| /* |
| * Copyright (C) 2012 The Android Open Source Project |
| * |
| * Licensed under the Apache License, Version 2.0 (the "License"); |
| * you may not use this file except in compliance with the License. |
| * You may obtain a copy of the License at |
| * |
| * http://www.apache.org/licenses/LICENSE-2.0 |
| * |
| * Unless required by applicable law or agreed to in writing, software |
| * distributed under the License is distributed on an "AS IS" BASIS, |
| * WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. |
| * See the License for the specific language governing permissions and |
| * limitations under the License. |
| */ |
| |
| #define LOG_TAG "BufferQueue_test" |
| //#define LOG_NDEBUG 0 |
| |
| #include "DummyConsumer.h" |
| |
| #include <gui/BufferItem.h> |
| #include <gui/BufferQueue.h> |
| #include <gui/IProducerListener.h> |
| |
| #include <ui/GraphicBuffer.h> |
| |
| #include <binder/IPCThreadState.h> |
| #include <binder/IServiceManager.h> |
| #include <binder/ProcessState.h> |
| |
| #include <utils/String8.h> |
| #include <utils/threads.h> |
| |
| #include <system/window.h> |
| |
| #include <gtest/gtest.h> |
| |
| #include <thread> |
| |
| using namespace std::chrono_literals; |
| |
| namespace android { |
| |
| class BufferQueueTest : public ::testing::Test { |
| |
| public: |
| protected: |
| BufferQueueTest() { |
| const ::testing::TestInfo* const testInfo = |
| ::testing::UnitTest::GetInstance()->current_test_info(); |
| ALOGV("Begin test: %s.%s", testInfo->test_case_name(), |
| testInfo->name()); |
| } |
| |
| ~BufferQueueTest() { |
| const ::testing::TestInfo* const testInfo = |
| ::testing::UnitTest::GetInstance()->current_test_info(); |
| ALOGV("End test: %s.%s", testInfo->test_case_name(), |
| testInfo->name()); |
| } |
| |
| void GetMinUndequeuedBufferCount(int* bufferCount) { |
| ASSERT_TRUE(bufferCount != NULL); |
| ASSERT_EQ(OK, mProducer->query(NATIVE_WINDOW_MIN_UNDEQUEUED_BUFFERS, |
| bufferCount)); |
| ASSERT_GE(*bufferCount, 0); |
| } |
| |
| void createBufferQueue() { |
| BufferQueue::createBufferQueue(&mProducer, &mConsumer); |
| } |
| |
| void testBufferItem(const IGraphicBufferProducer::QueueBufferInput& input, |
| const BufferItem& item) { |
| int64_t timestamp; |
| bool isAutoTimestamp; |
| android_dataspace dataSpace; |
| Rect crop; |
| int scalingMode; |
| uint32_t transform; |
| sp<Fence> fence; |
| |
| input.deflate(×tamp, &isAutoTimestamp, &dataSpace, &crop, |
| &scalingMode, &transform, &fence, NULL); |
| ASSERT_EQ(timestamp, item.mTimestamp); |
| ASSERT_EQ(isAutoTimestamp, item.mIsAutoTimestamp); |
| ASSERT_EQ(dataSpace, item.mDataSpace); |
| ASSERT_EQ(crop, item.mCrop); |
| ASSERT_EQ(static_cast<uint32_t>(scalingMode), item.mScalingMode); |
| ASSERT_EQ(transform, item.mTransform); |
| ASSERT_EQ(fence, item.mFence); |
| } |
| |
| sp<IGraphicBufferProducer> mProducer; |
| sp<IGraphicBufferConsumer> mConsumer; |
| }; |
| |
| static const uint32_t TEST_DATA = 0x12345678u; |
| |
| // XXX: Tests that fork a process to hold the BufferQueue must run before tests |
| // that use a local BufferQueue, or else Binder will get unhappy |
| // |
| // In one instance this was a crash in the createBufferQueue where the |
| // binder call to create a buffer allocator apparently got garbage back. |
| // See b/36592665. |
| TEST_F(BufferQueueTest, DISABLED_BufferQueueInAnotherProcess) { |
| const String16 PRODUCER_NAME = String16("BQTestProducer"); |
| const String16 CONSUMER_NAME = String16("BQTestConsumer"); |
| |
| pid_t forkPid = fork(); |
| ASSERT_NE(forkPid, -1); |
| |
| if (forkPid == 0) { |
| // Child process |
| sp<IGraphicBufferProducer> producer; |
| sp<IGraphicBufferConsumer> consumer; |
| BufferQueue::createBufferQueue(&producer, &consumer); |
| sp<IServiceManager> serviceManager = defaultServiceManager(); |
| serviceManager->addService(PRODUCER_NAME, IInterface::asBinder(producer)); |
| serviceManager->addService(CONSUMER_NAME, IInterface::asBinder(consumer)); |
| ProcessState::self()->startThreadPool(); |
| IPCThreadState::self()->joinThreadPool(); |
| LOG_ALWAYS_FATAL("Shouldn't be here"); |
| } |
| |
| sp<IServiceManager> serviceManager = defaultServiceManager(); |
| sp<IBinder> binderProducer = |
| serviceManager->getService(PRODUCER_NAME); |
| mProducer = interface_cast<IGraphicBufferProducer>(binderProducer); |
| EXPECT_TRUE(mProducer != NULL); |
| sp<IBinder> binderConsumer = |
| serviceManager->getService(CONSUMER_NAME); |
| mConsumer = interface_cast<IGraphicBufferConsumer>(binderConsumer); |
| EXPECT_TRUE(mConsumer != NULL); |
| |
| sp<DummyConsumer> dc(new DummyConsumer); |
| ASSERT_EQ(OK, mConsumer->consumerConnect(dc, false)); |
| IGraphicBufferProducer::QueueBufferOutput output; |
| ASSERT_EQ(OK, |
| mProducer->connect(NULL, NATIVE_WINDOW_API_CPU, false, &output)); |
| |
| int slot; |
| sp<Fence> fence; |
| sp<GraphicBuffer> buffer; |
| ASSERT_EQ(IGraphicBufferProducer::BUFFER_NEEDS_REALLOCATION, |
| mProducer->dequeueBuffer(&slot, &fence, 0, 0, 0, |
| GRALLOC_USAGE_SW_WRITE_OFTEN, nullptr)); |
| ASSERT_EQ(OK, mProducer->requestBuffer(slot, &buffer)); |
| |
| uint32_t* dataIn; |
| ASSERT_EQ(OK, buffer->lock(GraphicBuffer::USAGE_SW_WRITE_OFTEN, |
| reinterpret_cast<void**>(&dataIn))); |
| *dataIn = TEST_DATA; |
| ASSERT_EQ(OK, buffer->unlock()); |
| |
| IGraphicBufferProducer::QueueBufferInput input(0, false, |
| HAL_DATASPACE_UNKNOWN, Rect(0, 0, 1, 1), |
| NATIVE_WINDOW_SCALING_MODE_FREEZE, 0, Fence::NO_FENCE); |
| ASSERT_EQ(OK, mProducer->queueBuffer(slot, input, &output)); |
| |
| BufferItem item; |
| ASSERT_EQ(OK, mConsumer->acquireBuffer(&item, 0)); |
| |
| uint32_t* dataOut; |
| ASSERT_EQ(OK, item.mGraphicBuffer->lock(GraphicBuffer::USAGE_SW_READ_OFTEN, |
| reinterpret_cast<void**>(&dataOut))); |
| ASSERT_EQ(*dataOut, TEST_DATA); |
| ASSERT_EQ(OK, item.mGraphicBuffer->unlock()); |
| } |
| |
| TEST_F(BufferQueueTest, AcquireBuffer_ExceedsMaxAcquireCount_Fails) { |
| createBufferQueue(); |
| sp<DummyConsumer> dc(new DummyConsumer); |
| mConsumer->consumerConnect(dc, false); |
| IGraphicBufferProducer::QueueBufferOutput qbo; |
