blob: a1514af668bcf4977bdff2d53cf1072075b9bfce [file] [log] [blame]
/*
* Copyright (C) 2005 The Android Open Source Project
*
* Licensed under the Apache License, Version 2.0 (the "License");
* you may not use this file except in compliance with the License.
* You may obtain a copy of the License at
*
* http://www.apache.org/licenses/LICENSE-2.0
*
* Unless required by applicable law or agreed to in writing, software
* distributed under the License is distributed on an "AS IS" BASIS,
* WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
* See the License for the specific language governing permissions and
* limitations under the License.
*/
#include <assert.h>
#include <dirent.h>
#include <errno.h>
#include <fcntl.h>
#include <inttypes.h>
#include <memory.h>
#include <stdint.h>
#include <stdio.h>
#include <stdlib.h>
#include <string.h>
#include <sys/capability.h>
#include <sys/epoll.h>
#include <sys/inotify.h>
#include <sys/ioctl.h>
#include <sys/limits.h>
#include <unistd.h>
#define LOG_TAG "EventHub"
// #define LOG_NDEBUG 0
#include "EventHub.h"
#include <android-base/stringprintf.h>
#include <cutils/properties.h>
#include <openssl/sha.h>
#include <utils/Errors.h>
#include <utils/Log.h>
#include <utils/Timers.h>
#include <utils/threads.h>
#include <input/KeyCharacterMap.h>
#include <input/KeyLayoutMap.h>
#include <input/VirtualKeyMap.h>
/* this macro is used to tell if "bit" is set in "array"
* it selects a byte from the array, and does a boolean AND
* operation with a byte that only has the relevant bit set.
* eg. to check for the 12th bit, we do (array[1] & 1<<4)
*/
#define test_bit(bit, array) ((array)[(bit) / 8] & (1 << ((bit) % 8)))
/* this macro computes the number of bytes needed to represent a bit array of the specified size */
#define sizeof_bit_array(bits) (((bits) + 7) / 8)
#define INDENT " "
#define INDENT2 " "
#define INDENT3 " "
using android::base::StringPrintf;
namespace android {
static constexpr bool DEBUG = false;
static const char* DEVICE_PATH = "/dev/input";
// v4l2 devices go directly into /dev
static const char* VIDEO_DEVICE_PATH = "/dev";
static inline const char* toString(bool value) {
return value ? "true" : "false";
}
static std::string sha1(const std::string& in) {
SHA_CTX ctx;
SHA1_Init(&ctx);
SHA1_Update(&ctx, reinterpret_cast<const u_char*>(in.c_str()), in.size());
u_char digest[SHA_DIGEST_LENGTH];
SHA1_Final(digest, &ctx);
std::string out;
for (size_t i = 0; i < SHA_DIGEST_LENGTH; i++) {
out += StringPrintf("%02x", digest[i]);
}
return out;
}
/**
* Return true if name matches "v4l-touch*"
*/
static bool isV4lTouchNode(const char* name) {
return strstr(name, "v4l-touch") == name;
}
/**
* Returns true if V4L devices should be scanned.
*
* The system property ro.input.video_enabled can be used to control whether
* EventHub scans and opens V4L devices. As V4L does not support multiple
* clients, EventHub effectively blocks access to these devices when it opens
* them.
*
* Setting this to "false" would prevent any video devices from being discovered and
* associated with input devices.
*
* This property can be used as follows:
* 1. To turn off features that are dependent on video device presence.
* 2. During testing and development, to allow other clients to read video devices
* directly from /dev.
*/
static bool isV4lScanningEnabled() {
return property_get_bool("ro.input.video_enabled", true /* default_value */);
}
static nsecs_t processEventTimestamp(const struct input_event& event) {
// Use the time specified in the event instead of the current time
// so that downstream code can get more accurate estimates of
// event dispatch latency from the time the event is enqueued onto
// the evdev client buffer.
//
// The event's timestamp fortuitously uses the same monotonic clock
// time base as the rest of Android. The kernel event device driver
// (drivers/input/evdev.c) obtains timestamps using ktime_get_ts().
// The systemTime(SYSTEM_TIME_MONOTONIC) function we use everywhere
// calls clock_gettime(CLOCK_MONOTONIC) which is implemented as a
// system call that also queries ktime_get_ts().
const nsecs_t inputEventTime = seconds_to_nanoseconds(event.time.tv_sec) +
microseconds_to_nanoseconds(event.time.tv_usec);
return inputEventTime;
}
// --- Global Functions ---
uint32_t getAbsAxisUsage(int32_t axis, uint32_t deviceClasses) {
// Touch devices get dibs on touch-related axes.
if (deviceClasses & INPUT_DEVICE_CLASS_TOUCH) {
switch (axis) {
case ABS_X:
case ABS_Y:
case ABS_PRESSURE:
case ABS_TOOL_WIDTH:
case ABS_DISTANCE:
case ABS_TILT_X:
case ABS_TILT_Y:
case ABS_MT_SLOT:
case ABS_MT_TOUCH_MAJOR:
case ABS_MT_TOUCH_MINOR:
case ABS_MT_WIDTH_MAJOR:
case ABS_MT_WIDTH_MINOR:
case ABS_MT_ORIENTATION:
case ABS_MT_POSITION_X:
case ABS_MT_POSITION_Y:
case ABS_MT_TOOL_TYPE:
case ABS_MT_BLOB_ID:
case ABS_MT_TRACKING_ID:
case ABS_MT_PRESSURE:
case ABS_MT_DISTANCE:
return INPUT_DEVICE_CLASS_TOUCH;
}
}
// External stylus gets the pressure axis
if (deviceClasses & INPUT_DEVICE_CLASS_EXTERNAL_STYLUS) {
if (axis == ABS_PRESSURE) {
return INPUT_DEVICE_CLASS_EXTERNAL_STYLUS;
}
}
// Joystick devices get the rest.
return deviceClasses & INPUT_DEVICE_CLASS_JOYSTICK;
}
// --- EventHub::Device ---
EventHub::Device::Device(int fd, int32_t id, const std::string& path,
const InputDeviceIdentifier& identifier)
: next(nullptr),
fd(fd),
id(id),
path(path),
identifier(identifier),
classes(0),
configuration(nullptr),
virtualKeyMap(nullptr),
ffEffectPlaying(false),
ffEffectId(-1),
controllerNumber(0),
enabled(true),
isVirtual(fd < 0) {
memset(keyBitmask, 0, sizeof(keyBitmask));
memset(absBitmask, 0, sizeof(absBitmask));
memset(relBitmask, 0, sizeof(relBitmask));
memset(swBitmask, 0, sizeof(swBitmask));
memset(ledBitmask, 0, sizeof(ledBitmask));
memset(ffBitmask, 0, sizeof(ffBitmask));
memset(propBitmask, 0, sizeof(propBitmask));
}
EventHub::Device::~Device() {
close();
delete configuration;
}
void EventHub::Device::close() {
if (fd >= 0) {
::close(fd);
fd = -1;
}
}
status_t EventHub::Device::enable() {
fd = open(path.c_str(), O_RDWR | O_CLOEXEC | O_NONBLOCK);
if (fd < 0) {
ALOGE("could not open %s, %s\n", path.c_str(), strerror(errno));
return -errno;
}
enabled = true;
return OK;
}
status_t EventHub::Device::disable() {
close();
enabled = false;
return OK;
}
bool EventHub::Device::hasValidFd() {
return !isVirtual && enabled;
}
/**
* Get the capabilities for the current process.
* Crashes the system if unable to create / check / destroy the capabilities object.
*/
class Capabilities final {
public:
explicit Capabilities() {
mCaps = cap_get_proc();
LOG_ALWAYS_FATAL_IF(mCaps == nullptr, "Could not get capabilities of the current process");
}
/**
* Check whether the current process has a specific capability
* in the set of effective capabilities.
* Return CAP_SET if the process has the requested capability
* Return CAP_CLEAR otherwise.
