),
frame_timestamps_enabled(false),
acquire_next_image_timeout(-1),
shared(present_mode == VK_PRESENT_MODE_SHARED_DEMAND_REFRESH_KHR ||
present_mode ==
VK_PRESENT_MODE_SHARED_CONTINUOUS_REFRESH_KHR) {
ANativeWindow* window = surface.window.get();
native_window_get_refresh_cycle_duration(
window,
&refresh_duration);
}
uint64_t get_refresh_duration()
{
ANativeWindow* window = surface.window.get();
native_window_get_refresh_cycle_duration(
window,
&refresh_duration);
return static_cast<uint64_t>(refresh_duration);
}
Surface& surface;
uint32_t num_images;
bool mailbox_mode;
int pre_transform;
bool frame_timestamps_enabled;
int64_t refresh_duration;
nsecs_t acquire_next_image_timeout;
bool shared;
struct Image {
Image() : image(VK_NULL_HANDLE), dequeue_fence(-1), dequeued(false) {}
VkImage image;
android::sp<ANativeWindowBuffer> buffer;
// The fence is only valid when the buffer is dequeued, and should be
// -1 any other time. When valid, we own the fd, and must ensure it is
// closed: either by closing it explicitly when queueing the buffer,
// or by passing ownership e.g. to ANativeWindow::cancelBuffer().
int dequeue_fence;
bool dequeued;
} images[android::BufferQueueDefs::NUM_BUFFER_SLOTS];
std::vector<TimingInfo> timing;
};
VkSwapchainKHR HandleFromSwapchain(Swapchain* swapchain) {
return VkSwapchainKHR(reinterpret_cast<uint64_t>(swapchain));
}
Swapchain* SwapchainFromHandle(VkSwapchainKHR handle) {
return reinterpret_cast<Swapchain*>(handle);
}
void ReleaseSwapchainImage(VkDevice device,
ANativeWindow* window,
int release_fence,
Swapchain::Image& image) {
ATRACE_CALL();
ALOG_ASSERT(release_fence == -1 || image.dequeued,
"ReleaseSwapchainImage: can't provide a release fence for "
"non-dequeued images");
if (image.dequeued) {
if (release_fence >= 0) {
// We get here from vkQueuePresentKHR. The application is
// responsible for creating an execution dependency chain from
// vkAcquireNextImage (dequeue_fence) to vkQueuePresentKHR
// (release_fence), so we can drop the dequeue_fence here.
if (image.dequeue_fence >= 0)
close(image.dequeue_fence);
} else {
// We get here during swapchain destruction, or various serious
// error cases e.g. when we can't create the release_fence during
// vkQueuePresentKHR. In non-error cases, the dequeue_fence should
// have already signalled, since the swapchain images are supposed
// to be idle before the swapchain is destroyed. In error cases,
// there may be rendering in flight to the image, but since we
// weren't able to create a release_fence, waiting for the
// dequeue_fence is about the best we can do.
release_fence = image.dequeue_fence;
}
image.dequeue_fence = -1;
if (window) {
window->cancelBuffer(window, image.buffer.get(), release_fence);
} else {
if (release_fence >= 0) {
sync_wait(release_fence, -1 /* forever */);
close(release_fence);
}
}
image.dequeued = false;
}
if (image.image) {
ATRACE_BEGIN("DestroyImage");
GetData(device).driver.DestroyImage(device, image.image, nullptr);
ATRACE_END();
image.image = VK_NULL_HANDLE;
}
image.buffer.clear();
}
void OrphanSwapchain(VkDevice device, Swapchain* swapchain) {
if (swapchain->surface.swapchain_handle != HandleFromSwapchain(swapchain))
return;
for (uint32_t i = 0; i < swapchain->num_images; i++) {
if (!swapchain->images[i].dequeued)
ReleaseSwapchainImage(device, nullptr, -1, swapchain->images[i]);
}
swapchain->surface.swapchain_handle = VK_NULL_HANDLE;
swapchain->timing.clear();
}
uint32_t get_num_ready_timings(Swapchain& swapchain) {
if (swapchain.timing.size() < MIN_NUM_FRAMES_AGO) {
return 0;
}
uint32_t num_ready = 0;
const size_t num_timings = swapchain.timing.size() - MIN_NUM_FRAMES_AGO + 1;
for (uint32_t i = 0; i < num_timings; i++) {
TimingInfo& ti = swapchain.timing[i];
if (ti.ready()) {
// This TimingInfo is ready to be reported to the user. Add it
// to the num_ready.
num_ready++;
continue;
}
// This TimingInfo is not yet ready to be reported to the user,
// and so we should look for any available timestamps that
// might make it ready.
int64_t desired_present_time = 0;
int64_t render_complete_time = 0;
int64_t composition_latch_time = 0;
int64_t actual_present_time = 0;
// Obtain timestamps:
int err = native_window_get_frame_timestamps(
swapchain.surface.window.get(), ti.native_frame_id_,
&desired_present_time, &render_complete_time,
&composition_latch_time,
nullptr, //&first_composition_start_time,
nullptr, //&last_composition_start_time,
nullptr, //&composition_finish_time,
&actual_present_time,
nullptr, //&dequeue_ready_time,
nullptr /*&reads_done_time*/);
if (err != android::OK) {
continue;
}
// Record the timestamp(s) we received, and then see if this TimingInfo
// is ready to be reported to the user:
ti.timestamp_desired_present_time_ = desired_present_time;
ti.timestamp_actual_present_time_ = actual_present_time;
ti.timestamp_render_complete_time_ = render_complete_time;
ti.timestamp_composition_latch_time_ = composition_latch_time;
if (ti.ready()) {
// The TimingInfo has received enough timestamps, and should now
// use those timestamps to calculate the info that should be
// reported to the user:
ti.calculate(swapchain.refresh_duration);
num_ready++;
}
}
return num_ready;
}
void copy_ready_timings(Swapchain& swapchain,
uint32_t* count,
VkPastPresentationTimingGOOGLE* timings) {
if (swapchain.timing.empty()) {
*count = 0;
return;
}
size_t last_ready = swapchain.timing.size() - 1;
while (!swapchain.timing[last_ready].ready()) {
if (last_ready == 0) {
*count = 0;
return;
}
last_ready--;
}
uint32_t num_copied = 0;
int32_t num_to_remove = 0;
for (uint32_t i = 0; i <= last_ready && num_copied < *count; i++) {
const TimingInfo& ti = swapchain.timing[i];
if (ti.ready()) {
ti.get_values(&timings[num_copied]);
num_copied++;
}
num_to_remove++;
}
// Discard old frames that aren't ready if newer frames are ready.
// We don't expect to get the timing info for those old frames.
swapchain.timing.erase(swapchain.timing.begin(),
swapchain.timing.begin() + num_to_remove);
*count = num_copied;
}
android_pixel_format GetNativePixelFormat(VkFormat format) {
android_pixel_format native_format = HAL_PIXEL_FORMAT_RGBA_8888;
switch (format) {
case VK_FORMAT_R8G8B8A8_UNORM:
case VK_FORMAT_R8G8B8A8_SRGB:
native_format = HAL_PIXEL_FORMAT_RGBA_8888;
break;
case VK_FORMAT_R5G6B5_UNORM_PACK16:
native_format = HAL_PIXEL_FORMAT_RGB_565;
break;
case VK_FORMAT_R16G16B16A16_SFLOAT:
native_format = HAL_PIXEL_FORMAT_RGBA_FP16;
break;
case VK_FORMAT_A2B10G10R10_UNORM_PACK32:
native_format = HAL_PIXEL_FORMAT_RGBA_1010102;
break;
default:
ALOGV("unsupported swapchain format %d", format);
break;
}
return native_format;
}
android_dataspace GetNativeDataspace(VkColorSpaceKHR colorspace) {
switch (colorspace) {
case VK_COLOR_SPACE_SRGB_NONLINEAR_KHR:
return HAL_DATASPACE_V0_SRGB;
case VK_COLOR_SPACE_DISPLAY_P3_NONLINEAR_EXT:
return HAL_DATASPACE_DISPLAY_P3;
case VK_COLOR_SPACE_EXTENDED_SRGB_LINEAR_EXT:
return HAL_DATASPACE_V0_SCRGB_LINEAR;
case VK_COLOR_SPACE_EXTENDED_SRGB_NONLINEAR_EXT:
return HAL_DATASPACE_V0_SCRGB;
case VK_COLOR_SPACE_DCI_P3_LINEAR_EXT:
return HAL_DATASPACE_DCI_P3_LINEAR;
case VK_COLOR_SPACE_DCI_P3_NONLINEAR_EXT:
return HAL_DATASPACE_DCI_P3;
case VK_COLOR_SPACE_BT709_LINEAR_EXT:
return HAL_DATASPACE_V0_SRGB_LINEAR;
case VK_COLOR_SPACE_BT709_NONLINEAR_EXT:
return HAL_DATASPACE_V0_SRGB;
case VK_COLOR_SPACE_BT2020_LINEAR_EXT:
return HAL_DATASPACE_BT2020_LINEAR;
case VK_COLOR_SPACE_HDR10_ST2084_EXT:
return static_cast<android_dataspace>(
HAL_DATASPACE_STANDARD_BT2020 | HAL_DATASPACE_TRANSFER_ST2084 |
HAL_DATASPACE_RANGE_FULL);
case VK_COLOR_SPACE_DOLBYVISION_EXT:
return static_cast<android_dataspace>(
HAL_DATASPACE_STANDARD_BT2020 | HAL_DATASPACE_TRANSFER_ST2084 |
HAL_DATASPACE_RANGE_FULL);
case VK_COLOR_SPACE_HDR10_HLG_EXT:
return static_cast<android_dataspace>(
HAL_DATASPACE_STANDARD_BT2020 | HAL_DATASPACE_TRANSFER_HLG |
HAL_DATASPACE_RANGE_FULL);
case VK_COLOR_SPACE_ADOBERGB_LINEAR_EXT:
return static_cast<android_dataspace>(
HAL_DATASPACE_STANDARD_ADOBE_RGB |
HAL_DATASPACE_TRANSFER_LINEAR | HAL_DATASPACE_RANGE_FULL);
case VK_COLOR_SPACE_ADOBERGB_NONLINEAR_EXT:
return HAL_DATASPACE_ADOBE_RGB;
// Pass through is intended to allow app to provide data that is passed
// to the display system without modification.
