blob: 7d9b0b730a34a4e7d92e612614c4b8c87a1390f3 [file] [log] [blame]
/*
* Copyright (C) 2010 The Android Open Source Project
*
* Licensed under the Apache License, Version 2.0 (the "License");
* you may not use this file except in compliance with the License.
* You may obtain a copy of the License at
*
* http://www.apache.org/licenses/LICENSE-2.0
*
* Unless required by applicable law or agreed to in writing, software
* distributed under the License is distributed on an "AS IS" BASIS,
* WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
* See the License for the specific language governing permissions and
* limitations under the License.
*/
#include "SensorDevice.h"
#include "SensorService.h"
#include <android-base/logging.h>
#include <sensors/convert.h>
#include <utils/Atomic.h>
#include <utils/Errors.h>
#include <utils/Singleton.h>
#include <chrono>
#include <cinttypes>
#include <thread>
using android::hardware::hidl_vec;
using namespace android::hardware::sensors::V1_0;
using namespace android::hardware::sensors::V1_0::implementation;
namespace android {
// ---------------------------------------------------------------------------
ANDROID_SINGLETON_STATIC_INSTANCE(SensorDevice)
static status_t StatusFromResult(Result result) {
switch (result) {
case Result::OK:
return OK;
case Result::BAD_VALUE:
return BAD_VALUE;
case Result::PERMISSION_DENIED:
return PERMISSION_DENIED;
case Result::INVALID_OPERATION:
return INVALID_OPERATION;
case Result::NO_MEMORY:
return NO_MEMORY;
}
}
SensorDevice::SensorDevice() : mHidlTransportErrors(20) {
if (!connectHidlService()) {
return;
}
float minPowerMa = 0.001; // 1 microAmp
checkReturn(mSensors->getSensorsList(
[&](const auto &list) {
const size_t count = list.size();
mActivationCount.setCapacity(count);
Info model;
for (size_t i=0 ; i < count; i++) {
sensor_t sensor;
convertToSensor(list[i], &sensor);
// Sanity check and clamp power if it is 0 (or close)
if (sensor.power < minPowerMa) {
ALOGE("Reported power %f not deemed sane, clamping to %f",
sensor.power, minPowerMa);
sensor.power = minPowerMa;
}
mSensorList.push_back(sensor);
mActivationCount.add(list[i].sensorHandle, model);
checkReturn(mSensors->activate(list[i].sensorHandle, 0 /* enabled */));
}
}));
mIsDirectReportSupported =
(checkReturn(mSensors->unregisterDirectChannel(-1)) != Result::INVALID_OPERATION);
}
bool SensorDevice::connectHidlService() {
// SensorDevice may wait upto 100ms * 10 = 1s for hidl service.
constexpr auto RETRY_DELAY = std::chrono::milliseconds(100);
size_t retry = 10;
while (true) {
int initStep = 0;
mSensors = ISensors::getService();
if (mSensors != nullptr) {
++initStep;
// Poke ISensor service. If it has lingering connection from previous generation of
// system server, it will kill itself. There is no intention to handle the poll result,
// which will be done since the size is 0.
if(mSensors->poll(0, [](auto, const auto &, const auto &) {}).isOk()) {
// ok to continue
break;
}
// hidl service is restarting, pointer is invalid.
mSensors = nullptr;
}
if (--retry <= 0) {
ALOGE("Cannot connect to ISensors hidl service!");
break;
}
// Delay 100ms before retry, hidl service is expected to come up in short time after
// crash.