*/
cap_flag_value_t checkEffectiveCapability(cap_value_t capability) {
cap_flag_value_t value;
const int result = cap_get_flag(mCaps, capability, CAP_EFFECTIVE, &value);
LOG_ALWAYS_FATAL_IF(result == -1, "Could not obtain the requested capability");
return value;
}
~Capabilities() {
const int result = cap_free(mCaps);
LOG_ALWAYS_FATAL_IF(result == -1, "Could not release the capabilities structure");
}
private:
cap_t mCaps;
};
static void ensureProcessCanBlockSuspend() {
Capabilities capabilities;
const bool canBlockSuspend =
capabilities.checkEffectiveCapability(CAP_BLOCK_SUSPEND) == CAP_SET;
LOG_ALWAYS_FATAL_IF(!canBlockSuspend,
"Input must be able to block suspend to properly process events");
}
// --- EventHub ---
const int EventHub::EPOLL_MAX_EVENTS;
EventHub::EventHub(void)
: mBuiltInKeyboardId(NO_BUILT_IN_KEYBOARD),
mNextDeviceId(1),
mControllerNumbers(),
mOpeningDevices(nullptr),
mClosingDevices(nullptr),
mNeedToSendFinishedDeviceScan(false),
mNeedToReopenDevices(false),
mNeedToScanDevices(true),
mPendingEventCount(0),
mPendingEventIndex(0),
mPendingINotify(false) {
ensureProcessCanBlockSuspend();
mEpollFd = epoll_create1(EPOLL_CLOEXEC);
LOG_ALWAYS_FATAL_IF(mEpollFd < 0, "Could not create epoll instance: %s", strerror(errno));
mINotifyFd = inotify_init();
mInputWd = inotify_add_watch(mINotifyFd, DEVICE_PATH, IN_DELETE | IN_CREATE);
LOG_ALWAYS_FATAL_IF(mInputWd < 0, "Could not register INotify for %s: %s", DEVICE_PATH,
strerror(errno));
if (isV4lScanningEnabled()) {
mVideoWd = inotify_add_watch(mINotifyFd, VIDEO_DEVICE_PATH, IN_DELETE | IN_CREATE);
LOG_ALWAYS_FATAL_IF(mVideoWd < 0, "Could not register INotify for %s: %s",
VIDEO_DEVICE_PATH, strerror(errno));
} else {
mVideoWd = -1;
ALOGI("Video device scanning disabled");
}
struct epoll_event eventItem = {};
eventItem.events = EPOLLIN | EPOLLWAKEUP;
eventItem.data.fd = mINotifyFd;
int result = epoll_ctl(mEpollFd, EPOLL_CTL_ADD, mINotifyFd, &eventItem);
LOG_ALWAYS_FATAL_IF(result != 0, "Could not add INotify to epoll instance. errno=%d", errno);
int wakeFds[2];
result = pipe(wakeFds);
LOG_ALWAYS_FATAL_IF(result != 0, "Could not create wake pipe. errno=%d", errno);
mWakeReadPipeFd = wakeFds[0];
mWakeWritePipeFd = wakeFds[1];
result = fcntl(mWakeReadPipeFd, F_SETFL, O_NONBLOCK);
LOG_ALWAYS_FATAL_IF(result != 0, "Could not make wake read pipe non-blocking. errno=%d",
errno);
result = fcntl(mWakeWritePipeFd, F_SETFL, O_NONBLOCK);
LOG_ALWAYS_FATAL_IF(result != 0, "Could not make wake write pipe non-blocking. errno=%d",
errno);
eventItem.data.fd = mWakeReadPipeFd;
result = epoll_ctl(mEpollFd, EPOLL_CTL_ADD, mWakeReadPipeFd, &eventItem);
LOG_ALWAYS_FATAL_IF(result != 0, "Could not add wake read pipe to epoll instance. errno=%d",
errno);
}
EventHub::~EventHub(void) {
closeAllDevicesLocked();
while (mClosingDevices) {
Device* device = mClosingDevices;
mClosingDevices = device->next;
delete device;
}
::close(mEpollFd);
::close(mINotifyFd);
::close(mWakeReadPipeFd);
::close(mWakeWritePipeFd);
}
InputDeviceIdentifier EventHub::getDeviceIdentifier(int32_t deviceId) const {
AutoMutex _l(mLock);
Device* device = getDeviceLocked(deviceId);
if (device == nullptr) return InputDeviceIdentifier();
return device->identifier;
}
uint32_t EventHub::getDeviceClasses(int32_t deviceId) const {
AutoMutex _l(mLock);
Device* device = getDeviceLocked(deviceId);
if (device == nullptr) return 0;
return device->classes;
}
int32_t EventHub::getDeviceControllerNumber(int32_t deviceId) const {
AutoMutex _l(mLock);
Device* device = getDeviceLocked(deviceId);
if (device == nullptr) return 0;
return device->controllerNumber;
}
void EventHub::getConfiguration(int32_t deviceId, PropertyMap* outConfiguration) const {
AutoMutex _l(mLock);
Device* device = getDeviceLocked(deviceId);
if (device && device->configuration) {
*outConfiguration = *device->configuration;
} else {
outConfiguration->clear();
}
}
status_t EventHub::getAbsoluteAxisInfo(int32_t deviceId, int axis,
RawAbsoluteAxisInfo* outAxisInfo) const {
outAxisInfo->clear();
if (axis >= 0 && axis <= ABS_MAX) {
AutoMutex _l(mLock);
Device* device = getDeviceLocked(deviceId);
if (device && device->hasValidFd() && test_bit(axis, device->absBitmask)) {
struct input_absinfo info;
if (ioctl(device->fd, EVIOCGABS(axis), &info)) {
ALOGW("Error reading absolute controller %d for device %s fd %d, errno=%d", axis,
device->identifier.name.c_str(), device->fd, errno);
return -errno;
}
if (info.minimum != info.maximum) {
outAxisInfo->valid = true;
outAxisInfo->minValue = info.minimum;
outAxisInfo->maxValue = info.maximum;
outAxisInfo->flat = info.flat;
outAxisInfo->fuzz = info.fuzz;
outAxisInfo->resolution = info.resolution;
}
return OK;
}
}
return -1;
}
bool EventHub::hasRelativeAxis(int32_t deviceId, int axis) const {
if (axis >= 0 && axis <= REL_MAX) {
AutoMutex _l(mLock);
Device* device = getDeviceLocked(deviceId);
if (device) {
return test_bit(axis, device->relBitmask);
}
}
return false;
}
bool EventHub::hasInputProperty(int32_t deviceId, int property) const {
if (property >= 0 && property <= INPUT_PROP_MAX) {
AutoMutex _l(mLock);
Device* device = getDeviceLocked(deviceId);
if (device) {
return test_bit(property, device->propBitmask);
}
}
return false;
}
int32_t EventHub::getScanCodeState(int32_t deviceId, int32_t scanCode) const {
if (scanCode >= 0 && scanCode <= KEY_MAX) {
AutoMutex _l(mLock);
Device* device = getDeviceLocked(deviceId);
if (device && device->hasValidFd() && test_bit(scanCode, device->keyBitmask)) {
uint8_t keyState[sizeof_bit_array(KEY_MAX + 1)];
memset(keyState, 0, sizeof(keyState));
if (ioctl(device->fd, EVIOCGKEY(sizeof(keyState)), keyState) >= 0) {
return test_bit(scanCode, keyState) ? AKEY_STATE_DOWN : AKEY_STATE_UP;
}
}
}
return AKEY_STATE_UNKNOWN;
}
int32_t EventHub::getKeyCodeState(int32_t deviceId, int32_t keyCode) const {
AutoMutex _l(mLock);
Device* device = getDeviceLocked(deviceId);
if (device && device->hasValidFd() && device->keyMap.haveKeyLayout()) {
std::vector<int32_t> scanCodes;
device->keyMap.keyLayoutMap->findScanCodesForKey(keyCode, &scanCodes);
if (scanCodes.size() != 0) {
uint8_t keyState[sizeof_bit_array(KEY_MAX + 1)];
memset(keyState, 0, sizeof(keyState));
if (ioctl(device->fd, EVIOCGKEY(sizeof(keyState)), keyState) >= 0) {
for (size_t i = 0; i < scanCodes.size(); i++) {
int32_t sc = scanCodes[i];
if (sc >= 0 && sc <= KEY_MAX && test_bit(sc, keyState)) {
return AKEY_STATE_DOWN;
}
}
return AKEY_STATE_UP;
}
}
}
return AKEY_STATE_UNKNOWN;
}
int32_t EventHub::getSwitchState(int32_t deviceId, int32_t sw) const {
if (sw >= 0 && sw <= SW_MAX) {
AutoMutex _l(mLock);
Device* device = getDeviceLocked(deviceId);
if (device && device->hasValidFd() && test_bit(sw, device->swBitmask)) {
uint8_t swState[sizeof_bit_array(SW_MAX + 1)];
memset(swState, 0, sizeof(swState));
if (ioctl(device->fd, EVIOCGSW(sizeof(swState)), swState) >= 0) {
return test_bit(sw, swState) ? AKEY_STATE_DOWN : AKEY_STATE_UP;
}
}
}
return AKEY_STATE_UNKNOWN;
}
status_t EventHub::getAbsoluteAxisValue(int32_t deviceId, int32_t axis, int32_t* outValue) const {
*outValue = 0;
if (axis >= 0 && axis <= ABS_MAX) {
AutoMutex _l(mLock);
Device* device = getDeviceLocked(deviceId);
if (device && device->hasValidFd() && test_bit(axis, device->absBitmask)) {
struct input_absinfo info;
if (ioctl(device->fd, EVIOCGABS(axis), &info)) {
ALOGW("Error reading absolute controller %d for device %s fd %d, errno=%d", axis,
device->identifier.name.c_str(), device->fd, errno);
return -errno;
}
*outValue = info.value;
return OK;
}
}
return -1;
}
bool EventHub::markSupportedKeyCodes(int32_t deviceId, size_t numCodes, const int32_t* keyCodes,
uint8_t* outFlags) const {
AutoMutex _l(mLock);
Device* device = getDeviceLocked(deviceId);
if (device && device->keyMap.haveKeyLayout()) {
std::vector<int32_t> scanCodes;
for (size_t codeIndex = 0; codeIndex < numCodes; codeIndex++) {
scanCodes.clear();
status_t err = device->keyMap.keyLayoutMap->findScanCodesForKey(keyCodes[codeIndex],
&scanCodes);
if (!err) {
// check the possible scan codes identified by the layout map against the
// map of codes actually emitted by the driver
for (size_t sc = 0; sc < scanCodes.size(); sc++) {
if (test_bit(scanCodes[sc], device->keyBitmask)) {
outFlags[codeIndex] = 1;
break;
}
}
}
}
return true;
}
return false;
}
status_t EventHub::mapKey(int32_t deviceId, int32_t scanCode, int32_t usageCode, int32_t metaState,
int32_t* outKeycode, int32_t* outMetaState, uint32_t* outFlags) const {
AutoMutex _l(mLock);
Device* device = getDeviceLocked(deviceId);
status_t status = NAME_NOT_FOUND;
if (device) {
// Check the key character map first.
