blob: 5c0ba01cd3979ef3133729833314a733633490ba [file] [log] [blame]
/*
* Copyright 2018 The Android Open Source Project
*
* Licensed under the Apache License, Version 2.0 (the "License");
* you may not use this file except in compliance with the License.
* You may obtain a copy of the License at
*
* http://www.apache.org/licenses/LICENSE-2.0
*
* Unless required by applicable law or agreed to in writing, software
* distributed under the License is distributed on an "AS IS" BASIS,
* WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
* See the License for the specific language governing permissions and
* limitations under the License.
*/
#undef LOG_TAG
#define LOG_TAG "Scheduler"
#define ATRACE_TAG ATRACE_TAG_GRAPHICS
#include "Scheduler.h"
#include <android-base/stringprintf.h>
#include <android/hardware/configstore/1.0/ISurfaceFlingerConfigs.h>
#include <android/hardware/configstore/1.1/ISurfaceFlingerConfigs.h>
#include <configstore/Utils.h>
#include <cutils/properties.h>
#include <input/InputWindow.h>
#include <system/window.h>
#include <ui/DisplayStatInfo.h>
#include <utils/Timers.h>
#include <utils/Trace.h>
#include <algorithm>
#include <cinttypes>
#include <cstdint>
#include <functional>
#include <memory>
#include <numeric>
#include "../Layer.h"
#include "DispSync.h"
#include "DispSyncSource.h"
#include "EventControlThread.h"
#include "EventThread.h"
#include "InjectVSyncSource.h"
#include "OneShotTimer.h"
#include "SchedulerUtils.h"
#include "SurfaceFlingerProperties.h"
#include "Timer.h"
#include "VSyncDispatchTimerQueue.h"
#include "VSyncPredictor.h"
#include "VSyncReactor.h"
#define RETURN_IF_INVALID_HANDLE(handle, ...) \
do { \
if (mConnections.count(handle) == 0) { \
ALOGE("Invalid connection handle %" PRIuPTR, handle.id); \
return __VA_ARGS__; \
} \
} while (false)
namespace android {
std::unique_ptr<DispSync> createDispSync(bool supportKernelTimer) {
// TODO (140302863) remove this and use the vsync_reactor system.
if (property_get_bool("debug.sf.vsync_reactor", true)) {
// TODO (144707443) tune Predictor tunables.
static constexpr int defaultRate = 60;
static constexpr auto initialPeriod =
std::chrono::duration<nsecs_t, std::ratio<1, defaultRate>>(1);
static constexpr size_t vsyncTimestampHistorySize = 20;
static constexpr size_t minimumSamplesForPrediction = 6;
static constexpr uint32_t discardOutlierPercent = 20;
auto tracker = std::make_unique<
scheduler::VSyncPredictor>(std::chrono::duration_cast<std::chrono::nanoseconds>(
initialPeriod)
.count(),
vsyncTimestampHistorySize, minimumSamplesForPrediction,
discardOutlierPercent);
static constexpr auto vsyncMoveThreshold =
std::chrono::duration_cast<std::chrono::nanoseconds>(3ms);
static constexpr auto timerSlack =
std::chrono::duration_cast<std::chrono::nanoseconds>(500us);
auto dispatch = std::make_unique<
scheduler::VSyncDispatchTimerQueue>(std::make_unique<scheduler::Timer>(), *tracker,
timerSlack.count(), vsyncMoveThreshold.count());
static constexpr size_t pendingFenceLimit = 20;
return std::make_unique<scheduler::VSyncReactor>(std::make_unique<scheduler::SystemClock>(),
std::move(dispatch), std::move(tracker),
pendingFenceLimit, supportKernelTimer);
} else {
return std::make_unique<impl::DispSync>("SchedulerDispSync",
sysprop::running_without_sync_framework(true));
}
}
Scheduler::Scheduler(impl::EventControlThread::SetVSyncEnabledFunction function,
const scheduler::RefreshRateConfigs& refreshRateConfig,
ISchedulerCallback& schedulerCallback, bool useContentDetectionV2,
bool useContentDetection)