ALOGI("%s unsuccessful, try again soon (remaining retry %zu).",
(initStep == 0) ? "getService()" : "poll() check", retry);
std::this_thread::sleep_for(RETRY_DELAY);
}
return (mSensors != nullptr);
}
void SensorDevice::handleDynamicSensorConnection(int handle, bool connected) {
// not need to check mSensors because this is is only called after successful poll()
if (connected) {
Info model;
mActivationCount.add(handle, model);
checkReturn(mSensors->activate(handle, 0 /* enabled */));
} else {
mActivationCount.removeItem(handle);
}
}
std::string SensorDevice::dump() const {
if (mSensors == nullptr) return "HAL not initialized\n";
String8 result;
result.appendFormat("Total %zu h/w sensors, %zu running:\n",
mSensorList.size(), mActivationCount.size());
Mutex::Autolock _l(mLock);
for (const auto & s : mSensorList) {
int32_t handle = s.handle;
const Info& info = mActivationCount.valueFor(handle);
if (info.batchParams.isEmpty()) continue;
result.appendFormat("0x%08x) active-count = %zu; ", handle, info.batchParams.size());
result.append("sampling_period(ms) = {");
for (size_t j = 0; j < info.batchParams.size(); j++) {
const BatchParams& params = info.batchParams[j];
result.appendFormat("%.1f%s", params.mTSample / 1e6f,
j < info.batchParams.size() - 1 ? ", " : "");
}
result.appendFormat("}, selected = %.2f ms; ", info.bestBatchParams.mTSample / 1e6f);
result.append("batching_period(ms) = {");
for (size_t j = 0; j < info.batchParams.size(); j++) {
const BatchParams& params = info.batchParams[j];
result.appendFormat("%.1f%s", params.mTBatch / 1e6f,
j < info.batchParams.size() - 1 ? ", " : "");
}
result.appendFormat("}, selected = %.2f ms\n", info.bestBatchParams.mTBatch / 1e6f);
}
return result.string();
}
ssize_t SensorDevice::getSensorList(sensor_t const** list) {
*list = &mSensorList[0];
return mSensorList.size();
}
status_t SensorDevice::initCheck() const {
return mSensors != NULL ? NO_ERROR : NO_INIT;
}
ssize_t SensorDevice::poll(sensors_event_t* buffer, size_t count) {
if (mSensors == nullptr) return NO_INIT;
ssize_t err;
int numHidlTransportErrors = 0;
bool hidlTransportError = false;
do {
auto ret = mSensors->poll(
count,
[&](auto result,
const auto &events,
const auto &dynamicSensorsAdded) {
if (result == Result::OK) {
convertToSensorEvents(events, dynamicSensorsAdded, buffer);
err = (ssize_t)events.size();
} else {
err = StatusFromResult(result);
}
});
if (ret.isOk()) {
hidlTransportError = false;
} else {
hidlTransportError = true;
numHidlTransportErrors++;
if (numHidlTransportErrors > 50) {
// Log error and bail
ALOGE("Max Hidl transport errors this cycle : %d", numHidlTransportErrors);
handleHidlDeath(ret.description());
} else {
std::this_thread::sleep_for(std::chrono::milliseconds(10));
}
}
} while (hidlTransportError);
if(numHidlTransportErrors > 0) {
ALOGE("Saw %d Hidl transport failures", numHidlTransportErrors);
HidlTransportErrorLog errLog(time(NULL), numHidlTransportErrors);
mHidlTransportErrors.add(errLog);
mTotalHidlTransportErrors++;
}
return err;
}
void SensorDevice::autoDisable(void *ident, int handle) {
Info& info( mActivationCount.editValueFor(handle) );
Mutex::Autolock _l(mLock);
info.removeBatchParamsForIdent(ident);
}
status_t SensorDevice::activate(void* ident, int handle, int enabled) {
if (mSensors == nullptr) return NO_INIT;
status_t err(NO_ERROR);
bool actuateHardware = false;
Mutex::Autolock _l(mLock);
Info& info( mActivationCount.editValueFor(handle) );
ALOGD_IF(DEBUG_CONNECTIONS,
"SensorDevice::activate: ident=%p, handle=0x%08x, enabled=%d, count=%zu",
ident, handle, enabled, info.batchParams.size());
if (enabled) {
ALOGD_IF(DEBUG_CONNECTIONS, "enable index=%zd", info.batchParams.indexOfKey(ident));
if (isClientDisabledLocked(ident)) {
ALOGE("SensorDevice::activate, isClientDisabledLocked(%p):true, handle:%d",
ident, handle);
return INVALID_OPERATION;
}
if (info.batchParams.indexOfKey(ident) >= 0) {
if (info.numActiveClients() == 1) {
// This is the first connection, we need to activate the underlying h/w sensor.
actuateHardware = true;
}
} else {
// Log error. Every activate call should be preceded by a batch() call.
