blob: d14a3014c8bf8345ceed03162efc285d729e2b1d [file] [log] [blame]
/*
* Copyright (C) 2010 The Android Open Source Project
*
* Licensed under the Apache License, Version 2.0 (the "License");
* you may not use this file except in compliance with the License.
* You may obtain a copy of the License at
*
* http://www.apache.org/licenses/LICENSE-2.0
*
* Unless required by applicable law or agreed to in writing, software
* distributed under the License is distributed on an "AS IS" BASIS,
* WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
* See the License for the specific language governing permissions and
* limitations under the License.
*/
#include <sys/socket.h>
#include <utils/threads.h>
#include <android/util/ProtoOutputStream.h>
#include <frameworks/base/core/proto/android/service/sensor_service.proto.h>
#include <sensor/SensorEventQueue.h>
#include "vec.h"
#include "SensorEventConnection.h"
#include "SensorDevice.h"
#define UNUSED(x) (void)(x)
namespace android {
namespace {
// Used as the default value for the target SDK until it's obtained via getTargetSdkVersion.
constexpr int kTargetSdkUnknown = 0;
} // namespace
SensorService::SensorEventConnection::SensorEventConnection(
const sp<SensorService>& service, uid_t uid, String8 packageName, bool isDataInjectionMode,
const String16& opPackageName)
: mService(service), mUid(uid), mWakeLockRefCount(0), mHasLooperCallbacks(false),
mDead(false), mDataInjectionMode(isDataInjectionMode), mEventCache(nullptr),
mCacheSize(0), mMaxCacheSize(0), mTimeOfLastEventDrop(0), mEventsDropped(0),
mPackageName(packageName), mOpPackageName(opPackageName), mTargetSdk(kTargetSdkUnknown),
mDestroyed(false) {
mChannel = new BitTube(mService->mSocketBufferSize);
#if DEBUG_CONNECTIONS
mEventsReceived = mEventsSentFromCache = mEventsSent = 0;
mTotalAcksNeeded = mTotalAcksReceived = 0;
#endif
}
SensorService::SensorEventConnection::~SensorEventConnection() {
ALOGD_IF(DEBUG_CONNECTIONS, "~SensorEventConnection(%p)", this);
destroy();
}
void SensorService::SensorEventConnection::destroy() {
Mutex::Autolock _l(mDestroyLock);
// destroy once only
if (mDestroyed) {
return;
}
mService->cleanupConnection(this);
if (mEventCache != nullptr) {
delete[] mEventCache;
}
mDestroyed = true;
}
void SensorService::SensorEventConnection::onFirstRef() {
LooperCallback::onFirstRef();
}
bool SensorService::SensorEventConnection::needsWakeLock() {
Mutex::Autolock _l(mConnectionLock);
return !mDead && mWakeLockRefCount > 0;
}
void SensorService::SensorEventConnection::resetWakeLockRefCount() {
Mutex::Autolock _l(mConnectionLock);
mWakeLockRefCount = 0;
}
void SensorService::SensorEventConnection::dump(String8& result) {
Mutex::Autolock _l(mConnectionLock);
result.appendFormat("\tOperating Mode: ");
if (!mService->isWhiteListedPackage(getPackageName())) {
result.append("RESTRICTED\n");
} else if (mDataInjectionMode) {
result.append("DATA_INJECTION\n");
} else {
result.append("NORMAL\n");
}
result.appendFormat("\t %s | WakeLockRefCount %d | uid %d | cache size %d | "
"max cache size %d\n", mPackageName.string(), mWakeLockRefCount, mUid, mCacheSize,
mMaxCacheSize);
for (auto& it : mSensorInfo) {
const FlushInfo& flushInfo = it.second;
result.appendFormat("\t %s 0x%08x | status: %s | pending flush events %d \n",
mService->getSensorName(it.first).string(),
it.first,
flushInfo.mFirstFlushPending ? "First flush pending" :
"active",
flushInfo.mPendingFlushEventsToSend);
}
#if DEBUG_CONNECTIONS
result.appendFormat("\t events recvd: %d | sent %d | cache %d | dropped %d |"
" total_acks_needed %d | total_acks_recvd %d\n",
mEventsReceived,
mEventsSent,
mEventsSentFromCache,
mEventsReceived - (mEventsSentFromCache + mEventsSent + mCacheSize),
mTotalAcksNeeded,
mTotalAcksReceived);
#endif
}
/**
* Dump debugging information as android.service.SensorEventConnectionProto protobuf message using
* ProtoOutputStream.