| mProducer->connect(new DummyProducerListener, NATIVE_WINDOW_API_CPU, false, |
| &qbo); |
| mProducer->setMaxDequeuedBufferCount(3); |
| |
| int slot; |
| sp<Fence> fence; |
| sp<GraphicBuffer> buf; |
| IGraphicBufferProducer::QueueBufferInput qbi(0, false, |
| HAL_DATASPACE_UNKNOWN, Rect(0, 0, 1, 1), |
| NATIVE_WINDOW_SCALING_MODE_FREEZE, 0, Fence::NO_FENCE); |
| BufferItem item; |
| |
| for (int i = 0; i < 2; i++) { |
| ASSERT_EQ(IGraphicBufferProducer::BUFFER_NEEDS_REALLOCATION, |
| mProducer->dequeueBuffer(&slot, &fence, 1, 1, 0, |
| GRALLOC_USAGE_SW_READ_OFTEN, nullptr)); |
| ASSERT_EQ(OK, mProducer->requestBuffer(slot, &buf)); |
| ASSERT_EQ(OK, mProducer->queueBuffer(slot, qbi, &qbo)); |
| ASSERT_EQ(OK, mConsumer->acquireBuffer(&item, 0)); |
| } |
| |
| ASSERT_EQ(IGraphicBufferProducer::BUFFER_NEEDS_REALLOCATION, |
| mProducer->dequeueBuffer(&slot, &fence, 1, 1, 0, |
| GRALLOC_USAGE_SW_READ_OFTEN, nullptr)); |
| ASSERT_EQ(OK, mProducer->requestBuffer(slot, &buf)); |
| ASSERT_EQ(OK, mProducer->queueBuffer(slot, qbi, &qbo)); |
| |
| // Acquire the third buffer, which should fail. |
| ASSERT_EQ(INVALID_OPERATION, mConsumer->acquireBuffer(&item, 0)); |
| } |
| |
| TEST_F(BufferQueueTest, SetMaxAcquiredBufferCountWithIllegalValues_ReturnsError) { |
| createBufferQueue(); |
| sp<DummyConsumer> dc(new DummyConsumer); |
| mConsumer->consumerConnect(dc, false); |
| |
| EXPECT_EQ(OK, mConsumer->setMaxBufferCount(10)); |
| EXPECT_EQ(BAD_VALUE, mConsumer->setMaxAcquiredBufferCount(10)); |
| |
| IGraphicBufferProducer::QueueBufferOutput qbo; |
| mProducer->connect(new DummyProducerListener, NATIVE_WINDOW_API_CPU, false, |
| &qbo); |
| mProducer->setMaxDequeuedBufferCount(3); |
| |
| int minBufferCount; |
| ASSERT_NO_FATAL_FAILURE(GetMinUndequeuedBufferCount(&minBufferCount)); |
| EXPECT_EQ(BAD_VALUE, mConsumer->setMaxAcquiredBufferCount( |
| minBufferCount - 1)); |
| |
| EXPECT_EQ(BAD_VALUE, mConsumer->setMaxAcquiredBufferCount(0)); |
| EXPECT_EQ(BAD_VALUE, mConsumer->setMaxAcquiredBufferCount(-3)); |
| EXPECT_EQ(BAD_VALUE, mConsumer->setMaxAcquiredBufferCount( |
| BufferQueue::MAX_MAX_ACQUIRED_BUFFERS+1)); |
| EXPECT_EQ(BAD_VALUE, mConsumer->setMaxAcquiredBufferCount(100)); |
| |
| int slot; |
| sp<Fence> fence; |
| sp<GraphicBuffer> buf; |
| IGraphicBufferProducer::QueueBufferInput qbi(0, false, |
| HAL_DATASPACE_UNKNOWN, Rect(0, 0, 1, 1), |
| NATIVE_WINDOW_SCALING_MODE_FREEZE, 0, Fence::NO_FENCE); |
| BufferItem item; |
| EXPECT_EQ(OK, mConsumer->setMaxAcquiredBufferCount(3)); |
| for (int i = 0; i < 3; i++) { |
| ASSERT_EQ(IGraphicBufferProducer::BUFFER_NEEDS_REALLOCATION, |
| mProducer->dequeueBuffer(&slot, &fence, 1, 1, 0, |
| GRALLOC_USAGE_SW_READ_OFTEN, nullptr)); |
| ASSERT_EQ(OK, mProducer->requestBuffer(slot, &buf)); |
| ASSERT_EQ(OK, mProducer->queueBuffer(slot, qbi, &qbo)); |
| ASSERT_EQ(OK, mConsumer->acquireBuffer(&item, 0)); |
| } |
| |
| EXPECT_EQ(BAD_VALUE, mConsumer->setMaxAcquiredBufferCount(2)); |
| } |
| |
| TEST_F(BufferQueueTest, SetMaxAcquiredBufferCountWithLegalValues_Succeeds) { |
| createBufferQueue(); |
| sp<DummyConsumer> dc(new DummyConsumer); |
| mConsumer->consumerConnect(dc, false); |
| |
| IGraphicBufferProducer::QueueBufferOutput qbo; |
| mProducer->connect(new DummyProducerListener, NATIVE_WINDOW_API_CPU, false, |
| &qbo); |
| mProducer->setMaxDequeuedBufferCount(2); |
| |
| int minBufferCount; |
| ASSERT_NO_FATAL_FAILURE(GetMinUndequeuedBufferCount(&minBufferCount)); |
| |
| EXPECT_EQ(OK, mConsumer->setMaxAcquiredBufferCount(1)); |
| EXPECT_EQ(OK, mConsumer->setMaxAcquiredBufferCount(2)); |
| EXPECT_EQ(OK, mConsumer->setMaxAcquiredBufferCount(minBufferCount)); |
| |
| int slot; |
| sp<Fence> fence; |
| sp<GraphicBuffer> buf; |
| IGraphicBufferProducer::QueueBufferInput qbi(0, false, |
| HAL_DATASPACE_UNKNOWN, Rect(0, 0, 1, 1), |
| NATIVE_WINDOW_SCALING_MODE_FREEZE, 0, Fence::NO_FENCE); |
| BufferItem item; |
| |
| ASSERT_EQ(IGraphicBufferProducer::BUFFER_NEEDS_REALLOCATION, |
| mProducer->dequeueBuffer(&slot, &fence, 1, 1, 0, |
| GRALLOC_USAGE_SW_READ_OFTEN, nullptr)); |
| ASSERT_EQ(OK, mProducer->requestBuffer(slot, &buf)); |
| ASSERT_EQ(OK, mProducer->queueBuffer(slot, qbi, &qbo)); |
| ASSERT_EQ(OK, mConsumer->acquireBuffer(&item, 0)); |
| |
| EXPECT_EQ(OK, mConsumer->setMaxAcquiredBufferCount(3)); |
| |
| for (int i = 0; i < 2; i++) { |
| ASSERT_EQ(IGraphicBufferProducer::BUFFER_NEEDS_REALLOCATION, |
| mProducer->dequeueBuffer(&slot, &fence, 1, 1, 0, |
| GRALLOC_USAGE_SW_READ_OFTEN, nullptr)); |
| ASSERT_EQ(OK, mProducer->requestBuffer(slot, &buf)); |
| ASSERT_EQ(OK, mProducer->queueBuffer(slot, qbi, &qbo)); |
| ASSERT_EQ(OK, mConsumer->acquireBuffer(&item, 0)); |
| } |
| |
| EXPECT_EQ(OK, mConsumer->setMaxAcquiredBufferCount( |
| BufferQueue::MAX_MAX_ACQUIRED_BUFFERS)); |
| } |
| |
| TEST_F(BufferQueueTest, SetMaxBufferCountWithLegalValues_Succeeds) { |
| createBufferQueue(); |
| sp<DummyConsumer> dc(new DummyConsumer); |
| mConsumer->consumerConnect(dc, false); |
| |
| // Test shared buffer mode |
| EXPECT_EQ(OK, mConsumer->setMaxAcquiredBufferCount(1)); |
| } |
| |
| TEST_F(BufferQueueTest, SetMaxBufferCountWithIllegalValues_ReturnsError) { |
| createBufferQueue(); |
| sp<DummyConsumer> dc(new DummyConsumer); |
| mConsumer->consumerConnect(dc, false); |
| |
| EXPECT_EQ(BAD_VALUE, mConsumer->setMaxBufferCount(0)); |
| EXPECT_EQ(BAD_VALUE, mConsumer->setMaxBufferCount( |
| BufferQueue::NUM_BUFFER_SLOTS + 1)); |
| |
| EXPECT_EQ(OK, mConsumer->setMaxAcquiredBufferCount(5)); |
| EXPECT_EQ(BAD_VALUE, mConsumer->setMaxBufferCount(3)); |
| } |
| |
| TEST_F(BufferQueueTest, DetachAndReattachOnProducerSide) { |
| createBufferQueue(); |
| sp<DummyConsumer> dc(new DummyConsumer); |
| ASSERT_EQ(OK, mConsumer->consumerConnect(dc, false)); |
| IGraphicBufferProducer::QueueBufferOutput output; |
| ASSERT_EQ(OK, mProducer->connect(new DummyProducerListener, |
| NATIVE_WINDOW_API_CPU, false, &output)); |
| |
| ASSERT_EQ(BAD_VALUE, mProducer->detachBuffer(-1)); // Index too low |
| ASSERT_EQ(BAD_VALUE, mProducer->detachBuffer( |
| BufferQueueDefs::NUM_BUFFER_SLOTS)); // Index too high |