: mSupportKernelTimer(sysprop::support_kernel_idle_timer(false)),
mPrimaryDispSync(createDispSync(mSupportKernelTimer)),
mEventControlThread(new impl::EventControlThread(std::move(function))),
mSchedulerCallback(schedulerCallback),
mRefreshRateConfigs(refreshRateConfig),
mUseContentDetection(useContentDetection),
mUseContentDetectionV2(useContentDetectionV2) {
using namespace sysprop;
if (mUseContentDetectionV2) {
mLayerHistory = std::make_unique<scheduler::impl::LayerHistoryV2>(refreshRateConfig);
} else {
mLayerHistory = std::make_unique<scheduler::impl::LayerHistory>();
}
const int setIdleTimerMs = property_get_int32("debug.sf.set_idle_timer_ms", 0);
if (const auto millis = setIdleTimerMs ? setIdleTimerMs : set_idle_timer_ms(0); millis > 0) {
const auto callback = mSupportKernelTimer ? &Scheduler::kernelIdleTimerCallback
: &Scheduler::idleTimerCallback;
mIdleTimer.emplace(
std::chrono::milliseconds(millis),
[this, callback] { std::invoke(callback, this, TimerState::Reset); },
[this, callback] { std::invoke(callback, this, TimerState::Expired); });
mIdleTimer->start();
}
if (const int64_t millis = set_touch_timer_ms(0); millis > 0) {
// Touch events are coming to SF every 100ms, so the timer needs to be higher than that
mTouchTimer.emplace(
std::chrono::milliseconds(millis),
[this] { touchTimerCallback(TimerState::Reset); },
[this] { touchTimerCallback(TimerState::Expired); });
mTouchTimer->start();
}
if (const int64_t millis = set_display_power_timer_ms(0); millis > 0) {
mDisplayPowerTimer.emplace(
std::chrono::milliseconds(millis),
[this] { displayPowerTimerCallback(TimerState::Reset); },
[this] { displayPowerTimerCallback(TimerState::Expired); });
mDisplayPowerTimer->start();
}
}
Scheduler::Scheduler(std::unique_ptr<DispSync> primaryDispSync,
std::unique_ptr<EventControlThread> eventControlThread,
const scheduler::RefreshRateConfigs& configs,
ISchedulerCallback& schedulerCallback, bool useContentDetectionV2,
bool useContentDetection)
: mSupportKernelTimer(false),
mPrimaryDispSync(std::move(primaryDispSync)),
mEventControlThread(std::move(eventControlThread)),
mSchedulerCallback(schedulerCallback),
mRefreshRateConfigs(configs),
mUseContentDetection(useContentDetection),
mUseContentDetectionV2(useContentDetectionV2) {}
Scheduler::~Scheduler() {
// Ensure the OneShotTimer threads are joined before we start destroying state.
mDisplayPowerTimer.reset();
mTouchTimer.reset();
mIdleTimer.reset();
}
DispSync& Scheduler::getPrimaryDispSync() {
return *mPrimaryDispSync;
}
std::unique_ptr<VSyncSource> Scheduler::makePrimaryDispSyncSource(const char* name,
nsecs_t phaseOffsetNs) {
return std::make_unique<DispSyncSource>(mPrimaryDispSync.get(), phaseOffsetNs,
true /* traceVsync */, name);
}
Scheduler::ConnectionHandle Scheduler::createConnection(
const char* connectionName, nsecs_t phaseOffsetNs,
impl::EventThread::InterceptVSyncsCallback interceptCallback) {
auto vsyncSource = makePrimaryDispSyncSource(connectionName, phaseOffsetNs);
auto eventThread = std::make_unique<impl::EventThread>(std::move(vsyncSource),
std::move(interceptCallback));
return createConnection(std::move(eventThread));
}
Scheduler::ConnectionHandle Scheduler::createConnection(std::unique_ptr<EventThread> eventThread) {
const ConnectionHandle handle = ConnectionHandle{mNextConnectionHandleId++};
ALOGV("Creating a connection handle with ID %" PRIuPTR, handle.id);
auto connection =
createConnectionInternal(eventThread.get(), ISurfaceComposer::eConfigChangedSuppress);
mConnections.emplace(handle, Connection{connection, std::move(eventThread)});
