blob: 3badfce078a8f348202bbb01d8040d42ba2991a6 [file] [log] [blame]
/*
* Copyright 2015 The Android Open Source Project
*
* Licensed under the Apache License, Version 2.0 (the "License");
* you may not use this file except in compliance with the License.
* You may obtain a copy of the License at
*
* http://www.apache.org/licenses/LICENSE-2.0
*
* Unless required by applicable law or agreed to in writing, software
* distributed under the License is distributed on an "AS IS" BASIS,
* WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
* See the License for the specific language governing permissions and
* limitations under the License.
*/
#ifndef ANDROID_SF_HWC2_ON_1_ADAPTER_H
#define ANDROID_SF_HWC2_ON_1_ADAPTER_H
#define HWC2_INCLUDE_STRINGIFICATION
#define HWC2_USE_CPP11
#include <hardware/hwcomposer2.h>
#undef HWC2_INCLUDE_STRINGIFICATION
#undef HWC2_USE_CPP11
#include "MiniFence.h"
#include <atomic>
#include <map>
#include <mutex>
#include <queue>
#include <set>
#include <unordered_map>
#include <unordered_set>
#include <vector>
struct hwc_composer_device_1;
struct hwc_display_contents_1;
struct hwc_layer_1;
namespace android {
// For devices unable to provide an implementation of HWC2 (see hwcomposer2.h),
// we provide an adapter able to talk to HWC1 (see hwcomposer.h). It translates
// streamed function calls ala HWC2 model to batched array of structs calls ala
// HWC1 model.
class HWC2On1Adapter : public hwc2_device_t
{
public:
explicit HWC2On1Adapter(struct hwc_composer_device_1* hwc1Device);
~HWC2On1Adapter();
struct hwc_composer_device_1* getHwc1Device() const { return mHwc1Device; }
uint8_t getHwc1MinorVersion() const { return mHwc1MinorVersion; }
private:
static inline HWC2On1Adapter* getAdapter(hwc2_device_t* device) {
return static_cast<HWC2On1Adapter*>(device);
}
// getCapabilities
void doGetCapabilities(uint32_t* outCount,
int32_t* /*hwc2_capability_t*/ outCapabilities);
static void getCapabilitiesHook(hwc2_device_t* device, uint32_t* outCount,
int32_t* /*hwc2_capability_t*/ outCapabilities) {
getAdapter(device)->doGetCapabilities(outCount, outCapabilities);
}
bool supportsBackgroundColor() {
return mHwc1SupportsBackgroundColor;
}
// getFunction
hwc2_function_pointer_t doGetFunction(HWC2::FunctionDescriptor descriptor);
static hwc2_function_pointer_t getFunctionHook(hwc2_device_t* device,
int32_t intDesc) {
auto descriptor = static_cast<HWC2::FunctionDescriptor>(intDesc);
return getAdapter(device)->doGetFunction(descriptor);
}
// Device functions
HWC2::Error createVirtualDisplay(uint32_t width, uint32_t height,
hwc2_display_t* outDisplay);
static int32_t createVirtualDisplayHook(hwc2_device_t* device,
uint32_t width, uint32_t height, int32_t* /*format*/,
hwc2_display_t* outDisplay) {
// HWC1 implementations cannot override the buffer format requested by
// the consumer
auto error = getAdapter(device)->createVirtualDisplay(width, height,
outDisplay);
return static_cast<int32_t>(error);
}
HWC2::Error destroyVirtualDisplay(hwc2_display_t display);
static int32_t destroyVirtualDisplayHook(hwc2_device_t* device,
hwc2_display_t display) {
auto error = getAdapter(device)->destroyVirtualDisplay(display);
return static_cast<int32_t>(error);
}
std::string mDumpString;
void dump(uint32_t* outSize, char* outBuffer);
static void dumpHook(hwc2_device_t* device, uint32_t* outSize,
char* outBuffer) {
getAdapter(device)->dump(outSize, outBuffer);
}
uint32_t getMaxVirtualDisplayCount();
static uint32_t getMaxVirtualDisplayCountHook(hwc2_device_t* device) {
return getAdapter(device)->getMaxVirtualDisplayCount();
}
HWC2::Error registerCallback(HWC2::Callback descriptor,
hwc2_callback_data_t callbackData, hwc2_function_pointer_t pointer);
static int32_t registerCallbackHook(hwc2_device_t* device,
int32_t intDesc, hwc2_callback_data_t callbackData,
hwc2_function_pointer_t pointer) {
auto descriptor = static_cast<HWC2::Callback>(intDesc);
auto error = getAdapter(device)->registerCallback(descriptor,
callbackData, pointer);
return static_cast<int32_t>(error);
}
// Display functions
class Layer;
class SortLayersByZ {
public:
bool operator()(const std::shared_ptr<Layer>& lhs,
const std::shared_ptr<Layer>& rhs);
};
// The semantics of the fences returned by the device differ between
// hwc1.set() and hwc2.present(). Read hwcomposer.h and hwcomposer2.h
// for more information.