| ASSERT_EQ(BAD_VALUE, mProducer->detachBuffer(0)); // Not dequeued |
| |
| int slot; |
| sp<Fence> fence; |
| sp<GraphicBuffer> buffer; |
| ASSERT_EQ(IGraphicBufferProducer::BUFFER_NEEDS_REALLOCATION, |
| mProducer->dequeueBuffer(&slot, &fence, 0, 0, 0, |
| GRALLOC_USAGE_SW_WRITE_OFTEN, nullptr)); |
| ASSERT_EQ(BAD_VALUE, mProducer->detachBuffer(slot)); // Not requested |
| ASSERT_EQ(OK, mProducer->requestBuffer(slot, &buffer)); |
| ASSERT_EQ(OK, mProducer->detachBuffer(slot)); |
| ASSERT_EQ(BAD_VALUE, mProducer->detachBuffer(slot)); // Not dequeued |
| |
| sp<GraphicBuffer> safeToClobberBuffer; |
| // Can no longer request buffer from this slot |
| ASSERT_EQ(BAD_VALUE, mProducer->requestBuffer(slot, &safeToClobberBuffer)); |
| |
| uint32_t* dataIn; |
| ASSERT_EQ(OK, buffer->lock(GraphicBuffer::USAGE_SW_WRITE_OFTEN, |
| reinterpret_cast<void**>(&dataIn))); |
| *dataIn = TEST_DATA; |
| ASSERT_EQ(OK, buffer->unlock()); |
| |
| int newSlot; |
| ASSERT_EQ(BAD_VALUE, mProducer->attachBuffer(NULL, safeToClobberBuffer)); |
| ASSERT_EQ(BAD_VALUE, mProducer->attachBuffer(&newSlot, NULL)); |
| |
| ASSERT_EQ(OK, mProducer->attachBuffer(&newSlot, buffer)); |
| IGraphicBufferProducer::QueueBufferInput input(0, false, |
| HAL_DATASPACE_UNKNOWN, Rect(0, 0, 1, 1), |
| NATIVE_WINDOW_SCALING_MODE_FREEZE, 0, Fence::NO_FENCE); |
| ASSERT_EQ(OK, mProducer->queueBuffer(newSlot, input, &output)); |
| |
| BufferItem item; |
| ASSERT_EQ(OK, mConsumer->acquireBuffer(&item, static_cast<nsecs_t>(0))); |
| |
| uint32_t* dataOut; |
| ASSERT_EQ(OK, item.mGraphicBuffer->lock(GraphicBuffer::USAGE_SW_READ_OFTEN, |
| reinterpret_cast<void**>(&dataOut))); |
| ASSERT_EQ(*dataOut, TEST_DATA); |
| ASSERT_EQ(OK, item.mGraphicBuffer->unlock()); |
| } |
| |
| TEST_F(BufferQueueTest, DetachAndReattachOnConsumerSide) { |
| createBufferQueue(); |
| sp<DummyConsumer> dc(new DummyConsumer); |
| ASSERT_EQ(OK, mConsumer->consumerConnect(dc, false)); |
| IGraphicBufferProducer::QueueBufferOutput output; |
| ASSERT_EQ(OK, mProducer->connect(new DummyProducerListener, |
| NATIVE_WINDOW_API_CPU, false, &output)); |
| |
| int slot; |
| sp<Fence> fence; |
| sp<GraphicBuffer> buffer; |
| ASSERT_EQ(IGraphicBufferProducer::BUFFER_NEEDS_REALLOCATION, |
| mProducer->dequeueBuffer(&slot, &fence, 0, 0, 0, |
| GRALLOC_USAGE_SW_WRITE_OFTEN, nullptr)); |
| ASSERT_EQ(OK, mProducer->requestBuffer(slot, &buffer)); |
| IGraphicBufferProducer::QueueBufferInput input(0, false, |
| HAL_DATASPACE_UNKNOWN, Rect(0, 0, 1, 1), |
| NATIVE_WINDOW_SCALING_MODE_FREEZE, 0, Fence::NO_FENCE); |
| ASSERT_EQ(OK, mProducer->queueBuffer(slot, input, &output)); |
| |
| ASSERT_EQ(BAD_VALUE, mConsumer->detachBuffer(-1)); // Index too low |
| ASSERT_EQ(BAD_VALUE, mConsumer->detachBuffer( |
| BufferQueueDefs::NUM_BUFFER_SLOTS)); // Index too high |
| ASSERT_EQ(BAD_VALUE, mConsumer->detachBuffer(0)); // Not acquired |
| |
| BufferItem item; |
| ASSERT_EQ(OK, mConsumer->acquireBuffer(&item, static_cast<nsecs_t>(0))); |
| |
| ASSERT_EQ(OK, mConsumer->detachBuffer(item.mSlot)); |
| ASSERT_EQ(BAD_VALUE, mConsumer->detachBuffer(item.mSlot)); // Not acquired |
| |
| uint32_t* dataIn; |
| ASSERT_EQ(OK, item.mGraphicBuffer->lock( |
| GraphicBuffer::USAGE_SW_WRITE_OFTEN, |
| reinterpret_cast<void**>(&dataIn))); |
| *dataIn = TEST_DATA; |
| ASSERT_EQ(OK, item.mGraphicBuffer->unlock()); |
| |
| int newSlot; |
| sp<GraphicBuffer> safeToClobberBuffer; |
| ASSERT_EQ(BAD_VALUE, mConsumer->attachBuffer(NULL, safeToClobberBuffer)); |
| ASSERT_EQ(BAD_VALUE, mConsumer->attachBuffer(&newSlot, NULL)); |
| ASSERT_EQ(OK, mConsumer->attachBuffer(&newSlot, item.mGraphicBuffer)); |
| |
| ASSERT_EQ(OK, mConsumer->releaseBuffer(newSlot, 0, EGL_NO_DISPLAY, |
| EGL_NO_SYNC_KHR, Fence::NO_FENCE)); |
| |
| ASSERT_EQ(IGraphicBufferProducer::BUFFER_NEEDS_REALLOCATION, |
| mProducer->dequeueBuffer(&slot, &fence, 0, 0, 0, |
| GRALLOC_USAGE_SW_WRITE_OFTEN, nullptr)); |
| ASSERT_EQ(OK, mProducer->requestBuffer(slot, &buffer)); |
| |
| uint32_t* dataOut; |
| ASSERT_EQ(OK, buffer->lock(GraphicBuffer::USAGE_SW_READ_OFTEN, |
| reinterpret_cast<void**>(&dataOut))); |
| ASSERT_EQ(*dataOut, TEST_DATA); |
| ASSERT_EQ(OK, buffer->unlock()); |
| } |
| |
| TEST_F(BufferQueueTest, MoveFromConsumerToProducer) { |
| createBufferQueue(); |
| sp<DummyConsumer> dc(new DummyConsumer); |
| ASSERT_EQ(OK, mConsumer->consumerConnect(dc, false)); |
| IGraphicBufferProducer::QueueBufferOutput output; |
| ASSERT_EQ(OK, mProducer->connect(new DummyProducerListener, |
| NATIVE_WINDOW_API_CPU, false, &output)); |
| |
| int slot; |
| sp<Fence> fence; |
| sp<GraphicBuffer> buffer; |
| ASSERT_EQ(IGraphicBufferProducer::BUFFER_NEEDS_REALLOCATION, |
| mProducer->dequeueBuffer(&slot, &fence, 0, 0, 0, |
| GRALLOC_USAGE_SW_WRITE_OFTEN, nullptr)); |
| ASSERT_EQ(OK, mProducer->requestBuffer(slot, &buffer)); |
| |
| uint32_t* dataIn; |
| ASSERT_EQ(OK, buffer->lock(GraphicBuffer::USAGE_SW_WRITE_OFTEN, |
| reinterpret_cast<void**>(&dataIn))); |
| *dataIn = TEST_DATA; |
| ASSERT_EQ(OK, buffer->unlock()); |
| |
| IGraphicBufferProducer::QueueBufferInput input(0, false, |
| HAL_DATASPACE_UNKNOWN, Rect(0, 0, 1, 1), |
| NATIVE_WINDOW_SCALING_MODE_FREEZE, 0, Fence::NO_FENCE); |
| ASSERT_EQ(OK, mProducer->queueBuffer(slot, input, &output)); |
| |
| BufferItem item; |
| ASSERT_EQ(OK, mConsumer->acquireBuffer(&item, static_cast<nsecs_t>(0))); |
| ASSERT_EQ(OK, mConsumer->detachBuffer(item.mSlot)); |
| |
| int newSlot; |
| ASSERT_EQ(OK, mProducer->attachBuffer(&newSlot, item.mGraphicBuffer)); |
| ASSERT_EQ(OK, mProducer->queueBuffer(newSlot, input, &output)); |
| ASSERT_EQ(OK, mConsumer->acquireBuffer(&item, static_cast<nsecs_t>(0))); |
| |
| uint32_t* dataOut; |
| ASSERT_EQ(OK, item.mGraphicBuffer->lock(GraphicBuffer::USAGE_SW_READ_OFTEN, |
| reinterpret_cast<void**>(&dataOut))); |
| ASSERT_EQ(*dataOut, TEST_DATA); |
| ASSERT_EQ(OK, item.mGraphicBuffer->unlock()); |
| } |
| |
| TEST_F(BufferQueueTest, TestDisallowingAllocation) { |
| createBufferQueue(); |
| sp<DummyConsumer> dc(new DummyConsumer); |
| ASSERT_EQ(OK, mConsumer->consumerConnect(dc, true)); |
| IGraphicBufferProducer::QueueBufferOutput output; |