sp<KeyCharacterMap> kcm = device->getKeyCharacterMap();
if (kcm != nullptr) {
if (!kcm->mapKey(scanCode, usageCode, outKeycode)) {
*outFlags = 0;
status = NO_ERROR;
}
}
// Check the key layout next.
if (status != NO_ERROR && device->keyMap.haveKeyLayout()) {
if (!device->keyMap.keyLayoutMap->mapKey(scanCode, usageCode, outKeycode, outFlags)) {
status = NO_ERROR;
}
}
if (status == NO_ERROR) {
if (kcm != nullptr) {
kcm->tryRemapKey(*outKeycode, metaState, outKeycode, outMetaState);
} else {
*outMetaState = metaState;
}
}
}
if (status != NO_ERROR) {
*outKeycode = 0;
*outFlags = 0;
*outMetaState = metaState;
}
return status;
}
status_t EventHub::mapAxis(int32_t deviceId, int32_t scanCode, AxisInfo* outAxisInfo) const {
AutoMutex _l(mLock);
Device* device = getDeviceLocked(deviceId);
if (device && device->keyMap.haveKeyLayout()) {
status_t err = device->keyMap.keyLayoutMap->mapAxis(scanCode, outAxisInfo);
if (err == NO_ERROR) {
return NO_ERROR;
}
}
return NAME_NOT_FOUND;
}
void EventHub::setExcludedDevices(const std::vector<std::string>& devices) {
AutoMutex _l(mLock);
mExcludedDevices = devices;
}
bool EventHub::hasScanCode(int32_t deviceId, int32_t scanCode) const {
AutoMutex _l(mLock);
Device* device = getDeviceLocked(deviceId);
if (device && scanCode >= 0 && scanCode <= KEY_MAX) {
if (test_bit(scanCode, device->keyBitmask)) {
return true;
}
}
return false;
}
bool EventHub::hasLed(int32_t deviceId, int32_t led) const {
AutoMutex _l(mLock);
Device* device = getDeviceLocked(deviceId);
int32_t sc;
if (device && mapLed(device, led, &sc) == NO_ERROR) {
if (test_bit(sc, device->ledBitmask)) {
return true;
}
}
return false;
}
void EventHub::setLedState(int32_t deviceId, int32_t led, bool on) {
AutoMutex _l(mLock);
Device* device = getDeviceLocked(deviceId);
setLedStateLocked(device, led, on);
}
void EventHub::setLedStateLocked(Device* device, int32_t led, bool on) {
int32_t sc;
if (device && device->hasValidFd() && mapLed(device, led, &sc) != NAME_NOT_FOUND) {
struct input_event ev;
ev.time.tv_sec = 0;
ev.time.tv_usec = 0;
ev.type = EV_LED;
ev.code = sc;
ev.value = on ? 1 : 0;
ssize_t nWrite;
do {
nWrite = write(device->fd, &ev, sizeof(struct input_event));
} while (nWrite == -1 && errno == EINTR);
}
}
void EventHub::getVirtualKeyDefinitions(int32_t deviceId,
std::vector<VirtualKeyDefinition>& outVirtualKeys) const {
outVirtualKeys.clear();
AutoMutex _l(mLock);
Device* device = getDeviceLocked(deviceId);
if (device && device->virtualKeyMap) {
const std::vector<VirtualKeyDefinition> virtualKeys =
device->virtualKeyMap->getVirtualKeys();
outVirtualKeys.insert(outVirtualKeys.end(), virtualKeys.begin(), virtualKeys.end());
}
}
sp<KeyCharacterMap> EventHub::getKeyCharacterMap(int32_t deviceId) const {
AutoMutex _l(mLock);
Device* device = getDeviceLocked(deviceId);
if (device) {
return device->getKeyCharacterMap();
}
return nullptr;
}
bool EventHub::setKeyboardLayoutOverlay(int32_t deviceId, const sp<KeyCharacterMap>& map) {
AutoMutex _l(mLock);
Device* device = getDeviceLocked(deviceId);
if (device) {
if (map != device->overlayKeyMap) {
device->overlayKeyMap = map;
device->combinedKeyMap = KeyCharacterMap::combine(device->keyMap.keyCharacterMap, map);
return true;
}
}
return false;
}
static std::string generateDescriptor(InputDeviceIdentifier& identifier) {
std::string rawDescriptor;
rawDescriptor += StringPrintf(":%04x:%04x:", identifier.vendor, identifier.product);
// TODO add handling for USB devices to not uniqueify kbs that show up twice
if (!identifier.uniqueId.empty()) {
rawDescriptor += "uniqueId:";
rawDescriptor += identifier.uniqueId;
} else if (identifier.nonce != 0) {
rawDescriptor += StringPrintf("nonce:%04x", identifier.nonce);
}
if (identifier.vendor == 0 && identifier.product == 0) {
// If we don't know the vendor and product id, then the device is probably
// built-in so we need to rely on other information to uniquely identify
// the input device. Usually we try to avoid relying on the device name or
// location but for built-in input device, they are unlikely to ever change.
if (!identifier.name.empty()) {
rawDescriptor += "name:";
rawDescriptor += identifier.name;
} else if (!identifier.location.empty()) {
rawDescriptor += "location:";
rawDescriptor += identifier.location;
}
}
identifier.descriptor = sha1(rawDescriptor);
return rawDescriptor;
}
void EventHub::assignDescriptorLocked(InputDeviceIdentifier& identifier) {
// Compute a device descriptor that uniquely identifies the device.
// The descriptor is assumed to be a stable identifier. Its value should not
// change between reboots, reconnections, firmware updates or new releases
// of Android. In practice we sometimes get devices that cannot be uniquely
// identified. In this case we enforce uniqueness between connected devices.
// Ideally, we also want the descriptor to be short and relatively opaque.
identifier.nonce = 0;
std::string rawDescriptor = generateDescriptor(identifier);
if (identifier.uniqueId.empty()) {
// If it didn't have a unique id check for conflicts and enforce
// uniqueness if necessary.
