blob: fe016af01fcf218435bc01f7eede654fb1cc81a0 [file] [log] [blame]
/*
* Copyright (C) 2010 The Android Open Source Project
*
* Licensed under the Apache License, Version 2.0 (the "License");
* you may not use this file except in compliance with the License.
* You may obtain a copy of the License at
*
* http://www.apache.org/licenses/LICENSE-2.0
*
* Unless required by applicable law or agreed to in writing, software
* distributed under the License is distributed on an "AS IS" BASIS,
* WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
* See the License for the specific language governing permissions and
* limitations under the License.
*/
#define LOG_TAG "InputDispatcher"
#define ATRACE_TAG ATRACE_TAG_INPUT
#define LOG_NDEBUG 1
// Log detailed debug messages about each inbound event notification to the dispatcher.
#define DEBUG_INBOUND_EVENT_DETAILS 0
// Log detailed debug messages about each outbound event processed by the dispatcher.
#define DEBUG_OUTBOUND_EVENT_DETAILS 0
// Log debug messages about the dispatch cycle.
#define DEBUG_DISPATCH_CYCLE 0
// Log debug messages about registrations.
#define DEBUG_REGISTRATION 0
// Log debug messages about input event injection.
#define DEBUG_INJECTION 0
// Log debug messages about input focus tracking.
static constexpr bool DEBUG_FOCUS = false;
// Log debug messages about the app switch latency optimization.
#define DEBUG_APP_SWITCH 0
// Log debug messages about hover events.
#define DEBUG_HOVER 0
#include "InputDispatcher.h"
#include "Connection.h"
#include <errno.h>
#include <inttypes.h>
#include <limits.h>
#include <statslog.h>
#include <stddef.h>
#include <time.h>
#include <unistd.h>
#include <queue>
#include <sstream>
#include <android-base/chrono_utils.h>
#include <android-base/stringprintf.h>
#include <binder/Binder.h>
#include <input/InputDevice.h>
#include <log/log.h>
#include <openssl/hmac.h>
#include <openssl/rand.h>
#include <powermanager/PowerManager.h>
#include <utils/Trace.h>
#define INDENT " "
#define INDENT2 " "
#define INDENT3 " "
#define INDENT4 " "
using android::base::StringPrintf;
namespace android::inputdispatcher {
// Default input dispatching timeout if there is no focused application or paused window
// from which to determine an appropriate dispatching timeout.
constexpr std::chrono::nanoseconds DEFAULT_INPUT_DISPATCHING_TIMEOUT = 5s;
// Amount of time to allow for all pending events to be processed when an app switch
// key is on the way. This is used to preempt input dispatch and drop input events
// when an application takes too long to respond and the user has pressed an app switch key.
constexpr nsecs_t APP_SWITCH_TIMEOUT = 500 * 1000000LL; // 0.5sec
// Amount of time to allow for an event to be dispatched (measured since its eventTime)
// before considering it stale and dropping it.
constexpr nsecs_t STALE_EVENT_TIMEOUT = 10000 * 1000000LL; // 10sec
// Log a warning when an event takes longer than this to process, even if an ANR does not occur.
constexpr nsecs_t SLOW_EVENT_PROCESSING_WARNING_TIMEOUT = 2000 * 1000000LL; // 2sec
// Log a warning when an interception call takes longer than this to process.
constexpr std::chrono::milliseconds SLOW_INTERCEPTION_THRESHOLD = 50ms;
// Additional key latency in case a connection is still processing some motion events.
// This will help with the case when a user touched a button that opens a new window,
// and gives us the chance to dispatch the key to this new window.
constexpr std::chrono::nanoseconds KEY_WAITING_FOR_EVENTS_TIMEOUT = 500ms;
// Number of recent events to keep for debugging purposes.
constexpr size_t RECENT_QUEUE_MAX_SIZE = 10;
static inline nsecs_t now() {
return systemTime(SYSTEM_TIME_MONOTONIC);
}
static inline const char* toString(bool value) {
return value ? "true" : "false";
}
static inline int32_t getMotionEventActionPointerIndex(int32_t action) {
return (action & AMOTION_EVENT_ACTION_POINTER_INDEX_MASK) >>
AMOTION_EVENT_ACTION_POINTER_INDEX_SHIFT;
}
static bool isValidKeyAction(int32_t action) {
switch (action) {
case AKEY_EVENT_ACTION_DOWN:
case AKEY_EVENT_ACTION_UP:
return true;
default:
return false;
}
}
static bool validateKeyEvent(int32_t action) {
if (!isValidKeyAction(action)) {
ALOGE("Key event has invalid action code 0x%x", action);
return false;
}
return true;
}
static bool isValidMotionAction(int32_t action, int32_t actionButton, int32_t pointerCount) {
switch (action & AMOTION_EVENT_ACTION_MASK) {
case AMOTION_EVENT_ACTION_DOWN:
case AMOTION_EVENT_ACTION_UP:
case AMOTION_EVENT_ACTION_CANCEL:
case AMOTION_EVENT_ACTION_MOVE:
case AMOTION_EVENT_ACTION_OUTSIDE:
case AMOTION_EVENT_ACTION_HOVER_ENTER:
case AMOTION_EVENT_ACTION_HOVER_MOVE:
case AMOTION_EVENT_ACTION_HOVER_EXIT:
case AMOTION_EVENT_ACTION_SCROLL:
return true;
case AMOTION_EVENT_ACTION_POINTER_DOWN:
case AMOTION_EVENT_ACTION_POINTER_UP: {
int32_t index = getMotionEventActionPointerIndex(action);
return index >= 0 && index < pointerCount;
}
case AMOTION_EVENT_ACTION_BUTTON_PRESS:
case AMOTION_EVENT_ACTION_BUTTON_RELEASE:
return actionButton != 0;
default:
return false;
}
}
static bool validateMotionEvent(int32_t action, int32_t actionButton, size_t pointerCount,
const PointerProperties* pointerProperties) {
if (!isValidMotionAction(action, actionButton, pointerCount)) {
ALOGE("Motion event has invalid action code 0x%x", action);
return false;
}
if (pointerCount < 1 || pointerCount > MAX_POINTERS) {
ALOGE("Motion event has invalid pointer count %zu; value must be between 1 and %d.",
pointerCount, MAX_POINTERS);
return false;
}
BitSet32 pointerIdBits;
for (size_t i = 0; i < pointerCount; i++) {
int32_t id = pointerProperties[i].id;
if (id < 0 || id > MAX_POINTER_ID) {
ALOGE("Motion event has invalid pointer id %d; value must be between 0 and %d", id,
MAX_POINTER_ID);
return false;
}
if (pointerIdBits.hasBit(id)) {
ALOGE("Motion event has duplicate pointer id %d", id);
return false;
}
pointerIdBits.markBit(id);
}
return true;
}
static void dumpRegion(std::string& dump, const Region& region) {
if (region.isEmpty()) {
dump += "<empty>";
return;
}
bool first = true;
Region::const_iterator cur = region.begin();
Region::const_iterator const tail = region.end();
while (cur != tail) {
if (first) {
first = false;
} else {
dump += "|";
}
dump += StringPrintf("[%d,%d][%d,%d]", cur->left, cur->top, cur->right, cur->bottom);
cur++;
}
}
/**
* Find the entry in std::unordered_map by key, and return it.
* If the entry is not found, return a default constructed entry.
*
* Useful when the entries are vectors, since an empty vector will be returned
* if the entry is not found.
* Also useful when the entries are sp<>. If an entry is not found, nullptr is returned.
*/
template <typename K, typename V>
static V getValueByKey(const std::unordered_map<K, V>& map, K key) {
auto it = map.find(key);
return it != map.end() ? it->second : V{};
}
/**
* Find the entry in std::unordered_map by value, and remove it.
* If more than one entry has the same value, then all matching
* key-value pairs will be removed.
*
* Return true if at least one value has been removed.
*/
template <typename K, typename V>
static bool removeByValue(std::unordered_map<K, V>& map, const V& value) {
bool removed = false;
for (auto it = map.begin(); it != map.end();) {
if (it->second == value) {
it = map.erase(it);
removed = true;
} else {
it++;
}
}
return removed;
}
static bool haveSameToken(const sp<InputWindowHandle>& first, const sp<InputWindowHandle>& second) {
if (first == second) {
return true;
}
if (first == nullptr || second == nullptr) {
return false;
}
return first->getToken() == second->getToken();
}
static bool isStaleEvent(nsecs_t currentTime, const EventEntry& entry) {
return currentTime - entry.eventTime >= STALE_EVENT_TIMEOUT;
}
static std::unique_ptr<DispatchEntry> createDispatchEntry(const InputTarget& inputTarget,
EventEntry* eventEntry,
int32_t inputTargetFlags) {
if (inputTarget.useDefaultPointerInfo()) {
const PointerInfo& pointerInfo = inputTarget.getDefaultPointerInfo();
return std::make_unique<DispatchEntry>(eventEntry, // increments ref
inputTargetFlags, pointerInfo.xOffset,
pointerInfo.yOffset, inputTarget.globalScaleFactor,
pointerInfo.windowXScale, pointerInfo.windowYScale);
}
ALOG_ASSERT(eventEntry->type == EventEntry::Type::MOTION);
const MotionEntry& motionEntry = static_cast<const MotionEntry&>(*eventEntry);
PointerCoords pointerCoords[motionEntry.pointerCount];
// Use the first pointer information to normalize all other pointers. This could be any pointer
// as long as all other pointers are normalized to the same value and the final DispatchEntry
// uses the offset and scale for the normalized pointer.
const PointerInfo& firstPointerInfo =
inputTarget.pointerInfos[inputTarget.pointerIds.firstMarkedBit()];
// Iterate through all pointers in the event to normalize against the first.
for (uint32_t pointerIndex = 0; pointerIndex < motionEntry.pointerCount; pointerIndex++) {
const PointerProperties& pointerProperties = motionEntry.pointerProperties[pointerIndex];
uint32_t pointerId = uint32_t(pointerProperties.id);
const PointerInfo& currPointerInfo = inputTarget.pointerInfos[pointerId];
// The scale factor is the ratio of the current pointers scale to the normalized scale.
float scaleXDiff = currPointerInfo.windowXScale / firstPointerInfo.windowXScale;
float scaleYDiff = currPointerInfo.windowYScale / firstPointerInfo.windowYScale;
pointerCoords[pointerIndex].copyFrom(motionEntry.pointerCoords[pointerIndex]);
// First apply the current pointers offset to set the window at 0,0
pointerCoords[pointerIndex].applyOffset(currPointerInfo.xOffset, currPointerInfo.yOffset);
// Next scale the coordinates.
pointerCoords[pointerIndex].scale(1, scaleXDiff, scaleYDiff);
// Lastly, offset the coordinates so they're in the normalized pointer's frame.
pointerCoords[pointerIndex].applyOffset(-firstPointerInfo.xOffset,
-firstPointerInfo.yOffset);
}
MotionEntry* combinedMotionEntry =
new MotionEntry(motionEntry.id, motionEntry.eventTime, motionEntry.deviceId,
motionEntry.source, motionEntry.displayId, motionEntry.policyFlags,
motionEntry.action, motionEntry.actionButton, motionEntry.flags,
motionEntry.metaState, motionEntry.buttonState,
motionEntry.classification, motionEntry.edgeFlags,
motionEntry.xPrecision, motionEntry.yPrecision,
motionEntry.xCursorPosition, motionEntry.yCursorPosition,
motionEntry.downTime, motionEntry.pointerCount,
motionEntry.pointerProperties, pointerCoords, 0 /* xOffset */,
0 /* yOffset */);
if (motionEntry.injectionState) {
combinedMotionEntry->injectionState = motionEntry.injectionState;
combinedMotionEntry->injectionState->refCount += 1;
}
std::unique_ptr<DispatchEntry> dispatchEntry =
std::make_unique<DispatchEntry>(combinedMotionEntry, // increments ref
inputTargetFlags, firstPointerInfo.xOffset,
firstPointerInfo.yOffset, inputTarget.globalScaleFactor,
firstPointerInfo.windowXScale,
firstPointerInfo.windowYScale);
combinedMotionEntry->release();
return dispatchEntry;
}
static void addGestureMonitors(const std::vector<Monitor>& monitors,
std::vector<TouchedMonitor>& outTouchedMonitors, float xOffset = 0,
float yOffset = 0) {
if (monitors.empty()) {
return;
}
outTouchedMonitors.reserve(monitors.size() + outTouchedMonitors.size());
for (const Monitor& monitor : monitors) {
outTouchedMonitors.emplace_back(monitor, xOffset, yOffset);
}
}
static std::array<uint8_t, 128> getRandomKey() {
std::array<uint8_t, 128> key;
if (RAND_bytes(key.data(), key.size()) != 1) {
LOG_ALWAYS_FATAL("Can't generate HMAC key");
}
return key;
}
// --- HmacKeyManager ---
HmacKeyManager::HmacKeyManager() : mHmacKey(getRandomKey()) {}
std::array<uint8_t, 32> HmacKeyManager::sign(const VerifiedInputEvent& event) const {
size_t size;
switch (event.type) {
case VerifiedInputEvent::Type::KEY: {
size = sizeof(VerifiedKeyEvent);
break;
}
case VerifiedInputEvent::Type::MOTION: {
size = sizeof(VerifiedMotionEvent);
break;
}
}
const uint8_t* start = reinterpret_cast<const uint8_t*>(&event);
return sign(start, size);
}
std::array<uint8_t, 32> HmacKeyManager::sign(const uint8_t* data, size_t size) const {
// SHA256 always generates 32-bytes result
std::array<uint8_t, 32> hash;
unsigned int hashLen = 0;
uint8_t* result =
HMAC(EVP_sha256(), mHmacKey.data(), mHmacKey.size(), data, size, hash.data(), &hashLen);
if (result == nullptr) {
ALOGE("Could not sign the data using HMAC");
return INVALID_HMAC;
}
if (hashLen != hash.size()) {
ALOGE("HMAC-SHA256 has unexpected length");
return INVALID_HMAC;
}
return hash;
}
// --- InputDispatcher ---
InputDispatcher::InputDispatcher(const sp<InputDispatcherPolicyInterface>& policy)
: mPolicy(policy),
mPendingEvent(nullptr),
mLastDropReason(DropReason::NOT_DROPPED),
mIdGenerator(IdGenerator::Source::INPUT_DISPATCHER),
mAppSwitchSawKeyDown(false),
mAppSwitchDueTime(LONG_LONG_MAX),
mNextUnblockedEvent(nullptr),
mDispatchEnabled(false),
mDispatchFrozen(false),
mInputFilterEnabled(false),
// mInTouchMode will be initialized by the WindowManager to the default device config.