| ASSERT_EQ(OK, mProducer->connect(new DummyProducerListener, |
| NATIVE_WINDOW_API_CPU, true, &output)); |
| |
| static const uint32_t WIDTH = 320; |
| static const uint32_t HEIGHT = 240; |
| |
| ASSERT_EQ(OK, mConsumer->setDefaultBufferSize(WIDTH, HEIGHT)); |
| |
| int slot; |
| sp<Fence> fence; |
| sp<GraphicBuffer> buffer; |
| // This should return an error since it would require an allocation |
| ASSERT_EQ(OK, mProducer->allowAllocation(false)); |
| ASSERT_EQ(WOULD_BLOCK, mProducer->dequeueBuffer(&slot, &fence, 0, 0, |
| 0, GRALLOC_USAGE_SW_WRITE_OFTEN, nullptr)); |
| |
| // This should succeed, now that we've lifted the prohibition |
| ASSERT_EQ(OK, mProducer->allowAllocation(true)); |
| ASSERT_EQ(IGraphicBufferProducer::BUFFER_NEEDS_REALLOCATION, |
| mProducer->dequeueBuffer(&slot, &fence, 0, 0, 0, |
| GRALLOC_USAGE_SW_WRITE_OFTEN, nullptr)); |
| |
| // Release the previous buffer back to the BufferQueue |
| mProducer->cancelBuffer(slot, fence); |
| |
| // This should fail since we're requesting a different size |
| ASSERT_EQ(OK, mProducer->allowAllocation(false)); |
| ASSERT_EQ(WOULD_BLOCK, mProducer->dequeueBuffer(&slot, &fence, |
| WIDTH * 2, HEIGHT * 2, 0, GRALLOC_USAGE_SW_WRITE_OFTEN, nullptr)); |
| } |
| |
| TEST_F(BufferQueueTest, TestGenerationNumbers) { |
| createBufferQueue(); |
| sp<DummyConsumer> dc(new DummyConsumer); |
| ASSERT_EQ(OK, mConsumer->consumerConnect(dc, true)); |
| IGraphicBufferProducer::QueueBufferOutput output; |
| ASSERT_EQ(OK, mProducer->connect(new DummyProducerListener, |
| NATIVE_WINDOW_API_CPU, true, &output)); |
| |
| ASSERT_EQ(OK, mProducer->setGenerationNumber(1)); |
| |
| // Get one buffer to play with |
| int slot; |
| sp<Fence> fence; |
| ASSERT_EQ(IGraphicBufferProducer::BUFFER_NEEDS_REALLOCATION, |
| mProducer->dequeueBuffer(&slot, &fence, 0, 0, 0, 0, nullptr)); |
| |
| sp<GraphicBuffer> buffer; |
| ASSERT_EQ(OK, mProducer->requestBuffer(slot, &buffer)); |
| |
| // Ensure that the generation number we set propagates to allocated buffers |
| ASSERT_EQ(1U, buffer->getGenerationNumber()); |
| |
| ASSERT_EQ(OK, mProducer->detachBuffer(slot)); |
| |
| ASSERT_EQ(OK, mProducer->setGenerationNumber(2)); |
| |
| // These should fail, since we've changed the generation number on the queue |
| int outSlot; |
| ASSERT_EQ(BAD_VALUE, mProducer->attachBuffer(&outSlot, buffer)); |
| ASSERT_EQ(BAD_VALUE, mConsumer->attachBuffer(&outSlot, buffer)); |
| |
| buffer->setGenerationNumber(2); |
| |
| // This should succeed now that we've changed the buffer's generation number |
| ASSERT_EQ(OK, mProducer->attachBuffer(&outSlot, buffer)); |
| |
| ASSERT_EQ(OK, mProducer->detachBuffer(outSlot)); |
| |
| // This should also succeed with the new generation number |
| ASSERT_EQ(OK, mConsumer->attachBuffer(&outSlot, buffer)); |
| } |
| |
| TEST_F(BufferQueueTest, TestSharedBufferModeWithoutAutoRefresh) { |
| createBufferQueue(); |
| sp<DummyConsumer> dc(new DummyConsumer); |
| ASSERT_EQ(OK, mConsumer->consumerConnect(dc, true)); |
| IGraphicBufferProducer::QueueBufferOutput output; |
| ASSERT_EQ(OK, mProducer->connect(new DummyProducerListener, |
| NATIVE_WINDOW_API_CPU, true, &output)); |
| |
| ASSERT_EQ(OK, mProducer->setSharedBufferMode(true)); |
| |
| // Get a buffer |
| int sharedSlot; |
| sp<Fence> fence; |
| sp<GraphicBuffer> buffer; |
| ASSERT_EQ(IGraphicBufferProducer::BUFFER_NEEDS_REALLOCATION, |
| mProducer->dequeueBuffer(&sharedSlot, &fence, 0, 0, 0, 0, nullptr)); |
| ASSERT_EQ(OK, mProducer->requestBuffer(sharedSlot, &buffer)); |
| |
| // Queue the buffer |
| IGraphicBufferProducer::QueueBufferInput input(0, false, |
| HAL_DATASPACE_UNKNOWN, Rect(0, 0, 1, 1), |
| NATIVE_WINDOW_SCALING_MODE_FREEZE, 0, Fence::NO_FENCE); |
| ASSERT_EQ(OK, mProducer->queueBuffer(sharedSlot, input, &output)); |
| |
| // Repeatedly queue and dequeue a buffer from the producer side, it should |
| // always return the same one. And we won't run out of buffers because it's |
| // always the same one and because async mode gets enabled. |
| int slot; |
| for (int i = 0; i < 5; i++) { |
| ASSERT_EQ(OK, mProducer->dequeueBuffer( |
| &slot, &fence, 0, 0, 0, 0, nullptr)); |
| ASSERT_EQ(sharedSlot, slot); |
| ASSERT_EQ(OK, mProducer->queueBuffer(sharedSlot, input, &output)); |
| } |
| |
| // acquire the buffer |
| BufferItem item; |
| ASSERT_EQ(OK, mConsumer->acquireBuffer(&item, 0)); |
| ASSERT_EQ(sharedSlot, item.mSlot); |
| testBufferItem(input, item); |
| ASSERT_EQ(true, item.mQueuedBuffer); |
| ASSERT_EQ(false, item.mAutoRefresh); |
| |
| ASSERT_EQ(OK, mConsumer->releaseBuffer(item.mSlot, item.mFrameNumber, |
| EGL_NO_DISPLAY, EGL_NO_SYNC_KHR, Fence::NO_FENCE)); |
| |
| // attempt to acquire a second time should return no buffer available |
| ASSERT_EQ(IGraphicBufferConsumer::NO_BUFFER_AVAILABLE, |
| mConsumer->acquireBuffer(&item, 0)); |
| } |
| |
| TEST_F(BufferQueueTest, TestSharedBufferModeWithAutoRefresh) { |
| createBufferQueue(); |
| sp<DummyConsumer> dc(new DummyConsumer); |
| ASSERT_EQ(OK, mConsumer->consumerConnect(dc, true)); |
| IGraphicBufferProducer::QueueBufferOutput output; |
| ASSERT_EQ(OK, mProducer->connect(new DummyProducerListener, |
| NATIVE_WINDOW_API_CPU, true, &output)); |
| |
| ASSERT_EQ(OK, mProducer->setSharedBufferMode(true)); |
| ASSERT_EQ(OK, mProducer->setAutoRefresh(true)); |
| |
| // Get a buffer |
| int sharedSlot; |
| sp<Fence> fence; |
| sp<GraphicBuffer> buffer; |
| ASSERT_EQ(IGraphicBufferProducer::BUFFER_NEEDS_REALLOCATION, |
| mProducer->dequeueBuffer(&sharedSlot, &fence, 0, 0, 0, 0, nullptr)); |
| ASSERT_EQ(OK, mProducer->requestBuffer(sharedSlot, &buffer)); |
| |
| // Queue the buffer |
| IGraphicBufferProducer::QueueBufferInput input(0, false, |
| HAL_DATASPACE_UNKNOWN, Rect(0, 0, 1, 1), |
| NATIVE_WINDOW_SCALING_MODE_FREEZE, 0, Fence::NO_FENCE); |
| ASSERT_EQ(OK, mProducer->queueBuffer(sharedSlot, input, &output)); |
| |
| // Repeatedly acquire and release a buffer from the consumer side, it should |
| // always return the same one. |
| BufferItem item; |
| for (int i = 0; i < 5; i++) { |
| ASSERT_EQ(OK, mConsumer->acquireBuffer(&item, 0)); |
| ASSERT_EQ(sharedSlot, item.mSlot); |