case VK_COLOR_SPACE_PASS_THROUGH_EXT:
return HAL_DATASPACE_ARBITRARY;
default:
// This indicates that we don't know about the
// dataspace specified and we should indicate that
// it's unsupported
return HAL_DATASPACE_UNKNOWN;
}
}
} // anonymous namespace
VKAPI_ATTR
VkResult CreateAndroidSurfaceKHR(
VkInstance instance,
const VkAndroidSurfaceCreateInfoKHR* pCreateInfo,
const VkAllocationCallbacks* allocator,
VkSurfaceKHR* out_surface) {
ATRACE_CALL();
if (!allocator)
allocator = &GetData(instance).allocator;
void* mem = allocator->pfnAllocation(allocator->pUserData, sizeof(Surface),
alignof(Surface),
VK_SYSTEM_ALLOCATION_SCOPE_OBJECT);
if (!mem)
return VK_ERROR_OUT_OF_HOST_MEMORY;
Surface* surface = new (mem) Surface;
surface->window = pCreateInfo->window;
surface->swapchain_handle = VK_NULL_HANDLE;
int err = native_window_get_consumer_usage(surface->window.get(),
&surface->consumer_usage);
if (err != android::OK) {
ALOGE("native_window_get_consumer_usage() failed: %s (%d)",
strerror(-err), err);
surface->~Surface();
allocator->pfnFree(allocator->pUserData, surface);
return VK_ERROR_SURFACE_LOST_KHR;
}
err =
native_window_api_connect(surface->window.get(), NATIVE_WINDOW_API_EGL);
if (err != android::OK) {
ALOGE("native_window_api_connect() failed: %s (%d)", strerror(-err),
err);
surface->~Surface();
allocator->pfnFree(allocator->pUserData, surface);
return VK_ERROR_NATIVE_WINDOW_IN_USE_KHR;
}
*out_surface = HandleFromSurface(surface);
return VK_SUCCESS;
}
VKAPI_ATTR
void DestroySurfaceKHR(VkInstance instance,
VkSurfaceKHR surface_handle,
const VkAllocationCallbacks* allocator) {
ATRACE_CALL();
Surface* surface = SurfaceFromHandle(surface_handle);
if (!surface)
return;
native_window_api_disconnect(surface->window.get(), NATIVE_WINDOW_API_EGL);
ALOGV_IF(surface->swapchain_handle != VK_NULL_HANDLE,
"destroyed VkSurfaceKHR 0x%" PRIx64
" has active VkSwapchainKHR 0x%" PRIx64,
reinterpret_cast<uint64_t>(surface_handle),
reinterpret_cast<uint64_t>(surface->swapchain_handle));
surface->~Surface();
if (!allocator)
allocator = &GetData(instance).allocator;
allocator->pfnFree(allocator->pUserData, surface);
}
VKAPI_ATTR
VkResult GetPhysicalDeviceSurfaceSupportKHR(VkPhysicalDevice /*pdev*/,
uint32_t /*queue_family*/,
VkSurfaceKHR surface_handle,
VkBool32* supported) {
ATRACE_CALL();
const Surface* surface = SurfaceFromHandle(surface_handle);
if (!surface) {
return VK_ERROR_SURFACE_LOST_KHR;
}
const ANativeWindow* window = surface->window.get();
int query_value;
int err = window->query(window, NATIVE_WINDOW_FORMAT, &query_value);
if (err != android::OK || query_value < 0) {
ALOGE("NATIVE_WINDOW_FORMAT query failed: %s (%d) value=%d",
strerror(-err), err, query_value);
return VK_ERROR_SURFACE_LOST_KHR;
}
android_pixel_format native_format =
static_cast<android_pixel_format>(query_value);
bool format_supported = false;
switch (native_format) {
case HAL_PIXEL_FORMAT_RGBA_8888:
case HAL_PIXEL_FORMAT_RGB_565:
case HAL_PIXEL_FORMAT_RGBA_FP16:
case HAL_PIXEL_FORMAT_RGBA_1010102:
format_supported = true;
break;
default:
break;
}
*supported = static_cast<VkBool32>(
format_supported || (surface->consumer_usage &
(AHARDWAREBUFFER_USAGE_CPU_READ_MASK |
AHARDWAREBUFFER_USAGE_CPU_WRITE_MASK)) == 0);
return VK_SUCCESS;
}
VKAPI_ATTR
VkResult GetPhysicalDeviceSurfaceCapabilitiesKHR(
VkPhysicalDevice /*pdev*/,
VkSurfaceKHR surface,
VkSurfaceCapabilitiesKHR* capabilities) {
ATRACE_CALL();
int err;
ANativeWindow* window = SurfaceFromHandle(surface)->window.get();
int width, height;
err = window->query(window, NATIVE_WINDOW_DEFAULT_WIDTH, &width);
if (err != android::OK) {
ALOGE("NATIVE_WINDOW_DEFAULT_WIDTH query failed: %s (%d)",
strerror(-err), err);
return VK_ERROR_SURFACE_LOST_KHR;
}
err = window->query(window, NATIVE_WINDOW_DEFAULT_HEIGHT, &height);
if (err != android::OK) {
ALOGE("NATIVE_WINDOW_DEFAULT_WIDTH query failed: %s (%d)",
strerror(-err), err);
return VK_ERROR_SURFACE_LOST_KHR;
}
int transform_hint;
err = window->query(window, NATIVE_WINDOW_TRANSFORM_HINT, &transform_hint);
if (err != android::OK) {
ALOGE("NATIVE_WINDOW_TRANSFORM_HINT query failed: %s (%d)",
strerror(-err), err);
return VK_ERROR_SURFACE_LOST_KHR;
}
int max_buffer_count;
err = window->query(window, NATIVE_WINDOW_MAX_BUFFER_COUNT, &max_buffer_count);
if (err != android::OK) {
ALOGE("NATIVE_WINDOW_MAX_BUFFER_COUNT query failed: %s (%d)",
strerror(-err), err);
return VK_ERROR_SURFACE_LOST_KHR;
}
capabilities->minImageCount = max_buffer_count == 1 ? 1 : 2;
capabilities->maxImageCount = static_cast<uint32_t>(max_buffer_count);
capabilities->currentExtent =
VkExtent2D{static_cast<uint32_t>(width), static_cast<uint32_t>(height)};
// TODO(http://b/134182502): Figure out what the max extent should be.
capabilities->minImageExtent = VkExtent2D{1, 1};
capabilities->maxImageExtent = VkExtent2D{4096, 4096};
capabilities->maxImageArrayLayers = 1;
capabilities->supportedTransforms = kSupportedTransforms;
capabilities->currentTransform =
TranslateNativeToVulkanTransform(transform_hint);
// On Android, window composition is a WindowManager property, not something
// associated with the bufferqueue. It can't be changed from here.