while (getDeviceByDescriptorLocked(identifier.descriptor) != nullptr) {
identifier.nonce++;
rawDescriptor = generateDescriptor(identifier);
}
}
ALOGV("Created descriptor: raw=%s, cooked=%s", rawDescriptor.c_str(),
identifier.descriptor.c_str());
}
void EventHub::vibrate(int32_t deviceId, nsecs_t duration) {
AutoMutex _l(mLock);
Device* device = getDeviceLocked(deviceId);
if (device && device->hasValidFd()) {
ff_effect effect;
memset(&effect, 0, sizeof(effect));
effect.type = FF_RUMBLE;
effect.id = device->ffEffectId;
effect.u.rumble.strong_magnitude = 0xc000;
effect.u.rumble.weak_magnitude = 0xc000;
effect.replay.length = (duration + 999999LL) / 1000000LL;
effect.replay.delay = 0;
if (ioctl(device->fd, EVIOCSFF, &effect)) {
ALOGW("Could not upload force feedback effect to device %s due to error %d.",
device->identifier.name.c_str(), errno);
return;
}
device->ffEffectId = effect.id;
struct input_event ev;
ev.time.tv_sec = 0;
ev.time.tv_usec = 0;
ev.type = EV_FF;
ev.code = device->ffEffectId;
ev.value = 1;
if (write(device->fd, &ev, sizeof(ev)) != sizeof(ev)) {
ALOGW("Could not start force feedback effect on device %s due to error %d.",
device->identifier.name.c_str(), errno);
return;
}
device->ffEffectPlaying = true;
}
}
void EventHub::cancelVibrate(int32_t deviceId) {
AutoMutex _l(mLock);
Device* device = getDeviceLocked(deviceId);
if (device && device->hasValidFd()) {
if (device->ffEffectPlaying) {
device->ffEffectPlaying = false;
struct input_event ev;
ev.time.tv_sec = 0;
ev.time.tv_usec = 0;
ev.type = EV_FF;
ev.code = device->ffEffectId;
ev.value = 0;
if (write(device->fd, &ev, sizeof(ev)) != sizeof(ev)) {
ALOGW("Could not stop force feedback effect on device %s due to error %d.",
device->identifier.name.c_str(), errno);
return;
}
}
}
}
EventHub::Device* EventHub::getDeviceByDescriptorLocked(const std::string& descriptor) const {
size_t size = mDevices.size();
for (size_t i = 0; i < size; i++) {
Device* device = mDevices.valueAt(i);
if (descriptor == device->identifier.descriptor) {
return device;
}
}
return nullptr;
}
EventHub::Device* EventHub::getDeviceLocked(int32_t deviceId) const {
if (deviceId == ReservedInputDeviceId::BUILT_IN_KEYBOARD_ID) {
deviceId = mBuiltInKeyboardId;
}
ssize_t index = mDevices.indexOfKey(deviceId);
return index >= 0 ? mDevices.valueAt(index) : NULL;
}
EventHub::Device* EventHub::getDeviceByPathLocked(const char* devicePath) const {
for (size_t i = 0; i < mDevices.size(); i++) {
Device* device = mDevices.valueAt(i);
if (device->path == devicePath) {
return device;
}
}
return nullptr;
}
/**
* The file descriptor could be either input device, or a video device (associated with a
* specific input device). Check both cases here, and return the device that this event
* belongs to. Caller can compare the fd's once more to determine event type.
* Looks through all input devices, and only attached video devices. Unattached video
* devices are ignored.
*/
EventHub::Device* EventHub::getDeviceByFdLocked(int fd) const {
for (size_t i = 0; i < mDevices.size(); i++) {
Device* device = mDevices.valueAt(i);
if (device->fd == fd) {
// This is an input device event
return device;
}
if (device->videoDevice && device->videoDevice->getFd() == fd) {
// This is a video device event
return device;
}
}
// We do not check mUnattachedVideoDevices here because they should not participate in epoll,
// and therefore should never be looked up by fd.
return nullptr;
}
size_t EventHub::getEvents(int timeoutMillis, RawEvent* buffer, size_t bufferSize) {
ALOG_ASSERT(bufferSize >= 1);
AutoMutex _l(mLock);
struct input_event readBuffer[bufferSize];
RawEvent* event = buffer;
size_t capacity = bufferSize;
bool awoken = false;
for (;;) {
nsecs_t now = systemTime(SYSTEM_TIME_MONOTONIC);
// Reopen input devices if needed.
if (mNeedToReopenDevices) {
mNeedToReopenDevices = false;
ALOGI("Reopening all input devices due to a configuration change.");
closeAllDevicesLocked();
mNeedToScanDevices = true;
break; // return to the caller before we actually rescan
}
// Report any devices that had last been added/removed.
while (mClosingDevices) {
Device* device = mClosingDevices;
ALOGV("Reporting device closed: id=%d, name=%s\n", device->id, device->path.c_str());
mClosingDevices = device->next;
event->when = now;
event->deviceId = (device->id == mBuiltInKeyboardId)
? ReservedInputDeviceId::BUILT_IN_KEYBOARD_ID
: device->id;
event->type = DEVICE_REMOVED;
event += 1;
delete device;
mNeedToSendFinishedDeviceScan = true;
if (--capacity == 0) {
break;
}
}
if (mNeedToScanDevices) {
mNeedToScanDevices = false;
scanDevicesLocked();
mNeedToSendFinishedDeviceScan = true;
}
while (mOpeningDevices != nullptr) {
Device* device = mOpeningDevices;
ALOGV("Reporting device opened: id=%d, name=%s\n", device->id, device->path.c_str());
mOpeningDevices = device->next;
event->when = now;
event->deviceId = device->id == mBuiltInKeyboardId ? 0 : device->id;
event->type = DEVICE_ADDED;
event += 1;
mNeedToSendFinishedDeviceScan = true;
if (--capacity == 0) {
break;
}
}
if (mNeedToSendFinishedDeviceScan) {
mNeedToSendFinishedDeviceScan = false;
event->when = now;
event->type = FINISHED_DEVICE_SCAN;
event += 1;
if (--capacity == 0) {
break;
}
}
// Grab the next input event.
bool deviceChanged = false;
while (mPendingEventIndex < mPendingEventCount) {
const struct epoll_event& eventItem = mPendingEventItems[mPendingEventIndex++];
if (eventItem.data.fd == mINotifyFd) {
if (eventItem.events & EPOLLIN) {
mPendingINotify = true;
} else {
ALOGW("Received unexpected epoll event 0x%08x for INotify.", eventItem.events);
}
continue;
}
if (eventItem.data.fd == mWakeReadPipeFd) {
if (eventItem.events & EPOLLIN) {
ALOGV("awoken after wake()");
awoken = true;
char buffer[16];
ssize_t nRead;
do {
nRead = read(mWakeReadPipeFd, buffer, sizeof(buffer));
} while ((nRead == -1 && errno == EINTR) || nRead == sizeof(buffer));
} else {
ALOGW("Received unexpected epoll event 0x%08x for wake read pipe.",
eventItem.events);
}
continue;
}
Device* device = getDeviceByFdLocked(eventItem.data.fd);
if (!device) {
ALOGE("Received unexpected epoll event 0x%08x for unknown fd %d.", eventItem.events,
eventItem.data.fd);
ALOG_ASSERT(!DEBUG);
continue;
}
if (device->videoDevice && eventItem.data.fd == device->videoDevice->getFd()) {
if (eventItem.events & EPOLLIN) {
size_t numFrames = device->videoDevice->readAndQueueFrames();
if (numFrames == 0) {
ALOGE("Received epoll event for video device %s, but could not read frame",
device->videoDevice->getName().c_str());
}
} else if (eventItem.events & EPOLLHUP) {
// TODO(b/121395353) - consider adding EPOLLRDHUP
ALOGI("Removing video device %s due to epoll hang-up event.",
device->videoDevice->getName().c_str());
unregisterVideoDeviceFromEpollLocked(*device->videoDevice);
device->videoDevice = nullptr;
} else {
ALOGW("Received unexpected epoll event 0x%08x for device %s.", eventItem.events,
device->videoDevice->getName().c_str());
ALOG_ASSERT(!DEBUG);
}
continue;
}
// This must be an input event
if (eventItem.events & EPOLLIN) {
int32_t readSize =
read(device->fd, readBuffer, sizeof(struct input_event) * capacity);
if (readSize == 0 || (readSize < 0 && errno == ENODEV)) {
// Device was removed before INotify noticed.
ALOGW("could not get event, removed? (fd: %d size: %" PRId32
" bufferSize: %zu capacity: %zu errno: %d)\n",
device->fd, readSize, bufferSize, capacity, errno);
deviceChanged = true;
closeDeviceLocked(device);
} else if (readSize < 0) {
if (errno != EAGAIN && errno != EINTR) {
ALOGW("could not get event (errno=%d)", errno);
}
} else if ((readSize % sizeof(struct input_event)) != 0) {
ALOGE("could not get event (wrong size: %d)", readSize);
} else {
int32_t deviceId = device->id == mBuiltInKeyboardId ? 0 : device->id;
size_t count = size_t(readSize) / sizeof(struct input_event);
for (size_t i = 0; i < count; i++) {
struct input_event& iev = readBuffer[i];
event->when = processEventTimestamp(iev);
event->deviceId = deviceId;
event->type = iev.type;
event->code = iev.code;
event->value = iev.value;
event += 1;
capacity -= 1;
}
if (capacity == 0) {
// The result buffer is full. Reset the pending event index
// so we will try to read the device again on the next iteration.
mPendingEventIndex -= 1;
break;
}
}
} else if (eventItem.events & EPOLLHUP) {
ALOGI("Removing device %s due to epoll hang-up event.",
device->identifier.name.c_str());
deviceChanged = true;
closeDeviceLocked(device);
} else {
ALOGW("Received unexpected epoll event 0x%08x for device %s.", eventItem.events,
device->identifier.name.c_str());
}
}
// readNotify() will modify the list of devices so this must be done after
// processing all other events to ensure that we read all remaining events
// before closing the devices.
if (mPendingINotify && mPendingEventIndex >= mPendingEventCount) {
mPendingINotify = false;
readNotifyLocked();
deviceChanged = true;
}
// Report added or removed devices immediately.
if (deviceChanged) {
continue;
}
// Return now if we have collected any events or if we were explicitly awoken.
if (event != buffer || awoken) {
break;
}
// Poll for events.