| testBufferItem(input, item); |
| ASSERT_EQ(i == 0, item.mQueuedBuffer); |
| ASSERT_EQ(true, item.mAutoRefresh); |
| |
| ASSERT_EQ(OK, mConsumer->releaseBuffer(item.mSlot, item.mFrameNumber, |
| EGL_NO_DISPLAY, EGL_NO_SYNC_KHR, Fence::NO_FENCE)); |
| } |
| |
| // Repeatedly queue and dequeue a buffer from the producer side, it should |
| // always return the same one. |
| int slot; |
| for (int i = 0; i < 5; i++) { |
| ASSERT_EQ(OK, mProducer->dequeueBuffer( |
| &slot, &fence, 0, 0, 0, 0, nullptr)); |
| ASSERT_EQ(sharedSlot, slot); |
| ASSERT_EQ(OK, mProducer->queueBuffer(sharedSlot, input, &output)); |
| } |
| |
| // Repeatedly acquire and release a buffer from the consumer side, it should |
| // always return the same one. First grabbing them from the queue and then |
| // when the queue is empty, returning the shared buffer. |
| for (int i = 0; i < 10; i++) { |
| ASSERT_EQ(OK, mConsumer->acquireBuffer(&item, 0)); |
| ASSERT_EQ(sharedSlot, item.mSlot); |
| ASSERT_EQ(0, item.mTimestamp); |
| ASSERT_EQ(false, item.mIsAutoTimestamp); |
| ASSERT_EQ(HAL_DATASPACE_UNKNOWN, item.mDataSpace); |
| ASSERT_EQ(Rect(0, 0, 1, 1), item.mCrop); |
| ASSERT_EQ(NATIVE_WINDOW_SCALING_MODE_FREEZE, item.mScalingMode); |
| ASSERT_EQ(0u, item.mTransform); |
| ASSERT_EQ(Fence::NO_FENCE, item.mFence); |
| ASSERT_EQ(i == 0, item.mQueuedBuffer); |
| ASSERT_EQ(true, item.mAutoRefresh); |
| |
| ASSERT_EQ(OK, mConsumer->releaseBuffer(item.mSlot, item.mFrameNumber, |
| EGL_NO_DISPLAY, EGL_NO_SYNC_KHR, Fence::NO_FENCE)); |
| } |
| } |
| |
| TEST_F(BufferQueueTest, TestSharedBufferModeUsingAlreadyDequeuedBuffer) { |
| createBufferQueue(); |
| sp<DummyConsumer> dc(new DummyConsumer); |
| ASSERT_EQ(OK, mConsumer->consumerConnect(dc, true)); |
| IGraphicBufferProducer::QueueBufferOutput output; |
| ASSERT_EQ(OK, mProducer->connect(new DummyProducerListener, |
| NATIVE_WINDOW_API_CPU, true, &output)); |
| |
| // Dequeue a buffer |
| int sharedSlot; |
| sp<Fence> fence; |
| sp<GraphicBuffer> buffer; |
| ASSERT_EQ(IGraphicBufferProducer::BUFFER_NEEDS_REALLOCATION, |
| mProducer->dequeueBuffer(&sharedSlot, &fence, 0, 0, 0, 0, nullptr)); |
| ASSERT_EQ(OK, mProducer->requestBuffer(sharedSlot, &buffer)); |
| |
| // Enable shared buffer mode |
| ASSERT_EQ(OK, mProducer->setSharedBufferMode(true)); |
| |
| // Queue the buffer |
| IGraphicBufferProducer::QueueBufferInput input(0, false, |
| HAL_DATASPACE_UNKNOWN, Rect(0, 0, 1, 1), |
| NATIVE_WINDOW_SCALING_MODE_FREEZE, 0, Fence::NO_FENCE); |
| ASSERT_EQ(OK, mProducer->queueBuffer(sharedSlot, input, &output)); |
| |
| // Repeatedly queue and dequeue a buffer from the producer side, it should |
| // always return the same one. And we won't run out of buffers because it's |
| // always the same one and because async mode gets enabled. |
| int slot; |
| for (int i = 0; i < 5; i++) { |
| ASSERT_EQ(OK, mProducer->dequeueBuffer( |
| &slot, &fence, 0, 0, 0, 0, nullptr)); |
| ASSERT_EQ(sharedSlot, slot); |
| ASSERT_EQ(OK, mProducer->queueBuffer(sharedSlot, input, &output)); |
| } |
| |
| // acquire the buffer |
| BufferItem item; |
| ASSERT_EQ(OK, mConsumer->acquireBuffer(&item, 0)); |
| ASSERT_EQ(sharedSlot, item.mSlot); |
| testBufferItem(input, item); |
| ASSERT_EQ(true, item.mQueuedBuffer); |
| ASSERT_EQ(false, item.mAutoRefresh); |
| |
| ASSERT_EQ(OK, mConsumer->releaseBuffer(item.mSlot, item.mFrameNumber, |
| EGL_NO_DISPLAY, EGL_NO_SYNC_KHR, Fence::NO_FENCE)); |
| |
| // attempt to acquire a second time should return no buffer available |
| ASSERT_EQ(IGraphicBufferConsumer::NO_BUFFER_AVAILABLE, |
| mConsumer->acquireBuffer(&item, 0)); |
| } |
| |
| TEST_F(BufferQueueTest, TestTimeouts) { |
| createBufferQueue(); |
| sp<DummyConsumer> dc(new DummyConsumer); |
| ASSERT_EQ(OK, mConsumer->consumerConnect(dc, true)); |
| IGraphicBufferProducer::QueueBufferOutput output; |
| ASSERT_EQ(OK, mProducer->connect(new DummyProducerListener, |
| NATIVE_WINDOW_API_CPU, true, &output)); |
| |
| // Fill up the queue. Since the controlledByApp flags are set to true, this |
| // queue should be in non-blocking mode, and we should be recycling the same |
| // two buffers |
| for (int i = 0; i < 5; ++i) { |
| int slot = BufferQueue::INVALID_BUFFER_SLOT; |
| sp<Fence> fence = Fence::NO_FENCE; |
| auto result = mProducer->dequeueBuffer( |
| &slot, &fence, 0, 0, 0, 0, nullptr); |
| if (i < 2) { |
| ASSERT_EQ(IGraphicBufferProducer::BUFFER_NEEDS_REALLOCATION, |
| result); |
| } else { |
| ASSERT_EQ(OK, result); |
| } |
| sp<GraphicBuffer> buffer; |
| ASSERT_EQ(OK, mProducer->requestBuffer(slot, &buffer)); |
| IGraphicBufferProducer::QueueBufferInput input(0ull, true, |
| HAL_DATASPACE_UNKNOWN, Rect::INVALID_RECT, |
| NATIVE_WINDOW_SCALING_MODE_FREEZE, 0, Fence::NO_FENCE); |
| IGraphicBufferProducer::QueueBufferOutput output{}; |
| ASSERT_EQ(OK, mProducer->queueBuffer(slot, input, &output)); |
| } |
| |
| const auto TIMEOUT = ms2ns(250); |
| mProducer->setDequeueTimeout(TIMEOUT); |
| |
| // Setting a timeout will change the BufferQueue into blocking mode (with |
| // one droppable buffer in the queue and one free from the previous |
| // dequeue/queues), so dequeue and queue two more buffers: one to replace |
| // the current droppable buffer, and a second to max out the buffer count |
| sp<GraphicBuffer> buffer; // Save a buffer to attach later |
| for (int i = 0; i < 2; ++i) { |
| int slot = BufferQueue::INVALID_BUFFER_SLOT; |
| sp<Fence> fence = Fence::NO_FENCE; |
| ASSERT_EQ(OK, mProducer->dequeueBuffer( |
| &slot, &fence, 0, 0, 0, 0, nullptr)); |
| ASSERT_EQ(OK, mProducer->requestBuffer(slot, &buffer)); |
| IGraphicBufferProducer::QueueBufferInput input(0ull, true, |
| HAL_DATASPACE_UNKNOWN, Rect::INVALID_RECT, |
| NATIVE_WINDOW_SCALING_MODE_FREEZE, 0, Fence::NO_FENCE); |
| ASSERT_EQ(OK, mProducer->queueBuffer(slot, input, &output)); |
| } |
| |
| int slot = BufferQueue::INVALID_BUFFER_SLOT; |
| sp<Fence> fence = Fence::NO_FENCE; |
| auto startTime = systemTime(); |
| ASSERT_EQ(TIMED_OUT, mProducer->dequeueBuffer( |
| &slot, &fence, 0, 0, 0, 0, nullptr)); |
| ASSERT_GE(systemTime() - startTime, TIMEOUT); |
| |