capabilities->supportedCompositeAlpha = VK_COMPOSITE_ALPHA_INHERIT_BIT_KHR;
capabilities->supportedUsageFlags =
VK_IMAGE_USAGE_TRANSFER_SRC_BIT | VK_IMAGE_USAGE_TRANSFER_DST_BIT |
VK_IMAGE_USAGE_SAMPLED_BIT | VK_IMAGE_USAGE_STORAGE_BIT |
VK_IMAGE_USAGE_COLOR_ATTACHMENT_BIT |
VK_IMAGE_USAGE_INPUT_ATTACHMENT_BIT;
return VK_SUCCESS;
}
VKAPI_ATTR
VkResult GetPhysicalDeviceSurfaceFormatsKHR(VkPhysicalDevice pdev,
VkSurfaceKHR surface_handle,
uint32_t* count,
VkSurfaceFormatKHR* formats) {
ATRACE_CALL();
const InstanceData& instance_data = GetData(pdev);
bool wide_color_support = false;
Surface& surface = *SurfaceFromHandle(surface_handle);
int err = native_window_get_wide_color_support(surface.window.get(),
&wide_color_support);
if (err) {
return VK_ERROR_SURFACE_LOST_KHR;
}
ALOGV("wide_color_support is: %d", wide_color_support);
wide_color_support =
wide_color_support &&
instance_data.hook_extensions.test(ProcHook::EXT_swapchain_colorspace);
AHardwareBuffer_Desc desc = {};
desc.width = 1;
desc.height = 1;
desc.layers = 1;
desc.usage = surface.consumer_usage |
AHARDWAREBUFFER_USAGE_GPU_SAMPLED_IMAGE |
AHARDWAREBUFFER_USAGE_GPU_FRAMEBUFFER;
// We must support R8G8B8A8
std::vector<VkSurfaceFormatKHR> all_formats = {
{VK_FORMAT_R8G8B8A8_UNORM, VK_COLOR_SPACE_SRGB_NONLINEAR_KHR},
{VK_FORMAT_R8G8B8A8_SRGB, VK_COLOR_SPACE_SRGB_NONLINEAR_KHR}};
if (wide_color_support) {
all_formats.emplace_back(VkSurfaceFormatKHR{
VK_FORMAT_R8G8B8A8_UNORM, VK_COLOR_SPACE_DISPLAY_P3_NONLINEAR_EXT});
all_formats.emplace_back(VkSurfaceFormatKHR{
VK_FORMAT_R8G8B8A8_SRGB, VK_COLOR_SPACE_DISPLAY_P3_NONLINEAR_EXT});
}
desc.format = AHARDWAREBUFFER_FORMAT_R5G6B5_UNORM;
if (AHardwareBuffer_isSupported(&desc)) {
all_formats.emplace_back(VkSurfaceFormatKHR{
VK_FORMAT_R5G6B5_UNORM_PACK16, VK_COLOR_SPACE_SRGB_NONLINEAR_KHR});
}
desc.format = AHARDWAREBUFFER_FORMAT_R16G16B16A16_FLOAT;
if (AHardwareBuffer_isSupported(&desc)) {
all_formats.emplace_back(VkSurfaceFormatKHR{
VK_FORMAT_R16G16B16A16_SFLOAT, VK_COLOR_SPACE_SRGB_NONLINEAR_KHR});
if (wide_color_support) {
all_formats.emplace_back(
VkSurfaceFormatKHR{VK_FORMAT_R16G16B16A16_SFLOAT,
VK_COLOR_SPACE_EXTENDED_SRGB_LINEAR_EXT});
all_formats.emplace_back(
VkSurfaceFormatKHR{VK_FORMAT_R16G16B16A16_SFLOAT,
VK_COLOR_SPACE_EXTENDED_SRGB_NONLINEAR_EXT});
}
}
desc.format = AHARDWAREBUFFER_FORMAT_R10G10B10A2_UNORM;
if (AHardwareBuffer_isSupported(&desc)) {
all_formats.emplace_back(
VkSurfaceFormatKHR{VK_FORMAT_A2B10G10R10_UNORM_PACK32,
VK_COLOR_SPACE_SRGB_NONLINEAR_KHR});
if (wide_color_support) {
all_formats.emplace_back(
VkSurfaceFormatKHR{VK_FORMAT_A2B10G10R10_UNORM_PACK32,
VK_COLOR_SPACE_DISPLAY_P3_NONLINEAR_EXT});
}
}
VkResult result = VK_SUCCESS;
if (formats) {
uint32_t transfer_count = all_formats.size();
if (transfer_count > *count) {
transfer_count = *count;
result = VK_INCOMPLETE;
}
std::copy(all_formats.begin(), all_formats.begin() + transfer_count,
formats);
*count = transfer_count;
} else {
*count = all_formats.size();
}
return result;
}
VKAPI_ATTR
VkResult GetPhysicalDeviceSurfaceCapabilities2KHR(
VkPhysicalDevice physicalDevice,
const VkPhysicalDeviceSurfaceInfo2KHR* pSurfaceInfo,
VkSurfaceCapabilities2KHR* pSurfaceCapabilities) {
ATRACE_CALL();
VkResult result = GetPhysicalDeviceSurfaceCapabilitiesKHR(
physicalDevice, pSurfaceInfo->surface,
&pSurfaceCapabilities->surfaceCapabilities);
VkSurfaceCapabilities2KHR* caps = pSurfaceCapabilities;
while (caps->pNext) {
caps = reinterpret_cast<VkSurfaceCapabilities2KHR*>(caps->pNext);
switch (caps->sType) {
case VK_STRUCTURE_TYPE_SHARED_PRESENT_SURFACE_CAPABILITIES_KHR: {
VkSharedPresentSurfaceCapabilitiesKHR* shared_caps =
reinterpret_cast<VkSharedPresentSurfaceCapabilitiesKHR*>(
caps);
// Claim same set of usage flags are supported for
// shared present modes as for other modes.
shared_caps->sharedPresentSupportedUsageFlags =
pSurfaceCapabilities->surfaceCapabilities
.supportedUsageFlags;
} break;
default:
// Ignore all other extension structs
break;
}
}
return result;
}
VKAPI_ATTR
VkResult GetPhysicalDeviceSurfaceFormats2KHR(
VkPhysicalDevice physicalDevice,
const VkPhysicalDeviceSurfaceInfo2KHR* pSurfaceInfo,
uint32_t* pSurfaceFormatCount,
VkSurfaceFormat2KHR* pSurfaceFormats) {
ATRACE_CALL();
if (!pSurfaceFormats) {
return GetPhysicalDeviceSurfaceFormatsKHR(physicalDevice,
pSurfaceInfo->surface,
pSurfaceFormatCount, nullptr);
} else {
// temp vector for forwarding; we'll marshal it into the pSurfaceFormats
// after the call.
std::vector<VkSurfaceFormatKHR> surface_formats(*pSurfaceFormatCount);
VkResult result = GetPhysicalDeviceSurfaceFormatsKHR(
physicalDevice, pSurfaceInfo->surface, pSurfaceFormatCount,
surface_formats.data());
if (result == VK_SUCCESS || result == VK_INCOMPLETE) {
// marshal results individually due to stride difference.
// completely ignore any chained extension structs.