// When a device driver has pending (unread) events, it acquires
// a kernel wake lock. Once the last pending event has been read, the device
// driver will release the kernel wake lock, but the epoll will hold the wakelock,
// since we are using EPOLLWAKEUP. The wakelock is released by the epoll when epoll_wait
// is called again for the same fd that produced the event.
// Thus the system can only sleep if there are no events pending or
// currently being processed.
//
// The timeout is advisory only. If the device is asleep, it will not wake just to
// service the timeout.
mPendingEventIndex = 0;
mLock.unlock(); // release lock before poll
int pollResult = epoll_wait(mEpollFd, mPendingEventItems, EPOLL_MAX_EVENTS, timeoutMillis);
mLock.lock(); // reacquire lock after poll
if (pollResult == 0) {
// Timed out.
mPendingEventCount = 0;
break;
}
if (pollResult < 0) {
// An error occurred.
mPendingEventCount = 0;
// Sleep after errors to avoid locking up the system.
// Hopefully the error is transient.
if (errno != EINTR) {
ALOGW("poll failed (errno=%d)\n", errno);
usleep(100000);
}
} else {
// Some events occurred.
mPendingEventCount = size_t(pollResult);
}
}
// All done, return the number of events we read.
return event - buffer;
}
std::vector<TouchVideoFrame> EventHub::getVideoFrames(int32_t deviceId) {
AutoMutex _l(mLock);
Device* device = getDeviceLocked(deviceId);
if (!device || !device->videoDevice) {
return {};
}
return device->videoDevice->consumeFrames();
}
void EventHub::wake() {
ALOGV("wake() called");
ssize_t nWrite;
do {
nWrite = write(mWakeWritePipeFd, "W", 1);
} while (nWrite == -1 && errno == EINTR);
if (nWrite != 1 && errno != EAGAIN) {
ALOGW("Could not write wake signal: %s", strerror(errno));
}
}
void EventHub::scanDevicesLocked() {
status_t result = scanDirLocked(DEVICE_PATH);
if (result < 0) {
ALOGE("scan dir failed for %s", DEVICE_PATH);
}
if (isV4lScanningEnabled()) {
result = scanVideoDirLocked(VIDEO_DEVICE_PATH);
if (result != OK) {
ALOGE("scan video dir failed for %s", VIDEO_DEVICE_PATH);
}
}
if (mDevices.indexOfKey(ReservedInputDeviceId::VIRTUAL_KEYBOARD_ID) < 0) {
createVirtualKeyboardLocked();
}
}
// ----------------------------------------------------------------------------
static bool containsNonZeroByte(const uint8_t* array, uint32_t startIndex, uint32_t endIndex) {
const uint8_t* end = array + endIndex;
array += startIndex;
while (array != end) {
if (*(array++) != 0) {
return true;
}
}
return false;
}
static const int32_t GAMEPAD_KEYCODES[] = {
AKEYCODE_BUTTON_A, AKEYCODE_BUTTON_B, AKEYCODE_BUTTON_C, //
AKEYCODE_BUTTON_X, AKEYCODE_BUTTON_Y, AKEYCODE_BUTTON_Z, //
AKEYCODE_BUTTON_L1, AKEYCODE_BUTTON_R1, //
AKEYCODE_BUTTON_L2, AKEYCODE_BUTTON_R2, //
AKEYCODE_BUTTON_THUMBL, AKEYCODE_BUTTON_THUMBR, //
AKEYCODE_BUTTON_START, AKEYCODE_BUTTON_SELECT, AKEYCODE_BUTTON_MODE, //
};
status_t EventHub::registerFdForEpoll(int fd) {
// TODO(b/121395353) - consider adding EPOLLRDHUP
struct epoll_event eventItem = {};
eventItem.events = EPOLLIN | EPOLLWAKEUP;
eventItem.data.fd = fd;
if (epoll_ctl(mEpollFd, EPOLL_CTL_ADD, fd, &eventItem)) {
ALOGE("Could not add fd to epoll instance: %s", strerror(errno));
return -errno;
}
return OK;
}
status_t EventHub::unregisterFdFromEpoll(int fd) {
if (epoll_ctl(mEpollFd, EPOLL_CTL_DEL, fd, nullptr)) {
ALOGW("Could not remove fd from epoll instance: %s", strerror(errno));
return -errno;
}
return OK;
}
status_t EventHub::registerDeviceForEpollLocked(Device* device) {
if (device == nullptr) {
if (DEBUG) {
LOG_ALWAYS_FATAL("Cannot call registerDeviceForEpollLocked with null Device");
}
return BAD_VALUE;
}
status_t result = registerFdForEpoll(device->fd);
if (result != OK) {
ALOGE("Could not add input device fd to epoll for device %" PRId32, device->id);
return result;
}
if (device->videoDevice) {
registerVideoDeviceForEpollLocked(*device->videoDevice);
}
return result;
}
void EventHub::registerVideoDeviceForEpollLocked(const TouchVideoDevice& videoDevice) {
status_t result = registerFdForEpoll(videoDevice.getFd());
if (result != OK) {
ALOGE("Could not add video device %s to epoll", videoDevice.getName().c_str());
}
}
status_t EventHub::unregisterDeviceFromEpollLocked(Device* device) {
if (device->hasValidFd()) {
status_t result = unregisterFdFromEpoll(device->fd);
if (result != OK) {
ALOGW("Could not remove input device fd from epoll for device %" PRId32, device->id);
return result;
}
}
if (device->videoDevice) {
unregisterVideoDeviceFromEpollLocked(*device->videoDevice);
}
return OK;
}
void EventHub::unregisterVideoDeviceFromEpollLocked(const TouchVideoDevice& videoDevice) {
if (videoDevice.hasValidFd()) {
status_t result = unregisterFdFromEpoll(videoDevice.getFd());
if (result != OK) {
ALOGW("Could not remove video device fd from epoll for device: %s",
videoDevice.getName().c_str());
}
}
}
status_t EventHub::openDeviceLocked(const char* devicePath) {
char buffer[80];
ALOGV("Opening device: %s", devicePath);
int fd = open(devicePath, O_RDWR | O_CLOEXEC | O_NONBLOCK);
if (fd < 0) {
ALOGE("could not open %s, %s\n", devicePath, strerror(errno));
return -1;
}
InputDeviceIdentifier identifier;
// Get device name.
if (ioctl(fd, EVIOCGNAME(sizeof(buffer) - 1), &buffer) < 1) {
ALOGE("Could not get device name for %s: %s", devicePath, strerror(errno));
} else {
buffer[sizeof(buffer) - 1] = '\0';
identifier.name = buffer;
}
// Check to see if the device is on our excluded list
for (size_t i = 0; i < mExcludedDevices.size(); i++) {
const std::string& item = mExcludedDevices[i];
if (identifier.name == item) {
ALOGI("ignoring event id %s driver %s\n", devicePath, item.c_str());
close(fd);
return -1;
}
}
// Get device driver version.
int driverVersion;
if (ioctl(fd, EVIOCGVERSION, &driverVersion)) {
ALOGE("could not get driver version for %s, %s\n", devicePath, strerror(errno));
close(fd);
return -1;
}
// Get device identifier.
struct input_id inputId;
if (ioctl(fd, EVIOCGID, &inputId)) {
ALOGE("could not get device input id for %s, %s\n", devicePath, strerror(errno));
close(fd);
return -1;
}
identifier.bus = inputId.bustype;
identifier.product = inputId.product;
identifier.vendor = inputId.vendor;
identifier.version = inputId.version;
// Get device physical location.
if (ioctl(fd, EVIOCGPHYS(sizeof(buffer) - 1), &buffer) < 1) {
// fprintf(stderr, "could not get location for %s, %s\n", devicePath, strerror(errno));
} else {
buffer[sizeof(buffer) - 1] = '\0';
identifier.location = buffer;
}
// Get device unique id.
if (ioctl(fd, EVIOCGUNIQ(sizeof(buffer) - 1), &buffer) < 1) {
// fprintf(stderr, "could not get idstring for %s, %s\n", devicePath, strerror(errno));
} else {
buffer[sizeof(buffer) - 1] = '\0';
identifier.uniqueId = buffer;
}
// Fill in the descriptor.
assignDescriptorLocked(identifier);
// Allocate device. (The device object takes ownership of the fd at this point.)
int32_t deviceId = mNextDeviceId++;
Device* device = new Device(fd, deviceId, devicePath, identifier);
ALOGV("add device %d: %s\n", deviceId, devicePath);
ALOGV(" bus: %04x\n"
" vendor %04x\n"
" product %04x\n"
" version %04x\n",
identifier.bus, identifier.vendor, identifier.product, identifier.version);
ALOGV(" name: \"%s\"\n", identifier.name.c_str());
ALOGV(" location: \"%s\"\n", identifier.location.c_str());
ALOGV(" unique id: \"%s\"\n", identifier.uniqueId.c_str());
ALOGV(" descriptor: \"%s\"\n", identifier.descriptor.c_str());
ALOGV(" driver: v%d.%d.%d\n", driverVersion >> 16, (driverVersion >> 8) & 0xff,
driverVersion & 0xff);
// Load the configuration file for the device.