return handle;
}
sp<EventThreadConnection> Scheduler::createConnectionInternal(
EventThread* eventThread, ISurfaceComposer::ConfigChanged configChanged) {
return eventThread->createEventConnection([&] { resync(); }, configChanged);
}
sp<IDisplayEventConnection> Scheduler::createDisplayEventConnection(
ConnectionHandle handle, ISurfaceComposer::ConfigChanged configChanged) {
RETURN_IF_INVALID_HANDLE(handle, nullptr);
return createConnectionInternal(mConnections[handle].thread.get(), configChanged);
}
sp<EventThreadConnection> Scheduler::getEventConnection(ConnectionHandle handle) {
RETURN_IF_INVALID_HANDLE(handle, nullptr);
return mConnections[handle].connection;
}
void Scheduler::onHotplugReceived(ConnectionHandle handle, PhysicalDisplayId displayId,
bool connected) {
RETURN_IF_INVALID_HANDLE(handle);
mConnections[handle].thread->onHotplugReceived(displayId, connected);
}
void Scheduler::onScreenAcquired(ConnectionHandle handle) {
RETURN_IF_INVALID_HANDLE(handle);
mConnections[handle].thread->onScreenAcquired();
}
void Scheduler::onScreenReleased(ConnectionHandle handle) {
RETURN_IF_INVALID_HANDLE(handle);
mConnections[handle].thread->onScreenReleased();
}
void Scheduler::onPrimaryDisplayConfigChanged(ConnectionHandle handle, PhysicalDisplayId displayId,
HwcConfigIndexType configId, nsecs_t vsyncPeriod) {
std::lock_guard<std::mutex> lock(mFeatureStateLock);
// Cache the last reported config for primary display.
mFeatures.cachedConfigChangedParams = {handle, displayId, configId, vsyncPeriod};
onNonPrimaryDisplayConfigChanged(handle, displayId, configId, vsyncPeriod);
}
void Scheduler::dispatchCachedReportedConfig() {
const auto configId = *mFeatures.configId;
const auto vsyncPeriod =
mRefreshRateConfigs.getRefreshRateFromConfigId(configId).getVsyncPeriod();
// If there is no change from cached config, there is no need to dispatch an event
if (configId == mFeatures.cachedConfigChangedParams->configId &&
vsyncPeriod == mFeatures.cachedConfigChangedParams->vsyncPeriod) {
return;
}
mFeatures.cachedConfigChangedParams->configId = configId;
mFeatures.cachedConfigChangedParams->vsyncPeriod = vsyncPeriod;
onNonPrimaryDisplayConfigChanged(mFeatures.cachedConfigChangedParams->handle,
mFeatures.cachedConfigChangedParams->displayId,
mFeatures.cachedConfigChangedParams->configId,
mFeatures.cachedConfigChangedParams->vsyncPeriod);
}
void Scheduler::onNonPrimaryDisplayConfigChanged(ConnectionHandle handle,
PhysicalDisplayId displayId,
HwcConfigIndexType configId, nsecs_t vsyncPeriod) {
RETURN_IF_INVALID_HANDLE(handle);
mConnections[handle].thread->onConfigChanged(displayId, configId, vsyncPeriod);
}
size_t Scheduler::getEventThreadConnectionCount(ConnectionHandle handle) {
RETURN_IF_INVALID_HANDLE(handle, 0);
return mConnections[handle].thread->getEventThreadConnectionCount();
}
void Scheduler::dump(ConnectionHandle handle, std::string& result) const {
RETURN_IF_INVALID_HANDLE(handle);
mConnections.at(handle).thread->dump(result);
}
void Scheduler::setPhaseOffset(ConnectionHandle handle, nsecs_t phaseOffset) {
RETURN_IF_INVALID_HANDLE(handle);
mConnections[handle].thread->setPhaseOffset(phaseOffset);
}
void Scheduler::getDisplayStatInfo(DisplayStatInfo* stats) {
stats->vsyncTime = mPrimaryDispSync->computeNextRefresh(0, systemTime());
stats->vsyncPeriod = mPrimaryDispSync->getPeriod();
}
Scheduler::ConnectionHandle Scheduler::enableVSyncInjection(bool enable) {
if (mInjectVSyncs == enable) {
return {};
}
ALOGV("%s VSYNC injection", enable ? "Enabling" : "Disabling");
if (!mInjectorConnectionHandle) {
