blob: 44f20d00639f93ce2d355b82cd104f50f70f7c0f [file] [log] [blame]
/*
* Copyright 2020 The Android Open Source Project
*
* Licensed under the Apache License, Version 2.0 (the "License");
* you may not use this file except in compliance with the License.
* You may obtain a copy of the License at
*
* http://www.apache.org/licenses/LICENSE-2.0
*
* Unless required by applicable law or agreed to in writing, software
* distributed under the License is distributed on an "AS IS" BASIS,
* WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
* See the License for the specific language governing permissions and
* limitations under the License.
*/
// #define LOG_NDEBUG 0
#define ATRACE_TAG ATRACE_TAG_GRAPHICS
#include "LayerInfoV2.h"
#include <algorithm>
#include <utility>
#include <cutils/compiler.h>
#include <cutils/trace.h>
#undef LOG_TAG
#define LOG_TAG "LayerInfoV2"
namespace android::scheduler {
const RefreshRateConfigs* LayerInfoV2::sRefreshRateConfigs = nullptr;
bool LayerInfoV2::sTraceEnabled = false;
LayerInfoV2::LayerInfoV2(const std::string& name, nsecs_t highRefreshRatePeriod,
LayerHistory::LayerVoteType defaultVote)
: mName(name),
mHighRefreshRatePeriod(highRefreshRatePeriod),
mDefaultVote(defaultVote),
mLayerVote({defaultVote, 0.0f}),
mRefreshRateHistory(name) {}
void LayerInfoV2::setLastPresentTime(nsecs_t lastPresentTime, nsecs_t now,
LayerUpdateType updateType, bool pendingConfigChange) {
lastPresentTime = std::max(lastPresentTime, static_cast<nsecs_t>(0));
mLastUpdatedTime = std::max(lastPresentTime, now);
switch (updateType) {
case LayerUpdateType::AnimationTX:
mLastAnimationTime = std::max(lastPresentTime, now);
break;
case LayerUpdateType::SetFrameRate:
case LayerUpdateType::Buffer:
FrameTimeData frameTime = {.presetTime = lastPresentTime,
.queueTime = mLastUpdatedTime,
.pendingConfigChange = pendingConfigChange};
mFrameTimes.push_back(frameTime);
if (mFrameTimes.size() > HISTORY_SIZE) {
mFrameTimes.pop_front();
}
break;
}
}
bool LayerInfoV2::isFrameTimeValid(const FrameTimeData& frameTime) const {
return frameTime.queueTime >= std::chrono::duration_cast<std::chrono::nanoseconds>(
mFrameTimeValidSince.time_since_epoch())
.count();
}
bool LayerInfoV2::isFrequent(nsecs_t now) const {
// If we know nothing about this layer we consider it as frequent as it might be the start
// of an animation.