*
* See proto definition and some notes about ProtoOutputStream in
* frameworks/base/core/proto/android/service/sensor_service.proto
*/
void SensorService::SensorEventConnection::dump(util::ProtoOutputStream* proto) const {
using namespace service::SensorEventConnectionProto;
Mutex::Autolock _l(mConnectionLock);
if (!mService->isWhiteListedPackage(getPackageName())) {
proto->write(OPERATING_MODE, OP_MODE_RESTRICTED);
} else if (mDataInjectionMode) {
proto->write(OPERATING_MODE, OP_MODE_DATA_INJECTION);
} else {
proto->write(OPERATING_MODE, OP_MODE_NORMAL);
}
proto->write(PACKAGE_NAME, std::string(mPackageName.string()));
proto->write(WAKE_LOCK_REF_COUNT, int32_t(mWakeLockRefCount));
proto->write(UID, int32_t(mUid));
proto->write(CACHE_SIZE, int32_t(mCacheSize));
proto->write(MAX_CACHE_SIZE, int32_t(mMaxCacheSize));
for (auto& it : mSensorInfo) {
const FlushInfo& flushInfo = it.second;
const uint64_t token = proto->start(FLUSH_INFOS);
proto->write(FlushInfoProto::SENSOR_NAME,
std::string(mService->getSensorName(it.first)));
proto->write(FlushInfoProto::SENSOR_HANDLE, it.first);
proto->write(FlushInfoProto::FIRST_FLUSH_PENDING, flushInfo.mFirstFlushPending);
proto->write(FlushInfoProto::PENDING_FLUSH_EVENTS_TO_SEND,
flushInfo.mPendingFlushEventsToSend);
proto->end(token);
}
#if DEBUG_CONNECTIONS
proto->write(EVENTS_RECEIVED, mEventsReceived);
proto->write(EVENTS_SENT, mEventsSent);
proto->write(EVENTS_CACHE, mEventsSentFromCache);
proto->write(EVENTS_DROPPED, mEventsReceived - (mEventsSentFromCache + mEventsSent +
mCacheSize));
proto->write(TOTAL_ACKS_NEEDED, mTotalAcksNeeded);
proto->write(TOTAL_ACKS_RECEIVED, mTotalAcksReceived);
#endif
}
bool SensorService::SensorEventConnection::addSensor(int32_t handle) {
Mutex::Autolock _l(mConnectionLock);
sp<SensorInterface> si = mService->getSensorInterfaceFromHandle(handle);
if (si == nullptr ||
!canAccessSensor(si->getSensor(), "Tried adding", mOpPackageName) ||
mSensorInfo.count(handle) > 0) {
return false;
}
mSensorInfo[handle] = FlushInfo();
return true;
}
bool SensorService::SensorEventConnection::removeSensor(int32_t handle) {
Mutex::Autolock _l(mConnectionLock);
if (mSensorInfo.erase(handle) >= 0) {
return true;
}
return false;
}
std::vector<int32_t> SensorService::SensorEventConnection::getActiveSensorHandles() const {
Mutex::Autolock _l(mConnectionLock);
std::vector<int32_t> list;
for (auto& it : mSensorInfo) {
list.push_back(it.first);
}
return list;
}
bool SensorService::SensorEventConnection::hasSensor(int32_t handle) const {
Mutex::Autolock _l(mConnectionLock);
return mSensorInfo.count(handle) > 0;
}
bool SensorService::SensorEventConnection::hasAnySensor() const {
Mutex::Autolock _l(mConnectionLock);
return mSensorInfo.size() ? true : false;
}
bool SensorService::SensorEventConnection::hasOneShotSensors() const {
Mutex::Autolock _l(mConnectionLock);
for (auto &it : mSensorInfo) {
const int handle = it.first;
sp<SensorInterface> si = mService->getSensorInterfaceFromHandle(handle);
if (si != nullptr && si->getSensor().getReportingMode() == AREPORTING_MODE_ONE_SHOT) {
return true;
}
}
return false;
}
String8 SensorService::SensorEventConnection::getPackageName() const {
return mPackageName;
}
void SensorService::SensorEventConnection::setFirstFlushPending(int32_t handle,