uint32_t formats_to_marshal = *pSurfaceFormatCount;
for (uint32_t i = 0u; i < formats_to_marshal; i++) {
pSurfaceFormats[i].surfaceFormat = surface_formats[i];
}
}
return result;
}
}
VKAPI_ATTR
VkResult GetPhysicalDeviceSurfacePresentModesKHR(VkPhysicalDevice pdev,
VkSurfaceKHR surface,
uint32_t* count,
VkPresentModeKHR* modes) {
ATRACE_CALL();
int err;
int query_value;
ANativeWindow* window = SurfaceFromHandle(surface)->window.get();
err = window->query(window, NATIVE_WINDOW_MIN_UNDEQUEUED_BUFFERS, &query_value);
if (err != android::OK || query_value < 0) {
ALOGE("NATIVE_WINDOW_MIN_UNDEQUEUED_BUFFERS query failed: %s (%d) value=%d",
strerror(-err), err, query_value);
return VK_ERROR_SURFACE_LOST_KHR;
}
uint32_t min_undequeued_buffers = static_cast<uint32_t>(query_value);
err = window->query(window, NATIVE_WINDOW_MAX_BUFFER_COUNT, &query_value);
if (err != android::OK || query_value < 0) {
ALOGE("NATIVE_WINDOW_MAX_BUFFER_COUNT query failed: %s (%d) value=%d",
strerror(-err), err, query_value);
return VK_ERROR_SURFACE_LOST_KHR;
}
uint32_t max_buffer_count = static_cast<uint32_t>(query_value);
std::vector<VkPresentModeKHR> present_modes;
if (min_undequeued_buffers + 1 < max_buffer_count)
present_modes.push_back(VK_PRESENT_MODE_MAILBOX_KHR);
present_modes.push_back(VK_PRESENT_MODE_FIFO_KHR);
VkPhysicalDevicePresentationPropertiesANDROID present_properties;
if (QueryPresentationProperties(pdev, &present_properties)) {
if (present_properties.sharedImage) {
present_modes.push_back(VK_PRESENT_MODE_SHARED_DEMAND_REFRESH_KHR);
present_modes.push_back(VK_PRESENT_MODE_SHARED_CONTINUOUS_REFRESH_KHR);
}
}
uint32_t num_modes = uint32_t(present_modes.size());
VkResult result = VK_SUCCESS;
if (modes) {
if (*count < num_modes)
result = VK_INCOMPLETE;
*count = std::min(*count, num_modes);
std::copy_n(present_modes.data(), *count, modes);
} else {
*count = num_modes;
}
return result;
}
VKAPI_ATTR
VkResult GetDeviceGroupPresentCapabilitiesKHR(
VkDevice,
VkDeviceGroupPresentCapabilitiesKHR* pDeviceGroupPresentCapabilities) {
ATRACE_CALL();
ALOGV_IF(pDeviceGroupPresentCapabilities->sType !=
VK_STRUCTURE_TYPE_DEVICE_GROUP_PRESENT_CAPABILITIES_KHR,
"vkGetDeviceGroupPresentCapabilitiesKHR: invalid "
"VkDeviceGroupPresentCapabilitiesKHR structure type %d",
pDeviceGroupPresentCapabilities->sType);
memset(pDeviceGroupPresentCapabilities->presentMask, 0,
sizeof(pDeviceGroupPresentCapabilities->presentMask));
// assume device group of size 1
pDeviceGroupPresentCapabilities->presentMask[0] = 1 << 0;
pDeviceGroupPresentCapabilities->modes =
VK_DEVICE_GROUP_PRESENT_MODE_LOCAL_BIT_KHR;
return VK_SUCCESS;
}
VKAPI_ATTR
VkResult GetDeviceGroupSurfacePresentModesKHR(
VkDevice,
VkSurfaceKHR,
VkDeviceGroupPresentModeFlagsKHR* pModes) {
ATRACE_CALL();
*pModes = VK_DEVICE_GROUP_PRESENT_MODE_LOCAL_BIT_KHR;
return VK_SUCCESS;
}
VKAPI_ATTR
VkResult GetPhysicalDevicePresentRectanglesKHR(VkPhysicalDevice,
VkSurfaceKHR surface,
uint32_t* pRectCount,
VkRect2D* pRects) {
ATRACE_CALL();
if (!pRects) {
*pRectCount = 1;
} else {
uint32_t count = std::min(*pRectCount, 1u);
bool incomplete = *pRectCount < 1;
*pRectCount = count;
if (incomplete) {
return VK_INCOMPLETE;
}
int err;
ANativeWindow* window = SurfaceFromHandle(surface)->window.get();
int width = 0, height = 0;
err = window->query(window, NATIVE_WINDOW_DEFAULT_WIDTH, &width);
if (err != android::OK) {
ALOGE("NATIVE_WINDOW_DEFAULT_WIDTH query failed: %s (%d)",
strerror(-err), err);
}
err = window->query(window, NATIVE_WINDOW_DEFAULT_HEIGHT, &height);
if (err != android::OK) {
ALOGE("NATIVE_WINDOW_DEFAULT_WIDTH query failed: %s (%d)",
strerror(-err), err);
}
// TODO(b/143294545): Return something better than "whole window"
pRects[0].offset.x = 0;
pRects[0].offset.y = 0;
pRects[0].extent = VkExtent2D{static_cast<uint32_t>(width),
static_cast<uint32_t>(height)};
}
return VK_SUCCESS;
}
static void DestroySwapchainInternal(VkDevice device,
VkSwapchainKHR swapchain_handle,
const VkAllocationCallbacks* allocator) {
ATRACE_CALL();
const auto& dispatch = GetData(device).driver;
Swapchain* swapchain = SwapchainFromHandle(swapchain_handle);
if (!swapchain) {
return;
}
bool active = swapchain->surface.swapchain_handle == swapchain_handle;
ANativeWindow* window = active ? swapchain->surface.window.get() : nullptr;
if (window && swapchain->frame_timestamps_enabled) {
native_window_enable_frame_timestamps(window, false);
}
for (uint32_t i = 0; i < swapchain->num_images; i++) {
ReleaseSwapchainImage(device, window, -1, swapchain->images[i]);
}
if (active) {
swapchain->surface.swapchain_handle = VK_NULL_HANDLE;
}
if (!allocator) {
allocator = &GetData(device).allocator;
}
swapchain->~Swapchain();
allocator->pfnFree(allocator->pUserData, swapchain);
}
VKAPI_ATTR
VkResult CreateSwapchainKHR(VkDevice device,
const VkSwapchainCreateInfoKHR* create_info,
const VkAllocationCallbacks* allocator,
VkSwapchainKHR* swapchain_handle) {
ATRACE_CALL();
int err;
VkResult result = VK_SUCCESS;
ALOGV("vkCreateSwapchainKHR: surface=0x%" PRIx64
" minImageCount=%u imageFormat=%u imageColorSpace=%u"
" imageExtent=%ux%u imageUsage=%#x preTransform=%u presentMode=%u"
" oldSwapchain=0x%" PRIx64,
reinterpret_cast<uint64_t>(create_info->surface),
create_info->minImageCount, create_info->imageFormat,
create_info->imageColorSpace, create_info->imageExtent.width,
create_info->imageExtent.height, create_info->imageUsage,
create_info->preTransform, create_info->presentMode,
reinterpret_cast<uint64_t>(create_info->oldSwapchain));
if (!allocator)
allocator = &GetData(device).allocator;
android_pixel_format native_pixel_format =
GetNativePixelFormat(create_info->imageFormat);
android_dataspace native_dataspace =
GetNativeDataspace(create_info->imageColorSpace);
if (native_dataspace == HAL_DATASPACE_UNKNOWN) {
ALOGE(
"CreateSwapchainKHR(VkSwapchainCreateInfoKHR.imageColorSpace = %d) "
"failed: Unsupported color space",
create_info->imageColorSpace);
return VK_ERROR_INITIALIZATION_FAILED;
}
ALOGV_IF(create_info->imageArrayLayers != 1,
"swapchain imageArrayLayers=%u not supported",
create_info->imageArrayLayers);
ALOGV_IF((create_info->preTransform & ~kSupportedTransforms) != 0,
"swapchain preTransform=%#x not supported",
create_info->preTransform);
ALOGV_IF(!(create_info->presentMode == VK_PRESENT_MODE_FIFO_KHR ||
create_info->presentMode == VK_PRESENT_MODE_MAILBOX_KHR ||
create_info->presentMode == VK_PRESENT_MODE_SHARED_DEMAND_REFRESH_KHR ||
create_info->presentMode == VK_PRESENT_MODE_SHARED_CONTINUOUS_REFRESH_KHR),
"swapchain presentMode=%u not supported",
create_info->presentMode);
Surface& surface = *SurfaceFromHandle(create_info->surface);
if (surface.swapchain_handle != create_info->oldSwapchain) {
ALOGV("Can't create a swapchain for VkSurfaceKHR 0x%" PRIx64
" because it already has active swapchain 0x%" PRIx64
" but VkSwapchainCreateInfo::oldSwapchain=0x%" PRIx64,
reinterpret_cast<uint64_t>(create_info->surface),
reinterpret_cast<uint64_t>(surface.swapchain_handle),
reinterpret_cast<uint64_t>(create_info->oldSwapchain));
return VK_ERROR_NATIVE_WINDOW_IN_USE_KHR;
}
if (create_info->oldSwapchain != VK_NULL_HANDLE)
OrphanSwapchain(device, SwapchainFromHandle(create_info->oldSwapchain));
// -- Reset the native window --
// The native window might have been used previously, and had its properties
// changed from defaults. That will affect the answer we get for queries
// like MIN_UNDEQUED_BUFFERS. Reset to a known/default state before we
// attempt such queries.
// The native window only allows dequeueing all buffers before any have
// been queued, since after that point at least one is assumed to be in
// non-FREE state at any given time. Disconnecting and re-connecting
// orphans the previous buffers, getting us back to the state where we can
// dequeue all buffers.