if (mFrameTimes.size() < FREQUENT_LAYER_WINDOW_SIZE) {
return true;
}
// Find the first active frame
auto it = mFrameTimes.begin();
for (; it != mFrameTimes.end(); ++it) {
if (it->queueTime >= getActiveLayerThreshold(now)) {
break;
}
}
const auto numFrames = std::distance(it, mFrameTimes.end());
if (numFrames < FREQUENT_LAYER_WINDOW_SIZE) {
return false;
}
// Layer is considered frequent if the average frame rate is higher than the threshold
const auto totalTime = mFrameTimes.back().queueTime - it->queueTime;
return (1e9f * (numFrames - 1)) / totalTime >= MIN_FPS_FOR_FREQUENT_LAYER;
}
bool LayerInfoV2::isAnimating(nsecs_t now) const {
return mLastAnimationTime >= getActiveLayerThreshold(now);
}
bool LayerInfoV2::hasEnoughDataForHeuristic() const {
// The layer had to publish at least HISTORY_SIZE or HISTORY_DURATION of updates
if (mFrameTimes.size() < 2) {
ALOGV("fewer than 2 frames recorded: %zu", mFrameTimes.size());
return false;
}
if (!isFrameTimeValid(mFrameTimes.front())) {
ALOGV("stale frames still captured");
return false;
}
const auto totalDuration = mFrameTimes.back().queueTime - mFrameTimes.front().queueTime;
if (mFrameTimes.size() < HISTORY_SIZE && totalDuration < HISTORY_DURATION.count()) {
ALOGV("not enough frames captured: %zu | %.2f seconds", mFrameTimes.size(),
totalDuration / 1e9f);
return false;
}
return true;
}
std::optional<nsecs_t> LayerInfoV2::calculateAverageFrameTime() const {
nsecs_t totalPresentTimeDeltas = 0;
nsecs_t totalQueueTimeDeltas = 0;
bool missingPresentTime = false;
int numFrames = 0;
for (auto it = mFrameTimes.begin(); it != mFrameTimes.end() - 1; ++it) {
// Ignore frames captured during a config change
if (it->pendingConfigChange || (it + 1)->pendingConfigChange) {
return std::nullopt;
}
totalQueueTimeDeltas +=
std::max(((it + 1)->queueTime - it->queueTime), mHighRefreshRatePeriod);
numFrames++;
if (!missingPresentTime && (it->presetTime == 0 || (it + 1)->presetTime == 0)) {
missingPresentTime = true;
// If there are no presentation timestamps and we haven't calculated
// one in the past then we can't calculate the refresh rate
if (mLastRefreshRate.reported == 0) {
return std::nullopt;
}
continue;
}
totalPresentTimeDeltas +=
std::max(((it + 1)->presetTime - it->presetTime), mHighRefreshRatePeriod);
}
// Calculate the average frame time based on presentation timestamps. If those
// doesn't exist, we look at the time the buffer was queued only. We can do that only if
// we calculated a refresh rate based on presentation timestamps in the past. The reason
// we look at the queue time is to handle cases where hwui attaches presentation timestamps
// when implementing render ahead for specific refresh rates. When hwui no longer provides
// presentation timestamps we look at the queue time to see if the current refresh rate still
// matches the content.
const auto averageFrameTime =
static_cast<float>(missingPresentTime ? totalQueueTimeDeltas : totalPresentTimeDeltas) /
numFrames;
return static_cast<nsecs_t>(averageFrameTime);
}
std::optional<float> LayerInfoV2::calculateRefreshRateIfPossible(nsecs_t now) {
static constexpr float MARGIN = 1.0f; // 1Hz
if (!hasEnoughDataForHeuristic()) {
ALOGV("Not enough data");
return std::nullopt;
}
const auto averageFrameTime = calculateAverageFrameTime();
if (averageFrameTime.has_value()) {
const auto refreshRate = 1e9f / *averageFrameTime;
const bool refreshRateConsistent = mRefreshRateHistory.add(refreshRate, now);
if (refreshRateConsistent) {
const auto knownRefreshRate =
sRefreshRateConfigs->findClosestKnownFrameRate(refreshRate);
// To avoid oscillation, use the last calculated refresh rate if it is
// close enough
if (std::abs(mLastRefreshRate.calculated - refreshRate) > MARGIN &&