ALOGE("\t >>>ERROR: activate called without batch");
}
} else {
ALOGD_IF(DEBUG_CONNECTIONS, "disable index=%zd", info.batchParams.indexOfKey(ident));
// If a connected dynamic sensor is deactivated, remove it from the
// dictionary.
auto it = mConnectedDynamicSensors.find(handle);
if (it != mConnectedDynamicSensors.end()) {
delete it->second;
mConnectedDynamicSensors.erase(it);
}
if (info.removeBatchParamsForIdent(ident) >= 0) {
if (info.numActiveClients() == 0) {
// This is the last connection, we need to de-activate the underlying h/w sensor.
actuateHardware = true;
} else {
// Call batch for this sensor with the previously calculated best effort
// batch_rate and timeout. One of the apps has unregistered for sensor
// events, and the best effort batch parameters might have changed.
ALOGD_IF(DEBUG_CONNECTIONS,
"\t>>> actuating h/w batch 0x%08x %" PRId64 " %" PRId64, handle,
info.bestBatchParams.mTSample, info.bestBatchParams.mTBatch);
checkReturn(mSensors->batch(
handle, info.bestBatchParams.mTSample, info.bestBatchParams.mTBatch));
}
} else {
// sensor wasn't enabled for this ident
}
if (isClientDisabledLocked(ident)) {
return NO_ERROR;
}
}
if (actuateHardware) {
ALOGD_IF(DEBUG_CONNECTIONS, "\t>>> actuating h/w activate handle=%d enabled=%d", handle,
enabled);
err = StatusFromResult(checkReturn(mSensors->activate(handle, enabled)));
ALOGE_IF(err, "Error %s sensor %d (%s)", enabled ? "activating" : "disabling", handle,
strerror(-err));
if (err != NO_ERROR && enabled) {
// Failure when enabling the sensor. Clean up on failure.
info.removeBatchParamsForIdent(ident);
}
}
return err;
}
status_t SensorDevice::batch(
void* ident,
int handle,
int flags,
int64_t samplingPeriodNs,
int64_t maxBatchReportLatencyNs) {
if (mSensors == nullptr) return NO_INIT;
if (samplingPeriodNs < MINIMUM_EVENTS_PERIOD) {
samplingPeriodNs = MINIMUM_EVENTS_PERIOD;
}
if (maxBatchReportLatencyNs < 0) {
maxBatchReportLatencyNs = 0;
}
ALOGD_IF(DEBUG_CONNECTIONS,
"SensorDevice::batch: ident=%p, handle=0x%08x, flags=%d, period_ns=%" PRId64 " timeout=%" PRId64,
ident, handle, flags, samplingPeriodNs, maxBatchReportLatencyNs);
Mutex::Autolock _l(mLock);
Info& info(mActivationCount.editValueFor(handle));
if (info.batchParams.indexOfKey(ident) < 0) {
BatchParams params(samplingPeriodNs, maxBatchReportLatencyNs);
info.batchParams.add(ident, params);
} else {
// A batch has already been called with this ident. Update the batch parameters.
info.setBatchParamsForIdent(ident, flags, samplingPeriodNs, maxBatchReportLatencyNs);
}
BatchParams prevBestBatchParams = info.bestBatchParams;
// Find the minimum of all timeouts and batch_rates for this sensor.
info.selectBatchParams();
ALOGD_IF(DEBUG_CONNECTIONS,
"\t>>> curr_period=%" PRId64 " min_period=%" PRId64
" curr_timeout=%" PRId64 " min_timeout=%" PRId64,
prevBestBatchParams.mTSample, info.bestBatchParams.mTSample,
prevBestBatchParams.mTBatch, info.bestBatchParams.mTBatch);
status_t err(NO_ERROR);
// If the min period or min timeout has changed since the last batch call, call batch.