//
// Release fences in hwc1 are obtained on set() for a frame n and signaled
// when the layer buffer is not needed for read operations anymore
// (typically on frame n+1). In HWC2, release fences are obtained with a
// special call after present() for frame n. These fences signal
// on frame n: More specifically, the fence for a given buffer provided in
// frame n will signal when the prior buffer is no longer required.
//
// A retire fence (HWC1) is signaled when a composition is replaced
// on the panel whereas a present fence (HWC2) is signaled when a
// composition starts to be displayed on a panel.
//
// The HWC2to1Adapter emulates the new fence semantics for a frame
// n by returning the fence from frame n-1. For frame 0, the adapter
// returns NO_FENCE.
class DeferredFence {
public:
DeferredFence()
: mFences({MiniFence::NO_FENCE, MiniFence::NO_FENCE}) {}
void add(int32_t fenceFd) {
mFences.emplace(new MiniFence(fenceFd));
mFences.pop();
}
const sp<MiniFence>& get() const {
return mFences.front();
}
private:
// There are always two fences in this queue.
std::queue<sp<MiniFence>> mFences;
};
class FencedBuffer {
public:
FencedBuffer() : mBuffer(nullptr), mFence(MiniFence::NO_FENCE) {}
void setBuffer(buffer_handle_t buffer) { mBuffer = buffer; }
void setFence(int fenceFd) { mFence = new MiniFence(fenceFd); }
buffer_handle_t getBuffer() const { return mBuffer; }
int getFence() const { return mFence->dup(); }
private:
buffer_handle_t mBuffer;
sp<MiniFence> mFence;
};
class Display {
public:
Display(HWC2On1Adapter& device, HWC2::DisplayType type);
hwc2_display_t getId() const { return mId; }
HWC2On1Adapter& getDevice() const { return mDevice; }
// Does not require locking because it is set before adding the
// Displays to the Adapter's list of displays
void setHwc1Id(int32_t id) { mHwc1Id = id; }
int32_t getHwc1Id() const { return mHwc1Id; }
// HWC2 Display functions
HWC2::Error acceptChanges();
HWC2::Error createLayer(hwc2_layer_t* outLayerId);
HWC2::Error destroyLayer(hwc2_layer_t layerId);
HWC2::Error getActiveConfig(hwc2_config_t* outConfigId);
HWC2::Error getAttribute(hwc2_config_t configId,
HWC2::Attribute attribute, int32_t* outValue);
HWC2::Error getChangedCompositionTypes(uint32_t* outNumElements,
hwc2_layer_t* outLayers, int32_t* outTypes);
HWC2::Error getColorModes(uint32_t* outNumModes, int32_t* outModes);
HWC2::Error getConfigs(uint32_t* outNumConfigs,
hwc2_config_t* outConfigIds);
HWC2::Error getDozeSupport(int32_t* outSupport);
HWC2::Error getHdrCapabilities(uint32_t* outNumTypes,
int32_t* outTypes, float* outMaxLuminance,
float* outMaxAverageLuminance, float* outMinLuminance);
HWC2::Error getName(uint32_t* outSize, char* outName);
HWC2::Error getReleaseFences(uint32_t* outNumElements,
hwc2_layer_t* outLayers, int32_t* outFences);
HWC2::Error getRequests(int32_t* outDisplayRequests,
uint32_t* outNumElements, hwc2_layer_t* outLayers,
int32_t* outLayerRequests);
HWC2::Error getType(int32_t* outType);
// Since HWC1 "presents" (called "set" in HWC1) all Displays
// at once, the first call to any Display::present will trigger
// present() on all Displays in the Device. Subsequent calls without
// first calling validate() are noop (except for duping/returning
// the retire fence).