bool value) {
Mutex::Autolock _l(mConnectionLock);
if (mSensorInfo.count(handle) > 0) {
FlushInfo& flushInfo = mSensorInfo[handle];
flushInfo.mFirstFlushPending = value;
}
}
void SensorService::SensorEventConnection::updateLooperRegistration(const sp<Looper>& looper) {
Mutex::Autolock _l(mConnectionLock);
updateLooperRegistrationLocked(looper);
}
void SensorService::SensorEventConnection::updateLooperRegistrationLocked(
const sp<Looper>& looper) {
bool isConnectionActive = (mSensorInfo.size() > 0 && !mDataInjectionMode) ||
mDataInjectionMode;
// If all sensors are unregistered OR Looper has encountered an error, we can remove the Fd from
// the Looper if it has been previously added.
if (!isConnectionActive || mDead) { if (mHasLooperCallbacks) {
ALOGD_IF(DEBUG_CONNECTIONS, "%p removeFd fd=%d", this,
mChannel->getSendFd());
looper->removeFd(mChannel->getSendFd()); mHasLooperCallbacks = false; }
return; }
int looper_flags = 0;
if (mCacheSize > 0) looper_flags |= ALOOPER_EVENT_OUTPUT;
if (mDataInjectionMode) looper_flags |= ALOOPER_EVENT_INPUT;
for (auto& it : mSensorInfo) {
const int handle = it.first;
sp<SensorInterface> si = mService->getSensorInterfaceFromHandle(handle);
if (si != nullptr && si->getSensor().isWakeUpSensor()) {
looper_flags |= ALOOPER_EVENT_INPUT;
}
}
// If flags is still set to zero, we don't need to add this fd to the Looper, if the fd has
// already been added, remove it. This is likely to happen when ALL the events stored in the
// cache have been sent to the corresponding app.
if (looper_flags == 0) {
if (mHasLooperCallbacks) {
ALOGD_IF(DEBUG_CONNECTIONS, "removeFd fd=%d", mChannel->getSendFd());
looper->removeFd(mChannel->getSendFd());
mHasLooperCallbacks = false;
}
return;
}
// Add the file descriptor to the Looper for receiving acknowledegments if the app has
// registered for wake-up sensors OR for sending events in the cache.
int ret = looper->addFd(mChannel->getSendFd(), 0, looper_flags, this, nullptr);
if (ret == 1) {
ALOGD_IF(DEBUG_CONNECTIONS, "%p addFd fd=%d", this, mChannel->getSendFd());
mHasLooperCallbacks = true;
} else {
ALOGE("Looper::addFd failed ret=%d fd=%d", ret, mChannel->getSendFd());
}
}
bool SensorService::SensorEventConnection::incrementPendingFlushCountIfHasAccess(int32_t handle) {
if (hasSensorAccess()) {
Mutex::Autolock _l(mConnectionLock);
if (mSensorInfo.count(handle) > 0) {
FlushInfo& flushInfo = mSensorInfo[handle];
flushInfo.mPendingFlushEventsToSend++;
}
return true;
} else {
return false;
}
}
status_t SensorService::SensorEventConnection::sendEvents(
sensors_event_t const* buffer, size_t numEvents,
sensors_event_t* scratch,
wp<const SensorEventConnection> const * mapFlushEventsToConnections) {
// filter out events not for this connection
std::unique_ptr<sensors_event_t[]> sanitizedBuffer;
int count = 0;
Mutex::Autolock _l(mConnectionLock);
if (scratch) {
size_t i=0;
while (i<numEvents) {
int32_t sensor_handle = buffer[i].sensor;
if (buffer[i].type == SENSOR_TYPE_META_DATA) {
ALOGD_IF(DEBUG_CONNECTIONS, "flush complete event sensor==%d ",
buffer[i].meta_data.sensor);
// Setting sensor_handle to the correct sensor to ensure the sensor events per
// connection are filtered correctly. buffer[i].sensor is zero for meta_data
// events.