auto vsyncSource = std::make_unique<InjectVSyncSource>();
mVSyncInjector = vsyncSource.get();
auto eventThread =
std::make_unique<impl::EventThread>(std::move(vsyncSource),
impl::EventThread::InterceptVSyncsCallback());
mInjectorConnectionHandle = createConnection(std::move(eventThread));
}
mInjectVSyncs = enable;
return mInjectorConnectionHandle;
}
bool Scheduler::injectVSync(nsecs_t when, nsecs_t expectedVSyncTime) {
if (!mInjectVSyncs || !mVSyncInjector) {
return false;
}
mVSyncInjector->onInjectSyncEvent(when, expectedVSyncTime);
return true;
}
void Scheduler::enableHardwareVsync() {
std::lock_guard<std::mutex> lock(mHWVsyncLock);
if (!mPrimaryHWVsyncEnabled && mHWVsyncAvailable) {
mPrimaryDispSync->beginResync();
mEventControlThread->setVsyncEnabled(true);
mPrimaryHWVsyncEnabled = true;
}
}
void Scheduler::disableHardwareVsync(bool makeUnavailable) {
std::lock_guard<std::mutex> lock(mHWVsyncLock);
if (mPrimaryHWVsyncEnabled) {
mEventControlThread->setVsyncEnabled(false);
mPrimaryDispSync->endResync();
mPrimaryHWVsyncEnabled = false;
}
if (makeUnavailable) {
mHWVsyncAvailable = false;
}
}
void Scheduler::resyncToHardwareVsync(bool makeAvailable, nsecs_t period) {
{
std::lock_guard<std::mutex> lock(mHWVsyncLock);
if (makeAvailable) {
mHWVsyncAvailable = makeAvailable;
} else if (!mHWVsyncAvailable) {
// Hardware vsync is not currently available, so abort the resync
// attempt for now
return;
}
}
if (period <= 0) {
return;
}
setVsyncPeriod(period);
}
void Scheduler::resync() {
static constexpr nsecs_t kIgnoreDelay = ms2ns(750);
const nsecs_t now = systemTime();
const nsecs_t last = mLastResyncTime.exchange(now);
if (now - last > kIgnoreDelay) {
resyncToHardwareVsync(false, mRefreshRateConfigs.getCurrentRefreshRate().getVsyncPeriod());
}
}
void Scheduler::setVsyncPeriod(nsecs_t period) {
std::lock_guard<std::mutex> lock(mHWVsyncLock);
mPrimaryDispSync->setPeriod(period);
if (!mPrimaryHWVsyncEnabled) {
mPrimaryDispSync->beginResync();
mEventControlThread->setVsyncEnabled(true);
mPrimaryHWVsyncEnabled = true;
}
}
void Scheduler::addResyncSample(nsecs_t timestamp, std::optional<nsecs_t> hwcVsyncPeriod,
bool* periodFlushed) {
bool needsHwVsync = false;
*periodFlushed = false;
{ // Scope for the lock
std::lock_guard<std::mutex> lock(mHWVsyncLock);
if (mPrimaryHWVsyncEnabled) {
needsHwVsync =
mPrimaryDispSync->addResyncSample(timestamp, hwcVsyncPeriod, periodFlushed);
}
}
if (needsHwVsync) {
enableHardwareVsync();
} else {
disableHardwareVsync(false);
}
}
void Scheduler::addPresentFence(const std::shared_ptr<FenceTime>& fenceTime) {
if (mPrimaryDispSync->addPresentFence(fenceTime)) {
enableHardwareVsync();
} else {
disableHardwareVsync(false);
}
}
void Scheduler::setIgnorePresentFences(bool ignore) {
mPrimaryDispSync->setIgnorePresentFences(ignore);
}
nsecs_t Scheduler::getDispSyncExpectedPresentTime(nsecs_t now) {
return mPrimaryDispSync->expectedPresentTime(now);
}
void Scheduler::registerLayer(Layer* layer) {
if (!mLayerHistory) return;
const auto minFps = mRefreshRateConfigs.getMinRefreshRate().getFps();
const auto maxFps = mRefreshRateConfigs.getMaxRefreshRate().getFps();
if (layer->getWindowType() == InputWindowInfo::TYPE_STATUS_BAR) {
mLayerHistory->registerLayer(layer, minFps, maxFps,
scheduler::LayerHistory::LayerVoteType::NoVote);
} else if (!mUseContentDetection) {
// If the content detection feature is off, all layers are registered at Max. We still keep
// the layer history, since we use it for other features (like Frame Rate API), so layers
// still need to be registered.