HWC2::Error present(int32_t* outRetireFence);
HWC2::Error setActiveConfig(hwc2_config_t configId);
HWC2::Error setClientTarget(buffer_handle_t target,
int32_t acquireFence, int32_t dataspace,
hwc_region_t damage);
HWC2::Error setColorMode(android_color_mode_t mode);
HWC2::Error setColorTransform(android_color_transform_t hint);
HWC2::Error setOutputBuffer(buffer_handle_t buffer,
int32_t releaseFence);
HWC2::Error setPowerMode(HWC2::PowerMode mode);
HWC2::Error setVsyncEnabled(HWC2::Vsync enabled);
// Since HWC1 "validates" (called "prepare" in HWC1) all Displays
// at once, the first call to any Display::validate() will trigger
// validate() on all other Displays in the Device.
HWC2::Error validate(uint32_t* outNumTypes,
uint32_t* outNumRequests);
HWC2::Error updateLayerZ(hwc2_layer_t layerId, uint32_t z);
HWC2::Error getClientTargetSupport(uint32_t width, uint32_t height,
int32_t format, int32_t dataspace);
// Read configs from HWC1 device
void populateConfigs();
// Set configs for a virtual display
void populateConfigs(uint32_t width, uint32_t height);
bool prepare();
// Called after hwc.prepare() with responses from the device.
void generateChanges();
bool hasChanges() const;
HWC2::Error set(hwc_display_contents_1& hwcContents);
void addRetireFence(int fenceFd);
void addReleaseFences(const hwc_display_contents_1& hwcContents);
bool hasColorTransform() const;
std::string dump() const;
// Return a rect from the pool allocated during validate()
hwc_rect_t* GetRects(size_t numRects);
hwc_display_contents_1* getDisplayContents();
void markGeometryChanged() { mGeometryChanged = true; }
void resetGeometryMarker() { mGeometryChanged = false;}
private:
class Config {
public:
Config(Display& display)
: mDisplay(display),
mId(0),
mAttributes() {}
bool isOnDisplay(const Display& display) const {
return display.getId() == mDisplay.getId();
}
void setAttribute(HWC2::Attribute attribute, int32_t value);
int32_t getAttribute(HWC2::Attribute attribute) const;
void setHwc1Id(uint32_t id);
bool hasHwc1Id(uint32_t id) const;
HWC2::Error getColorModeForHwc1Id(uint32_t id,
android_color_mode_t *outMode) const;
HWC2::Error getHwc1IdForColorMode(android_color_mode_t mode,
uint32_t* outId) const;
void setId(hwc2_config_t id) { mId = id; }
hwc2_config_t getId() const { return mId; }
// Attempts to merge two configs that differ only in color
// mode. Returns whether the merge was successful
bool merge(const Config& other);
std::set<android_color_mode_t> getColorModes() const;
// splitLine divides the output into two lines suitable for
// dumpsys SurfaceFlinger
std::string toString(bool splitLine = false) const;
private:
Display& mDisplay;
hwc2_config_t mId;
std::unordered_map<HWC2::Attribute, int32_t> mAttributes;
// Maps from color transform to HWC1 config ID
std::unordered_map<android_color_mode_t, uint32_t> mHwc1Ids;
};
// Stores changes requested from the device upon calling prepare().