| // We're technically attaching the same buffer multiple times (since we |
| // queued it previously), but that doesn't matter for this test |
| startTime = systemTime(); |
| ASSERT_EQ(TIMED_OUT, mProducer->attachBuffer(&slot, buffer)); |
| ASSERT_GE(systemTime() - startTime, TIMEOUT); |
| } |
| |
| TEST_F(BufferQueueTest, CanAttachWhileDisallowingAllocation) { |
| createBufferQueue(); |
| sp<DummyConsumer> dc(new DummyConsumer); |
| ASSERT_EQ(OK, mConsumer->consumerConnect(dc, true)); |
| IGraphicBufferProducer::QueueBufferOutput output; |
| ASSERT_EQ(OK, mProducer->connect(new DummyProducerListener, |
| NATIVE_WINDOW_API_CPU, true, &output)); |
| |
| int slot = BufferQueue::INVALID_BUFFER_SLOT; |
| sp<Fence> sourceFence; |
| ASSERT_EQ(IGraphicBufferProducer::BUFFER_NEEDS_REALLOCATION, |
| mProducer->dequeueBuffer(&slot, &sourceFence, 0, 0, 0, 0, nullptr)); |
| sp<GraphicBuffer> buffer; |
| ASSERT_EQ(OK, mProducer->requestBuffer(slot, &buffer)); |
| ASSERT_EQ(OK, mProducer->detachBuffer(slot)); |
| |
| ASSERT_EQ(OK, mProducer->allowAllocation(false)); |
| |
| slot = BufferQueue::INVALID_BUFFER_SLOT; |
| ASSERT_EQ(OK, mProducer->attachBuffer(&slot, buffer)); |
| } |
| |
| TEST_F(BufferQueueTest, CanRetrieveLastQueuedBuffer) { |
| createBufferQueue(); |
| sp<DummyConsumer> dc(new DummyConsumer); |
| ASSERT_EQ(OK, mConsumer->consumerConnect(dc, false)); |
| IGraphicBufferProducer::QueueBufferOutput output; |
| ASSERT_EQ(OK, mProducer->connect(new DummyProducerListener, |
| NATIVE_WINDOW_API_CPU, false, &output)); |
| |
| // Dequeue and queue the first buffer, storing the handle |
| int slot = BufferQueue::INVALID_BUFFER_SLOT; |
| sp<Fence> fence; |
| ASSERT_EQ(IGraphicBufferProducer::BUFFER_NEEDS_REALLOCATION, |
| mProducer->dequeueBuffer(&slot, &fence, 0, 0, 0, 0, nullptr)); |
| sp<GraphicBuffer> firstBuffer; |
| ASSERT_EQ(OK, mProducer->requestBuffer(slot, &firstBuffer)); |
| |
| IGraphicBufferProducer::QueueBufferInput input(0ull, true, |
| HAL_DATASPACE_UNKNOWN, Rect::INVALID_RECT, |
| NATIVE_WINDOW_SCALING_MODE_FREEZE, 0, Fence::NO_FENCE); |
| ASSERT_EQ(OK, mProducer->queueBuffer(slot, input, &output)); |
| |
| // Dequeue a second buffer |
| slot = BufferQueue::INVALID_BUFFER_SLOT; |
| ASSERT_EQ(IGraphicBufferProducer::BUFFER_NEEDS_REALLOCATION, |
| mProducer->dequeueBuffer(&slot, &fence, 0, 0, 0, 0, nullptr)); |
| sp<GraphicBuffer> secondBuffer; |
| ASSERT_EQ(OK, mProducer->requestBuffer(slot, &secondBuffer)); |
| |
| // Ensure it's a new buffer |
| ASSERT_NE(firstBuffer->getNativeBuffer()->handle, |
| secondBuffer->getNativeBuffer()->handle); |
| |
| // Queue the second buffer |
| ASSERT_EQ(OK, mProducer->queueBuffer(slot, input, &output)); |
| |
| // Acquire and release both buffers |
| for (size_t i = 0; i < 2; ++i) { |
| BufferItem item; |
| ASSERT_EQ(OK, mConsumer->acquireBuffer(&item, 0)); |
| ASSERT_EQ(OK, mConsumer->releaseBuffer(item.mSlot, item.mFrameNumber, |
| EGL_NO_DISPLAY, EGL_NO_SYNC_KHR, Fence::NO_FENCE)); |
| } |
| |
| // Make sure we got the second buffer back |
| sp<GraphicBuffer> returnedBuffer; |
| sp<Fence> returnedFence; |
| float transform[16]; |
| ASSERT_EQ(OK, |
| mProducer->getLastQueuedBuffer(&returnedBuffer, &returnedFence, |
| transform)); |
| ASSERT_EQ(secondBuffer->getNativeBuffer()->handle, |
| returnedBuffer->getNativeBuffer()->handle); |
| } |
| |
| TEST_F(BufferQueueTest, TestOccupancyHistory) { |
| createBufferQueue(); |
| sp<DummyConsumer> dc(new DummyConsumer); |
| ASSERT_EQ(OK, mConsumer->consumerConnect(dc, false)); |
| IGraphicBufferProducer::QueueBufferOutput output; |
| ASSERT_EQ(OK, mProducer->connect(new DummyProducerListener, |
| NATIVE_WINDOW_API_CPU, false, &output)); |
| |
| int slot = BufferQueue::INVALID_BUFFER_SLOT; |
| sp<Fence> fence = Fence::NO_FENCE; |
| sp<GraphicBuffer> buffer = nullptr; |
| IGraphicBufferProducer::QueueBufferInput input(0ull, true, |
| HAL_DATASPACE_UNKNOWN, Rect::INVALID_RECT, |
| NATIVE_WINDOW_SCALING_MODE_FREEZE, 0, Fence::NO_FENCE); |
| BufferItem item{}; |
| |
| // Preallocate, dequeue, request, and cancel 3 buffers so we don't get |
| // BUFFER_NEEDS_REALLOCATION below |
| int slots[3] = {}; |
| mProducer->setMaxDequeuedBufferCount(3); |
| for (size_t i = 0; i < 3; ++i) { |
| status_t result = mProducer->dequeueBuffer(&slots[i], &fence, |
| 0, 0, 0, 0, nullptr); |
| ASSERT_EQ(IGraphicBufferProducer::BUFFER_NEEDS_REALLOCATION, result); |
| ASSERT_EQ(OK, mProducer->requestBuffer(slots[i], &buffer)); |
| } |
| for (size_t i = 0; i < 3; ++i) { |
| ASSERT_EQ(OK, mProducer->cancelBuffer(slots[i], Fence::NO_FENCE)); |
| } |
| |
| // Create 3 segments |
| |
| // The first segment is a two-buffer segment, so we only put one buffer into |
| // the queue at a time |
| for (size_t i = 0; i < 5; ++i) { |
| ASSERT_EQ(OK, mProducer->dequeueBuffer( |
| &slot, &fence, 0, 0, 0, 0, nullptr)); |
| ASSERT_EQ(OK, mProducer->queueBuffer(slot, input, &output)); |
| ASSERT_EQ(OK, mConsumer->acquireBuffer(&item, 0)); |
| ASSERT_EQ(OK, mConsumer->releaseBuffer(item.mSlot, item.mFrameNumber, |
| EGL_NO_DISPLAY, EGL_NO_SYNC_KHR, Fence::NO_FENCE)); |
| std::this_thread::sleep_for(16ms); |
| } |
| |
| // Sleep between segments |
| std::this_thread::sleep_for(500ms); |
| |
| // The second segment is a double-buffer segment. It starts the same as the |
| // two-buffer segment, but then at the end, we put two buffers in the queue |
| // at the same time before draining it. |
| for (size_t i = 0; i < 5; ++i) { |
| ASSERT_EQ(OK, mProducer->dequeueBuffer( |
| &slot, &fence, 0, 0, 0, 0, nullptr)); |
| ASSERT_EQ(OK, mProducer->queueBuffer(slot, input, &output)); |
| ASSERT_EQ(OK, mConsumer->acquireBuffer(&item, 0)); |
| ASSERT_EQ(OK, mConsumer->releaseBuffer(item.mSlot, item.mFrameNumber, |
| EGL_NO_DISPLAY, EGL_NO_SYNC_KHR, Fence::NO_FENCE)); |
| std::this_thread::sleep_for(16ms); |
| } |
| ASSERT_EQ(OK, mProducer->dequeueBuffer(&slot, &fence, 0, 0, 0, 0, nullptr)); |
| ASSERT_EQ(OK, mProducer->queueBuffer(slot, input, &output)); |
| ASSERT_EQ(OK, mProducer->dequeueBuffer(&slot, &fence, 0, 0, 0, 0, nullptr)); |
| ASSERT_EQ(OK, mProducer->queueBuffer(slot, input, &output)); |