if (prevBestBatchParams != info.bestBatchParams) {
ALOGD_IF(DEBUG_CONNECTIONS, "\t>>> actuating h/w BATCH 0x%08x %" PRId64 " %" PRId64, handle,
info.bestBatchParams.mTSample, info.bestBatchParams.mTBatch);
err = StatusFromResult(
checkReturn(mSensors->batch(
handle, info.bestBatchParams.mTSample, info.bestBatchParams.mTBatch)));
if (err != NO_ERROR) {
ALOGE("sensor batch failed %p 0x%08x %" PRId64 " %" PRId64 " err=%s",
mSensors.get(), handle, info.bestBatchParams.mTSample,
info.bestBatchParams.mTBatch, strerror(-err));
info.removeBatchParamsForIdent(ident);
}
}
return err;
}
status_t SensorDevice::setDelay(void* ident, int handle, int64_t samplingPeriodNs) {
return batch(ident, handle, 0, samplingPeriodNs, 0);
}
int SensorDevice::getHalDeviceVersion() const {
if (mSensors == nullptr) return -1;
return SENSORS_DEVICE_API_VERSION_1_4;
}
status_t SensorDevice::flush(void* ident, int handle) {
if (mSensors == nullptr) return NO_INIT;
if (isClientDisabled(ident)) return INVALID_OPERATION;
ALOGD_IF(DEBUG_CONNECTIONS, "\t>>> actuating h/w flush %d", handle);
return StatusFromResult(checkReturn(mSensors->flush(handle)));
}
bool SensorDevice::isClientDisabled(void* ident) {
Mutex::Autolock _l(mLock);
return isClientDisabledLocked(ident);
}
bool SensorDevice::isClientDisabledLocked(void* ident) {
return mDisabledClients.indexOf(ident) >= 0;
}
void SensorDevice::enableAllSensors() {
if (mSensors == nullptr) return;
Mutex::Autolock _l(mLock);
mDisabledClients.clear();
ALOGI("cleared mDisabledClients");
for (size_t i = 0; i< mActivationCount.size(); ++i) {
Info& info = mActivationCount.editValueAt(i);
if (info.batchParams.isEmpty()) continue;
info.selectBatchParams();
const int sensor_handle = mActivationCount.keyAt(i);
ALOGD_IF(DEBUG_CONNECTIONS, "\t>> reenable actuating h/w sensor enable handle=%d ",
sensor_handle);
status_t err = StatusFromResult(
checkReturn(mSensors->batch(
sensor_handle,
info.bestBatchParams.mTSample,
info.bestBatchParams.mTBatch)));
ALOGE_IF(err, "Error calling batch on sensor %d (%s)", sensor_handle, strerror(-err));
if (err == NO_ERROR) {
err = StatusFromResult(
checkReturn(mSensors->activate(sensor_handle, 1 /* enabled */)));
ALOGE_IF(err, "Error activating sensor %d (%s)", sensor_handle, strerror(-err));
}
}
}
void SensorDevice::disableAllSensors() {
if (mSensors == nullptr) return;
Mutex::Autolock _l(mLock);
for (size_t i = 0; i< mActivationCount.size(); ++i) {
const Info& info = mActivationCount.valueAt(i);
// Check if this sensor has been activated previously and disable it.
if (info.batchParams.size() > 0) {
const int sensor_handle = mActivationCount.keyAt(i);
ALOGD_IF(DEBUG_CONNECTIONS, "\t>> actuating h/w sensor disable handle=%d ",
sensor_handle);
checkReturn(mSensors->activate(sensor_handle, 0 /* enabled */));
// Add all the connections that were registered for this sensor to the disabled
// clients list.