// To avoid leaking stack in case that call never comes, and for tests,
// initialize it here anyways.
mInTouchMode(true),
mFocusedDisplayId(ADISPLAY_ID_DEFAULT) {
mLooper = new Looper(false);
mReporter = createInputReporter();
mKeyRepeatState.lastKeyEntry = nullptr;
policy->getDispatcherConfiguration(&mConfig);
}
InputDispatcher::~InputDispatcher() {
{ // acquire lock
std::scoped_lock _l(mLock);
resetKeyRepeatLocked();
releasePendingEventLocked();
drainInboundQueueLocked();
}
while (!mConnectionsByFd.empty()) {
sp<Connection> connection = mConnectionsByFd.begin()->second;
unregisterInputChannel(connection->inputChannel);
}
}
status_t InputDispatcher::start() {
if (mThread) {
return ALREADY_EXISTS;
}
mThread = std::make_unique<InputThread>(
"InputDispatcher", [this]() { dispatchOnce(); }, [this]() { mLooper->wake(); });
return OK;
}
status_t InputDispatcher::stop() {
if (mThread && mThread->isCallingThread()) {
ALOGE("InputDispatcher cannot be stopped from its own thread!");
return INVALID_OPERATION;
}
mThread.reset();
return OK;
}
void InputDispatcher::dispatchOnce() {
nsecs_t nextWakeupTime = LONG_LONG_MAX;
{ // acquire lock
std::scoped_lock _l(mLock);
mDispatcherIsAlive.notify_all();
// Run a dispatch loop if there are no pending commands.
// The dispatch loop might enqueue commands to run afterwards.
if (!haveCommandsLocked()) {
dispatchOnceInnerLocked(&nextWakeupTime);
}
// Run all pending commands if there are any.
// If any commands were run then force the next poll to wake up immediately.
if (runCommandsLockedInterruptible()) {
nextWakeupTime = LONG_LONG_MIN;
}
// If we are still waiting for ack on some events,
// we might have to wake up earlier to check if an app is anr'ing.
const nsecs_t nextAnrCheck = processAnrsLocked();
nextWakeupTime = std::min(nextWakeupTime, nextAnrCheck);
// We are about to enter an infinitely long sleep, because we have no commands or
// pending or queued events
if (nextWakeupTime == LONG_LONG_MAX) {
mDispatcherEnteredIdle.notify_all();
}
} // release lock
// Wait for callback or timeout or wake. (make sure we round up, not down)
nsecs_t currentTime = now();
int timeoutMillis = toMillisecondTimeoutDelay(currentTime, nextWakeupTime);
mLooper->pollOnce(timeoutMillis);
}
/**
* Check if any of the connections' wait queues have events that are too old.
* If we waited for events to be ack'ed for more than the window timeout, raise an ANR.
* Return the time at which we should wake up next.
*/
nsecs_t InputDispatcher::processAnrsLocked() {
const nsecs_t currentTime = now();
nsecs_t nextAnrCheck = LONG_LONG_MAX;
// Check if we are waiting for a focused window to appear. Raise ANR if waited too long
if (mNoFocusedWindowTimeoutTime.has_value() && mAwaitedFocusedApplication != nullptr) {
if (currentTime >= *mNoFocusedWindowTimeoutTime) {
onAnrLocked(mAwaitedFocusedApplication);
mAwaitedFocusedApplication.clear();
return LONG_LONG_MIN;
} else {
// Keep waiting
const nsecs_t millisRemaining = ns2ms(*mNoFocusedWindowTimeoutTime - currentTime);
ALOGW("Still no focused window. Will drop the event in %" PRId64 "ms", millisRemaining);
nextAnrCheck = *mNoFocusedWindowTimeoutTime;
}
}
// Check if any connection ANRs are due
nextAnrCheck = std::min(nextAnrCheck, mAnrTracker.firstTimeout());
if (currentTime < nextAnrCheck) { // most likely scenario
return nextAnrCheck; // everything is normal. Let's check again at nextAnrCheck
}
// If we reached here, we have an unresponsive connection.
sp<Connection> connection = getConnectionLocked(mAnrTracker.firstToken());
if (connection == nullptr) {
ALOGE("Could not find connection for entry %" PRId64, mAnrTracker.firstTimeout());
return nextAnrCheck;
}
connection->responsive = false;
// Stop waking up for this unresponsive connection
mAnrTracker.eraseToken(connection->inputChannel->getConnectionToken());
onAnrLocked(connection);
return LONG_LONG_MIN;
}
nsecs_t InputDispatcher::getDispatchingTimeoutLocked(const sp<IBinder>& token) {
sp<InputWindowHandle> window = getWindowHandleLocked(token);
if (window != nullptr) {
return window->getDispatchingTimeout(DEFAULT_INPUT_DISPATCHING_TIMEOUT).count();
}
return DEFAULT_INPUT_DISPATCHING_TIMEOUT.count();
}
void InputDispatcher::dispatchOnceInnerLocked(nsecs_t* nextWakeupTime) {
nsecs_t currentTime = now();
// Reset the key repeat timer whenever normal dispatch is suspended while the
// device is in a non-interactive state. This is to ensure that we abort a key
// repeat if the device is just coming out of sleep.
if (!mDispatchEnabled) {
resetKeyRepeatLocked();
}
// If dispatching is frozen, do not process timeouts or try to deliver any new events.
if (mDispatchFrozen) {
if (DEBUG_FOCUS) {
ALOGD("Dispatch frozen. Waiting some more.");
}
return;
}
// Optimize latency of app switches.
// Essentially we start a short timeout when an app switch key (HOME / ENDCALL) has
// been pressed. When it expires, we preempt dispatch and drop all other pending events.
bool isAppSwitchDue = mAppSwitchDueTime <= currentTime;
if (mAppSwitchDueTime < *nextWakeupTime) {
*nextWakeupTime = mAppSwitchDueTime;
}
// Ready to start a new event.
// If we don't already have a pending event, go grab one.
if (!mPendingEvent) {
if (mInboundQueue.empty()) {
if (isAppSwitchDue) {
// The inbound queue is empty so the app switch key we were waiting
// for will never arrive. Stop waiting for it.
resetPendingAppSwitchLocked(false);
isAppSwitchDue = false;
}
// Synthesize a key repeat if appropriate.
if (mKeyRepeatState.lastKeyEntry) {
if (currentTime >= mKeyRepeatState.nextRepeatTime) {
mPendingEvent = synthesizeKeyRepeatLocked(currentTime);
} else {
if (mKeyRepeatState.nextRepeatTime < *nextWakeupTime) {
*nextWakeupTime = mKeyRepeatState.nextRepeatTime;
}
}
}
// Nothing to do if there is no pending event.
if (!mPendingEvent) {
return;
}
} else {
// Inbound queue has at least one entry.
mPendingEvent = mInboundQueue.front();
mInboundQueue.pop_front();
traceInboundQueueLengthLocked();
}
// Poke user activity for this event.
if (mPendingEvent->policyFlags & POLICY_FLAG_PASS_TO_USER) {
pokeUserActivityLocked(*mPendingEvent);
}
}
// Now we have an event to dispatch.
// All events are eventually dequeued and processed this way, even if we intend to drop them.
ALOG_ASSERT(mPendingEvent != nullptr);
bool done = false;
DropReason dropReason = DropReason::NOT_DROPPED;
if (!(mPendingEvent->policyFlags & POLICY_FLAG_PASS_TO_USER)) {
dropReason = DropReason::POLICY;
} else if (!mDispatchEnabled) {
dropReason = DropReason::DISABLED;
}
if (mNextUnblockedEvent == mPendingEvent) {
mNextUnblockedEvent = nullptr;
}
switch (mPendingEvent->type) {
case EventEntry::Type::CONFIGURATION_CHANGED: {
ConfigurationChangedEntry* typedEntry =
static_cast<ConfigurationChangedEntry*>(mPendingEvent);
done = dispatchConfigurationChangedLocked(currentTime, typedEntry);
dropReason = DropReason::NOT_DROPPED; // configuration changes are never dropped
break;
}
case EventEntry::Type::DEVICE_RESET: {
DeviceResetEntry* typedEntry = static_cast<DeviceResetEntry*>(mPendingEvent);
done = dispatchDeviceResetLocked(currentTime, typedEntry);
dropReason = DropReason::NOT_DROPPED; // device resets are never dropped
break;
}
case EventEntry::Type::FOCUS: {
FocusEntry* typedEntry = static_cast<FocusEntry*>(mPendingEvent);
dispatchFocusLocked(currentTime, typedEntry);
done = true;
dropReason = DropReason::NOT_DROPPED; // focus events are never dropped
break;
}
case EventEntry::Type::KEY: {
KeyEntry* typedEntry = static_cast<KeyEntry*>(mPendingEvent);
if (isAppSwitchDue) {
if (isAppSwitchKeyEvent(*typedEntry)) {
resetPendingAppSwitchLocked(true);
isAppSwitchDue = false;
} else if (dropReason == DropReason::NOT_DROPPED) {
dropReason = DropReason::APP_SWITCH;
}
}
if (dropReason == DropReason::NOT_DROPPED && isStaleEvent(currentTime, *typedEntry)) {
dropReason = DropReason::STALE;
}
if (dropReason == DropReason::NOT_DROPPED && mNextUnblockedEvent) {
dropReason = DropReason::BLOCKED;
}
done = dispatchKeyLocked(currentTime, typedEntry, &dropReason, nextWakeupTime);
break;
}
case EventEntry::Type::MOTION: {
MotionEntry* typedEntry = static_cast<MotionEntry*>(mPendingEvent);
if (dropReason == DropReason::NOT_DROPPED && isAppSwitchDue) {
dropReason = DropReason::APP_SWITCH;
}
if (dropReason == DropReason::NOT_DROPPED && isStaleEvent(currentTime, *typedEntry)) {
dropReason = DropReason::STALE;
}
if (dropReason == DropReason::NOT_DROPPED && mNextUnblockedEvent) {
dropReason = DropReason::BLOCKED;
}
done = dispatchMotionLocked(currentTime, typedEntry, &dropReason, nextWakeupTime);
break;
}
}
if (done) {
if (dropReason != DropReason::NOT_DROPPED) {
dropInboundEventLocked(*mPendingEvent, dropReason);
}
mLastDropReason = dropReason;
releasePendingEventLocked();
*nextWakeupTime = LONG_LONG_MIN; // force next poll to wake up immediately
}
}
/**
* Return true if the events preceding this incoming motion event should be dropped
* Return false otherwise (the default behaviour)
*/
bool InputDispatcher::shouldPruneInboundQueueLocked(const MotionEntry& motionEntry) {
const bool isPointerDownEvent = motionEntry.action == AMOTION_EVENT_ACTION_DOWN &&
(motionEntry.source & AINPUT_SOURCE_CLASS_POINTER);
// Optimize case where the current application is unresponsive and the user
// decides to touch a window in a different application.