mLayerHistory->registerLayer(layer, minFps, maxFps,
scheduler::LayerHistory::LayerVoteType::Max);
} else if (!mUseContentDetectionV2) {
// In V1 of content detection, all layers are registered as Heuristic (unless it's
// wallpaper).
const auto highFps =
layer->getWindowType() == InputWindowInfo::TYPE_WALLPAPER ? minFps : maxFps;
mLayerHistory->registerLayer(layer, minFps, highFps,
scheduler::LayerHistory::LayerVoteType::Heuristic);
} else {
if (layer->getWindowType() == InputWindowInfo::TYPE_WALLPAPER) {
// Running Wallpaper at Min is considered as part of content detection.
mLayerHistory->registerLayer(layer, minFps, maxFps,
scheduler::LayerHistory::LayerVoteType::Min);
} else {
mLayerHistory->registerLayer(layer, minFps, maxFps,
scheduler::LayerHistory::LayerVoteType::Heuristic);
}
}
}
void Scheduler::recordLayerHistory(Layer* layer, nsecs_t presentTime,
LayerHistory::LayerUpdateType updateType) {
if (mLayerHistory) {
mLayerHistory->record(layer, presentTime, systemTime(), updateType);
}
}
void Scheduler::setConfigChangePending(bool pending) {
if (mLayerHistory) {
mLayerHistory->setConfigChangePending(pending);
}
}
void Scheduler::chooseRefreshRateForContent() {
if (!mLayerHistory) return;
ATRACE_CALL();
scheduler::LayerHistory::Summary summary = mLayerHistory->summarize(systemTime());
HwcConfigIndexType newConfigId;
{
std::lock_guard<std::mutex> lock(mFeatureStateLock);
if (mFeatures.contentRequirements == summary) {
return;
}
mFeatures.contentRequirements = summary;
mFeatures.contentDetectionV1 =
!summary.empty() ? ContentDetectionState::On : ContentDetectionState::Off;
scheduler::RefreshRateConfigs::GlobalSignals consideredSignals;
newConfigId = calculateRefreshRateConfigIndexType(&consideredSignals);
if (mFeatures.configId == newConfigId) {
// We don't need to change the config, but we might need to send an event
// about a config change, since it was suppressed due to a previous idleConsidered
if (!consideredSignals.idle) {
dispatchCachedReportedConfig();
}
return;
}
mFeatures.configId = newConfigId;
auto& newRefreshRate = mRefreshRateConfigs.getRefreshRateFromConfigId(newConfigId);
mSchedulerCallback.changeRefreshRate(newRefreshRate,
consideredSignals.idle ? ConfigEvent::None
: ConfigEvent::Changed);
}
}
void Scheduler::resetIdleTimer() {
if (mIdleTimer) {
mIdleTimer->reset();
}
}
void Scheduler::notifyTouchEvent() {
if (!mTouchTimer) return;
// Touch event will boost the refresh rate to performance.
// Clear Layer History to get fresh FPS detection.