for (size_t j = 0; j < info.batchParams.size(); ++j) {
mDisabledClients.add(info.batchParams.keyAt(j));
ALOGI("added %p to mDisabledClients", info.batchParams.keyAt(j));
}
}
}
}
status_t SensorDevice::injectSensorData(
const sensors_event_t *injected_sensor_event) {
if (mSensors == nullptr) return NO_INIT;
ALOGD_IF(DEBUG_CONNECTIONS,
"sensor_event handle=%d ts=%" PRId64 " data=%.2f, %.2f, %.2f %.2f %.2f %.2f",
injected_sensor_event->sensor,
injected_sensor_event->timestamp, injected_sensor_event->data[0],
injected_sensor_event->data[1], injected_sensor_event->data[2],
injected_sensor_event->data[3], injected_sensor_event->data[4],
injected_sensor_event->data[5]);
Event ev;
convertFromSensorEvent(*injected_sensor_event, &ev);
return StatusFromResult(checkReturn(mSensors->injectSensorData(ev)));
}
status_t SensorDevice::setMode(uint32_t mode) {
if (mSensors == nullptr) return NO_INIT;
return StatusFromResult(
checkReturn(mSensors->setOperationMode(
static_cast<hardware::sensors::V1_0::OperationMode>(mode))));
}
int32_t SensorDevice::registerDirectChannel(const sensors_direct_mem_t* memory) {
if (mSensors == nullptr) return NO_INIT;
Mutex::Autolock _l(mLock);
SharedMemType type;
switch (memory->type) {
case SENSOR_DIRECT_MEM_TYPE_ASHMEM:
type = SharedMemType::ASHMEM;
break;
case SENSOR_DIRECT_MEM_TYPE_GRALLOC:
type = SharedMemType::GRALLOC;
break;
default:
return BAD_VALUE;
}
SharedMemFormat format;
if (memory->format != SENSOR_DIRECT_FMT_SENSORS_EVENT) {
return BAD_VALUE;
}
format = SharedMemFormat::SENSORS_EVENT;
SharedMemInfo mem = {
.type = type,
.format = format,
.size = static_cast<uint32_t>(memory->size),
.memoryHandle = memory->handle,
};
int32_t ret;
checkReturn(mSensors->registerDirectChannel(mem,
[&ret](auto result, auto channelHandle) {
if (result == Result::OK) {
ret = channelHandle;
} else {
ret = StatusFromResult(result);
}
}));
return ret;
}
void SensorDevice::unregisterDirectChannel(int32_t channelHandle) {
if (mSensors == nullptr) return;
Mutex::Autolock _l(mLock);
checkReturn(mSensors->unregisterDirectChannel(channelHandle));
}
int32_t SensorDevice::configureDirectChannel(int32_t sensorHandle,
int32_t channelHandle, const struct sensors_direct_cfg_t *config) {
if (mSensors == nullptr) return NO_INIT;
Mutex::Autolock _l(mLock);
RateLevel rate;
switch(config->rate_level) {
case SENSOR_DIRECT_RATE_STOP:
rate = RateLevel::STOP;
break;
case SENSOR_DIRECT_RATE_NORMAL:
rate = RateLevel::NORMAL;
break;
case SENSOR_DIRECT_RATE_FAST:
rate = RateLevel::FAST;
break;
case SENSOR_DIRECT_RATE_VERY_FAST:
rate = RateLevel::VERY_FAST;
break;
default:
return BAD_VALUE;
}
int32_t ret;
checkReturn(mSensors->configDirectReport(sensorHandle, channelHandle, rate,
[&ret, rate] (auto result, auto token) {
if (rate == RateLevel::STOP) {
ret = StatusFromResult(result);
} else {
if (result == Result::OK) {
ret = token;
} else {
ret = StatusFromResult(result);
}
}
}));
return ret;
}
// ---------------------------------------------------------------------------
int SensorDevice::Info::numActiveClients() {
SensorDevice& device(SensorDevice::getInstance());
int num = 0;
for (size_t i = 0; i < batchParams.size(); ++i) {