// If the application takes too long to catch up then we drop all events preceding
// the touch into the other window.
if (isPointerDownEvent && mAwaitedFocusedApplication != nullptr) {
int32_t displayId = motionEntry.displayId;
int32_t x = static_cast<int32_t>(
motionEntry.pointerCoords[0].getAxisValue(AMOTION_EVENT_AXIS_X));
int32_t y = static_cast<int32_t>(
motionEntry.pointerCoords[0].getAxisValue(AMOTION_EVENT_AXIS_Y));
sp<InputWindowHandle> touchedWindowHandle =
findTouchedWindowAtLocked(displayId, x, y, nullptr);
if (touchedWindowHandle != nullptr &&
touchedWindowHandle->getApplicationToken() !=
mAwaitedFocusedApplication->getApplicationToken()) {
// User touched a different application than the one we are waiting on.
ALOGI("Pruning input queue because user touched a different application while waiting "
"for %s",
mAwaitedFocusedApplication->getName().c_str());
return true;
}
// Alternatively, maybe there's a gesture monitor that could handle this event
std::vector<TouchedMonitor> gestureMonitors =
findTouchedGestureMonitorsLocked(displayId, {});
for (TouchedMonitor& gestureMonitor : gestureMonitors) {
sp<Connection> connection =
getConnectionLocked(gestureMonitor.monitor.inputChannel->getConnectionToken());
if (connection != nullptr && connection->responsive) {
// This monitor could take more input. Drop all events preceding this
// event, so that gesture monitor could get a chance to receive the stream
ALOGW("Pruning the input queue because %s is unresponsive, but we have a "
"responsive gesture monitor that may handle the event",
mAwaitedFocusedApplication->getName().c_str());
return true;
}
}
}
// Prevent getting stuck: if we have a pending key event, and some motion events that have not
// yet been processed by some connections, the dispatcher will wait for these motion
// events to be processed before dispatching the key event. This is because these motion events
// may cause a new window to be launched, which the user might expect to receive focus.
// To prevent waiting forever for such events, just send the key to the currently focused window
if (isPointerDownEvent && mKeyIsWaitingForEventsTimeout) {
ALOGD("Received a new pointer down event, stop waiting for events to process and "
"just send the pending key event to the focused window.");
mKeyIsWaitingForEventsTimeout = now();
}
return false;
}
bool InputDispatcher::enqueueInboundEventLocked(EventEntry* entry) {
bool needWake = mInboundQueue.empty();
mInboundQueue.push_back(entry);
traceInboundQueueLengthLocked();
switch (entry->type) {
case EventEntry::Type::KEY: {
// Optimize app switch latency.
// If the application takes too long to catch up then we drop all events preceding
// the app switch key.
const KeyEntry& keyEntry = static_cast<const KeyEntry&>(*entry);
if (isAppSwitchKeyEvent(keyEntry)) {
if (keyEntry.action == AKEY_EVENT_ACTION_DOWN) {
mAppSwitchSawKeyDown = true;
} else if (keyEntry.action == AKEY_EVENT_ACTION_UP) {
if (mAppSwitchSawKeyDown) {
#if DEBUG_APP_SWITCH
ALOGD("App switch is pending!");
#endif
mAppSwitchDueTime = keyEntry.eventTime + APP_SWITCH_TIMEOUT;
mAppSwitchSawKeyDown = false;
needWake = true;
}
}
}
break;
}
case EventEntry::Type::MOTION: {
if (shouldPruneInboundQueueLocked(static_cast<MotionEntry&>(*entry))) {
mNextUnblockedEvent = entry;
needWake = true;
}
break;
}
case EventEntry::Type::FOCUS: {
LOG_ALWAYS_FATAL("Focus events should be inserted using enqueueFocusEventLocked");
break;
}
case EventEntry::Type::CONFIGURATION_CHANGED:
case EventEntry::Type::DEVICE_RESET: {
// nothing to do
break;
}
}
return needWake;
}
void InputDispatcher::addRecentEventLocked(EventEntry* entry) {
entry->refCount += 1;
mRecentQueue.push_back(entry);
if (mRecentQueue.size() > RECENT_QUEUE_MAX_SIZE) {
mRecentQueue.front()->release();
mRecentQueue.pop_front();
}
}
sp<InputWindowHandle> InputDispatcher::findTouchedWindowAtLocked(int32_t displayId, int32_t x,
int32_t y, TouchState* touchState,
bool addOutsideTargets,
bool addPortalWindows) {
if ((addPortalWindows || addOutsideTargets) && touchState == nullptr) {
LOG_ALWAYS_FATAL(
"Must provide a valid touch state if adding portal windows or outside targets");
}
// Traverse windows from front to back to find touched window.
const std::vector<sp<InputWindowHandle>> windowHandles = getWindowHandlesLocked(displayId);
for (const sp<InputWindowHandle>& windowHandle : windowHandles) {
const InputWindowInfo* windowInfo = windowHandle->getInfo();
if (windowInfo->displayId == displayId) {
int32_t flags = windowInfo->layoutParamsFlags;
if (windowInfo->visible) {
if (!(flags & InputWindowInfo::FLAG_NOT_TOUCHABLE)) {
bool isTouchModal = (flags &
(InputWindowInfo::FLAG_NOT_FOCUSABLE |
InputWindowInfo::FLAG_NOT_TOUCH_MODAL)) == 0;
if (isTouchModal || windowInfo->touchableRegionContainsPoint(x, y)) {
int32_t portalToDisplayId = windowInfo->portalToDisplayId;
if (portalToDisplayId != ADISPLAY_ID_NONE &&
portalToDisplayId != displayId) {
if (addPortalWindows) {
// For the monitoring channels of the display.
touchState->addPortalWindow(windowHandle);
}
return findTouchedWindowAtLocked(portalToDisplayId, x, y, touchState,
addOutsideTargets, addPortalWindows);
}
// Found window.
return windowHandle;
}
}
if (addOutsideTargets && (flags & InputWindowInfo::FLAG_WATCH_OUTSIDE_TOUCH)) {
touchState->addOrUpdateWindow(windowHandle,
InputTarget::FLAG_DISPATCH_AS_OUTSIDE,
BitSet32(0));
}
}
}
}
return nullptr;
}
std::vector<TouchedMonitor> InputDispatcher::findTouchedGestureMonitorsLocked(
int32_t displayId, const std::vector<sp<InputWindowHandle>>& portalWindows) const {
std::vector<TouchedMonitor> touchedMonitors;
std::vector<Monitor> monitors = getValueByKey(mGestureMonitorsByDisplay, displayId);
addGestureMonitors(monitors, touchedMonitors);
for (const sp<InputWindowHandle>& portalWindow : portalWindows) {
const InputWindowInfo* windowInfo = portalWindow->getInfo();
monitors = getValueByKey(mGestureMonitorsByDisplay, windowInfo->portalToDisplayId);
addGestureMonitors(monitors, touchedMonitors, -windowInfo->frameLeft,
-windowInfo->frameTop);
}
return touchedMonitors;
}
void InputDispatcher::dropInboundEventLocked(const EventEntry& entry, DropReason dropReason) {
const char* reason;
switch (dropReason) {
case DropReason::POLICY:
#if DEBUG_INBOUND_EVENT_DETAILS
ALOGD("Dropped event because policy consumed it.");
#endif
reason = "inbound event was dropped because the policy consumed it";
break;
case DropReason::DISABLED:
if (mLastDropReason != DropReason::DISABLED) {
ALOGI("Dropped event because input dispatch is disabled.");
}
reason = "inbound event was dropped because input dispatch is disabled";
break;
case DropReason::APP_SWITCH:
ALOGI("Dropped event because of pending overdue app switch.");
reason = "inbound event was dropped because of pending overdue app switch";
break;
case DropReason::BLOCKED:
ALOGI("Dropped event because the current application is not responding and the user "
"has started interacting with a different application.");
reason = "inbound event was dropped because the current application is not responding "
"and the user has started interacting with a different application";
break;
case DropReason::STALE:
ALOGI("Dropped event because it is stale.");
reason = "inbound event was dropped because it is stale";
break;
case DropReason::NOT_DROPPED: {
LOG_ALWAYS_FATAL("Should not be dropping a NOT_DROPPED event");
return;
}
}
switch (entry.type) {
case EventEntry::Type::KEY: {
CancelationOptions options(CancelationOptions::CANCEL_NON_POINTER_EVENTS, reason);
synthesizeCancelationEventsForAllConnectionsLocked(options);
break;
}
case EventEntry::Type::MOTION: {
const MotionEntry& motionEntry = static_cast<const MotionEntry&>(entry);
if (motionEntry.source & AINPUT_SOURCE_CLASS_POINTER) {
CancelationOptions options(CancelationOptions::CANCEL_POINTER_EVENTS, reason);
synthesizeCancelationEventsForAllConnectionsLocked(options);
} else {
CancelationOptions options(CancelationOptions::CANCEL_NON_POINTER_EVENTS, reason);
synthesizeCancelationEventsForAllConnectionsLocked(options);
}
break;
}
case EventEntry::Type::FOCUS:
case EventEntry::Type::CONFIGURATION_CHANGED:
case EventEntry::Type::DEVICE_RESET: {
LOG_ALWAYS_FATAL("Should not drop %s events", EventEntry::typeToString(entry.type));
break;
}
}
}
static bool isAppSwitchKeyCode(int32_t keyCode) {
return keyCode == AKEYCODE_HOME || keyCode == AKEYCODE_ENDCALL ||
keyCode == AKEYCODE_APP_SWITCH;
}
bool InputDispatcher::isAppSwitchKeyEvent(const KeyEntry& keyEntry) {
return !(keyEntry.flags & AKEY_EVENT_FLAG_CANCELED) && isAppSwitchKeyCode(keyEntry.keyCode) &&
(keyEntry.policyFlags & POLICY_FLAG_TRUSTED) &&
(keyEntry.policyFlags & POLICY_FLAG_PASS_TO_USER);
}
bool InputDispatcher::isAppSwitchPendingLocked() {
return mAppSwitchDueTime != LONG_LONG_MAX;
}
void InputDispatcher::resetPendingAppSwitchLocked(bool handled) {
mAppSwitchDueTime = LONG_LONG_MAX;
#if DEBUG_APP_SWITCH
if (handled) {
ALOGD("App switch has arrived.");
} else {
ALOGD("App switch was abandoned.");
}
#endif
}
bool InputDispatcher::haveCommandsLocked() const {
return !mCommandQueue.empty();
}
bool InputDispatcher::runCommandsLockedInterruptible() {
if (mCommandQueue.empty()) {
return false;
}
do {
std::unique_ptr<CommandEntry> commandEntry = std::move(mCommandQueue.front());
mCommandQueue.pop_front();
Command command = commandEntry->command;
command(*this, commandEntry.get()); // commands are implicitly 'LockedInterruptible'
commandEntry->connection.clear();
} while (!mCommandQueue.empty());
return true;
}
void InputDispatcher::postCommandLocked(std::unique_ptr<CommandEntry> commandEntry) {
mCommandQueue.push_back(std::move(commandEntry));
}
void InputDispatcher::drainInboundQueueLocked() {
while (!mInboundQueue.empty()) {
EventEntry* entry = mInboundQueue.front();
mInboundQueue.pop_front();
releaseInboundEventLocked(entry);
}
traceInboundQueueLengthLocked();
}
void InputDispatcher::releasePendingEventLocked() {
if (mPendingEvent) {
releaseInboundEventLocked(mPendingEvent);
mPendingEvent = nullptr;
}
}
void InputDispatcher::releaseInboundEventLocked(EventEntry* entry) {
InjectionState* injectionState = entry->injectionState;
if (injectionState && injectionState->injectionResult == INPUT_EVENT_INJECTION_PENDING) {
#if DEBUG_DISPATCH_CYCLE
ALOGD("Injected inbound event was dropped.");
#endif
setInjectionResult(entry, INPUT_EVENT_INJECTION_FAILED);
}
if (entry == mNextUnblockedEvent) {
mNextUnblockedEvent = nullptr;
}
addRecentEventLocked(entry);
entry->release();
}
void InputDispatcher::resetKeyRepeatLocked() {
if (mKeyRepeatState.lastKeyEntry) {
mKeyRepeatState.lastKeyEntry->release();
mKeyRepeatState.lastKeyEntry = nullptr;
}
}
KeyEntry* InputDispatcher::synthesizeKeyRepeatLocked(nsecs_t currentTime) {
KeyEntry* entry = mKeyRepeatState.lastKeyEntry;
// Reuse the repeated key entry if it is otherwise unreferenced.
uint32_t policyFlags = entry->policyFlags &
(POLICY_FLAG_RAW_MASK | POLICY_FLAG_PASS_TO_USER | POLICY_FLAG_TRUSTED);
if (entry->refCount == 1) {
entry->recycle();
entry->id = mIdGenerator.nextId();
entry->eventTime = currentTime;
entry->policyFlags = policyFlags;
entry->repeatCount += 1;
} else {
KeyEntry* newEntry =
new KeyEntry(mIdGenerator.nextId(), currentTime, entry->deviceId, entry->source,
entry->displayId, policyFlags, entry->action, entry->flags,
entry->keyCode, entry->scanCode, entry->metaState,
entry->repeatCount + 1, entry->downTime);
mKeyRepeatState.lastKeyEntry = newEntry;
entry->release();
entry = newEntry;
}
entry->syntheticRepeat = true;
// Increment reference count since we keep a reference to the event in
// mKeyRepeatState.lastKeyEntry in addition to the one we return.