// Handles change request to:
// - Layer composition type.
// - Layer hints.
class Changes {
public:
uint32_t getNumTypes() const {
return static_cast<uint32_t>(mTypeChanges.size());
}
uint32_t getNumLayerRequests() const {
return static_cast<uint32_t>(mLayerRequests.size());
}
const std::unordered_map<hwc2_layer_t, HWC2::Composition>&
getTypeChanges() const {
return mTypeChanges;
}
const std::unordered_map<hwc2_layer_t, HWC2::LayerRequest>&
getLayerRequests() const {
return mLayerRequests;
}
void addTypeChange(hwc2_layer_t layerId,
HWC2::Composition type) {
mTypeChanges.insert({layerId, type});
}
void clearTypeChanges() { mTypeChanges.clear(); }
void addLayerRequest(hwc2_layer_t layerId,
HWC2::LayerRequest request) {
mLayerRequests.insert({layerId, request});
}
private:
std::unordered_map<hwc2_layer_t, HWC2::Composition>
mTypeChanges;
std::unordered_map<hwc2_layer_t, HWC2::LayerRequest>
mLayerRequests;
};
std::shared_ptr<const Config>
getConfig(hwc2_config_t configId) const;
void populateColorModes();
void initializeActiveConfig();
// Creates a bi-directional mapping between index in HWC1
// prepare/set array and Layer object. Stores mapping in
// mHwc1LayerMap and also updates Layer's attribute mHwc1Id.
void assignHwc1LayerIds();
// Called after a response to prepare() has been received:
// Ingest composition type changes requested by the device.
void updateTypeChanges(const struct hwc_layer_1& hwc1Layer,
const Layer& layer);
// Called after a response to prepare() has been received:
// Ingest layer hint changes requested by the device.
void updateLayerRequests(const struct hwc_layer_1& hwc1Layer,
const Layer& layer);
// Set all fields in HWC1 comm array for layer containing the
// HWC_FRAMEBUFFER_TARGET (always the last layer).
void prepareFramebufferTarget();
// Display ID generator.
static std::atomic<hwc2_display_t> sNextId;
const hwc2_display_t mId;
HWC2On1Adapter& mDevice;
// The state of this display should only be modified from
// SurfaceFlinger's main loop, with the exception of when dump is
// called. To prevent a bad state from crashing us during a dump
// call, all public calls into Display must acquire this mutex.
//
// It is recursive because we don't want to deadlock in validate
// (or present) when we call HWC2On1Adapter::prepareAllDisplays
// (or setAllDisplays), which calls back into Display functions
// which require locking.
mutable std::recursive_mutex mStateMutex;
// Allocate RAM able to store all layers and rects used for
// communication with HWC1. Place allocated RAM in variable
// mHwc1RequestedContents.
void allocateRequestedContents();
// Array of structs exchanged between client and hwc1 device.
// Sent to device upon calling prepare().
std::unique_ptr<hwc_display_contents_1> mHwc1RequestedContents;
private:
DeferredFence mRetireFence;
// Will only be non-null after the Display has been validated and
// before it has been presented
std::unique_ptr<Changes> mChanges;
int32_t mHwc1Id;
std::vector<std::shared_ptr<Config>> mConfigs;
std::shared_ptr<const Config> mActiveConfig;
std::set<android_color_mode_t> mColorModes;
android_color_mode_t mActiveColorMode;
std::string mName;
HWC2::DisplayType mType;
HWC2::PowerMode mPowerMode;
HWC2::Vsync mVsyncEnabled;
// Used to populate HWC1 HWC_FRAMEBUFFER_TARGET layer
FencedBuffer mClientTarget;
FencedBuffer mOutputBuffer;
bool mHasColorTransform;
// All layers this Display is aware of.