//
// TODO(http://b/134186185) recycle swapchain images more efficiently
ANativeWindow* window = surface.window.get();
err = native_window_api_disconnect(window, NATIVE_WINDOW_API_EGL);
ALOGW_IF(err != android::OK, "native_window_api_disconnect failed: %s (%d)",
strerror(-err), err);
err = native_window_api_connect(window, NATIVE_WINDOW_API_EGL);
ALOGW_IF(err != android::OK, "native_window_api_connect failed: %s (%d)",
strerror(-err), err);
err = window->perform(window, NATIVE_WINDOW_SET_DEQUEUE_TIMEOUT, -1);
if (err != android::OK) {
ALOGE("window->perform(SET_DEQUEUE_TIMEOUT) failed: %s (%d)",
strerror(-err), err);
return VK_ERROR_SURFACE_LOST_KHR;
}
err = native_window_set_buffer_count(window, 0);
if (err != android::OK) {
ALOGE("native_window_set_buffer_count(0) failed: %s (%d)",
strerror(-err), err);
return VK_ERROR_SURFACE_LOST_KHR;
}
int swap_interval =
create_info->presentMode == VK_PRESENT_MODE_MAILBOX_KHR ? 0 : 1;
err = window->setSwapInterval(window, swap_interval);
if (err != android::OK) {
ALOGE("native_window->setSwapInterval(1) failed: %s (%d)",
strerror(-err), err);
return VK_ERROR_SURFACE_LOST_KHR;
}
err = native_window_set_shared_buffer_mode(window, false);
if (err != android::OK) {
ALOGE("native_window_set_shared_buffer_mode(false) failed: %s (%d)",
strerror(-err), err);
return VK_ERROR_SURFACE_LOST_KHR;
}
err = native_window_set_auto_refresh(window, false);
if (err != android::OK) {
ALOGE("native_window_set_auto_refresh(false) failed: %s (%d)",
strerror(-err), err);
return VK_ERROR_SURFACE_LOST_KHR;
}
// -- Configure the native window --
const auto& dispatch = GetData(device).driver;
err = native_window_set_buffers_format(window, native_pixel_format);
if (err != android::OK) {
ALOGE("native_window_set_buffers_format(%d) failed: %s (%d)",
native_pixel_format, strerror(-err), err);
return VK_ERROR_SURFACE_LOST_KHR;
}
err = native_window_set_buffers_data_space(window, native_dataspace);
if (err != android::OK) {
ALOGE("native_window_set_buffers_data_space(%d) failed: %s (%d)",
native_dataspace, strerror(-err), err);
return VK_ERROR_SURFACE_LOST_KHR;
}
err = native_window_set_buffers_dimensions(
window, static_cast<int>(create_info->imageExtent.width),
static_cast<int>(create_info->imageExtent.height));
if (err != android::OK) {
ALOGE("native_window_set_buffers_dimensions(%d,%d) failed: %s (%d)",
create_info->imageExtent.width, create_info->imageExtent.height,
strerror(-err), err);
return VK_ERROR_SURFACE_LOST_KHR;
}
// VkSwapchainCreateInfo::preTransform indicates the transformation the app
// applied during rendering. native_window_set_transform() expects the
// inverse: the transform the app is requesting that the compositor perform
// during composition. With native windows, pre-transform works by rendering
// with the same transform the compositor is applying (as in Vulkan), but
// then requesting the inverse transform, so that when the compositor does
// it's job the two transforms cancel each other out and the compositor ends
// up applying an identity transform to the app's buffer.
err = native_window_set_buffers_transform(
window, InvertTransformToNative(create_info->preTransform));
if (err != android::OK) {
ALOGE("native_window_set_buffers_transform(%d) failed: %s (%d)",
InvertTransformToNative(create_info->preTransform),
strerror(-err), err);
return VK_ERROR_SURFACE_LOST_KHR;
}
err = native_window_set_scaling_mode(
window, NATIVE_WINDOW_SCALING_MODE_SCALE_TO_WINDOW);
if (err != android::OK) {
ALOGE("native_window_set_scaling_mode(SCALE_TO_WINDOW) failed: %s (%d)",
strerror(-err), err);
return VK_ERROR_SURFACE_LOST_KHR;
}
VkSwapchainImageUsageFlagsANDROID swapchain_image_usage = 0;
if (create_info->presentMode == VK_PRESENT_MODE_SHARED_DEMAND_REFRESH_KHR ||
create_info->presentMode == VK_PRESENT_MODE_SHARED_CONTINUOUS_REFRESH_KHR) {
swapchain_image_usage |= VK_SWAPCHAIN_IMAGE_USAGE_SHARED_BIT_ANDROID;
err = native_window_set_shared_buffer_mode(window, true);
if (err != android::OK) {
ALOGE("native_window_set_shared_buffer_mode failed: %s (%d)", strerror(-err), err);
return VK_ERROR_SURFACE_LOST_KHR;
}
}
if (create_info->presentMode == VK_PRESENT_MODE_SHARED_CONTINUOUS_REFRESH_KHR) {
err = native_window_set_auto_refresh(window, true);
if (err != android::OK) {
ALOGE("native_window_set_auto_refresh failed: %s (%d)", strerror(-err), err);
return VK_ERROR_SURFACE_LOST_KHR;
}
}
int query_value;
err = window->query(window, NATIVE_WINDOW_MIN_UNDEQUEUED_BUFFERS,
&query_value);
if (err != android::OK || query_value < 0) {
ALOGE("window->query failed: %s (%d) value=%d", strerror(-err), err,
query_value);
return VK_ERROR_SURFACE_LOST_KHR;
}
uint32_t min_undequeued_buffers = static_cast<uint32_t>(query_value);
uint32_t num_images =
(swap_interval ? create_info->minImageCount
: std::max(3u, create_info->minImageCount)) -
1 + min_undequeued_buffers;
// Lower layer insists that we have at least two buffers. This is wasteful
// and we'd like to relax it in the shared case, but not all the pieces are
// in place for that to work yet. Note we only lie to the lower layer-- we
// don't want to give the app back a swapchain with extra images (which they
// can't actually use!).
err = native_window_set_buffer_count(window, std::max(2u, num_images));
if (err != android::OK) {
ALOGE("native_window_set_buffer_count(%d) failed: %s (%d)", num_images,
strerror(-err), err);
return VK_ERROR_SURFACE_LOST_KHR;
}
int32_t legacy_usage = 0;
if (dispatch.GetSwapchainGrallocUsage2ANDROID) {
uint64_t consumer_usage, producer_usage;
ATRACE_BEGIN("GetSwapchainGrallocUsage2ANDROID");
result = dispatch.GetSwapchainGrallocUsage2ANDROID(
device, create_info->imageFormat, create_info->imageUsage,
swapchain_image_usage, &consumer_usage, &producer_usage);
ATRACE_END();
if (result != VK_SUCCESS) {
ALOGE("vkGetSwapchainGrallocUsage2ANDROID failed: %d", result);
return VK_ERROR_SURFACE_LOST_KHR;
}
legacy_usage =
android_convertGralloc1To0Usage(producer_usage, consumer_usage);
} else if (dispatch.GetSwapchainGrallocUsageANDROID) {
ATRACE_BEGIN("GetSwapchainGrallocUsageANDROID");
result = dispatch.GetSwapchainGrallocUsageANDROID(
device, create_info->imageFormat, create_info->imageUsage,
&legacy_usage);
ATRACE_END();
if (result != VK_SUCCESS) {
ALOGE("vkGetSwapchainGrallocUsageANDROID failed: %d", result);
return VK_ERROR_SURFACE_LOST_KHR;
}
}
uint64_t native_usage = static_cast<uint64_t>(legacy_usage);
bool createProtectedSwapchain = false;
if (create_info->flags & VK_SWAPCHAIN_CREATE_PROTECTED_BIT_KHR) {
createProtectedSwapchain = true;
native_usage |= BufferUsage::PROTECTED;
}
err = native_window_set_usage(window, native_usage);
if (err != android::OK) {
ALOGE("native_window_set_usage failed: %s (%d)", strerror(-err), err);
return VK_ERROR_SURFACE_LOST_KHR;
}
int transform_hint;
err = window->query(window, NATIVE_WINDOW_TRANSFORM_HINT, &transform_hint);
if (err != android::OK) {
ALOGE("NATIVE_WINDOW_TRANSFORM_HINT query failed: %s (%d)",
strerror(-err), err);
return VK_ERROR_SURFACE_LOST_KHR;
}
// -- Allocate our Swapchain object --
// After this point, we must deallocate the swapchain on error.
void* mem = allocator->pfnAllocation(allocator->pUserData,
sizeof(Swapchain), alignof(Swapchain),
VK_SYSTEM_ALLOCATION_SCOPE_OBJECT);
if (!mem)
return VK_ERROR_OUT_OF_HOST_MEMORY;
Swapchain* swapchain = new (mem)
Swapchain(surface, num_images, create_info->presentMode,
TranslateVulkanToNativeTransform(create_info->preTransform));
// -- Dequeue all buffers and create a VkImage for each --
// Any failures during or after this must cancel the dequeued buffers.