entry->refCount += 1;
mKeyRepeatState.nextRepeatTime = currentTime + mConfig.keyRepeatDelay;
return entry;
}
bool InputDispatcher::dispatchConfigurationChangedLocked(nsecs_t currentTime,
ConfigurationChangedEntry* entry) {
#if DEBUG_OUTBOUND_EVENT_DETAILS
ALOGD("dispatchConfigurationChanged - eventTime=%" PRId64, entry->eventTime);
#endif
// Reset key repeating in case a keyboard device was added or removed or something.
resetKeyRepeatLocked();
// Enqueue a command to run outside the lock to tell the policy that the configuration changed.
std::unique_ptr<CommandEntry> commandEntry = std::make_unique<CommandEntry>(
&InputDispatcher::doNotifyConfigurationChangedLockedInterruptible);
commandEntry->eventTime = entry->eventTime;
postCommandLocked(std::move(commandEntry));
return true;
}
bool InputDispatcher::dispatchDeviceResetLocked(nsecs_t currentTime, DeviceResetEntry* entry) {
#if DEBUG_OUTBOUND_EVENT_DETAILS
ALOGD("dispatchDeviceReset - eventTime=%" PRId64 ", deviceId=%d", entry->eventTime,
entry->deviceId);
#endif
CancelationOptions options(CancelationOptions::CANCEL_ALL_EVENTS, "device was reset");
options.deviceId = entry->deviceId;
synthesizeCancelationEventsForAllConnectionsLocked(options);
return true;
}
void InputDispatcher::enqueueFocusEventLocked(const InputWindowHandle& window, bool hasFocus) {
if (mPendingEvent != nullptr) {
// Move the pending event to the front of the queue. This will give the chance
// for the pending event to get dispatched to the newly focused window
mInboundQueue.push_front(mPendingEvent);
mPendingEvent = nullptr;
}
FocusEntry* focusEntry =
new FocusEntry(mIdGenerator.nextId(), now(), window.getToken(), hasFocus);
// This event should go to the front of the queue, but behind all other focus events
// Find the last focus event, and insert right after it
std::deque<EventEntry*>::reverse_iterator it =
std::find_if(mInboundQueue.rbegin(), mInboundQueue.rend(),
[](EventEntry* event) { return event->type == EventEntry::Type::FOCUS; });
// Maintain the order of focus events. Insert the entry after all other focus events.
mInboundQueue.insert(it.base(), focusEntry);
}
void InputDispatcher::dispatchFocusLocked(nsecs_t currentTime, FocusEntry* entry) {
sp<InputChannel> channel = getInputChannelLocked(entry->connectionToken);
if (channel == nullptr) {
return; // Window has gone away
}
InputTarget target;
target.inputChannel = channel;
target.flags = InputTarget::FLAG_DISPATCH_AS_IS;
entry->dispatchInProgress = true;
dispatchEventLocked(currentTime, entry, {target});
}
bool InputDispatcher::dispatchKeyLocked(nsecs_t currentTime, KeyEntry* entry,
DropReason* dropReason, nsecs_t* nextWakeupTime) {
// Preprocessing.
if (!entry->dispatchInProgress) {
if (entry->repeatCount == 0 && entry->action == AKEY_EVENT_ACTION_DOWN &&
(entry->policyFlags & POLICY_FLAG_TRUSTED) &&
(!(entry->policyFlags & POLICY_FLAG_DISABLE_KEY_REPEAT))) {
if (mKeyRepeatState.lastKeyEntry &&
mKeyRepeatState.lastKeyEntry->keyCode == entry->keyCode) {
// We have seen two identical key downs in a row which indicates that the device
// driver is automatically generating key repeats itself. We take note of the
// repeat here, but we disable our own next key repeat timer since it is clear that
// we will not need to synthesize key repeats ourselves.
entry->repeatCount = mKeyRepeatState.lastKeyEntry->repeatCount + 1;
resetKeyRepeatLocked();
mKeyRepeatState.nextRepeatTime = LONG_LONG_MAX; // don't generate repeats ourselves
} else {
// Not a repeat. Save key down state in case we do see a repeat later.
resetKeyRepeatLocked();
mKeyRepeatState.nextRepeatTime = entry->eventTime + mConfig.keyRepeatTimeout;
}
mKeyRepeatState.lastKeyEntry = entry;
entry->refCount += 1;
} else if (!entry->syntheticRepeat) {
resetKeyRepeatLocked();
}
if (entry->repeatCount == 1) {
entry->flags |= AKEY_EVENT_FLAG_LONG_PRESS;
} else {
entry->flags &= ~AKEY_EVENT_FLAG_LONG_PRESS;
}
entry->dispatchInProgress = true;
logOutboundKeyDetails("dispatchKey - ", *entry);
}
// Handle case where the policy asked us to try again later last time.
if (entry->interceptKeyResult == KeyEntry::INTERCEPT_KEY_RESULT_TRY_AGAIN_LATER) {
if (currentTime < entry->interceptKeyWakeupTime) {
if (entry->interceptKeyWakeupTime < *nextWakeupTime) {
*nextWakeupTime = entry->interceptKeyWakeupTime;
}
return false; // wait until next wakeup
}
entry->interceptKeyResult = KeyEntry::INTERCEPT_KEY_RESULT_UNKNOWN;
entry->interceptKeyWakeupTime = 0;
}
// Give the policy a chance to intercept the key.
if (entry->interceptKeyResult == KeyEntry::INTERCEPT_KEY_RESULT_UNKNOWN) {
if (entry->policyFlags & POLICY_FLAG_PASS_TO_USER) {
std::unique_ptr<CommandEntry> commandEntry = std::make_unique<CommandEntry>(
&InputDispatcher::doInterceptKeyBeforeDispatchingLockedInterruptible);
sp<InputWindowHandle> focusedWindowHandle =
getValueByKey(mFocusedWindowHandlesByDisplay, getTargetDisplayId(*entry));
if (focusedWindowHandle != nullptr) {
commandEntry->inputChannel = getInputChannelLocked(focusedWindowHandle->getToken());
}
commandEntry->keyEntry = entry;
postCommandLocked(std::move(commandEntry));
entry->refCount += 1;
return false; // wait for the command to run
} else {
entry->interceptKeyResult = KeyEntry::INTERCEPT_KEY_RESULT_CONTINUE;
}
} else if (entry->interceptKeyResult == KeyEntry::INTERCEPT_KEY_RESULT_SKIP) {
if (*dropReason == DropReason::NOT_DROPPED) {
*dropReason = DropReason::POLICY;
}
}
// Clean up if dropping the event.
if (*dropReason != DropReason::NOT_DROPPED) {
setInjectionResult(entry,
*dropReason == DropReason::POLICY ? INPUT_EVENT_INJECTION_SUCCEEDED
: INPUT_EVENT_INJECTION_FAILED);
mReporter->reportDroppedKey(entry->id);
return true;
}
// Identify targets.
std::vector<InputTarget> inputTargets;
int32_t injectionResult =
findFocusedWindowTargetsLocked(currentTime, *entry, inputTargets, nextWakeupTime);
if (injectionResult == INPUT_EVENT_INJECTION_PENDING) {
return false;
}
setInjectionResult(entry, injectionResult);
if (injectionResult != INPUT_EVENT_INJECTION_SUCCEEDED) {
return true;
}
// Add monitor channels from event's or focused display.
addGlobalMonitoringTargetsLocked(inputTargets, getTargetDisplayId(*entry));
// Dispatch the key.
dispatchEventLocked(currentTime, entry, inputTargets);
return true;
}
void InputDispatcher::logOutboundKeyDetails(const char* prefix, const KeyEntry& entry) {
#if DEBUG_OUTBOUND_EVENT_DETAILS
ALOGD("%seventTime=%" PRId64 ", deviceId=%d, source=0x%x, displayId=%" PRId32 ", "
"policyFlags=0x%x, action=0x%x, flags=0x%x, keyCode=0x%x, scanCode=0x%x, "
"metaState=0x%x, repeatCount=%d, downTime=%" PRId64,
prefix, entry.eventTime, entry.deviceId, entry.source, entry.displayId, entry.policyFlags,
entry.action, entry.flags, entry.keyCode, entry.scanCode, entry.metaState,
entry.repeatCount, entry.downTime);
#endif
}
bool InputDispatcher::dispatchMotionLocked(nsecs_t currentTime, MotionEntry* entry,
DropReason* dropReason, nsecs_t* nextWakeupTime) {
ATRACE_CALL();
// Preprocessing.
if (!entry->dispatchInProgress) {
entry->dispatchInProgress = true;
logOutboundMotionDetails("dispatchMotion - ", *entry);
}
// Clean up if dropping the event.
if (*dropReason != DropReason::NOT_DROPPED) {
setInjectionResult(entry,
*dropReason == DropReason::POLICY ? INPUT_EVENT_INJECTION_SUCCEEDED
: INPUT_EVENT_INJECTION_FAILED);
return true;
}
bool isPointerEvent = entry->source & AINPUT_SOURCE_CLASS_POINTER;
// Identify targets.
std::vector<InputTarget> inputTargets;
bool conflictingPointerActions = false;
int32_t injectionResult;
if (isPointerEvent) {
// Pointer event. (eg. touchscreen)
injectionResult =
findTouchedWindowTargetsLocked(currentTime, *entry, inputTargets, nextWakeupTime,
&conflictingPointerActions);
} else {
// Non touch event. (eg. trackball)
injectionResult =
findFocusedWindowTargetsLocked(currentTime, *entry, inputTargets, nextWakeupTime);
}
if (injectionResult == INPUT_EVENT_INJECTION_PENDING) {
return false;
}
setInjectionResult(entry, injectionResult);
if (injectionResult == INPUT_EVENT_INJECTION_PERMISSION_DENIED) {
ALOGW("Permission denied, dropping the motion (isPointer=%s)", toString(isPointerEvent));
return true;
}
if (injectionResult != INPUT_EVENT_INJECTION_SUCCEEDED) {
CancelationOptions::Mode mode(isPointerEvent
? CancelationOptions::CANCEL_POINTER_EVENTS
: CancelationOptions::CANCEL_NON_POINTER_EVENTS);
CancelationOptions options(mode, "input event injection failed");
synthesizeCancelationEventsForMonitorsLocked(options);
return true;
}
// Add monitor channels from event's or focused display.
addGlobalMonitoringTargetsLocked(inputTargets, getTargetDisplayId(*entry));
if (isPointerEvent) {
std::unordered_map<int32_t, TouchState>::iterator it =
mTouchStatesByDisplay.find(entry->displayId);
if (it != mTouchStatesByDisplay.end()) {
const TouchState& state = it->second;
if (!state.portalWindows.empty()) {
// The event has gone through these portal windows, so we add monitoring targets of
// the corresponding displays as well.
for (size_t i = 0; i < state.portalWindows.size(); i++) {
const InputWindowInfo* windowInfo = state.portalWindows[i]->getInfo();
addGlobalMonitoringTargetsLocked(inputTargets, windowInfo->portalToDisplayId,
-windowInfo->frameLeft, -windowInfo->frameTop);
}
}
}
}
// Dispatch the motion.
if (conflictingPointerActions) {
CancelationOptions options(CancelationOptions::CANCEL_POINTER_EVENTS,
"conflicting pointer actions");
synthesizeCancelationEventsForAllConnectionsLocked(options);
}
dispatchEventLocked(currentTime, entry, inputTargets);
return true;
}
void InputDispatcher::logOutboundMotionDetails(const char* prefix, const MotionEntry& entry) {
#if DEBUG_OUTBOUND_EVENT_DETAILS
ALOGD("%seventTime=%" PRId64 ", deviceId=%d, source=0x%x, displayId=%" PRId32
", policyFlags=0x%x, "
"action=0x%x, actionButton=0x%x, flags=0x%x, "
"metaState=0x%x, buttonState=0x%x,"
"edgeFlags=0x%x, xPrecision=%f, yPrecision=%f, downTime=%" PRId64,
prefix, entry.eventTime, entry.deviceId, entry.source, entry.displayId, entry.policyFlags,
entry.action, entry.actionButton, entry.flags, entry.metaState, entry.buttonState,
entry.edgeFlags, entry.xPrecision, entry.yPrecision, entry.downTime);
for (uint32_t i = 0; i < entry.pointerCount; i++) {
ALOGD(" Pointer %d: id=%d, toolType=%d, "
"x=%f, y=%f, pressure=%f, size=%f, "
"touchMajor=%f, touchMinor=%f, toolMajor=%f, toolMinor=%f, "
"orientation=%f",
i, entry.pointerProperties[i].id, entry.pointerProperties[i].toolType,
entry.pointerCoords[i].getAxisValue(AMOTION_EVENT_AXIS_X),
entry.pointerCoords[i].getAxisValue(AMOTION_EVENT_AXIS_Y),
entry.pointerCoords[i].getAxisValue(AMOTION_EVENT_AXIS_PRESSURE),
entry.pointerCoords[i].getAxisValue(AMOTION_EVENT_AXIS_SIZE),
entry.pointerCoords[i].getAxisValue(AMOTION_EVENT_AXIS_TOUCH_MAJOR),
entry.pointerCoords[i].getAxisValue(AMOTION_EVENT_AXIS_TOUCH_MINOR),
entry.pointerCoords[i].getAxisValue(AMOTION_EVENT_AXIS_TOOL_MAJOR),
entry.pointerCoords[i].getAxisValue(AMOTION_EVENT_AXIS_TOOL_MINOR),
entry.pointerCoords[i].getAxisValue(AMOTION_EVENT_AXIS_ORIENTATION));
}
#endif
}
void InputDispatcher::dispatchEventLocked(nsecs_t currentTime, EventEntry* eventEntry,
const std::vector<InputTarget>& inputTargets) {
ATRACE_CALL();
#if DEBUG_DISPATCH_CYCLE
ALOGD("dispatchEventToCurrentInputTargets");
#endif
ALOG_ASSERT(eventEntry->dispatchInProgress); // should already have been set to true
pokeUserActivityLocked(*eventEntry);
for (const InputTarget& inputTarget : inputTargets) {
sp<Connection> connection =
getConnectionLocked(inputTarget.inputChannel->getConnectionToken());
if (connection != nullptr) {
prepareDispatchCycleLocked(currentTime, connection, eventEntry, inputTarget);
} else {
if (DEBUG_FOCUS) {
ALOGD("Dropping event delivery to target with channel '%s' because it "
"is no longer registered with the input dispatcher.",
inputTarget.inputChannel->getName().c_str());
}
}
}
}
void InputDispatcher::cancelEventsForAnrLocked(const sp<Connection>& connection) {
// We will not be breaking any connections here, even if the policy wants us to abort dispatch.