std::multiset<std::shared_ptr<Layer>, SortLayersByZ> mLayers;
// Mapping between layer index in array of hwc_display_contents_1*
// passed to HWC1 during validate/set and Layer object.
std::unordered_map<size_t, std::shared_ptr<Layer>> mHwc1LayerMap;
// All communication with HWC1 via prepare/set is done with one
// alloc. This pointer is pointing to a pool of hwc_rect_t.
size_t mNumAvailableRects;
hwc_rect_t* mNextAvailableRect;
// True if any of the Layers contained in this Display have been
// updated with anything other than a buffer since last call to
// Display::set()
bool mGeometryChanged;
};
// Utility template calling a Display object method directly based on the
// hwc2_display_t displayId parameter.
template <typename ...Args>
static int32_t callDisplayFunction(hwc2_device_t* device,
hwc2_display_t displayId, HWC2::Error (Display::*member)(Args...),
Args... args) {
auto display = getAdapter(device)->getDisplay(displayId);
if (!display) {
return static_cast<int32_t>(HWC2::Error::BadDisplay);
}
auto error = ((*display).*member)(std::forward<Args>(args)...);
return static_cast<int32_t>(error);
}
template <typename MF, MF memFunc, typename ...Args>
static int32_t displayHook(hwc2_device_t* device, hwc2_display_t displayId,
Args... args) {
return HWC2On1Adapter::callDisplayFunction(device, displayId, memFunc,
std::forward<Args>(args)...);
}
static int32_t getDisplayAttributeHook(hwc2_device_t* device,
hwc2_display_t display, hwc2_config_t config,
int32_t intAttribute, int32_t* outValue) {
auto attribute = static_cast<HWC2::Attribute>(intAttribute);
return callDisplayFunction(device, display, &Display::getAttribute,
config, attribute, outValue);
}
static int32_t setColorTransformHook(hwc2_device_t* device,
hwc2_display_t display, const float* /*matrix*/,
int32_t /*android_color_transform_t*/ intHint) {
// We intentionally throw away the matrix, because if the hint is
// anything other than IDENTITY, we have to fall back to client
// composition anyway
auto hint = static_cast<android_color_transform_t>(intHint);
return callDisplayFunction(device, display, &Display::setColorTransform,
hint);
}
static int32_t setColorModeHook(hwc2_device_t* device,
hwc2_display_t display, int32_t /*android_color_mode_t*/ intMode) {
auto mode = static_cast<android_color_mode_t>(intMode);
return callDisplayFunction(device, display, &Display::setColorMode,
mode);
}
static int32_t setPowerModeHook(hwc2_device_t* device,
hwc2_display_t display, int32_t intMode) {
auto mode = static_cast<HWC2::PowerMode>(intMode);
return callDisplayFunction(device, display, &Display::setPowerMode,
mode);
}
static int32_t setVsyncEnabledHook(hwc2_device_t* device,
hwc2_display_t display, int32_t intEnabled) {
auto enabled = static_cast<HWC2::Vsync>(intEnabled);
return callDisplayFunction(device, display, &Display::setVsyncEnabled,
enabled);
}
class Layer {
public:
explicit Layer(Display& display);
bool operator==(const Layer& other) { return mId == other.mId; }
bool operator!=(const Layer& other) { return !(*this == other); }
hwc2_layer_t getId() const { return mId; }
Display& getDisplay() const { return mDisplay; }
// HWC2 Layer functions
HWC2::Error setBuffer(buffer_handle_t buffer, int32_t acquireFence);
HWC2::Error setCursorPosition(int32_t x, int32_t y);
HWC2::Error setSurfaceDamage(hwc_region_t damage);
// HWC2 Layer state functions
HWC2::Error setBlendMode(HWC2::BlendMode mode);
HWC2::Error setColor(hwc_color_t color);
HWC2::Error setCompositionType(HWC2::Composition type);
HWC2::Error setDataspace(android_dataspace_t dataspace);
HWC2::Error setDisplayFrame(hwc_rect_t frame);
HWC2::Error setPlaneAlpha(float alpha);
HWC2::Error setSidebandStream(const native_handle_t* stream);
HWC2::Error setSourceCrop(hwc_frect_t crop);
HWC2::Error setTransform(HWC2::Transform transform);
HWC2::Error setVisibleRegion(hwc_region_t visible);
HWC2::Error setZ(uint32_t z);
HWC2::Composition getCompositionType() const {
return mCompositionType;
}
uint32_t getZ() const { return mZ; }
void addReleaseFence(int fenceFd);
const sp<MiniFence>& getReleaseFence() const;
void setHwc1Id(size_t id) { mHwc1Id = id; }
size_t getHwc1Id() const { return mHwc1Id; }
// Write state to HWC1 communication struct.