loadConfigurationLocked(device);
// Figure out the kinds of events the device reports.
ioctl(fd, EVIOCGBIT(EV_KEY, sizeof(device->keyBitmask)), device->keyBitmask);
ioctl(fd, EVIOCGBIT(EV_ABS, sizeof(device->absBitmask)), device->absBitmask);
ioctl(fd, EVIOCGBIT(EV_REL, sizeof(device->relBitmask)), device->relBitmask);
ioctl(fd, EVIOCGBIT(EV_SW, sizeof(device->swBitmask)), device->swBitmask);
ioctl(fd, EVIOCGBIT(EV_LED, sizeof(device->ledBitmask)), device->ledBitmask);
ioctl(fd, EVIOCGBIT(EV_FF, sizeof(device->ffBitmask)), device->ffBitmask);
ioctl(fd, EVIOCGPROP(sizeof(device->propBitmask)), device->propBitmask);
// See if this is a keyboard. Ignore everything in the button range except for
// joystick and gamepad buttons which are handled like keyboards for the most part.
bool haveKeyboardKeys =
containsNonZeroByte(device->keyBitmask, 0, sizeof_bit_array(BTN_MISC)) ||
containsNonZeroByte(device->keyBitmask, sizeof_bit_array(BTN_WHEEL),
sizeof_bit_array(KEY_MAX + 1));
bool haveGamepadButtons = containsNonZeroByte(device->keyBitmask, sizeof_bit_array(BTN_MISC),
sizeof_bit_array(BTN_MOUSE)) ||
containsNonZeroByte(device->keyBitmask, sizeof_bit_array(BTN_JOYSTICK),
sizeof_bit_array(BTN_DIGI));
if (haveKeyboardKeys || haveGamepadButtons) {
device->classes |= INPUT_DEVICE_CLASS_KEYBOARD;
}
// See if this is a cursor device such as a trackball or mouse.
if (test_bit(BTN_MOUSE, device->keyBitmask) && test_bit(REL_X, device->relBitmask) &&
test_bit(REL_Y, device->relBitmask)) {
device->classes |= INPUT_DEVICE_CLASS_CURSOR;
}
// See if this is a rotary encoder type device.
String8 deviceType = String8();
if (device->configuration &&
device->configuration->tryGetProperty(String8("device.type"), deviceType)) {
if (!deviceType.compare(String8("rotaryEncoder"))) {
device->classes |= INPUT_DEVICE_CLASS_ROTARY_ENCODER;
}
}
// See if this is a touch pad.
// Is this a new modern multi-touch driver?
if (test_bit(ABS_MT_POSITION_X, device->absBitmask) &&
test_bit(ABS_MT_POSITION_Y, device->absBitmask)) {
// Some joysticks such as the PS3 controller report axes that conflict
// with the ABS_MT range. Try to confirm that the device really is
// a touch screen.
if (test_bit(BTN_TOUCH, device->keyBitmask) || !haveGamepadButtons) {
device->classes |= INPUT_DEVICE_CLASS_TOUCH | INPUT_DEVICE_CLASS_TOUCH_MT;
}
// Is this an old style single-touch driver?
} else if (test_bit(BTN_TOUCH, device->keyBitmask) && test_bit(ABS_X, device->absBitmask) &&
test_bit(ABS_Y, device->absBitmask)) {
device->classes |= INPUT_DEVICE_CLASS_TOUCH;
// Is this a BT stylus?
} else if ((test_bit(ABS_PRESSURE, device->absBitmask) ||
test_bit(BTN_TOUCH, device->keyBitmask)) &&
!test_bit(ABS_X, device->absBitmask) && !test_bit(ABS_Y, device->absBitmask)) {
device->classes |= INPUT_DEVICE_CLASS_EXTERNAL_STYLUS;
// Keyboard will try to claim some of the buttons but we really want to reserve those so we
// can fuse it with the touch screen data, so just take them back. Note this means an
// external stylus cannot also be a keyboard device.
device->classes &= ~INPUT_DEVICE_CLASS_KEYBOARD;
}
// See if this device is a joystick.
// Assumes that joysticks always have gamepad buttons in order to distinguish them
// from other devices such as accelerometers that also have absolute axes.
if (haveGamepadButtons) {
uint32_t assumedClasses = device->classes | INPUT_DEVICE_CLASS_JOYSTICK;
for (int i = 0; i <= ABS_MAX; i++) {
if (test_bit(i, device->absBitmask) &&
(getAbsAxisUsage(i, assumedClasses) & INPUT_DEVICE_CLASS_JOYSTICK)) {
device->classes = assumedClasses;
break;
}
}
}
// Check whether this device has switches.
for (int i = 0; i <= SW_MAX; i++) {
if (test_bit(i, device->swBitmask)) {
device->classes |= INPUT_DEVICE_CLASS_SWITCH;
break;
}
}
// Check whether this device supports the vibrator.
if (test_bit(FF_RUMBLE, device->ffBitmask)) {
device->classes |= INPUT_DEVICE_CLASS_VIBRATOR;
}
// Configure virtual keys.
if ((device->classes & INPUT_DEVICE_CLASS_TOUCH)) {
// Load the virtual keys for the touch screen, if any.
// We do this now so that we can make sure to load the keymap if necessary.
bool success = loadVirtualKeyMapLocked(device);
if (success) {
device->classes |= INPUT_DEVICE_CLASS_KEYBOARD;
}
}
// Load the key map.
// We need to do this for joysticks too because the key layout may specify axes.
status_t keyMapStatus = NAME_NOT_FOUND;
if (device->classes & (INPUT_DEVICE_CLASS_KEYBOARD | INPUT_DEVICE_CLASS_JOYSTICK)) {
// Load the keymap for the device.
keyMapStatus = loadKeyMapLocked(device);
}
// Configure the keyboard, gamepad or virtual keyboard.
if (device->classes & INPUT_DEVICE_CLASS_KEYBOARD) {
// Register the keyboard as a built-in keyboard if it is eligible.
if (!keyMapStatus && mBuiltInKeyboardId == NO_BUILT_IN_KEYBOARD &&
isEligibleBuiltInKeyboard(device->identifier, device->configuration, &device->keyMap)) {
mBuiltInKeyboardId = device->id;
}
// 'Q' key support = cheap test of whether this is an alpha-capable kbd
if (hasKeycodeLocked(device, AKEYCODE_Q)) {
device->classes |= INPUT_DEVICE_CLASS_ALPHAKEY;
}
// See if this device has a DPAD.
if (hasKeycodeLocked(device, AKEYCODE_DPAD_UP) &&
hasKeycodeLocked(device, AKEYCODE_DPAD_DOWN) &&
hasKeycodeLocked(device, AKEYCODE_DPAD_LEFT) &&
hasKeycodeLocked(device, AKEYCODE_DPAD_RIGHT) &&
hasKeycodeLocked(device, AKEYCODE_DPAD_CENTER)) {
device->classes |= INPUT_DEVICE_CLASS_DPAD;
}
// See if this device has a gamepad.
for (size_t i = 0; i < sizeof(GAMEPAD_KEYCODES) / sizeof(GAMEPAD_KEYCODES[0]); i++) {
if (hasKeycodeLocked(device, GAMEPAD_KEYCODES[i])) {
device->classes |= INPUT_DEVICE_CLASS_GAMEPAD;
break;
}
}
}
// If the device isn't recognized as something we handle, don't monitor it.
if (device->classes == 0) {
ALOGV("Dropping device: id=%d, path='%s', name='%s'", deviceId, devicePath,
device->identifier.name.c_str());
delete device;
return -1;
}
// Determine whether the device has a mic.
if (deviceHasMicLocked(device)) {
device->classes |= INPUT_DEVICE_CLASS_MIC;
}
// Determine whether the device is external or internal.