// If the policy decides to close the app, we will get a channel removal event via
// unregisterInputChannel, and will clean up the connection that way. We are already not
// sending new pointers to the connection when it blocked, but focused events will continue to
// pile up.
ALOGW("Canceling events for %s because it is unresponsive",
connection->inputChannel->getName().c_str());
if (connection->status == Connection::STATUS_NORMAL) {
CancelationOptions options(CancelationOptions::CANCEL_ALL_EVENTS,
"application not responding");
synthesizeCancelationEventsForConnectionLocked(connection, options);
}
}
void InputDispatcher::resetNoFocusedWindowTimeoutLocked() {
if (DEBUG_FOCUS) {
ALOGD("Resetting ANR timeouts.");
}
// Reset input target wait timeout.
mNoFocusedWindowTimeoutTime = std::nullopt;
mAwaitedFocusedApplication.clear();
}
/**
* Get the display id that the given event should go to. If this event specifies a valid display id,
* then it should be dispatched to that display. Otherwise, the event goes to the focused display.
* Focused display is the display that the user most recently interacted with.
*/
int32_t InputDispatcher::getTargetDisplayId(const EventEntry& entry) {
int32_t displayId;
switch (entry.type) {
case EventEntry::Type::KEY: {
const KeyEntry& keyEntry = static_cast<const KeyEntry&>(entry);
displayId = keyEntry.displayId;
break;
}
case EventEntry::Type::MOTION: {
const MotionEntry& motionEntry = static_cast<const MotionEntry&>(entry);
displayId = motionEntry.displayId;
break;
}
case EventEntry::Type::FOCUS:
case EventEntry::Type::CONFIGURATION_CHANGED:
case EventEntry::Type::DEVICE_RESET: {
ALOGE("%s events do not have a target display", EventEntry::typeToString(entry.type));
return ADISPLAY_ID_NONE;
}
}
return displayId == ADISPLAY_ID_NONE ? mFocusedDisplayId : displayId;
}
bool InputDispatcher::shouldWaitToSendKeyLocked(nsecs_t currentTime,
const char* focusedWindowName) {
if (mAnrTracker.empty()) {
// already processed all events that we waited for
mKeyIsWaitingForEventsTimeout = std::nullopt;
return false;
}
if (!mKeyIsWaitingForEventsTimeout.has_value()) {
// Start the timer
ALOGD("Waiting to send key to %s because there are unprocessed events that may cause "
"focus to change",
focusedWindowName);
mKeyIsWaitingForEventsTimeout = currentTime + KEY_WAITING_FOR_EVENTS_TIMEOUT.count();
return true;
}
// We still have pending events, and already started the timer
if (currentTime < *mKeyIsWaitingForEventsTimeout) {
return true; // Still waiting
}
// Waited too long, and some connection still hasn't processed all motions
// Just send the key to the focused window
ALOGW("Dispatching key to %s even though there are other unprocessed events",
focusedWindowName);
mKeyIsWaitingForEventsTimeout = std::nullopt;
return false;
}
int32_t InputDispatcher::findFocusedWindowTargetsLocked(nsecs_t currentTime,
const EventEntry& entry,
std::vector<InputTarget>& inputTargets,
nsecs_t* nextWakeupTime) {
std::string reason;
int32_t displayId = getTargetDisplayId(entry);
sp<InputWindowHandle> focusedWindowHandle =
getValueByKey(mFocusedWindowHandlesByDisplay, displayId);
sp<InputApplicationHandle> focusedApplicationHandle =
getValueByKey(mFocusedApplicationHandlesByDisplay, displayId);
// If there is no currently focused window and no focused application
// then drop the event.
if (focusedWindowHandle == nullptr && focusedApplicationHandle == nullptr) {
ALOGI("Dropping %s event because there is no focused window or focused application in "
"display %" PRId32 ".",
EventEntry::typeToString(entry.type), displayId);
return INPUT_EVENT_INJECTION_FAILED;
}
// Compatibility behavior: raise ANR if there is a focused application, but no focused window.
// Only start counting when we have a focused event to dispatch. The ANR is canceled if we
// start interacting with another application via touch (app switch). This code can be removed
// if the "no focused window ANR" is moved to the policy. Input doesn't know whether
// an app is expected to have a focused window.
if (focusedWindowHandle == nullptr && focusedApplicationHandle != nullptr) {
if (!mNoFocusedWindowTimeoutTime.has_value()) {
// We just discovered that there's no focused window. Start the ANR timer
const nsecs_t timeout = focusedApplicationHandle->getDispatchingTimeout(
DEFAULT_INPUT_DISPATCHING_TIMEOUT.count());
mNoFocusedWindowTimeoutTime = currentTime + timeout;
mAwaitedFocusedApplication = focusedApplicationHandle;
ALOGW("Waiting because no window has focus but %s may eventually add a "
"window when it finishes starting up. Will wait for %" PRId64 "ms",
mAwaitedFocusedApplication->getName().c_str(), ns2ms(timeout));
*nextWakeupTime = *mNoFocusedWindowTimeoutTime;
return INPUT_EVENT_INJECTION_PENDING;
} else if (currentTime > *mNoFocusedWindowTimeoutTime) {
// Already raised ANR. Drop the event
ALOGE("Dropping %s event because there is no focused window",
EventEntry::typeToString(entry.type));
return INPUT_EVENT_INJECTION_FAILED;
} else {
// Still waiting for the focused window
return INPUT_EVENT_INJECTION_PENDING;
}
}
// we have a valid, non-null focused window
resetNoFocusedWindowTimeoutLocked();
// Check permissions.
if (!checkInjectionPermission(focusedWindowHandle, entry.injectionState)) {
return INPUT_EVENT_INJECTION_PERMISSION_DENIED;
}
if (focusedWindowHandle->getInfo()->paused) {
ALOGI("Waiting because %s is paused", focusedWindowHandle->getName().c_str());
return INPUT_EVENT_INJECTION_PENDING;
}
// If the event is a key event, then we must wait for all previous events to
// complete before delivering it because previous events may have the
// side-effect of transferring focus to a different window and we want to
// ensure that the following keys are sent to the new window.
//
// Suppose the user touches a button in a window then immediately presses "A".
// If the button causes a pop-up window to appear then we want to ensure that
// the "A" key is delivered to the new pop-up window. This is because users
// often anticipate pending UI changes when typing on a keyboard.
// To obtain this behavior, we must serialize key events with respect to all
// prior input events.
if (entry.type == EventEntry::Type::KEY) {
if (shouldWaitToSendKeyLocked(currentTime, focusedWindowHandle->getName().c_str())) {
*nextWakeupTime = *mKeyIsWaitingForEventsTimeout;
return INPUT_EVENT_INJECTION_PENDING;
}
}
// Success! Output targets.
addWindowTargetLocked(focusedWindowHandle,
InputTarget::FLAG_FOREGROUND | InputTarget::FLAG_DISPATCH_AS_IS,
BitSet32(0), inputTargets);
// Done.
return INPUT_EVENT_INJECTION_SUCCEEDED;
}
/**
* Given a list of monitors, remove the ones we cannot find a connection for, and the ones
* that are currently unresponsive.
*/
std::vector<TouchedMonitor> InputDispatcher::selectResponsiveMonitorsLocked(
const std::vector<TouchedMonitor>& monitors) const {
std::vector<TouchedMonitor> responsiveMonitors;
std::copy_if(monitors.begin(), monitors.end(), std::back_inserter(responsiveMonitors),
[this](const TouchedMonitor& monitor) REQUIRES(mLock) {
sp<Connection> connection = getConnectionLocked(
monitor.monitor.inputChannel->getConnectionToken());
if (connection == nullptr) {
ALOGE("Could not find connection for monitor %s",
monitor.monitor.inputChannel->getName().c_str());
return false;
}
if (!connection->responsive) {
ALOGW("Unresponsive monitor %s will not get the new gesture",
connection->inputChannel->getName().c_str());
return false;
}
return true;
});
return responsiveMonitors;
}
int32_t InputDispatcher::findTouchedWindowTargetsLocked(nsecs_t currentTime,
const MotionEntry& entry,
std::vector<InputTarget>& inputTargets,
nsecs_t* nextWakeupTime,
bool* outConflictingPointerActions) {
ATRACE_CALL();
enum InjectionPermission {
INJECTION_PERMISSION_UNKNOWN,
INJECTION_PERMISSION_GRANTED,
INJECTION_PERMISSION_DENIED
};
// For security reasons, we defer updating the touch state until we are sure that
// event injection will be allowed.
int32_t displayId = entry.displayId;
int32_t action = entry.action;
int32_t maskedAction = action & AMOTION_EVENT_ACTION_MASK;
// Update the touch state as needed based on the properties of the touch event.
int32_t injectionResult = INPUT_EVENT_INJECTION_PENDING;
InjectionPermission injectionPermission = INJECTION_PERMISSION_UNKNOWN;
sp<InputWindowHandle> newHoverWindowHandle;
// Copy current touch state into tempTouchState.
// This state will be used to update mTouchStatesByDisplay at the end of this function.
// If no state for the specified display exists, then our initial state will be empty.
const TouchState* oldState = nullptr;
TouchState tempTouchState;
std::unordered_map<int32_t, TouchState>::iterator oldStateIt =
mTouchStatesByDisplay.find(displayId);
if (oldStateIt != mTouchStatesByDisplay.end()) {
oldState = &(oldStateIt->second);
tempTouchState.copyFrom(*oldState);
}
bool isSplit = tempTouchState.split;
bool switchedDevice = tempTouchState.deviceId >= 0 && tempTouchState.displayId >= 0 &&
(tempTouchState.deviceId != entry.deviceId || tempTouchState.source != entry.source ||
tempTouchState.displayId != displayId);
bool isHoverAction = (maskedAction == AMOTION_EVENT_ACTION_HOVER_MOVE ||
maskedAction == AMOTION_EVENT_ACTION_HOVER_ENTER ||
maskedAction == AMOTION_EVENT_ACTION_HOVER_EXIT);
bool newGesture = (maskedAction == AMOTION_EVENT_ACTION_DOWN ||
maskedAction == AMOTION_EVENT_ACTION_SCROLL || isHoverAction);
const bool isFromMouse = entry.source == AINPUT_SOURCE_MOUSE;
bool wrongDevice = false;
if (newGesture) {
bool down = maskedAction == AMOTION_EVENT_ACTION_DOWN;
if (switchedDevice && tempTouchState.down && !down && !isHoverAction) {
ALOGI("Dropping event because a pointer for a different device is already down "
"in display %" PRId32,
displayId);
// TODO: test multiple simultaneous input streams.
injectionResult = INPUT_EVENT_INJECTION_FAILED;
switchedDevice = false;
wrongDevice = true;
goto Failed;
}
tempTouchState.reset();
tempTouchState.down = down;
tempTouchState.deviceId = entry.deviceId;
tempTouchState.source = entry.source;
tempTouchState.displayId = displayId;
isSplit = false;
} else if (switchedDevice && maskedAction == AMOTION_EVENT_ACTION_MOVE) {
ALOGI("Dropping move event because a pointer for a different device is already active "
"in display %" PRId32,
displayId);
// TODO: test multiple simultaneous input streams.
injectionResult = INPUT_EVENT_INJECTION_PERMISSION_DENIED;
switchedDevice = false;
wrongDevice = true;
goto Failed;
}
if (newGesture || (isSplit && maskedAction == AMOTION_EVENT_ACTION_POINTER_DOWN)) {
/* Case 1: New splittable pointer going down, or need target for hover or scroll. */
int32_t x;
int32_t y;
int32_t pointerIndex = getMotionEventActionPointerIndex(action);
// Always dispatch mouse events to cursor position.
if (isFromMouse) {
x = int32_t(entry.xCursorPosition);
y = int32_t(entry.yCursorPosition);
} else {
x = int32_t(entry.pointerCoords[pointerIndex].getAxisValue(AMOTION_EVENT_AXIS_X));
y = int32_t(entry.pointerCoords[pointerIndex].getAxisValue(AMOTION_EVENT_AXIS_Y));
}
bool isDown = maskedAction == AMOTION_EVENT_ACTION_DOWN;
sp<InputWindowHandle> newTouchedWindowHandle =
findTouchedWindowAtLocked(displayId, x, y, &tempTouchState,
isDown /*addOutsideTargets*/, true /*addPortalWindows*/);
std::vector<TouchedMonitor> newGestureMonitors = isDown
? findTouchedGestureMonitorsLocked(displayId, tempTouchState.portalWindows)
: std::vector<TouchedMonitor>{};
// Figure out whether splitting will be allowed for this window.
if (newTouchedWindowHandle != nullptr &&
newTouchedWindowHandle->getInfo()->supportsSplitTouch()) {
// New window supports splitting, but we should never split mouse events.
isSplit = !isFromMouse;
} else if (isSplit) {
// New window does not support splitting but we have already split events.