void applyState(struct hwc_layer_1& hwc1Layer);
std::string dump() const;
std::size_t getNumVisibleRegions() { return mVisibleRegion.size(); }
std::size_t getNumSurfaceDamages() { return mSurfaceDamage.size(); }
// True if a layer cannot be properly rendered by the device due
// to usage of SolidColor (a.k.a BackgroundColor in HWC1).
bool hasUnsupportedBackgroundColor() {
return (mCompositionType == HWC2::Composition::SolidColor &&
!mDisplay.getDevice().supportsBackgroundColor());
}
private:
void applyCommonState(struct hwc_layer_1& hwc1Layer);
void applySolidColorState(struct hwc_layer_1& hwc1Layer);
void applySidebandState(struct hwc_layer_1& hwc1Layer);
void applyBufferState(struct hwc_layer_1& hwc1Layer);
void applyCompositionType(struct hwc_layer_1& hwc1Layer);
static std::atomic<hwc2_layer_t> sNextId;
const hwc2_layer_t mId;
Display& mDisplay;
FencedBuffer mBuffer;
std::vector<hwc_rect_t> mSurfaceDamage;
HWC2::BlendMode mBlendMode;
hwc_color_t mColor;
HWC2::Composition mCompositionType;
hwc_rect_t mDisplayFrame;
float mPlaneAlpha;
const native_handle_t* mSidebandStream;
hwc_frect_t mSourceCrop;
HWC2::Transform mTransform;
std::vector<hwc_rect_t> mVisibleRegion;
uint32_t mZ;
DeferredFence mReleaseFence;
size_t mHwc1Id;
bool mHasUnsupportedPlaneAlpha;
};
// Utility tempate calling a Layer object method based on ID parameters:
// hwc2_display_t displayId
// and
// hwc2_layer_t layerId
template <typename ...Args>
static int32_t callLayerFunction(hwc2_device_t* device,
hwc2_display_t displayId, hwc2_layer_t layerId,
HWC2::Error (Layer::*member)(Args...), Args... args) {
auto result = getAdapter(device)->getLayer(displayId, layerId);
auto error = std::get<HWC2::Error>(result);
if (error == HWC2::Error::None) {
auto layer = std::get<Layer*>(result);
error = ((*layer).*member)(std::forward<Args>(args)...);
}
return static_cast<int32_t>(error);
}
template <typename MF, MF memFunc, typename ...Args>
static int32_t layerHook(hwc2_device_t* device, hwc2_display_t displayId,
hwc2_layer_t layerId, Args... args) {
return HWC2On1Adapter::callLayerFunction(device, displayId, layerId,
memFunc, std::forward<Args>(args)...);
}
// Layer state functions
static int32_t setLayerBlendModeHook(hwc2_device_t* device,
hwc2_display_t display, hwc2_layer_t layer, int32_t intMode) {
auto mode = static_cast<HWC2::BlendMode>(intMode);
return callLayerFunction(device, display, layer,
&Layer::setBlendMode, mode);
}
static int32_t setLayerCompositionTypeHook(hwc2_device_t* device,
hwc2_display_t display, hwc2_layer_t layer, int32_t intType) {
auto type = static_cast<HWC2::Composition>(intType);
return callLayerFunction(device, display, layer,
&Layer::setCompositionType, type);
}
static int32_t setLayerDataspaceHook(hwc2_device_t* device,
hwc2_display_t display, hwc2_layer_t layer, int32_t intDataspace) {