| ASSERT_EQ(OK, mConsumer->acquireBuffer(&item, 0)); |
| ASSERT_EQ(OK, mConsumer->releaseBuffer(item.mSlot, item.mFrameNumber, |
| EGL_NO_DISPLAY, EGL_NO_SYNC_KHR, Fence::NO_FENCE)); |
| std::this_thread::sleep_for(16ms); |
| ASSERT_EQ(OK, mConsumer->acquireBuffer(&item, 0)); |
| ASSERT_EQ(OK, mConsumer->releaseBuffer(item.mSlot, item.mFrameNumber, |
| EGL_NO_DISPLAY, EGL_NO_SYNC_KHR, Fence::NO_FENCE)); |
| |
| // Sleep between segments |
| std::this_thread::sleep_for(500ms); |
| |
| // The third segment is a triple-buffer segment, so the queue is switching |
| // between one buffer and two buffers deep. |
| ASSERT_EQ(OK, mProducer->dequeueBuffer(&slot, &fence, 0, 0, 0, 0, nullptr)); |
| ASSERT_EQ(OK, mProducer->queueBuffer(slot, input, &output)); |
| for (size_t i = 0; i < 5; ++i) { |
| ASSERT_EQ(OK, mProducer->dequeueBuffer( |
| &slot, &fence, 0, 0, 0, 0, nullptr)); |
| ASSERT_EQ(OK, mProducer->queueBuffer(slot, input, &output)); |
| ASSERT_EQ(OK, mConsumer->acquireBuffer(&item, 0)); |
| ASSERT_EQ(OK, mConsumer->releaseBuffer(item.mSlot, item.mFrameNumber, |
| EGL_NO_DISPLAY, EGL_NO_SYNC_KHR, Fence::NO_FENCE)); |
| std::this_thread::sleep_for(16ms); |
| } |
| ASSERT_EQ(OK, mConsumer->acquireBuffer(&item, 0)); |
| ASSERT_EQ(OK, mConsumer->releaseBuffer(item.mSlot, item.mFrameNumber, |
| EGL_NO_DISPLAY, EGL_NO_SYNC_KHR, Fence::NO_FENCE)); |
| |
| // Now we read the segments |
| std::vector<OccupancyTracker::Segment> history; |
| ASSERT_EQ(OK, mConsumer->getOccupancyHistory(false, &history)); |
| |
| // Since we didn't force a flush, we should only get the first two segments |
| // (since the third segment hasn't been closed out by the appearance of a |
| // new segment yet) |
| ASSERT_EQ(2u, history.size()); |
| |
| // The first segment (which will be history[1], since the newest segment |
| // should be at the front of the vector) should be a two-buffer segment, |
| // which implies that the occupancy average should be between 0 and 1, and |
| // usedThirdBuffer should be false |
| const auto& firstSegment = history[1]; |
| ASSERT_EQ(5u, firstSegment.numFrames); |
| ASSERT_LT(0, firstSegment.occupancyAverage); |
| ASSERT_GT(1, firstSegment.occupancyAverage); |
| ASSERT_EQ(false, firstSegment.usedThirdBuffer); |
| |
| // The second segment should be a double-buffered segment, which implies that |
| // the occupancy average should be between 0 and 1, but usedThirdBuffer |
| // should be true |
| const auto& secondSegment = history[0]; |
| ASSERT_EQ(7u, secondSegment.numFrames); |
| ASSERT_LT(0, secondSegment.occupancyAverage); |
| ASSERT_GT(1, secondSegment.occupancyAverage); |
| ASSERT_EQ(true, secondSegment.usedThirdBuffer); |
| |
| // If we read the segments again without flushing, we shouldn't get any new |
| // segments |
| ASSERT_EQ(OK, mConsumer->getOccupancyHistory(false, &history)); |
| ASSERT_EQ(0u, history.size()); |
| |
| // Read the segments again, this time forcing a flush so we get the third |
| // segment |
| ASSERT_EQ(OK, mConsumer->getOccupancyHistory(true, &history)); |
| ASSERT_EQ(1u, history.size()); |
| |
| // This segment should be a triple-buffered segment, which implies that the |
| // occupancy average should be between 1 and 2, and usedThirdBuffer should |
| // be true |
| const auto& thirdSegment = history[0]; |
| ASSERT_EQ(6u, thirdSegment.numFrames); |
| ASSERT_LT(1, thirdSegment.occupancyAverage); |
| ASSERT_GT(2, thirdSegment.occupancyAverage); |
| ASSERT_EQ(true, thirdSegment.usedThirdBuffer); |
| } |
| |
| TEST_F(BufferQueueTest, TestDiscardFreeBuffers) { |
| createBufferQueue(); |
| sp<DummyConsumer> dc(new DummyConsumer); |
| ASSERT_EQ(OK, mConsumer->consumerConnect(dc, false)); |
| IGraphicBufferProducer::QueueBufferOutput output; |
| ASSERT_EQ(OK, mProducer->connect(new DummyProducerListener, |
| NATIVE_WINDOW_API_CPU, false, &output)); |
| |
| int slot = BufferQueue::INVALID_BUFFER_SLOT; |
| sp<Fence> fence = Fence::NO_FENCE; |
| sp<GraphicBuffer> buffer = nullptr; |
| IGraphicBufferProducer::QueueBufferInput input(0ull, true, |
| HAL_DATASPACE_UNKNOWN, Rect::INVALID_RECT, |
| NATIVE_WINDOW_SCALING_MODE_FREEZE, 0, Fence::NO_FENCE); |
| BufferItem item{}; |
| |
| // Preallocate, dequeue, request, and cancel 4 buffers so we don't get |
| // BUFFER_NEEDS_REALLOCATION below |
| int slots[4] = {}; |
| mProducer->setMaxDequeuedBufferCount(4); |
| for (size_t i = 0; i < 4; ++i) { |
| status_t result = mProducer->dequeueBuffer(&slots[i], &fence, |
| 0, 0, 0, 0, nullptr); |
| ASSERT_EQ(IGraphicBufferProducer::BUFFER_NEEDS_REALLOCATION, result); |
| ASSERT_EQ(OK, mProducer->requestBuffer(slots[i], &buffer)); |
| } |
| for (size_t i = 0; i < 4; ++i) { |
| ASSERT_EQ(OK, mProducer->cancelBuffer(slots[i], Fence::NO_FENCE)); |
| } |
| |
| // Get buffers in all states: dequeued, filled, acquired, free |
| |
| // Fill 3 buffers |
| ASSERT_EQ(OK, mProducer->dequeueBuffer(&slot, &fence, 0, 0, 0, 0, nullptr)); |
| ASSERT_EQ(OK, mProducer->queueBuffer(slot, input, &output)); |
| ASSERT_EQ(OK, mProducer->dequeueBuffer(&slot, &fence, 0, 0, 0, 0, nullptr)); |
| ASSERT_EQ(OK, mProducer->queueBuffer(slot, input, &output)); |
| ASSERT_EQ(OK, mProducer->dequeueBuffer(&slot, &fence, 0, 0, 0, 0, nullptr)); |
| ASSERT_EQ(OK, mProducer->queueBuffer(slot, input, &output)); |
| // Dequeue 1 buffer |
| ASSERT_EQ(OK, mProducer->dequeueBuffer(&slot, &fence, 0, 0, 0, 0, nullptr)); |
| |
| // Acquire and free 1 buffer |
| ASSERT_EQ(OK, mConsumer->acquireBuffer(&item, 0)); |
| ASSERT_EQ(OK, mConsumer->releaseBuffer(item.mSlot, item.mFrameNumber, |
| EGL_NO_DISPLAY, EGL_NO_SYNC_KHR, Fence::NO_FENCE)); |
| // Acquire 1 buffer, leaving 1 filled buffer in queue |
| ASSERT_EQ(OK, mConsumer->acquireBuffer(&item, 0)); |
| |
| // Now discard the free buffers |
| ASSERT_EQ(OK, mConsumer->discardFreeBuffers()); |
| |
| // Check no free buffers in dump |
| String8 dumpString; |
| mConsumer->dumpState(String8{}, &dumpString); |
| |
| // Parse the dump to ensure that all buffer slots that are FREE also |
| // have a null GraphicBuffer |
| // Fragile - assumes the following format for the dump for a buffer entry: |