// Ignore the new window.
newTouchedWindowHandle = nullptr;
}
// Handle the case where we did not find a window.
if (newTouchedWindowHandle == nullptr) {
// Try to assign the pointer to the first foreground window we find, if there is one.
newTouchedWindowHandle = tempTouchState.getFirstForegroundWindowHandle();
}
if (newTouchedWindowHandle != nullptr && newTouchedWindowHandle->getInfo()->paused) {
ALOGI("Not sending touch event to %s because it is paused",
newTouchedWindowHandle->getName().c_str());
newTouchedWindowHandle = nullptr;
}
if (newTouchedWindowHandle != nullptr) {
sp<Connection> connection = getConnectionLocked(newTouchedWindowHandle->getToken());
if (connection == nullptr) {
ALOGI("Could not find connection for %s",
newTouchedWindowHandle->getName().c_str());
newTouchedWindowHandle = nullptr;
} else if (!connection->responsive) {
// don't send the new touch to an unresponsive window
ALOGW("Unresponsive window %s will not get the new gesture at %" PRIu64,
newTouchedWindowHandle->getName().c_str(), entry.eventTime);
newTouchedWindowHandle = nullptr;
}
}
// Also don't send the new touch event to unresponsive gesture monitors
newGestureMonitors = selectResponsiveMonitorsLocked(newGestureMonitors);
if (newTouchedWindowHandle == nullptr && newGestureMonitors.empty()) {
ALOGI("Dropping event because there is no touchable window or gesture monitor at "
"(%d, %d) in display %" PRId32 ".",
x, y, displayId);
injectionResult = INPUT_EVENT_INJECTION_FAILED;
goto Failed;
}
if (newTouchedWindowHandle != nullptr) {
// Set target flags.
int32_t targetFlags = InputTarget::FLAG_FOREGROUND | InputTarget::FLAG_DISPATCH_AS_IS;
if (isSplit) {
targetFlags |= InputTarget::FLAG_SPLIT;
}
if (isWindowObscuredAtPointLocked(newTouchedWindowHandle, x, y)) {
targetFlags |= InputTarget::FLAG_WINDOW_IS_OBSCURED;
} else if (isWindowObscuredLocked(newTouchedWindowHandle)) {
targetFlags |= InputTarget::FLAG_WINDOW_IS_PARTIALLY_OBSCURED;
}
// Update hover state.
if (isHoverAction) {
newHoverWindowHandle = newTouchedWindowHandle;
} else if (maskedAction == AMOTION_EVENT_ACTION_SCROLL) {
newHoverWindowHandle = mLastHoverWindowHandle;
}
// Update the temporary touch state.
BitSet32 pointerIds;
if (isSplit) {
uint32_t pointerId = entry.pointerProperties[pointerIndex].id;
pointerIds.markBit(pointerId);
}
tempTouchState.addOrUpdateWindow(newTouchedWindowHandle, targetFlags, pointerIds);
}
tempTouchState.addGestureMonitors(newGestureMonitors);
} else {
/* Case 2: Pointer move, up, cancel or non-splittable pointer down. */
// If the pointer is not currently down, then ignore the event.
if (!tempTouchState.down) {
if (DEBUG_FOCUS) {
ALOGD("Dropping event because the pointer is not down or we previously "
"dropped the pointer down event in display %" PRId32,
displayId);
}
injectionResult = INPUT_EVENT_INJECTION_FAILED;
goto Failed;
}
// Check whether touches should slip outside of the current foreground window.
if (maskedAction == AMOTION_EVENT_ACTION_MOVE && entry.pointerCount == 1 &&
tempTouchState.isSlippery()) {
int32_t x = int32_t(entry.pointerCoords[0].getAxisValue(AMOTION_EVENT_AXIS_X));
int32_t y = int32_t(entry.pointerCoords[0].getAxisValue(AMOTION_EVENT_AXIS_Y));
sp<InputWindowHandle> oldTouchedWindowHandle =
tempTouchState.getFirstForegroundWindowHandle();
sp<InputWindowHandle> newTouchedWindowHandle =
findTouchedWindowAtLocked(displayId, x, y, &tempTouchState);
if (oldTouchedWindowHandle != newTouchedWindowHandle &&
oldTouchedWindowHandle != nullptr && newTouchedWindowHandle != nullptr) {
if (DEBUG_FOCUS) {
ALOGD("Touch is slipping out of window %s into window %s in display %" PRId32,
oldTouchedWindowHandle->getName().c_str(),
newTouchedWindowHandle->getName().c_str(), displayId);
}
// Make a slippery exit from the old window.
tempTouchState.addOrUpdateWindow(oldTouchedWindowHandle,
InputTarget::FLAG_DISPATCH_AS_SLIPPERY_EXIT,
BitSet32(0));
// Make a slippery entrance into the new window.
if (newTouchedWindowHandle->getInfo()->supportsSplitTouch()) {
isSplit = true;
}
int32_t targetFlags =
InputTarget::FLAG_FOREGROUND | InputTarget::FLAG_DISPATCH_AS_SLIPPERY_ENTER;
if (isSplit) {
targetFlags |= InputTarget::FLAG_SPLIT;
}
if (isWindowObscuredAtPointLocked(newTouchedWindowHandle, x, y)) {
targetFlags |= InputTarget::FLAG_WINDOW_IS_OBSCURED;
}
BitSet32 pointerIds;
if (isSplit) {
pointerIds.markBit(entry.pointerProperties[0].id);
}
tempTouchState.addOrUpdateWindow(newTouchedWindowHandle, targetFlags, pointerIds);
}
}
}
if (newHoverWindowHandle != mLastHoverWindowHandle) {
// Let the previous window know that the hover sequence is over.
if (mLastHoverWindowHandle != nullptr) {
#if DEBUG_HOVER
ALOGD("Sending hover exit event to window %s.",
mLastHoverWindowHandle->getName().c_str());
#endif
tempTouchState.addOrUpdateWindow(mLastHoverWindowHandle,
InputTarget::FLAG_DISPATCH_AS_HOVER_EXIT, BitSet32(0));
}
// Let the new window know that the hover sequence is starting.
if (newHoverWindowHandle != nullptr) {
#if DEBUG_HOVER
ALOGD("Sending hover enter event to window %s.",
newHoverWindowHandle->getName().c_str());
#endif
tempTouchState.addOrUpdateWindow(newHoverWindowHandle,
InputTarget::FLAG_DISPATCH_AS_HOVER_ENTER,
BitSet32(0));
}
}
// Check permission to inject into all touched foreground windows and ensure there
// is at least one touched foreground window.
{
bool haveForegroundWindow = false;
for (const TouchedWindow& touchedWindow : tempTouchState.windows) {
if (touchedWindow.targetFlags & InputTarget::FLAG_FOREGROUND) {
haveForegroundWindow = true;
if (!checkInjectionPermission(touchedWindow.windowHandle, entry.injectionState)) {
injectionResult = INPUT_EVENT_INJECTION_PERMISSION_DENIED;
injectionPermission = INJECTION_PERMISSION_DENIED;
goto Failed;
}
}
}
bool hasGestureMonitor = !tempTouchState.gestureMonitors.empty();
if (!haveForegroundWindow && !hasGestureMonitor) {
ALOGI("Dropping event because there is no touched foreground window in display "
"%" PRId32 " or gesture monitor to receive it.",
displayId);
injectionResult = INPUT_EVENT_INJECTION_FAILED;
goto Failed;
}
// Permission granted to injection into all touched foreground windows.
injectionPermission = INJECTION_PERMISSION_GRANTED;
}
// Check whether windows listening for outside touches are owned by the same UID. If it is
// set the policy flag that we will not reveal coordinate information to this window.
if (maskedAction == AMOTION_EVENT_ACTION_DOWN) {
sp<InputWindowHandle> foregroundWindowHandle =
tempTouchState.getFirstForegroundWindowHandle();
if (foregroundWindowHandle) {
const int32_t foregroundWindowUid = foregroundWindowHandle->getInfo()->ownerUid;
for (const TouchedWindow& touchedWindow : tempTouchState.windows) {
if (touchedWindow.targetFlags & InputTarget::FLAG_DISPATCH_AS_OUTSIDE) {
sp<InputWindowHandle> inputWindowHandle = touchedWindow.windowHandle;
if (inputWindowHandle->getInfo()->ownerUid != foregroundWindowUid) {
tempTouchState.addOrUpdateWindow(inputWindowHandle,
InputTarget::FLAG_ZERO_COORDS,
BitSet32(0));
}
}
}
}
}
// If this is the first pointer going down and the touched window has a wallpaper
// then also add the touched wallpaper windows so they are locked in for the duration
// of the touch gesture.
// We do not collect wallpapers during HOVER_MOVE or SCROLL because the wallpaper
// engine only supports touch events. We would need to add a mechanism similar
// to View.onGenericMotionEvent to enable wallpapers to handle these events.
if (maskedAction == AMOTION_EVENT_ACTION_DOWN) {
sp<InputWindowHandle> foregroundWindowHandle =
tempTouchState.getFirstForegroundWindowHandle();
if (foregroundWindowHandle && foregroundWindowHandle->getInfo()->hasWallpaper) {
const std::vector<sp<InputWindowHandle>> windowHandles =
getWindowHandlesLocked(displayId);
for (const sp<InputWindowHandle>& windowHandle : windowHandles) {
const InputWindowInfo* info = windowHandle->getInfo();
if (info->displayId == displayId &&
windowHandle->getInfo()->layoutParamsType == InputWindowInfo::TYPE_WALLPAPER) {
tempTouchState
.addOrUpdateWindow(windowHandle,
InputTarget::FLAG_WINDOW_IS_OBSCURED |
InputTarget::
FLAG_WINDOW_IS_PARTIALLY_OBSCURED |
InputTarget::FLAG_DISPATCH_AS_IS,
BitSet32(0));
}
}
}
}
// Success! Output targets.
injectionResult = INPUT_EVENT_INJECTION_SUCCEEDED;
for (const TouchedWindow& touchedWindow : tempTouchState.windows) {
addWindowTargetLocked(touchedWindow.windowHandle, touchedWindow.targetFlags,
touchedWindow.pointerIds, inputTargets);
}
for (const TouchedMonitor& touchedMonitor : tempTouchState.gestureMonitors) {
addMonitoringTargetLocked(touchedMonitor.monitor, touchedMonitor.xOffset,
touchedMonitor.yOffset, inputTargets);
}
// Drop the outside or hover touch windows since we will not care about them
// in the next iteration.
tempTouchState.filterNonAsIsTouchWindows();
Failed:
// Check injection permission once and for all.
if (injectionPermission == INJECTION_PERMISSION_UNKNOWN) {
if (checkInjectionPermission(nullptr, entry.injectionState)) {
injectionPermission = INJECTION_PERMISSION_GRANTED;
} else {
injectionPermission = INJECTION_PERMISSION_DENIED;
}
}
if (injectionPermission != INJECTION_PERMISSION_GRANTED) {
return injectionResult;
}
// Update final pieces of touch state if the injector had permission.
if (!wrongDevice) {
if (switchedDevice) {
if (DEBUG_FOCUS) {
ALOGD("Conflicting pointer actions: Switched to a different device.");
}
*outConflictingPointerActions = true;
}
if (isHoverAction) {
// Started hovering, therefore no longer down.