VkSwapchainImageCreateInfoANDROID swapchain_image_create = {
#pragma clang diagnostic push
#pragma clang diagnostic ignored "-Wold-style-cast"
.sType = VK_STRUCTURE_TYPE_SWAPCHAIN_IMAGE_CREATE_INFO_ANDROID,
#pragma clang diagnostic pop
.pNext = nullptr,
.usage = swapchain_image_usage,
};
VkNativeBufferANDROID image_native_buffer = {
#pragma clang diagnostic push
#pragma clang diagnostic ignored "-Wold-style-cast"
.sType = VK_STRUCTURE_TYPE_NATIVE_BUFFER_ANDROID,
#pragma clang diagnostic pop
.pNext = &swapchain_image_create,
};
VkImageCreateInfo image_create = {
.sType = VK_STRUCTURE_TYPE_IMAGE_CREATE_INFO,
.pNext = &image_native_buffer,
.flags = createProtectedSwapchain ? VK_IMAGE_CREATE_PROTECTED_BIT : 0u,
.imageType = VK_IMAGE_TYPE_2D,
.format = create_info->imageFormat,
.extent = {0, 0, 1},
.mipLevels = 1,
.arrayLayers = 1,
.samples = VK_SAMPLE_COUNT_1_BIT,
.tiling = VK_IMAGE_TILING_OPTIMAL,
.usage = create_info->imageUsage,
.sharingMode = create_info->imageSharingMode,
.queueFamilyIndexCount = create_info->queueFamilyIndexCount,
.pQueueFamilyIndices = create_info->pQueueFamilyIndices,
};
for (uint32_t i = 0; i < num_images; i++) {
Swapchain::Image& img = swapchain->images[i];
ANativeWindowBuffer* buffer;
err = window->dequeueBuffer(window, &buffer, &img.dequeue_fence);
if (err != android::OK) {
ALOGE("dequeueBuffer[%u] failed: %s (%d)", i, strerror(-err), err);
switch (-err) {
case ENOMEM:
result = VK_ERROR_OUT_OF_DEVICE_MEMORY;
break;
default:
result = VK_ERROR_SURFACE_LOST_KHR;
break;
}
break;
}
img.buffer = buffer;
img.dequeued = true;
image_create.extent =
VkExtent3D{static_cast<uint32_t>(img.buffer->width),
static_cast<uint32_t>(img.buffer->height),
1};
image_native_buffer.handle = img.buffer->handle;
image_native_buffer.stride = img.buffer->stride;
image_native_buffer.format = img.buffer->format;
image_native_buffer.usage = int(img.buffer->usage);
android_convertGralloc0To1Usage(int(img.buffer->usage),
&image_native_buffer.usage2.producer,
&image_native_buffer.usage2.consumer);
ATRACE_BEGIN("CreateImage");
result =
dispatch.CreateImage(device, &image_create, nullptr, &img.image);
ATRACE_END();
if (result != VK_SUCCESS) {
ALOGD("vkCreateImage w/ native buffer failed: %u", result);
break;
}
}
// -- Cancel all buffers, returning them to the queue --
// If an error occurred before, also destroy the VkImage and release the
// buffer reference. Otherwise, we retain a strong reference to the buffer.
for (uint32_t i = 0; i < num_images; i++) {
Swapchain::Image& img = swapchain->images[i];
if (img.dequeued) {
if (!swapchain->shared) {
window->cancelBuffer(window, img.buffer.get(),
img.dequeue_fence);
img.dequeue_fence = -1;
img.dequeued = false;
}
}
}
if (result != VK_SUCCESS) {
DestroySwapchainInternal(device, HandleFromSwapchain(swapchain),
allocator);
return result;
}
if (transform_hint != swapchain->pre_transform) {
// Log that the app is not doing pre-rotation.
android::GraphicsEnv::getInstance().setTargetStats(
android::GpuStatsInfo::Stats::FALSE_PREROTATION);
}
surface.swapchain_handle = HandleFromSwapchain(swapchain);
*swapchain_handle = surface.swapchain_handle;
return VK_SUCCESS;
}
VKAPI_ATTR
void DestroySwapchainKHR(VkDevice device,
VkSwapchainKHR swapchain_handle,
const VkAllocationCallbacks* allocator) {
ATRACE_CALL();
DestroySwapchainInternal(device, swapchain_handle, allocator);
}
VKAPI_ATTR
VkResult GetSwapchainImagesKHR(VkDevice,
VkSwapchainKHR swapchain_handle,
uint32_t* count,
VkImage* images) {
ATRACE_CALL();
Swapchain& swapchain = *SwapchainFromHandle(swapchain_handle);
ALOGW_IF(swapchain.surface.swapchain_handle != swapchain_handle,
"getting images for non-active swapchain 0x%" PRIx64
"; only dequeued image handles are valid",
reinterpret_cast<uint64_t>(swapchain_handle));
VkResult result = VK_SUCCESS;
if (images) {
uint32_t n = swapchain.num_images;
if (*count < swapchain.num_images) {
n = *count;
result = VK_INCOMPLETE;
}
for (uint32_t i = 0; i < n; i++)
images[i] = swapchain.images[i].image;
*count = n;
} else {
*count = swapchain.num_images;
}
return result;
}
VKAPI_ATTR
VkResult AcquireNextImageKHR(VkDevice device,
VkSwapchainKHR swapchain_handle,
uint64_t timeout,
VkSemaphore semaphore,
VkFence vk_fence,
uint32_t* image_index) {
ATRACE_CALL();
Swapchain& swapchain = *SwapchainFromHandle(swapchain_handle);
ANativeWindow* window = swapchain.surface.window.get();
VkResult result;
int err;
if (swapchain.surface.swapchain_handle != swapchain_handle)
return VK_ERROR_OUT_OF_DATE_KHR;
if (swapchain.shared) {
// In shared mode, we keep the buffer dequeued all the time, so we don't
// want to dequeue a buffer here. Instead, just ask the driver to ensure
// the semaphore and fence passed to us will be signalled.
*image_index = 0;
result = GetData(device).driver.AcquireImageANDROID(
device, swapchain.images[*image_index].image, -1, semaphore, vk_fence);
return result;
}
const nsecs_t acquire_next_image_timeout =
timeout > (uint64_t)std::numeric_limits<nsecs_t>::max() ? -1 : timeout;
if (acquire_next_image_timeout != swapchain.acquire_next_image_timeout) {
// Cache the timeout to avoid the duplicate binder cost.
err = window->perform(window, NATIVE_WINDOW_SET_DEQUEUE_TIMEOUT,
acquire_next_image_timeout);
if (err != android::OK) {
ALOGE("window->perform(SET_DEQUEUE_TIMEOUT) failed: %s (%d)",
strerror(-err), err);
return VK_ERROR_SURFACE_LOST_KHR;
}
swapchain.acquire_next_image_timeout = acquire_next_image_timeout;
}
ANativeWindowBuffer* buffer;
int fence_fd;
err = window->dequeueBuffer(window, &buffer, &fence_fd);
if (err == android::TIMED_OUT || err == android::INVALID_OPERATION) {
ALOGW("dequeueBuffer timed out: %s (%d)", strerror(-err), err);
return timeout ? VK_TIMEOUT : VK_NOT_READY;
} else if (err != android::OK) {
ALOGE("dequeueBuffer failed: %s (%d)", strerror(-err), err);
return VK_ERROR_SURFACE_LOST_KHR;
}
uint32_t idx;
for (idx = 0; idx < swapchain.num_images; idx++) {
if (swapchain.images[idx].buffer.get() == buffer) {
swapchain.images[idx].dequeued = true;
swapchain.images[idx].dequeue_fence = fence_fd;
break;
}
}
if (idx == swapchain.num_images) {
ALOGE("dequeueBuffer returned unrecognized buffer");
window->cancelBuffer(window, buffer, fence_fd);
return VK_ERROR_OUT_OF_DATE_KHR;
}
int fence_clone = -1;
if (fence_fd != -1) {
fence_clone = dup(fence_fd);
if (fence_clone == -1) {
ALOGE("dup(fence) failed, stalling until signalled: %s (%d)",
strerror(errno), errno);
sync_wait(fence_fd, -1 /* forever */);
}
}
result = GetData(device).driver.AcquireImageANDROID(
device, swapchain.images[idx].image, fence_clone, semaphore, vk_fence);
if (result != VK_SUCCESS) {
// NOTE: we're relying on AcquireImageANDROID to close fence_clone,
// even if the call fails. We could close it ourselves on failure, but
// that would create a race condition if the driver closes it on a
// failure path: some other thread might create an fd with the same
// number between the time the driver closes it and the time we close
// it. We must assume one of: the driver *always* closes it even on
// failure, or *never* closes it on failure.