// NOTE: Instead of checking all the layers, we should be checking the layer
// that is currently on top. b/142507166 will give us this capability.
std::lock_guard<std::mutex> lock(mFeatureStateLock);
if (mLayerHistory) {
// Layer History will be cleared based on RefreshRateConfigs::getBestRefreshRate
mTouchTimer->reset();
if (mSupportKernelTimer && mIdleTimer) {
mIdleTimer->reset();
}
}
}
void Scheduler::setDisplayPowerState(bool normal) {
{
std::lock_guard<std::mutex> lock(mFeatureStateLock);
mFeatures.isDisplayPowerStateNormal = normal;
}
if (mDisplayPowerTimer) {
mDisplayPowerTimer->reset();
}
// Display Power event will boost the refresh rate to performance.
// Clear Layer History to get fresh FPS detection
if (mLayerHistory) {
mLayerHistory->clear();
}
}
void Scheduler::kernelIdleTimerCallback(TimerState state) {
ATRACE_INT("ExpiredKernelIdleTimer", static_cast<int>(state));
// TODO(145561154): cleanup the kernel idle timer implementation and the refresh rate
// magic number
const auto& refreshRate = mRefreshRateConfigs.getCurrentRefreshRate();
constexpr float FPS_THRESHOLD_FOR_KERNEL_TIMER = 65.0f;
if (state == TimerState::Reset && refreshRate.getFps() > FPS_THRESHOLD_FOR_KERNEL_TIMER) {
// If we're not in performance mode then the kernel timer shouldn't do
// anything, as the refresh rate during DPU power collapse will be the
// same.
resyncToHardwareVsync(true /* makeAvailable */, refreshRate.getVsyncPeriod());
} else if (state == TimerState::Expired &&
refreshRate.getFps() <= FPS_THRESHOLD_FOR_KERNEL_TIMER) {
// Disable HW VSYNC if the timer expired, as we don't need it enabled if
// we're not pushing frames, and if we're in PERFORMANCE mode then we'll
// need to update the DispSync model anyway.
disableHardwareVsync(false /* makeUnavailable */);
}
mSchedulerCallback.kernelTimerChanged(state == TimerState::Expired);
}
void Scheduler::idleTimerCallback(TimerState state) {
handleTimerStateChanged(&mFeatures.idleTimer, state);
ATRACE_INT("ExpiredIdleTimer", static_cast<int>(state));
}
void Scheduler::touchTimerCallback(TimerState state) {
const TouchState touch = state == TimerState::Reset ? TouchState::Active : TouchState::Inactive;
if (handleTimerStateChanged(&mFeatures.touch, touch)) {
mLayerHistory->clear();
}
ATRACE_INT("TouchState", static_cast<int>(touch));
}
void Scheduler::displayPowerTimerCallback(TimerState state) {
handleTimerStateChanged(&mFeatures.displayPowerTimer, state);
ATRACE_INT("ExpiredDisplayPowerTimer", static_cast<int>(state));
}
void Scheduler::dump(std::string& result) const {
using base::StringAppendF;
const char* const states[] = {"off", "on"};
StringAppendF(&result, "+ Idle timer: %s\n",
mIdleTimer ? mIdleTimer->dump().c_str() : states[0]);
StringAppendF(&result, "+ Touch timer: %s\n",
mTouchTimer ? mTouchTimer->dump().c_str() : states[0]);
StringAppendF(&result, "+ Use content detection: %s\n\n",
sysprop::use_content_detection_for_refresh_rate(false) ? "on" : "off");
}
template <class T>
bool Scheduler::handleTimerStateChanged(T* currentState, T newState) {
HwcConfigIndexType newConfigId;
scheduler::RefreshRateConfigs::GlobalSignals consideredSignals;
{
std::lock_guard<std::mutex> lock(mFeatureStateLock);
if (*currentState == newState) {
return false;
}
*currentState = newState;
newConfigId = calculateRefreshRateConfigIndexType(&consideredSignals);
if (mFeatures.configId == newConfigId) {
// We don't need to change the config, but we might need to send an event
// about a config change, since it was suppressed due to a previous idleConsidered
if (!consideredSignals.idle) {
dispatchCachedReportedConfig();
}
return consideredSignals.touch;
}
mFeatures.configId = newConfigId;
}
const RefreshRate& newRefreshRate = mRefreshRateConfigs.getRefreshRateFromConfigId(newConfigId);
mSchedulerCallback.changeRefreshRate(newRefreshRate,
consideredSignals.idle ? ConfigEvent::None
: ConfigEvent::Changed);
return consideredSignals.touch;
}
HwcConfigIndexType Scheduler::calculateRefreshRateConfigIndexType(
scheduler::RefreshRateConfigs::GlobalSignals* consideredSignals) {
ATRACE_CALL();
if (consideredSignals) *consideredSignals = {};
// If Display Power is not in normal operation we want to be in performance mode. When coming
// back to normal mode, a grace period is given with DisplayPowerTimer.