if (isExternalDeviceLocked(device)) {
device->classes |= INPUT_DEVICE_CLASS_EXTERNAL;
}
if (device->classes & (INPUT_DEVICE_CLASS_JOYSTICK | INPUT_DEVICE_CLASS_DPAD) &&
device->classes & INPUT_DEVICE_CLASS_GAMEPAD) {
device->controllerNumber = getNextControllerNumberLocked(device);
setLedForControllerLocked(device);
}
// Find a matching video device by comparing device names
// This should be done before registerDeviceForEpollLocked, so that both fds are added to epoll
for (std::unique_ptr<TouchVideoDevice>& videoDevice : mUnattachedVideoDevices) {
if (device->identifier.name == videoDevice->getName()) {
device->videoDevice = std::move(videoDevice);
break;
}
}
mUnattachedVideoDevices
.erase(std::remove_if(mUnattachedVideoDevices.begin(), mUnattachedVideoDevices.end(),
[](const std::unique_ptr<TouchVideoDevice>& videoDevice) {
return videoDevice == nullptr;
}),
mUnattachedVideoDevices.end());
if (registerDeviceForEpollLocked(device) != OK) {
delete device;
return -1;
}
configureFd(device);
ALOGI("New device: id=%d, fd=%d, path='%s', name='%s', classes=0x%x, "
"configuration='%s', keyLayout='%s', keyCharacterMap='%s', builtinKeyboard=%s, ",
deviceId, fd, devicePath, device->identifier.name.c_str(), device->classes,
device->configurationFile.c_str(), device->keyMap.keyLayoutFile.c_str(),
device->keyMap.keyCharacterMapFile.c_str(), toString(mBuiltInKeyboardId == deviceId));
addDeviceLocked(device);
return OK;
}
void EventHub::configureFd(Device* device) {
// Set fd parameters with ioctl, such as key repeat, suspend block, and clock type
if (device->classes & INPUT_DEVICE_CLASS_KEYBOARD) {
// Disable kernel key repeat since we handle it ourselves
unsigned int repeatRate[] = {0, 0};
if (ioctl(device->fd, EVIOCSREP, repeatRate)) {
ALOGW("Unable to disable kernel key repeat for %s: %s", device->path.c_str(),
strerror(errno));
}
}
// Tell the kernel that we want to use the monotonic clock for reporting timestamps
// associated with input events. This is important because the input system
// uses the timestamps extensively and assumes they were recorded using the monotonic
// clock.
int clockId = CLOCK_MONOTONIC;
bool usingClockIoctl = !ioctl(device->fd, EVIOCSCLOCKID, &clockId);
ALOGI("usingClockIoctl=%s", toString(usingClockIoctl));
}
void EventHub::openVideoDeviceLocked(const std::string& devicePath) {
std::unique_ptr<TouchVideoDevice> videoDevice = TouchVideoDevice::create(devicePath);
if (!videoDevice) {
ALOGE("Could not create touch video device for %s. Ignoring", devicePath.c_str());
return;
}
// Transfer ownership of this video device to a matching input device
for (size_t i = 0; i < mDevices.size(); i++) {
Device* device = mDevices.valueAt(i);
if (videoDevice->getName() == device->identifier.name) {
device->videoDevice = std::move(videoDevice);
if (device->enabled) {
registerVideoDeviceForEpollLocked(*device->videoDevice);
}
return;
}
}
// Couldn't find a matching input device, so just add it to a temporary holding queue.
// A matching input device may appear later.
ALOGI("Adding video device %s to list of unattached video devices",
videoDevice->getName().c_str());
mUnattachedVideoDevices.push_back(std::move(videoDevice));
}
bool EventHub::isDeviceEnabled(int32_t deviceId) {
AutoMutex _l(mLock);
Device* device = getDeviceLocked(deviceId);
if (device == nullptr) {
ALOGE("Invalid device id=%" PRId32 " provided to %s", deviceId, __func__);
return false;
}
return device->enabled;
}
status_t EventHub::enableDevice(int32_t deviceId) {
AutoMutex _l(mLock);
Device* device = getDeviceLocked(deviceId);
if (device == nullptr) {
ALOGE("Invalid device id=%" PRId32 " provided to %s", deviceId, __func__);
return BAD_VALUE;
}
if (device->enabled) {
ALOGW("Duplicate call to %s, input device %" PRId32 " already enabled", __func__, deviceId);
return OK;
}
status_t result = device->enable();
if (result != OK) {
ALOGE("Failed to enable device %" PRId32, deviceId);
return result;
}
configureFd(device);
return registerDeviceForEpollLocked(device);
}
status_t EventHub::disableDevice(int32_t deviceId) {
AutoMutex _l(mLock);
Device* device = getDeviceLocked(deviceId);
if (device == nullptr) {
ALOGE("Invalid device id=%" PRId32 " provided to %s", deviceId, __func__);
return BAD_VALUE;
}
if (!device->enabled) {
ALOGW("Duplicate call to %s, input device already disabled", __func__);
return OK;
}
unregisterDeviceFromEpollLocked(device);
return device->disable();
}
void EventHub::createVirtualKeyboardLocked() {
InputDeviceIdentifier identifier;
identifier.name = "Virtual";
identifier.uniqueId = "<virtual>";
assignDescriptorLocked(identifier);
Device* device =
new Device(-1, ReservedInputDeviceId::VIRTUAL_KEYBOARD_ID, "<virtual>", identifier);
device->classes = INPUT_DEVICE_CLASS_KEYBOARD | INPUT_DEVICE_CLASS_ALPHAKEY |
INPUT_DEVICE_CLASS_DPAD | INPUT_DEVICE_CLASS_VIRTUAL;
loadKeyMapLocked(device);
addDeviceLocked(device);
}
void EventHub::addDeviceLocked(Device* device) {
mDevices.add(device->id, device);
device->next = mOpeningDevices;
mOpeningDevices = device;
}
void EventHub::loadConfigurationLocked(Device* device) {
device->configurationFile = getInputDeviceConfigurationFilePathByDeviceIdentifier(
device->identifier, INPUT_DEVICE_CONFIGURATION_FILE_TYPE_CONFIGURATION);
if (device->configurationFile.empty()) {
ALOGD("No input device configuration file found for device '%s'.",
device->identifier.name.c_str());
} else {
status_t status = PropertyMap::load(String8(device->configurationFile.c_str()),
&device->configuration);
if (status) {
ALOGE("Error loading input device configuration file for device '%s'. "
"Using default configuration.",
device->identifier.name.c_str());
}
}
}
bool EventHub::loadVirtualKeyMapLocked(Device* device) {
// The virtual key map is supplied by the kernel as a system board property file.
std::string path;
path += "/sys/board_properties/virtualkeys.";
path += device->identifier.getCanonicalName();
if (access(path.c_str(), R_OK)) {
return false;
}
device->virtualKeyMap = VirtualKeyMap::load(path);
return device->virtualKeyMap != nullptr;
}
status_t EventHub::loadKeyMapLocked(Device* device) {
return device->keyMap.load(device->identifier, device->configuration);
}
bool EventHub::isExternalDeviceLocked(Device* device) {
if (device->configuration) {
bool value;
if (device->configuration->tryGetProperty(String8("device.internal"), value)) {
return !value;
}
}
return device->identifier.bus == BUS_USB || device->identifier.bus == BUS_BLUETOOTH;
}
bool EventHub::deviceHasMicLocked(Device* device) {
if (device->configuration) {
bool value;
if (device->configuration->tryGetProperty(String8("audio.mic"), value)) {
return value;
}
}
return false;
}
int32_t EventHub::getNextControllerNumberLocked(Device* device) {
if (mControllerNumbers.isFull()) {
ALOGI("Maximum number of controllers reached, assigning controller number 0 to device %s",
device->identifier.name.c_str());
return 0;
}
// Since the controller number 0 is reserved for non-controllers, translate all numbers up by
// one
return static_cast<int32_t>(mControllerNumbers.markFirstUnmarkedBit() + 1);
}
void EventHub::releaseControllerNumberLocked(Device* device) {
int32_t num = device->controllerNumber;
device->controllerNumber = 0;
if (num == 0) {
return;
}
mControllerNumbers.clearBit(static_cast<uint32_t>(num - 1));
}
void EventHub::setLedForControllerLocked(Device* device) {
for (int i = 0; i < MAX_CONTROLLER_LEDS; i++) {
setLedStateLocked(device, ALED_CONTROLLER_1 + i, device->controllerNumber == i + 1);
}
}
bool EventHub::hasKeycodeLocked(Device* device, int keycode) const {
if (!device->keyMap.haveKeyLayout()) {
return false;
}
std::vector<int32_t> scanCodes;
device->keyMap.keyLayoutMap->findScanCodesForKey(keycode, &scanCodes);
const size_t N = scanCodes.size();
for (size_t i = 0; i < N && i <= KEY_MAX; i++) {
int32_t sc = scanCodes[i];
if (sc >= 0 && sc <= KEY_MAX && test_bit(sc, device->keyBitmask)) {
return true;
}
}
return false;
}
status_t EventHub::mapLed(Device* device, int32_t led, int32_t* outScanCode) const {
if (!device->keyMap.haveKeyLayout()) {
return NAME_NOT_FOUND;
}
int32_t scanCode;
if (device->keyMap.keyLayoutMap->findScanCodeForLed(led, &scanCode) != NAME_NOT_FOUND) {
if (scanCode >= 0 && scanCode <= LED_MAX && test_bit(scanCode, device->ledBitmask)) {
*outScanCode = scanCode;
return NO_ERROR;
}
}
return NAME_NOT_FOUND;
}
void EventHub::closeDeviceByPathLocked(const char* devicePath) {
Device* device = getDeviceByPathLocked(devicePath);
if (device) {
closeDeviceLocked(device);
return;
}
ALOGV("Remove device: %s not found, device may already have been removed.", devicePath);
}
/**
* Find the video device by filename, and close it.