window->cancelBuffer(window, buffer, fence_fd);
swapchain.images[idx].dequeued = false;
swapchain.images[idx].dequeue_fence = -1;
return result;
}
*image_index = idx;
return VK_SUCCESS;
}
VKAPI_ATTR
VkResult AcquireNextImage2KHR(VkDevice device,
const VkAcquireNextImageInfoKHR* pAcquireInfo,
uint32_t* pImageIndex) {
ATRACE_CALL();
return AcquireNextImageKHR(device, pAcquireInfo->swapchain,
pAcquireInfo->timeout, pAcquireInfo->semaphore,
pAcquireInfo->fence, pImageIndex);
}
static VkResult WorstPresentResult(VkResult a, VkResult b) {
// See the error ranking for vkQueuePresentKHR at the end of section 29.6
// (in spec version 1.0.14).
static const VkResult kWorstToBest[] = {
VK_ERROR_DEVICE_LOST,
VK_ERROR_SURFACE_LOST_KHR,
VK_ERROR_OUT_OF_DATE_KHR,
VK_ERROR_OUT_OF_DEVICE_MEMORY,
VK_ERROR_OUT_OF_HOST_MEMORY,
VK_SUBOPTIMAL_KHR,
};
for (auto result : kWorstToBest) {
if (a == result || b == result)
return result;
}
ALOG_ASSERT(a == VK_SUCCESS, "invalid vkQueuePresentKHR result %d", a);
ALOG_ASSERT(b == VK_SUCCESS, "invalid vkQueuePresentKHR result %d", b);
return a != VK_SUCCESS ? a : b;
}
VKAPI_ATTR
VkResult QueuePresentKHR(VkQueue queue, const VkPresentInfoKHR* present_info) {
ATRACE_CALL();
ALOGV_IF(present_info->sType != VK_STRUCTURE_TYPE_PRESENT_INFO_KHR,
"vkQueuePresentKHR: invalid VkPresentInfoKHR structure type %d",
present_info->sType);
VkDevice device = GetData(queue).driver_device;
const auto& dispatch = GetData(queue).driver;
VkResult final_result = VK_SUCCESS;
// Look at the pNext chain for supported extension structs:
const VkPresentRegionsKHR* present_regions = nullptr;
const VkPresentTimesInfoGOOGLE* present_times = nullptr;
const VkPresentRegionsKHR* next =
reinterpret_cast<const VkPresentRegionsKHR*>(present_info->pNext);
while (next) {
switch (next->sType) {
case VK_STRUCTURE_TYPE_PRESENT_REGIONS_KHR:
present_regions = next;
break;
case VK_STRUCTURE_TYPE_PRESENT_TIMES_INFO_GOOGLE:
present_times =
reinterpret_cast<const VkPresentTimesInfoGOOGLE*>(next);
break;
default:
ALOGV("QueuePresentKHR ignoring unrecognized pNext->sType = %x",
next->sType);
break;
}
next = reinterpret_cast<const VkPresentRegionsKHR*>(next->pNext);
}
ALOGV_IF(
present_regions &&
present_regions->swapchainCount != present_info->swapchainCount,
"VkPresentRegions::swapchainCount != VkPresentInfo::swapchainCount");
ALOGV_IF(present_times &&
present_times->swapchainCount != present_info->swapchainCount,
"VkPresentTimesInfoGOOGLE::swapchainCount != "
"VkPresentInfo::swapchainCount");
const VkPresentRegionKHR* regions =
(present_regions) ? present_regions->pRegions : nullptr;
const VkPresentTimeGOOGLE* times =
(present_times) ? present_times->pTimes : nullptr;
const VkAllocationCallbacks* allocator = &GetData(device).allocator;
android_native_rect_t* rects = nullptr;
uint32_t nrects = 0;
for (uint32_t sc = 0; sc < present_info->swapchainCount; sc++) {
Swapchain& swapchain =
*SwapchainFromHandle(present_info->pSwapchains[sc]);
uint32_t image_idx = present_info->pImageIndices[sc];
Swapchain::Image& img = swapchain.images[image_idx];
const VkPresentRegionKHR* region =
(regions && !swapchain.mailbox_mode) ? &regions[sc] : nullptr;
const VkPresentTimeGOOGLE* time = (times) ? &times[sc] : nullptr;
VkResult swapchain_result = VK_SUCCESS;
VkResult result;
int err;
int fence = -1;
result = dispatch.QueueSignalReleaseImageANDROID(
queue, present_info->waitSemaphoreCount,
present_info->pWaitSemaphores, img.image, &fence);
if (result != VK_SUCCESS) {
ALOGE("QueueSignalReleaseImageANDROID failed: %d", result);
swapchain_result = result;
}
if (swapchain.surface.swapchain_handle ==
present_info->pSwapchains[sc]) {
ANativeWindow* window = swapchain.surface.window.get();
if (swapchain_result == VK_SUCCESS) {
if (region) {
// Process the incremental-present hint for this swapchain:
uint32_t rcount = region->rectangleCount;
if (rcount > nrects) {
android_native_rect_t* new_rects =
static_cast<android_native_rect_t*>(
allocator->pfnReallocation(
allocator->pUserData, rects,
sizeof(android_native_rect_t) * rcount,
alignof(android_native_rect_t),
VK_SYSTEM_ALLOCATION_SCOPE_COMMAND));
if (new_rects) {
rects = new_rects;
nrects = rcount;
} else {
rcount = 0; // Ignore the hint for this swapchain
}
}
for (uint32_t r = 0; r < rcount; ++r) {
if (region->pRectangles[r].layer > 0) {
ALOGV(
"vkQueuePresentKHR ignoring invalid layer "
"(%u); using layer 0 instead",
region->pRectangles[r].layer);
}
int x = region->pRectangles[r].offset.x;
int y = region->pRectangles[r].offset.y;
int width = static_cast<int>(
region->pRectangles[r].extent.width);
int height = static_cast<int>(
region->pRectangles[r].extent.height);
android_native_rect_t* cur_rect = &rects[r];
cur_rect->left = x;
cur_rect->top = y + height;
cur_rect->right = x + width;
cur_rect->bottom = y;
}
native_window_set_surface_damage(window, rects, rcount);
}
if (time) {
if (!swapchain.frame_timestamps_enabled) {
ALOGV(
"Calling "
"native_window_enable_frame_timestamps(true)");
native_window_enable_frame_timestamps(window, true);
swapchain.frame_timestamps_enabled = true;
}
// Record the nativeFrameId so it can be later correlated to
// this present.
uint64_t nativeFrameId = 0;
err = native_window_get_next_frame_id(
window, &nativeFrameId);
if (err != android::OK) {
ALOGE("Failed to get next native frame ID.");
}
// Add a new timing record with the user's presentID and
// the nativeFrameId.
swapchain.timing.emplace_back(time, nativeFrameId);
while (swapchain.timing.size() > MAX_TIMING_INFOS) {
swapchain.timing.erase(swapchain.timing.begin());
}
if (time->desiredPresentTime) {
// Set the desiredPresentTime:
ALOGV(
"Calling "
"native_window_set_buffers_timestamp(%" PRId64 ")",
time->desiredPresentTime);
native_window_set_buffers_timestamp(
window,
static_cast<int64_t>(time->desiredPresentTime));
}
}
err = window->queueBuffer(window, img.buffer.get(), fence);
// queueBuffer always closes fence, even on error
if (err != android::OK) {
ALOGE("queueBuffer failed: %s (%d)", strerror(-err), err);
swapchain_result = WorstPresentResult(
swapchain_result, VK_ERROR_OUT_OF_DATE_KHR);
} else {
if (img.dequeue_fence >= 0) {
close(img.dequeue_fence);
img.dequeue_fence = -1;
}
img.dequeued = false;
}
// If the swapchain is in shared mode, immediately dequeue the
// buffer so it can be presented again without an intervening
// call to AcquireNextImageKHR. We expect to get the same buffer
// back from every call to dequeueBuffer in this mode.