auto dataspace = static_cast<android_dataspace_t>(intDataspace);
return callLayerFunction(device, display, layer, &Layer::setDataspace,
dataspace);
}
static int32_t setLayerTransformHook(hwc2_device_t* device,
hwc2_display_t display, hwc2_layer_t layer, int32_t intTransform) {
auto transform = static_cast<HWC2::Transform>(intTransform);
return callLayerFunction(device, display, layer, &Layer::setTransform,
transform);
}
static int32_t setLayerZOrderHook(hwc2_device_t* device,
hwc2_display_t display, hwc2_layer_t layer, uint32_t z) {
return callDisplayFunction(device, display, &Display::updateLayerZ,
layer, z);
}
// Adapter internals
void populateCapabilities();
Display* getDisplay(hwc2_display_t id);
std::tuple<Layer*, HWC2::Error> getLayer(hwc2_display_t displayId,
hwc2_layer_t layerId);
void populatePrimary();
bool prepareAllDisplays();
std::vector<struct hwc_display_contents_1*> mHwc1Contents;
HWC2::Error setAllDisplays();
// Callbacks
void hwc1Invalidate();
void hwc1Vsync(int hwc1DisplayId, int64_t timestamp);
void hwc1Hotplug(int hwc1DisplayId, int connected);
// These are set in the constructor and before any asynchronous events are
// possible
struct hwc_composer_device_1* const mHwc1Device;
const uint8_t mHwc1MinorVersion;
bool mHwc1SupportsVirtualDisplays;
bool mHwc1SupportsBackgroundColor;
class Callbacks;
const std::unique_ptr<Callbacks> mHwc1Callbacks;
std::unordered_set<HWC2::Capability> mCapabilities;
// These are only accessed from the main SurfaceFlinger thread (not from
// callbacks or dump
std::map<hwc2_layer_t, std::shared_ptr<Layer>> mLayers;
// A HWC1 supports only one virtual display.
std::shared_ptr<Display> mHwc1VirtualDisplay;
// These are potentially accessed from multiple threads, and are protected
// by this mutex. This needs to be recursive, since the HWC1 implementation
// can call back into the invalidate callback on the same thread that is
// calling prepare.
std::recursive_timed_mutex mStateMutex;
struct CallbackInfo {
hwc2_callback_data_t data;
hwc2_function_pointer_t pointer;
};
std::unordered_map<HWC2::Callback, CallbackInfo> mCallbacks;
bool mHasPendingInvalidate;
// There is a small gap between the time the HWC1 module is started and
// when the callbacks for vsync and hotplugs are registered by the
// HWC2on1Adapter. To prevent losing events they are stored in these arrays
// and fed to the callback as soon as possible.
std::vector<std::pair<int, int64_t>> mPendingVsyncs;
std::vector<std::pair<int, int>> mPendingHotplugs;
// Mapping between HWC1 display id and Display objects.
std::map<hwc2_display_t, std::shared_ptr<Display>> mDisplays;
// Map HWC1 display type (HWC_DISPLAY_PRIMARY, HWC_DISPLAY_EXTERNAL,
// HWC_DISPLAY_VIRTUAL) to Display IDs generated by HWC2on1Adapter objects.
std::unordered_map<int, hwc2_display_t> mHwc1DisplayMap;
};
} // namespace android
#endif