* The video device is closed by path during an inotify event, where we don't have the
* additional context about the video device fd, or the associated input device.
*/
void EventHub::closeVideoDeviceByPathLocked(const std::string& devicePath) {
// A video device may be owned by an existing input device, or it may be stored in
// the mUnattachedVideoDevices queue. Check both locations.
for (size_t i = 0; i < mDevices.size(); i++) {
Device* device = mDevices.valueAt(i);
if (device->videoDevice && device->videoDevice->getPath() == devicePath) {
unregisterVideoDeviceFromEpollLocked(*device->videoDevice);
device->videoDevice = nullptr;
return;
}
}
mUnattachedVideoDevices
.erase(std::remove_if(mUnattachedVideoDevices.begin(), mUnattachedVideoDevices.end(),
[&devicePath](
const std::unique_ptr<TouchVideoDevice>& videoDevice) {
return videoDevice->getPath() == devicePath;
}),
mUnattachedVideoDevices.end());
}
void EventHub::closeAllDevicesLocked() {
mUnattachedVideoDevices.clear();
while (mDevices.size() > 0) {
closeDeviceLocked(mDevices.valueAt(mDevices.size() - 1));
}
}
void EventHub::closeDeviceLocked(Device* device) {
ALOGI("Removed device: path=%s name=%s id=%d fd=%d classes=0x%x", device->path.c_str(),
device->identifier.name.c_str(), device->id, device->fd, device->classes);
if (device->id == mBuiltInKeyboardId) {
ALOGW("built-in keyboard device %s (id=%d) is closing! the apps will not like this",
device->path.c_str(), mBuiltInKeyboardId);
mBuiltInKeyboardId = NO_BUILT_IN_KEYBOARD;
}
unregisterDeviceFromEpollLocked(device);
if (device->videoDevice) {
// This must be done after the video device is removed from epoll
mUnattachedVideoDevices.push_back(std::move(device->videoDevice));
}
releaseControllerNumberLocked(device);
mDevices.removeItem(device->id);
device->close();
// Unlink for opening devices list if it is present.
Device* pred = nullptr;
bool found = false;
for (Device* entry = mOpeningDevices; entry != nullptr;) {
if (entry == device) {
found = true;
break;
}
pred = entry;
entry = entry->next;
}
if (found) {
// Unlink the device from the opening devices list then delete it.
// We don't need to tell the client that the device was closed because
// it does not even know it was opened in the first place.
ALOGI("Device %s was immediately closed after opening.", device->path.c_str());
if (pred) {
pred->next = device->next;
} else {
mOpeningDevices = device->next;
}
delete device;
} else {
// Link into closing devices list.
// The device will be deleted later after we have informed the client.
device->next = mClosingDevices;
mClosingDevices = device;
}
}
status_t EventHub::readNotifyLocked() {
int res;
char event_buf[512];
int event_size;
int event_pos = 0;
struct inotify_event* event;
ALOGV("EventHub::readNotify nfd: %d\n", mINotifyFd);
res = read(mINotifyFd, event_buf, sizeof(event_buf));
if (res < (int)sizeof(*event)) {
if (errno == EINTR) return 0;
ALOGW("could not get event, %s\n", strerror(errno));
return -1;
}
while (res >= (int)sizeof(*event)) {
event = (struct inotify_event*)(event_buf + event_pos);
if (event->len) {
if (event->wd == mInputWd) {
std::string filename = StringPrintf("%s/%s", DEVICE_PATH, event->name);
if (event->mask & IN_CREATE) {
openDeviceLocked(filename.c_str());
} else {
ALOGI("Removing device '%s' due to inotify event\n", filename.c_str());
closeDeviceByPathLocked(filename.c_str());
}
} else if (event->wd == mVideoWd) {
if (isV4lTouchNode(event->name)) {
std::string filename = StringPrintf("%s/%s", VIDEO_DEVICE_PATH, event->name);
if (event->mask & IN_CREATE) {
openVideoDeviceLocked(filename);
} else {
ALOGI("Removing video device '%s' due to inotify event", filename.c_str());
closeVideoDeviceByPathLocked(filename);
}
}
} else {
LOG_ALWAYS_FATAL("Unexpected inotify event, wd = %i", event->wd);
}
}
event_size = sizeof(*event) + event->len;
res -= event_size;
event_pos += event_size;
}
return 0;
}
status_t EventHub::scanDirLocked(const char* dirname) {
char devname[PATH_MAX];
char* filename;
DIR* dir;
struct dirent* de;
dir = opendir(dirname);
if (dir == nullptr) return -1;
strcpy(devname, dirname);
filename = devname + strlen(devname);
*filename++ = '/';
while ((de = readdir(dir))) {
if (de->d_name[0] == '.' &&
(de->d_name[1] == '\0' || (de->d_name[1] == '.' && de->d_name[2] == '\0')))
continue;
strcpy(filename, de->d_name);
openDeviceLocked(devname);
}
closedir(dir);
return 0;
}
/**
* Look for all dirname/v4l-touch* devices, and open them.
*/
status_t EventHub::scanVideoDirLocked(const std::string& dirname) {
DIR* dir;
struct dirent* de;
dir = opendir(dirname.c_str());
if (!dir) {
ALOGE("Could not open video directory %s", dirname.c_str());
return BAD_VALUE;
}
while ((de = readdir(dir))) {
const char* name = de->d_name;
if (isV4lTouchNode(name)) {
ALOGI("Found touch video device %s", name);
openVideoDeviceLocked(dirname + "/" + name);
}
}
closedir(dir);
return OK;
}
void EventHub::requestReopenDevices() {
ALOGV("requestReopenDevices() called");
AutoMutex _l(mLock);
mNeedToReopenDevices = true;
}
void EventHub::dump(std::string& dump) {
dump += "Event Hub State:\n";
{ // acquire lock
AutoMutex _l(mLock);
dump += StringPrintf(INDENT "BuiltInKeyboardId: %d\n", mBuiltInKeyboardId);
dump += INDENT "Devices:\n";
for (size_t i = 0; i < mDevices.size(); i++) {
const Device* device = mDevices.valueAt(i);
if (mBuiltInKeyboardId == device->id) {
dump += StringPrintf(INDENT2 "%d: %s (aka device 0 - built-in keyboard)\n",
device->id, device->identifier.name.c_str());
} else {
dump += StringPrintf(INDENT2 "%d: %s\n", device->id,
device->identifier.name.c_str());
}
dump += StringPrintf(INDENT3 "Classes: 0x%08x\n", device->classes);
dump += StringPrintf(INDENT3 "Path: %s\n", device->path.c_str());
dump += StringPrintf(INDENT3 "Enabled: %s\n", toString(device->enabled));
dump += StringPrintf(INDENT3 "Descriptor: %s\n", device->identifier.descriptor.c_str());
dump += StringPrintf(INDENT3 "Location: %s\n", device->identifier.location.c_str());
dump += StringPrintf(INDENT3 "ControllerNumber: %d\n", device->controllerNumber);
dump += StringPrintf(INDENT3 "UniqueId: %s\n", device->identifier.uniqueId.c_str());
dump += StringPrintf(INDENT3 "Identifier: bus=0x%04x, vendor=0x%04x, "
"product=0x%04x, version=0x%04x\n",
device->identifier.bus, device->identifier.vendor,
device->identifier.product, device->identifier.version);
dump += StringPrintf(INDENT3 "KeyLayoutFile: %s\n",
device->keyMap.keyLayoutFile.c_str());
dump += StringPrintf(INDENT3 "KeyCharacterMapFile: %s\n",
device->keyMap.keyCharacterMapFile.c_str());
dump += StringPrintf(INDENT3 "ConfigurationFile: %s\n",
device->configurationFile.c_str());
dump += StringPrintf(INDENT3 "HaveKeyboardLayoutOverlay: %s\n",
toString(device->overlayKeyMap != nullptr));
dump += INDENT3 "VideoDevice: ";
if (device->videoDevice) {
dump += device->videoDevice->dump() + "\n";
} else {
dump += "<none>\n";
}
}
dump += INDENT "Unattached video devices:\n";
for (const std::unique_ptr<TouchVideoDevice>& videoDevice : mUnattachedVideoDevices) {
dump += INDENT2 + videoDevice->dump() + "\n";
}
if (mUnattachedVideoDevices.empty()) {
dump += INDENT2 "<none>\n";
}
} // release lock
}
void EventHub::monitor() {
// Acquire and release the lock to ensure that the event hub has not deadlocked.
mLock.lock();
mLock.unlock();
}
}; // namespace android