if (oldState && oldState->down) {
if (DEBUG_FOCUS) {
ALOGD("Conflicting pointer actions: Hover received while pointer was "
"down.");
}
*outConflictingPointerActions = true;
}
tempTouchState.reset();
if (maskedAction == AMOTION_EVENT_ACTION_HOVER_ENTER ||
maskedAction == AMOTION_EVENT_ACTION_HOVER_MOVE) {
tempTouchState.deviceId = entry.deviceId;
tempTouchState.source = entry.source;
tempTouchState.displayId = displayId;
}
} else if (maskedAction == AMOTION_EVENT_ACTION_UP ||
maskedAction == AMOTION_EVENT_ACTION_CANCEL) {
// All pointers up or canceled.
tempTouchState.reset();
} else if (maskedAction == AMOTION_EVENT_ACTION_DOWN) {
// First pointer went down.
if (oldState && oldState->down) {
if (DEBUG_FOCUS) {
ALOGD("Conflicting pointer actions: Down received while already down.");
}
*outConflictingPointerActions = true;
}
} else if (maskedAction == AMOTION_EVENT_ACTION_POINTER_UP) {
// One pointer went up.
if (isSplit) {
int32_t pointerIndex = getMotionEventActionPointerIndex(action);
uint32_t pointerId = entry.pointerProperties[pointerIndex].id;
for (size_t i = 0; i < tempTouchState.windows.size();) {
TouchedWindow& touchedWindow = tempTouchState.windows[i];
if (touchedWindow.targetFlags & InputTarget::FLAG_SPLIT) {
touchedWindow.pointerIds.clearBit(pointerId);
if (touchedWindow.pointerIds.isEmpty()) {
tempTouchState.windows.erase(tempTouchState.windows.begin() + i);
continue;
}
}
i += 1;
}
}
}
// Save changes unless the action was scroll in which case the temporary touch
// state was only valid for this one action.
if (maskedAction != AMOTION_EVENT_ACTION_SCROLL) {
if (tempTouchState.displayId >= 0) {
mTouchStatesByDisplay[displayId] = tempTouchState;
} else {
mTouchStatesByDisplay.erase(displayId);
}
}
// Update hover state.
mLastHoverWindowHandle = newHoverWindowHandle;
}
return injectionResult;
}
void InputDispatcher::addWindowTargetLocked(const sp<InputWindowHandle>& windowHandle,
int32_t targetFlags, BitSet32 pointerIds,
std::vector<InputTarget>& inputTargets) {
std::vector<InputTarget>::iterator it =
std::find_if(inputTargets.begin(), inputTargets.end(),
[&windowHandle](const InputTarget& inputTarget) {
return inputTarget.inputChannel->getConnectionToken() ==
windowHandle->getToken();
});
const InputWindowInfo* windowInfo = windowHandle->getInfo();
if (it == inputTargets.end()) {
InputTarget inputTarget;
sp<InputChannel> inputChannel = getInputChannelLocked(windowHandle->getToken());
if (inputChannel == nullptr) {
ALOGW("Window %s already unregistered input channel", windowHandle->getName().c_str());
return;
}
inputTarget.inputChannel = inputChannel;
inputTarget.flags = targetFlags;
inputTarget.globalScaleFactor = windowInfo->globalScaleFactor;
inputTargets.push_back(inputTarget);
it = inputTargets.end() - 1;
}
ALOG_ASSERT(it->flags == targetFlags);
ALOG_ASSERT(it->globalScaleFactor == windowInfo->globalScaleFactor);
it->addPointers(pointerIds, -windowInfo->frameLeft, -windowInfo->frameTop,
windowInfo->windowXScale, windowInfo->windowYScale);
}
void InputDispatcher::addGlobalMonitoringTargetsLocked(std::vector<InputTarget>& inputTargets,
int32_t displayId, float xOffset,
float yOffset) {
std::unordered_map<int32_t, std::vector<Monitor>>::const_iterator it =
mGlobalMonitorsByDisplay.find(displayId);
if (it != mGlobalMonitorsByDisplay.end()) {
const std::vector<Monitor>& monitors = it->second;
for (const Monitor& monitor : monitors) {
addMonitoringTargetLocked(monitor, xOffset, yOffset, inputTargets);
}
}
}
void InputDispatcher::addMonitoringTargetLocked(const Monitor& monitor, float xOffset,
float yOffset,
std::vector<InputTarget>& inputTargets) {
InputTarget target;
target.inputChannel = monitor.inputChannel;
target.flags = InputTarget::FLAG_DISPATCH_AS_IS;
target.setDefaultPointerInfo(xOffset, yOffset, 1 /* windowXScale */, 1 /* windowYScale */);
inputTargets.push_back(target);
}
bool InputDispatcher::checkInjectionPermission(const sp<InputWindowHandle>& windowHandle,
const InjectionState* injectionState) {
if (injectionState &&
(windowHandle == nullptr ||
windowHandle->getInfo()->ownerUid != injectionState->injectorUid) &&
!hasInjectionPermission(injectionState->injectorPid, injectionState->injectorUid)) {
if (windowHandle != nullptr) {
ALOGW("Permission denied: injecting event from pid %d uid %d to window %s "
"owned by uid %d",
injectionState->injectorPid, injectionState->injectorUid,
windowHandle->getName().c_str(), windowHandle->getInfo()->ownerUid);
} else {
ALOGW("Permission denied: injecting event from pid %d uid %d",
injectionState->injectorPid, injectionState->injectorUid);
}
return false;
}
return true;
}
/**
* Indicate whether one window handle should be considered as obscuring
* another window handle. We only check a few preconditions. Actually
* checking the bounds is left to the caller.
*/
static bool canBeObscuredBy(const sp<InputWindowHandle>& windowHandle,
const sp<InputWindowHandle>& otherHandle) {
// Compare by token so cloned layers aren't counted
if (haveSameToken(windowHandle, otherHandle)) {
return false;
}
auto info = windowHandle->getInfo();
auto otherInfo = otherHandle->getInfo();
if (!otherInfo->visible) {
return false;
} else if (info->ownerPid == otherInfo->ownerPid) {
// If ownerPid is the same we don't generate occlusion events as there
// is no in-process security boundary.
return false;
} else if (otherInfo->isTrustedOverlay()) {
return false;
} else if (otherInfo->displayId != info->displayId) {
return false;
}
return true;
}
bool InputDispatcher::isWindowObscuredAtPointLocked(const sp<InputWindowHandle>& windowHandle,
int32_t x, int32_t y) const {
int32_t displayId = windowHandle->getInfo()->displayId;
const std::vector<sp<InputWindowHandle>> windowHandles = getWindowHandlesLocked(displayId);
for (const sp<InputWindowHandle>& otherHandle : windowHandles) {
if (windowHandle == otherHandle) {
break; // All future windows are below us. Exit early.
}
const InputWindowInfo* otherInfo = otherHandle->getInfo();
if (canBeObscuredBy(windowHandle, otherHandle) &&
otherInfo->frameContainsPoint(x, y)) {
return true;
}
}
return false;
}
bool InputDispatcher::isWindowObscuredLocked(const sp<InputWindowHandle>& windowHandle) const {
int32_t displayId = windowHandle->getInfo()->displayId;
const std::vector<sp<InputWindowHandle>> windowHandles = getWindowHandlesLocked(displayId);
const InputWindowInfo* windowInfo = windowHandle->getInfo();
for (const sp<InputWindowHandle>& otherHandle : windowHandles) {
if (windowHandle == otherHandle) {
break; // All future windows are below us. Exit early.
}
const InputWindowInfo* otherInfo = otherHandle->getInfo();
if (canBeObscuredBy(windowHandle, otherHandle) &&
otherInfo->overlaps(windowInfo)) {
return true;
}
}
return false;
}
std::string InputDispatcher::getApplicationWindowLabel(
const sp<InputApplicationHandle>& applicationHandle,
const sp<InputWindowHandle>& windowHandle) {
if (applicationHandle != nullptr) {
if (windowHandle != nullptr) {
return applicationHandle->getName() + " - " + windowHandle->getName();
} else {
return applicationHandle->getName();
}
} else if (windowHandle != nullptr) {
return windowHandle->getInfo()->applicationInfo.name + " - " + windowHandle->getName();
} else {
return "<unknown application or window>";
}
}
void InputDispatcher::pokeUserActivityLocked(const EventEntry& eventEntry) {
if (eventEntry.type == EventEntry::Type::FOCUS) {
// Focus events are passed to apps, but do not represent user activity.
return;
}
int32_t displayId = getTargetDisplayId(eventEntry);
sp<InputWindowHandle> focusedWindowHandle =
getValueByKey(mFocusedWindowHandlesByDisplay, displayId);
if (focusedWindowHandle != nullptr) {
const InputWindowInfo* info = focusedWindowHandle->getInfo();
if (info->inputFeatures & InputWindowInfo::INPUT_FEATURE_DISABLE_USER_ACTIVITY) {
#if DEBUG_DISPATCH_CYCLE
ALOGD("Not poking user activity: disabled by window '%s'.", info->name.c_str());
#endif
return;
}
}
int32_t eventType = USER_ACTIVITY_EVENT_OTHER;
switch (eventEntry.type) {
case EventEntry::Type::MOTION: {
const MotionEntry& motionEntry = static_cast<const MotionEntry&>(eventEntry);
if (motionEntry.action == AMOTION_EVENT_ACTION_CANCEL) {
return;
}
if (MotionEvent::isTouchEvent(motionEntry.source, motionEntry.action)) {
eventType = USER_ACTIVITY_EVENT_TOUCH;
}
break;
}
case EventEntry::Type::KEY: {
const KeyEntry& keyEntry = static_cast<const KeyEntry&>(eventEntry);
if (keyEntry.flags & AKEY_EVENT_FLAG_CANCELED) {
return;
}
eventType = USER_ACTIVITY_EVENT_BUTTON;
break;
}
case EventEntry::Type::FOCUS:
case EventEntry::Type::CONFIGURATION_CHANGED:
case EventEntry::Type::DEVICE_RESET: {
LOG_ALWAYS_FATAL("%s events are not user activity",
EventEntry::typeToString(eventEntry.type));
break;
}
}
std::unique_ptr<CommandEntry> commandEntry =
std::make_unique<CommandEntry>(&InputDispatcher::doPokeUserActivityLockedInterruptible);
commandEntry->eventTime = eventEntry.eventTime;
commandEntry->userActivityEventType = eventType;
postCommandLocked(std::move(commandEntry));
}
void InputDispatcher::prepareDispatchCycleLocked(nsecs_t currentTime,
const sp<Connection>& connection,
EventEntry* eventEntry,
const InputTarget& inputTarget) {
if (ATRACE_ENABLED()) {
std::string message =
StringPrintf("prepareDispatchCycleLocked(inputChannel=%s, id=0x%" PRIx32 ")",
connection->getInputChannelName().c_str(), eventEntry->id);
ATRACE_NAME(message.c_str());
}
#if DEBUG_DISPATCH_CYCLE
ALOGD("channel '%s' ~ prepareDispatchCycle - flags=0x%08x, "
"globalScaleFactor=%f, pointerIds=0x%x %s",
connection->getInputChannelName().c_str(), inputTarget.flags,
inputTarget.globalScaleFactor, inputTarget.pointerIds.value,
inputTarget.getPointerInfoString().c_str());
#endif
// Skip this event if the connection status is not normal.