if (swapchain.shared && swapchain_result == VK_SUCCESS) {
ANativeWindowBuffer* buffer;
int fence_fd;
err = window->dequeueBuffer(window, &buffer, &fence_fd);
if (err != android::OK) {
ALOGE("dequeueBuffer failed: %s (%d)", strerror(-err), err);
swapchain_result = WorstPresentResult(swapchain_result,
VK_ERROR_SURFACE_LOST_KHR);
} else if (img.buffer != buffer) {
ALOGE("got wrong image back for shared swapchain");
swapchain_result = WorstPresentResult(swapchain_result,
VK_ERROR_SURFACE_LOST_KHR);
} else {
img.dequeue_fence = fence_fd;
img.dequeued = true;
}
}
}
if (swapchain_result != VK_SUCCESS) {
OrphanSwapchain(device, &swapchain);
}
int window_transform_hint;
err = window->query(window, NATIVE_WINDOW_TRANSFORM_HINT,
&window_transform_hint);
if (err != android::OK) {
ALOGE("NATIVE_WINDOW_TRANSFORM_HINT query failed: %s (%d)",
strerror(-err), err);
swapchain_result = WorstPresentResult(
swapchain_result, VK_ERROR_SURFACE_LOST_KHR);
}
if (swapchain.pre_transform != window_transform_hint) {
swapchain_result =
WorstPresentResult(swapchain_result, VK_SUBOPTIMAL_KHR);
}
} else {
ReleaseSwapchainImage(device, nullptr, fence, img);
swapchain_result = VK_ERROR_OUT_OF_DATE_KHR;
}
if (present_info->pResults)
present_info->pResults[sc] = swapchain_result;
if (swapchain_result != final_result)
final_result = WorstPresentResult(final_result, swapchain_result);
}
if (rects) {
allocator->pfnFree(allocator->pUserData, rects);
}
return final_result;
}
VKAPI_ATTR
VkResult GetRefreshCycleDurationGOOGLE(
VkDevice,
VkSwapchainKHR swapchain_handle,
VkRefreshCycleDurationGOOGLE* pDisplayTimingProperties) {
ATRACE_CALL();
Swapchain& swapchain = *SwapchainFromHandle(swapchain_handle);
VkResult result = VK_SUCCESS;
pDisplayTimingProperties->refreshDuration = swapchain.get_refresh_duration();
return result;
}
VKAPI_ATTR
VkResult GetPastPresentationTimingGOOGLE(
VkDevice,
VkSwapchainKHR swapchain_handle,
uint32_t* count,
VkPastPresentationTimingGOOGLE* timings) {
ATRACE_CALL();
Swapchain& swapchain = *SwapchainFromHandle(swapchain_handle);
if (swapchain.surface.swapchain_handle != swapchain_handle) {
return VK_ERROR_OUT_OF_DATE_KHR;
}
ANativeWindow* window = swapchain.surface.window.get();
VkResult result = VK_SUCCESS;
if (!swapchain.frame_timestamps_enabled) {
ALOGV("Calling native_window_enable_frame_timestamps(true)");
native_window_enable_frame_timestamps(window, true);
swapchain.frame_timestamps_enabled = true;
}
if (timings) {
// Get the latest ready timing count before copying, since the copied
// timing info will be erased in copy_ready_timings function.
uint32_t n = get_num_ready_timings(swapchain);
copy_ready_timings(swapchain, count, timings);
// Check the *count here against the recorded ready timing count, since
// *count can be overwritten per spec describes.
if (*count < n) {
result = VK_INCOMPLETE;
}
} else {
*count = get_num_ready_timings(swapchain);
}
return result;
}
VKAPI_ATTR
VkResult GetSwapchainStatusKHR(
VkDevice,
VkSwapchainKHR swapchain_handle) {
ATRACE_CALL();
Swapchain& swapchain = *SwapchainFromHandle(swapchain_handle);
VkResult result = VK_SUCCESS;
if (swapchain.surface.swapchain_handle != swapchain_handle) {
return VK_ERROR_OUT_OF_DATE_KHR;
}
// TODO(b/143296009): Implement this function properly
return result;
}
VKAPI_ATTR void SetHdrMetadataEXT(
VkDevice,
uint32_t swapchainCount,
const VkSwapchainKHR* pSwapchains,
const VkHdrMetadataEXT* pHdrMetadataEXTs) {
ATRACE_CALL();
for (uint32_t idx = 0; idx < swapchainCount; idx++) {
Swapchain* swapchain = SwapchainFromHandle(pSwapchains[idx]);
if (!swapchain)
continue;
if (swapchain->surface.swapchain_handle != pSwapchains[idx]) continue;
ANativeWindow* window = swapchain->surface.window.get();
VkHdrMetadataEXT vulkanMetadata = pHdrMetadataEXTs[idx];
const android_smpte2086_metadata smpteMetdata = {
{vulkanMetadata.displayPrimaryRed.x,
vulkanMetadata.displayPrimaryRed.y},
{vulkanMetadata.displayPrimaryGreen.x,
vulkanMetadata.displayPrimaryGreen.y},
{vulkanMetadata.displayPrimaryBlue.x,
vulkanMetadata.displayPrimaryBlue.y},
{vulkanMetadata.whitePoint.x, vulkanMetadata.whitePoint.y},
vulkanMetadata.maxLuminance,
vulkanMetadata.minLuminance};
native_window_set_buffers_smpte2086_metadata(window, &smpteMetdata);
const android_cta861_3_metadata cta8613Metadata = {
vulkanMetadata.maxContentLightLevel,
vulkanMetadata.maxFrameAverageLightLevel};
native_window_set_buffers_cta861_3_metadata(window, &cta8613Metadata);
}
return;
}
static void InterceptBindImageMemory2(
uint32_t bind_info_count,
const VkBindImageMemoryInfo* bind_infos,
std::vector<VkNativeBufferANDROID>* out_native_buffers,
std::vector<VkBindImageMemoryInfo>* out_bind_infos) {
out_native_buffers->clear();
out_bind_infos->clear();
if (!bind_info_count)
return;
std::unordered_set<uint32_t> intercepted_indexes;
for (uint32_t idx = 0; idx < bind_info_count; idx++) {
auto info = reinterpret_cast<const VkBindImageMemorySwapchainInfoKHR*>(
bind_infos[idx].pNext);
while (info &&
info->sType !=
VK_STRUCTURE_TYPE_BIND_IMAGE_MEMORY_SWAPCHAIN_INFO_KHR) {
info = reinterpret_cast<const VkBindImageMemorySwapchainInfoKHR*>(
info->pNext);
}
if (!info)
continue;
ALOG_ASSERT(info->swapchain != VK_NULL_HANDLE,
"swapchain handle must not be NULL");
const Swapchain* swapchain = SwapchainFromHandle(info->swapchain);
ALOG_ASSERT(
info->imageIndex < swapchain->num_images,
"imageIndex must be less than the number of images in swapchain");
ANativeWindowBuffer* buffer =
swapchain->images[info->imageIndex].buffer.get();
VkNativeBufferANDROID native_buffer = {
#pragma clang diagnostic push
#pragma clang diagnostic ignored "-Wold-style-cast"
.sType = VK_STRUCTURE_TYPE_NATIVE_BUFFER_ANDROID,
#pragma clang diagnostic pop
.pNext = bind_infos[idx].pNext,
.handle = buffer->handle,
.stride = buffer->stride,
.format = buffer->format,
.usage = int(buffer->usage),
};
// Reserve enough space to avoid letting re-allocation invalidate the
// addresses of the elements inside.
out_native_buffers->reserve(bind_info_count);
out_native_buffers->emplace_back(native_buffer);
// Reserve the space now since we know how much is needed now.
out_bind_infos->reserve(bind_info_count);
out_bind_infos->emplace_back(bind_infos[idx]);
out_bind_infos->back().pNext = &out_native_buffers->back();
intercepted_indexes.insert(idx);
}
if (intercepted_indexes.empty())
return;
for (uint32_t idx = 0; idx < bind_info_count; idx++) {
if (intercepted_indexes.count(idx))
continue;
out_bind_infos->emplace_back(bind_infos[idx]);
}
}
VKAPI_ATTR
VkResult BindImageMemory2(VkDevice device,
uint32_t bindInfoCount,
const VkBindImageMemoryInfo* pBindInfos) {
ATRACE_CALL();
// out_native_buffers is for maintaining the lifecycle of the constructed
// VkNativeBufferANDROID objects inside InterceptBindImageMemory2.
std::vector<VkNativeBufferANDROID> out_native_buffers;
std::vector<VkBindImageMemoryInfo> out_bind_infos;
InterceptBindImageMemory2(bindInfoCount, pBindInfos, &out_native_buffers,
&out_bind_infos);
return GetData(device).driver.BindImageMemory2(
device, bindInfoCount,
out_bind_infos.empty() ? pBindInfos : out_bind_infos.data());
}
VKAPI_ATTR
VkResult BindImageMemory2KHR(VkDevice device,
uint32_t bindInfoCount,
const VkBindImageMemoryInfo* pBindInfos) {
ATRACE_CALL();
std::vector<VkNativeBufferANDROID> out_native_buffers;
std::vector<VkBindImageMemoryInfo> out_bind_infos;
InterceptBindImageMemory2(bindInfoCount, pBindInfos, &out_native_buffers,
&out_bind_infos);
return GetData(device).driver.BindImageMemory2KHR(
device, bindInfoCount,
out_bind_infos.empty() ? pBindInfos : out_bind_infos.data());
}
} // namespace driver
} // namespace vulkan