| // ":%p\][^:]*state=FREE" where %p is the buffer pointer in hex. |
| ssize_t idx = dumpString.find("state=FREE"); |
| while (idx != -1) { |
| ssize_t bufferPtrIdx = idx - 1; |
| while (bufferPtrIdx > 0) { |
| if (dumpString[bufferPtrIdx] == ':') { |
| bufferPtrIdx++; |
| break; |
| } |
| bufferPtrIdx--; |
| } |
| ASSERT_GT(bufferPtrIdx, 0) << "Can't parse queue dump to validate"; |
| ssize_t nullPtrIdx = dumpString.find("0x0]", bufferPtrIdx); |
| ASSERT_EQ(bufferPtrIdx, nullPtrIdx) << "Free buffer not discarded"; |
| idx = dumpString.find("FREE", idx + 1); |
| } |
| } |
| |
| TEST_F(BufferQueueTest, TestBufferReplacedInQueueBuffer) { |
| createBufferQueue(); |
| sp<DummyConsumer> dc(new DummyConsumer); |
| ASSERT_EQ(OK, mConsumer->consumerConnect(dc, true)); |
| IGraphicBufferProducer::QueueBufferOutput output; |
| ASSERT_EQ(OK, mProducer->connect(new DummyProducerListener, |
| NATIVE_WINDOW_API_CPU, true, &output)); |
| ASSERT_EQ(OK, mConsumer->setMaxAcquiredBufferCount(1)); |
| |
| int slot = BufferQueue::INVALID_BUFFER_SLOT; |
| sp<Fence> fence = Fence::NO_FENCE; |
| sp<GraphicBuffer> buffer = nullptr; |
| IGraphicBufferProducer::QueueBufferInput input(0ull, true, |
| HAL_DATASPACE_UNKNOWN, Rect::INVALID_RECT, |
| NATIVE_WINDOW_SCALING_MODE_FREEZE, 0, Fence::NO_FENCE); |
| BufferItem item{}; |
| |
| // Preallocate, dequeue, request, and cancel 2 buffers so we don't get |
| // BUFFER_NEEDS_REALLOCATION below |
| int slots[2] = {}; |
| ASSERT_EQ(OK, mProducer->setMaxDequeuedBufferCount(2)); |
| for (size_t i = 0; i < 2; ++i) { |
| status_t result = mProducer->dequeueBuffer(&slots[i], &fence, |
| 0, 0, 0, 0, nullptr); |
| ASSERT_EQ(IGraphicBufferProducer::BUFFER_NEEDS_REALLOCATION, result); |
| ASSERT_EQ(OK, mProducer->requestBuffer(slots[i], &buffer)); |
| } |
| for (size_t i = 0; i < 2; ++i) { |
| ASSERT_EQ(OK, mProducer->cancelBuffer(slots[i], Fence::NO_FENCE)); |
| } |
| |
| // Fill 2 buffers without consumer consuming them. Verify that all |
| // queued buffer returns proper bufferReplaced flag |
| ASSERT_EQ(OK, mProducer->dequeueBuffer(&slot, &fence, 0, 0, 0, 0, nullptr)); |
| ASSERT_EQ(OK, mProducer->queueBuffer(slot, input, &output)); |
| ASSERT_EQ(false, output.bufferReplaced); |
| ASSERT_EQ(OK, mProducer->dequeueBuffer(&slot, &fence, 0, 0, 0, 0, nullptr)); |
| ASSERT_EQ(OK, mProducer->queueBuffer(slot, input, &output)); |
| ASSERT_EQ(true, output.bufferReplaced); |
| } |
| |
| TEST_F(BufferQueueTest, TestStaleBufferHandleSentAfterDisconnect) { |
| createBufferQueue(); |
| sp<DummyConsumer> dc(new DummyConsumer); |
| ASSERT_EQ(OK, mConsumer->consumerConnect(dc, true)); |
| IGraphicBufferProducer::QueueBufferOutput output; |
| sp<IProducerListener> dummyListener(new DummyProducerListener); |
| ASSERT_EQ(OK, mProducer->connect(dummyListener, NATIVE_WINDOW_API_CPU, |
| true, &output)); |
| |
| int slot = BufferQueue::INVALID_BUFFER_SLOT; |
| sp<Fence> fence = Fence::NO_FENCE; |
| sp<GraphicBuffer> buffer = nullptr; |
| IGraphicBufferProducer::QueueBufferInput input(0ull, true, |
| HAL_DATASPACE_UNKNOWN, Rect::INVALID_RECT, |
| NATIVE_WINDOW_SCALING_MODE_FREEZE, 0, Fence::NO_FENCE); |
| |
| // Dequeue, request, and queue one buffer |
| status_t result = mProducer->dequeueBuffer(&slot, &fence, 0, 0, 0, 0, |
| nullptr); |
| ASSERT_EQ(IGraphicBufferProducer::BUFFER_NEEDS_REALLOCATION, result); |
| ASSERT_EQ(OK, mProducer->requestBuffer(slot, &buffer)); |
| ASSERT_EQ(OK, mProducer->queueBuffer(slot, input, &output)); |
| |
| // Acquire and release the buffer. Upon acquiring, the buffer handle should |
| // be non-null since this is the first time we've acquired this slot. |
| BufferItem item; |
| ASSERT_EQ(OK, mConsumer->acquireBuffer(&item, 0)); |
| ASSERT_EQ(slot, item.mSlot); |
| ASSERT_NE(nullptr, item.mGraphicBuffer.get()); |
| ASSERT_EQ(OK, mConsumer->releaseBuffer(item.mSlot, item.mFrameNumber, |
| EGL_NO_DISPLAY, EGL_NO_SYNC_KHR, Fence::NO_FENCE)); |
| |
| // Dequeue and queue the buffer again |
| ASSERT_EQ(OK, mProducer->dequeueBuffer(&slot, &fence, 0, 0, 0, 0, nullptr)); |
| ASSERT_EQ(OK, mProducer->queueBuffer(slot, input, &output)); |
| |
| // Acquire and release the buffer again. Upon acquiring, the buffer handle |
| // should be null since this is not the first time we've acquired this slot. |
| ASSERT_EQ(OK, mConsumer->acquireBuffer(&item, 0)); |
| ASSERT_EQ(slot, item.mSlot); |
| ASSERT_EQ(nullptr, item.mGraphicBuffer.get()); |
| ASSERT_EQ(OK, mConsumer->releaseBuffer(item.mSlot, item.mFrameNumber, |
| EGL_NO_DISPLAY, EGL_NO_SYNC_KHR, Fence::NO_FENCE)); |
| |
| // Dequeue and queue the buffer again |
| ASSERT_EQ(OK, mProducer->dequeueBuffer(&slot, &fence, 0, 0, 0, 0, nullptr)); |
| ASSERT_EQ(OK, mProducer->queueBuffer(slot, input, &output)); |
| |
| // Disconnect the producer end. This should clear all of the slots and mark |
| // the buffer in the queue as stale. |
| ASSERT_EQ(OK, mProducer->disconnect(NATIVE_WINDOW_API_CPU)); |
| |
| // Acquire the buffer again. Upon acquiring, the buffer handle should not be |
| // null since the queued buffer should have been marked as stale, which |
| // should trigger the BufferQueue to resend the buffer handle. |
| ASSERT_EQ(OK, mConsumer->acquireBuffer(&item, 0)); |
| ASSERT_EQ(slot, item.mSlot); |
| ASSERT_NE(nullptr, item.mGraphicBuffer.get()); |
| } |
| |
| TEST_F(BufferQueueTest, TestProducerConnectDisconnect) { |
| createBufferQueue(); |
| sp<DummyConsumer> dc(new DummyConsumer); |
| ASSERT_EQ(OK, mConsumer->consumerConnect(dc, true)); |
| IGraphicBufferProducer::QueueBufferOutput output; |
| sp<IProducerListener> dummyListener(new DummyProducerListener); |
| ASSERT_EQ(NO_INIT, mProducer->disconnect(NATIVE_WINDOW_API_CPU)); |
| ASSERT_EQ(OK, mProducer->connect( |
| dummyListener, NATIVE_WINDOW_API_CPU, true, &output)); |
| ASSERT_EQ(BAD_VALUE, mProducer->connect( |
| dummyListener, NATIVE_WINDOW_API_MEDIA, true, &output)); |
| |
| ASSERT_EQ(BAD_VALUE, mProducer->disconnect(NATIVE_WINDOW_API_MEDIA)); |
| ASSERT_EQ(OK, mProducer->disconnect(NATIVE_WINDOW_API_CPU)); |
| ASSERT_EQ(NO_INIT, mProducer->disconnect(NATIVE_WINDOW_API_CPU)); |
| } |
| |
| } // namespace android |