mLastRefreshRate.reported != knownRefreshRate) {
mLastRefreshRate.calculated = refreshRate;
mLastRefreshRate.reported = knownRefreshRate;
}
ALOGV("%s %.2fHz rounded to nearest known frame rate %.2fHz", mName.c_str(),
refreshRate, mLastRefreshRate.reported);
} else {
ALOGV("%s Not stable (%.2fHz) returning last known frame rate %.2fHz", mName.c_str(),
refreshRate, mLastRefreshRate.reported);
}
}
return mLastRefreshRate.reported == 0 ? std::nullopt
: std::make_optional(mLastRefreshRate.reported);
}
std::pair<LayerHistory::LayerVoteType, float> LayerInfoV2::getRefreshRate(nsecs_t now) {
if (mLayerVote.type != LayerHistory::LayerVoteType::Heuristic) {
ALOGV("%s voted %d ", mName.c_str(), static_cast<int>(mLayerVote.type));
return {mLayerVote.type, mLayerVote.fps};
}
if (isAnimating(now)) {
ALOGV("%s is animating", mName.c_str());
mLastRefreshRate.animatingOrInfrequent = true;
return {LayerHistory::LayerVoteType::Max, 0};
}
if (!isFrequent(now)) {
ALOGV("%s is infrequent", mName.c_str());
mLastRefreshRate.animatingOrInfrequent = true;
return {LayerHistory::LayerVoteType::Min, 0};
}
// If the layer was previously tagged as animating or infrequent, we clear
// the history as it is likely the layer just changed its behavior
// and we should not look at stale data
if (mLastRefreshRate.animatingOrInfrequent) {
clearHistory(now);
}
auto refreshRate = calculateRefreshRateIfPossible(now);
if (refreshRate.has_value()) {
ALOGV("%s calculated refresh rate: %.2f", mName.c_str(), refreshRate.value());
return {LayerHistory::LayerVoteType::Heuristic, refreshRate.value()};
}
ALOGV("%s Max (can't resolve refresh rate)", mName.c_str());
return {LayerHistory::LayerVoteType::Max, 0};
}
const char* LayerInfoV2::getTraceTag(android::scheduler::LayerHistory::LayerVoteType type) const {
if (mTraceTags.count(type) == 0) {
const auto tag = "LFPS " + mName + " " + RefreshRateConfigs::layerVoteTypeString(type);
mTraceTags.emplace(type, tag);
}
return mTraceTags.at(type).c_str();
}
LayerInfoV2::RefreshRateHistory::HeuristicTraceTagData
LayerInfoV2::RefreshRateHistory::makeHeuristicTraceTagData() const {
const std::string prefix = "LFPS ";
const std::string suffix = "Heuristic ";
return {.min = prefix + mName + suffix + "min",
.max = prefix + mName + suffix + "max",
.consistent = prefix + mName + suffix + "consistent",
.average = prefix + mName + suffix + "average"};
}
void LayerInfoV2::RefreshRateHistory::clear() {
mRefreshRates.clear();
}
bool LayerInfoV2::RefreshRateHistory::add(float refreshRate, nsecs_t now) {
mRefreshRates.push_back({refreshRate, now});
while (mRefreshRates.size() >= HISTORY_SIZE ||
now - mRefreshRates.front().timestamp > HISTORY_DURATION.count()) {
mRefreshRates.pop_front();
}
if (CC_UNLIKELY(sTraceEnabled)) {
if (!mHeuristicTraceTagData.has_value()) {
mHeuristicTraceTagData = makeHeuristicTraceTagData();
}
ATRACE_INT(mHeuristicTraceTagData->average.c_str(), static_cast<int>(refreshRate));
}
return isConsistent();
}
bool LayerInfoV2::RefreshRateHistory::isConsistent() const {
if (mRefreshRates.empty()) return true;
const auto max = std::max_element(mRefreshRates.begin(), mRefreshRates.end());
const auto min = std::min_element(mRefreshRates.begin(), mRefreshRates.end());
const auto consistent = max->refreshRate - min->refreshRate <= MARGIN_FPS;
if (CC_UNLIKELY(sTraceEnabled)) {
if (!mHeuristicTraceTagData.has_value()) {
mHeuristicTraceTagData = makeHeuristicTraceTagData();
}
ATRACE_INT(mHeuristicTraceTagData->max.c_str(), static_cast<int>(max->refreshRate));
ATRACE_INT(mHeuristicTraceTagData->min.c_str(), static_cast<int>(min->refreshRate));
ATRACE_INT(mHeuristicTraceTagData->consistent.c_str(), consistent);
}
return consistent;
}
} // namespace android::scheduler