// We don't want to enqueue additional outbound events if the connection is broken.
if (connection->status != Connection::STATUS_NORMAL) {
#if DEBUG_DISPATCH_CYCLE
ALOGD("channel '%s' ~ Dropping event because the channel status is %s",
connection->getInputChannelName().c_str(), connection->getStatusLabel());
#endif
return;
}
// Split a motion event if needed.
if (inputTarget.flags & InputTarget::FLAG_SPLIT) {
LOG_ALWAYS_FATAL_IF(eventEntry->type != EventEntry::Type::MOTION,
"Entry type %s should not have FLAG_SPLIT",
EventEntry::typeToString(eventEntry->type));
const MotionEntry& originalMotionEntry = static_cast<const MotionEntry&>(*eventEntry);
if (inputTarget.pointerIds.count() != originalMotionEntry.pointerCount) {
MotionEntry* splitMotionEntry =
splitMotionEvent(originalMotionEntry, inputTarget.pointerIds);
if (!splitMotionEntry) {
return; // split event was dropped
}
if (DEBUG_FOCUS) {
ALOGD("channel '%s' ~ Split motion event.",
connection->getInputChannelName().c_str());
logOutboundMotionDetails(" ", *splitMotionEntry);
}
enqueueDispatchEntriesLocked(currentTime, connection, splitMotionEntry, inputTarget);
splitMotionEntry->release();
return;
}
}
// Not splitting. Enqueue dispatch entries for the event as is.
enqueueDispatchEntriesLocked(currentTime, connection, eventEntry, inputTarget);
}
void InputDispatcher::enqueueDispatchEntriesLocked(nsecs_t currentTime,
const sp<Connection>& connection,
EventEntry* eventEntry,
const InputTarget& inputTarget) {
if (ATRACE_ENABLED()) {
std::string message =
StringPrintf("enqueueDispatchEntriesLocked(inputChannel=%s, id=0x%" PRIx32 ")",
connection->getInputChannelName().c_str(), eventEntry->id);
ATRACE_NAME(message.c_str());
}
bool wasEmpty = connection->outboundQueue.empty();
// Enqueue dispatch entries for the requested modes.
enqueueDispatchEntryLocked(connection, eventEntry, inputTarget,
InputTarget::FLAG_DISPATCH_AS_HOVER_EXIT);
enqueueDispatchEntryLocked(connection, eventEntry, inputTarget,
InputTarget::FLAG_DISPATCH_AS_OUTSIDE);
enqueueDispatchEntryLocked(connection, eventEntry, inputTarget,
InputTarget::FLAG_DISPATCH_AS_HOVER_ENTER);
enqueueDispatchEntryLocked(connection, eventEntry, inputTarget,
InputTarget::FLAG_DISPATCH_AS_IS);
enqueueDispatchEntryLocked(connection, eventEntry, inputTarget,
InputTarget::FLAG_DISPATCH_AS_SLIPPERY_EXIT);
enqueueDispatchEntryLocked(connection, eventEntry, inputTarget,
InputTarget::FLAG_DISPATCH_AS_SLIPPERY_ENTER);
// If the outbound queue was previously empty, start the dispatch cycle going.
if (wasEmpty && !connection->outboundQueue.empty()) {
startDispatchCycleLocked(currentTime, connection);
}
}
void InputDispatcher::enqueueDispatchEntryLocked(const sp<Connection>& connection,
EventEntry* eventEntry,
const InputTarget& inputTarget,
int32_t dispatchMode) {
if (ATRACE_ENABLED()) {
std::string message = StringPrintf("enqueueDispatchEntry(inputChannel=%s, dispatchMode=%s)",
connection->getInputChannelName().c_str(),
dispatchModeToString(dispatchMode).c_str());
ATRACE_NAME(message.c_str());
}
int32_t inputTargetFlags = inputTarget.flags;
if (!(inputTargetFlags & dispatchMode)) {
return;
}
inputTargetFlags = (inputTargetFlags & ~InputTarget::FLAG_DISPATCH_MASK) | dispatchMode;
// This is a new event.
// Enqueue a new dispatch entry onto the outbound queue for this connection.
std::unique_ptr<DispatchEntry> dispatchEntry =
createDispatchEntry(inputTarget, eventEntry, inputTargetFlags);
// Use the eventEntry from dispatchEntry since the entry may have changed and can now be a
// different EventEntry than what was passed in.
EventEntry* newEntry = dispatchEntry->eventEntry;
// Apply target flags and update the connection's input state.
switch (newEntry->type) {
case EventEntry::Type::KEY: {
const KeyEntry& keyEntry = static_cast<const KeyEntry&>(*newEntry);
dispatchEntry->resolvedEventId = keyEntry.id;
dispatchEntry->resolvedAction = keyEntry.action;
dispatchEntry->resolvedFlags = keyEntry.flags;
if (!connection->inputState.trackKey(keyEntry, dispatchEntry->resolvedAction,
dispatchEntry->resolvedFlags)) {
#if DEBUG_DISPATCH_CYCLE
ALOGD("channel '%s' ~ enqueueDispatchEntryLocked: skipping inconsistent key event",
connection->getInputChannelName().c_str());
#endif
return; // skip the inconsistent event
}
break;
}
case EventEntry::Type::MOTION: {
const MotionEntry& motionEntry = static_cast<const MotionEntry&>(*newEntry);
// Assign a default value to dispatchEntry that will never be generated by InputReader,
// and assign a InputDispatcher value if it doesn't change in the if-else chain below.
constexpr int32_t DEFAULT_RESOLVED_EVENT_ID =
static_cast<int32_t>(IdGenerator::Source::OTHER);
dispatchEntry->resolvedEventId = DEFAULT_RESOLVED_EVENT_ID;
if (dispatchMode & InputTarget::FLAG_DISPATCH_AS_OUTSIDE) {
dispatchEntry->resolvedAction = AMOTION_EVENT_ACTION_OUTSIDE;
} else if (dispatchMode & InputTarget::FLAG_DISPATCH_AS_HOVER_EXIT) {
dispatchEntry->resolvedAction = AMOTION_EVENT_ACTION_HOVER_EXIT;
} else if (dispatchMode & InputTarget::FLAG_DISPATCH_AS_HOVER_ENTER) {
dispatchEntry->resolvedAction = AMOTION_EVENT_ACTION_HOVER_ENTER;
} else if (dispatchMode & InputTarget::FLAG_DISPATCH_AS_SLIPPERY_EXIT) {
dispatchEntry->resolvedAction = AMOTION_EVENT_ACTION_CANCEL;
} else if (dispatchMode & InputTarget::FLAG_DISPATCH_AS_SLIPPERY_ENTER) {
dispatchEntry->resolvedAction = AMOTION_EVENT_ACTION_DOWN;
} else {
dispatchEntry->resolvedAction = motionEntry.action;
dispatchEntry->resolvedEventId = motionEntry.id;
}
if (dispatchEntry->resolvedAction == AMOTION_EVENT_ACTION_HOVER_MOVE &&
!connection->inputState.isHovering(motionEntry.deviceId, motionEntry.source,
motionEntry.displayId)) {
#if DEBUG_DISPATCH_CYCLE
ALOGD("channel '%s' ~ enqueueDispatchEntryLocked: filling in missing hover enter "
"event",
connection->getInputChannelName().c_str());
#endif
dispatchEntry->resolvedAction = AMOTION_EVENT_ACTION_HOVER_ENTER;
}
dispatchEntry->resolvedFlags = motionEntry.flags;
if (dispatchEntry->targetFlags & InputTarget::FLAG_WINDOW_IS_OBSCURED) {
dispatchEntry->resolvedFlags |= AMOTION_EVENT_FLAG_WINDOW_IS_OBSCURED;
}
if (dispatchEntry->targetFlags & InputTarget::FLAG_WINDOW_IS_PARTIALLY_OBSCURED) {
dispatchEntry->resolvedFlags |= AMOTION_EVENT_FLAG_WINDOW_IS_PARTIALLY_OBSCURED;
}
if (!connection->inputState.trackMotion(motionEntry, dispatchEntry->resolvedAction,
dispatchEntry->resolvedFlags)) {
#if DEBUG_DISPATCH_CYCLE
ALOGD("channel '%s' ~ enqueueDispatchEntryLocked: skipping inconsistent motion "
"event",
connection->getInputChannelName().c_str());
#endif
return; // skip the inconsistent event
}
dispatchEntry->resolvedEventId =
dispatchEntry->resolvedEventId == DEFAULT_RESOLVED_EVENT_ID
? mIdGenerator.nextId()
: motionEntry.id;
if (ATRACE_ENABLED() && dispatchEntry->resolvedEventId != motionEntry.id) {
std::string message = StringPrintf("Transmute MotionEvent(id=0x%" PRIx32
") to MotionEvent(id=0x%" PRIx32 ").",
motionEntry.id, dispatchEntry->resolvedEventId);
ATRACE_NAME(message.c_str());
}
dispatchPointerDownOutsideFocus(motionEntry.source, dispatchEntry->resolvedAction,
inputTarget.inputChannel->getConnectionToken());
break;
}
case EventEntry::Type::FOCUS: {
break;
}
case EventEntry::Type::CONFIGURATION_CHANGED:
case EventEntry::Type::DEVICE_RESET: {
LOG_ALWAYS_FATAL("%s events should not go to apps",
EventEntry::typeToString(newEntry->type));
break;
}
}
// Remember that we are waiting for this dispatch to complete.
if (dispatchEntry->hasForegroundTarget()) {
incrementPendingForegroundDispatches(newEntry);
}
// Enqueue the dispatch entry.
connection->outboundQueue.push_back(dispatchEntry.release());
traceOutboundQueueLength(connection);
}
void InputDispatcher::dispatchPointerDownOutsideFocus(uint32_t source, int32_t action,
const sp<IBinder>& newToken) {
int32_t maskedAction = action & AMOTION_EVENT_ACTION_MASK;
uint32_t maskedSource = source & AINPUT_SOURCE_CLASS_MASK;
if (maskedSource != AINPUT_SOURCE_CLASS_POINTER || maskedAction != AMOTION_EVENT_ACTION_DOWN) {
return;
}
sp<InputWindowHandle> inputWindowHandle = getWindowHandleLocked(newToken);
if (inputWindowHandle == nullptr) {
return;
}
sp<InputWindowHandle> focusedWindowHandle =
getValueByKey(mFocusedWindowHandlesByDisplay, mFocusedDisplayId);
bool hasFocusChanged = !focusedWindowHandle || focusedWindowHandle->getToken() != newToken;
if (!hasFocusChanged) {
return;
}
std::unique_ptr<CommandEntry> commandEntry = std::make_unique<CommandEntry>(
&InputDispatcher::doOnPointerDownOutsideFocusLockedInterruptible);
commandEntry->newToken = newToken;
postCommandLocked(std::move(commandEntry));
}
void InputDispatcher::startDispatchCycleLocked(nsecs_t currentTime,
const sp<Connection>& connection) {
if (ATRACE_ENABLED()) {
std::string message = StringPrintf("startDispatchCycleLocked(inputChannel=%s)",
connection->getInputChannelName().c_str());
ATRACE_NAME(message.c_str());
}
#if DEBUG_DISPATCH_CYCLE
ALOGD("channel '%s' ~ startDispatchCycle", connection->getInputChannelName().c_str());
#endif
while (connection->status == Connection::STATUS_NORMAL && !connection->outboundQueue.empty()) {
DispatchEntry* dispatchEntry = connection->outboundQueue.front();
dispatchEntry->deliveryTime = currentTime;
const nsecs_t timeout =
getDispatchingTimeoutLocked(connection->inputChannel->getConnectionToken());
dispatchEntry->timeoutTime = currentTime + timeout;
// Publish the event.
status_t status;
EventEntry* eventEntry = dispatchEntry->eventEntry;
switch (eventEntry->type) {
case EventEntry::Type::KEY: {
const KeyEntry* keyEntry = static_cast<KeyEntry*>(eventEntry);
std::array<uint8_t, 32> hmac = getSignature(*keyEntry, *dispatchEntry);
// Publish the key event.
status =
connection->inputPublisher
.publishKeyEvent(dispatchEntry->seq, dispatchEntry->resolvedEventId,
keyEntry->deviceId, keyEntry->source,
keyEntry->displayId, std::move(hmac),
dispatchEntry->resolvedAction,
dispatchEntry->resolvedFlags, keyEntry->keyCode,
keyEntry->scanCode, keyEntry->metaState,
keyEntry->repeatCount, keyEntry->downTime,
keyEntry->eventTime);
break;
}
case EventEntry::Type::MOTION: {
MotionEntry* motionEntry = static_cast<MotionEntry*>(eventEntry);
PointerCoords scaledCoords[MAX_POINTERS];
const PointerCoords* usingCoords = motionEntry->pointerCoords;
// Set the X and Y offset and X and Y scale depending on the input source.
float xOffset = 0.0f, yOffset = 0.0f;
float xScale = 1.0f, yScale = 1.0f;
if ((motionEntry->source & AINPUT_SOURCE_CLASS_POINTER) &&
!(dispatchEntry->targetFlags & InputTarget::FLAG_ZERO_COORDS)) {
float globalScaleFactor = dispatchEntry->globalScaleFactor;
xScale = dispatchEntry->windowXScale;
yScale = dispatchEntry->windowYScale;
xOffset = dispatchEntry->xOffset * xScale;
yOffset = dispatchEntry->yOffset * yScale;
if (globalScaleFactor != 1.0f) {
for (uint32_t i = 0; i < motionEntry->pointerCount; i++) {
scaledCoords[i] = motionEntry->pointerCoords[i];
// Don't apply window scale here since we don't want scale to affect raw
// coordinates. The scale will be sent back to the client and applied
// later when requesting relative coordinates.
scaledCoords[i].scale(globalScaleFactor, 1 /* windowXScale */,
1 /* windowYScale */);
}
usingCoords = scaledCoords;
}
} else {
// We don't want the dispatch target to know.
if (dispatchEntry->targetFlags & InputTarget::FLAG_ZERO_COORDS) {
for (uint32_t i = 0; i < motionEntry->pointerCount; i++) {
scaledCoords[i].clear();
}
usingCoords = scaledCoords;
}
}
std::array<uint8_t, 32> hmac = getSignature(*motionEntry, *dispatchEntry);
// Publish the motion event.
status = connection->inputPublisher
.publishMotionEvent(dispatchEntry->seq,
dispatchEntry->resolvedEventId,
motionEntry->deviceId, motionEntry->source,
motionEntry->displayId, std::move(hmac),
dispatchEntry->resolvedAction,
motionEntry->actionButton,