if (mDisplayPowerTimer &&
(!mFeatures.isDisplayPowerStateNormal ||
mFeatures.displayPowerTimer == TimerState::Reset)) {
return mRefreshRateConfigs.getMaxRefreshRateByPolicy().getConfigId();
}
const bool touchActive = mTouchTimer && mFeatures.touch == TouchState::Active;
const bool idle = mIdleTimer && mFeatures.idleTimer == TimerState::Expired;
if (!mUseContentDetectionV2) {
// As long as touch is active we want to be in performance mode.
if (touchActive) {
return mRefreshRateConfigs.getMaxRefreshRateByPolicy().getConfigId();
}
// If timer has expired as it means there is no new content on the screen.
if (idle) {
if (consideredSignals) consideredSignals->idle = true;
return mRefreshRateConfigs.getMinRefreshRateByPolicy().getConfigId();
}
// If content detection is off we choose performance as we don't know the content fps.
if (mFeatures.contentDetectionV1 == ContentDetectionState::Off) {
// NOTE: V1 always calls this, but this is not a default behavior for V2.
return mRefreshRateConfigs.getMaxRefreshRateByPolicy().getConfigId();
}
// Content detection is on, find the appropriate refresh rate with minimal error
return mRefreshRateConfigs.getRefreshRateForContent(mFeatures.contentRequirements)
.getConfigId();
}
return mRefreshRateConfigs
.getBestRefreshRate(mFeatures.contentRequirements, {.touch = touchActive, .idle = idle},
consideredSignals)
.getConfigId();
}
std::optional<HwcConfigIndexType> Scheduler::getPreferredConfigId() {
std::lock_guard<std::mutex> lock(mFeatureStateLock);
// Make sure that the default config ID is first updated, before returned.
if (mFeatures.configId.has_value()) {
mFeatures.configId = calculateRefreshRateConfigIndexType();
}
return mFeatures.configId;
}
void Scheduler::onNewVsyncPeriodChangeTimeline(const hal::VsyncPeriodChangeTimeline& timeline) {
if (timeline.refreshRequired) {
mSchedulerCallback.repaintEverythingForHWC();
}
std::lock_guard<std::mutex> lock(mVsyncTimelineLock);
mLastVsyncPeriodChangeTimeline = std::make_optional(timeline);
const auto maxAppliedTime = systemTime() + MAX_VSYNC_APPLIED_TIME.count();
if (timeline.newVsyncAppliedTimeNanos > maxAppliedTime) {
mLastVsyncPeriodChangeTimeline->newVsyncAppliedTimeNanos = maxAppliedTime;
}
}
void Scheduler::onDisplayRefreshed(nsecs_t timestamp) {
bool callRepaint = false;
{
std::lock_guard<std::mutex> lock(mVsyncTimelineLock);
if (mLastVsyncPeriodChangeTimeline && mLastVsyncPeriodChangeTimeline->refreshRequired) {
if (mLastVsyncPeriodChangeTimeline->refreshTimeNanos < timestamp) {
mLastVsyncPeriodChangeTimeline->refreshRequired = false;
} else {
// We need to send another refresh as refreshTimeNanos is still in the future
callRepaint = true;
}
}
}
if (callRepaint) {
mSchedulerCallback.repaintEverythingForHWC();
}
}
void Scheduler::onPrimaryDisplayAreaChanged(uint32_t displayArea) {
if (mLayerHistory) {
mLayerHistory->setDisplayArea(displayArea);
}
}
} // namespace android