if (!device.isClientDisabledLocked(batchParams.keyAt(i))) {
++num;
}
}
return num;
}
status_t SensorDevice::Info::setBatchParamsForIdent(void* ident, int,
int64_t samplingPeriodNs,
int64_t maxBatchReportLatencyNs) {
ssize_t index = batchParams.indexOfKey(ident);
if (index < 0) {
ALOGE("Info::setBatchParamsForIdent(ident=%p, period_ns=%" PRId64
" timeout=%" PRId64 ") failed (%s)",
ident, samplingPeriodNs, maxBatchReportLatencyNs, strerror(-index));
return BAD_INDEX;
}
BatchParams& params = batchParams.editValueAt(index);
params.mTSample = samplingPeriodNs;
params.mTBatch = maxBatchReportLatencyNs;
return NO_ERROR;
}
void SensorDevice::Info::selectBatchParams() {
BatchParams bestParams; // default to max Tsample and max Tbatch
SensorDevice& device(SensorDevice::getInstance());
for (size_t i = 0; i < batchParams.size(); ++i) {
if (device.isClientDisabledLocked(batchParams.keyAt(i))) {
continue;
}
bestParams.merge(batchParams[i]);
}
// if mTBatch <= mTSample, it is in streaming mode. set mTbatch to 0 to demand this explicitly.
if (bestParams.mTBatch <= bestParams.mTSample) {
bestParams.mTBatch = 0;
}
bestBatchParams = bestParams;
}
ssize_t SensorDevice::Info::removeBatchParamsForIdent(void* ident) {
ssize_t idx = batchParams.removeItem(ident);
if (idx >= 0) {
selectBatchParams();
}
return idx;
}
void SensorDevice::notifyConnectionDestroyed(void* ident) {
Mutex::Autolock _l(mLock);
mDisabledClients.remove(ident);
}
bool SensorDevice::isDirectReportSupported() const {
return mIsDirectReportSupported;
}
void SensorDevice::convertToSensorEvent(
const Event &src, sensors_event_t *dst) {
::android::hardware::sensors::V1_0::implementation::convertToSensorEvent(
src, dst);
if (src.sensorType == SensorType::DYNAMIC_SENSOR_META) {
const DynamicSensorInfo &dyn = src.u.dynamic;
dst->dynamic_sensor_meta.connected = dyn.connected;
dst->dynamic_sensor_meta.handle = dyn.sensorHandle;
if (dyn.connected) {
auto it = mConnectedDynamicSensors.find(dyn.sensorHandle);
CHECK(it != mConnectedDynamicSensors.end());
dst->dynamic_sensor_meta.sensor = it->second;
memcpy(dst->dynamic_sensor_meta.uuid,
dyn.uuid.data(),
sizeof(dst->dynamic_sensor_meta.uuid));
}
}
}
void SensorDevice::convertToSensorEvents(
const hidl_vec<Event> &src,
const hidl_vec<SensorInfo> &dynamicSensorsAdded,
sensors_event_t *dst) {
// Allocate a sensor_t structure for each dynamic sensor added and insert
// it into the dictionary of connected dynamic sensors keyed by handle.
for (size_t i = 0; i < dynamicSensorsAdded.size(); ++i) {
const SensorInfo &info = dynamicSensorsAdded[i];
auto it = mConnectedDynamicSensors.find(info.sensorHandle);
CHECK(it == mConnectedDynamicSensors.end());
sensor_t *sensor = new sensor_t;
convertToSensor(info, sensor);
mConnectedDynamicSensors.insert(
std::make_pair(sensor->handle, sensor));
}
for (size_t i = 0; i < src.size(); ++i) {
convertToSensorEvent(src[i], &dst[i]);
}
}
void SensorDevice::handleHidlDeath(const std::string & detail) {
// restart is the only option at present.
LOG_ALWAYS_FATAL("Abort due to ISensors hidl service failure, detail: %s.", detail.c_str());
}
// ---------------------------------------------------------------------------
}; // namespace android