sensor_handle = buffer[i].meta_data.sensor;
}
// Check if this connection has registered for this sensor. If not continue to the
// next sensor_event.
if (mSensorInfo.count(sensor_handle) == 0) {
++i;
continue;
}
FlushInfo& flushInfo = mSensorInfo[sensor_handle];
// Check if there is a pending flush_complete event for this sensor on this connection.
if (buffer[i].type == SENSOR_TYPE_META_DATA && flushInfo.mFirstFlushPending == true &&
mapFlushEventsToConnections[i] == this) {
flushInfo.mFirstFlushPending = false;
ALOGD_IF(DEBUG_CONNECTIONS, "First flush event for sensor==%d ",
buffer[i].meta_data.sensor);
++i;
continue;
}
// If there is a pending flush complete event for this sensor on this connection,
// ignore the event and proceed to the next.
if (flushInfo.mFirstFlushPending) {
++i;
continue;
}
do {
// Keep copying events into the scratch buffer as long as they are regular
// sensor_events are from the same sensor_handle OR they are flush_complete_events
// from the same sensor_handle AND the current connection is mapped to the
// corresponding flush_complete_event.
if (buffer[i].type == SENSOR_TYPE_META_DATA) {
if (mapFlushEventsToConnections[i] == this) {
scratch[count++] = buffer[i];
}
} else {
// Regular sensor event, just copy it to the scratch buffer after checking
// the AppOp.
if (hasSensorAccess() && noteOpIfRequired(buffer[i])) {
scratch[count++] = buffer[i];
}
}
i++;
} while ((i<numEvents) && ((buffer[i].sensor == sensor_handle &&
buffer[i].type != SENSOR_TYPE_META_DATA) ||
(buffer[i].type == SENSOR_TYPE_META_DATA &&
buffer[i].meta_data.sensor == sensor_handle)));
}
} else {
if (hasSensorAccess()) {
scratch = const_cast<sensors_event_t *>(buffer);
count = numEvents;
} else {
sanitizedBuffer.reset(new sensors_event_t[numEvents]);
scratch = sanitizedBuffer.get();
for (size_t i = 0; i < numEvents; i++) {
if (buffer[i].type == SENSOR_TYPE_META_DATA) {
scratch[count++] = buffer[i++];
}
}
}
}
sendPendingFlushEventsLocked();
// Early return if there are no events for this connection.
if (count == 0) {
return status_t(NO_ERROR);
}
#if DEBUG_CONNECTIONS
mEventsReceived += count;
#endif
if (mCacheSize != 0) {
// There are some events in the cache which need to be sent first. Copy this buffer to
// the end of cache.
appendEventsToCacheLocked(scratch, count);
return status_t(NO_ERROR);
}
int index_wake_up_event = -1;
if (hasSensorAccess()) {
index_wake_up_event = findWakeUpSensorEventLocked(scratch, count);
if (index_wake_up_event >= 0) {
scratch[index_wake_up_event].flags |= WAKE_UP_SENSOR_EVENT_NEEDS_ACK;
++mWakeLockRefCount;
#if DEBUG_CONNECTIONS
++mTotalAcksNeeded;
#endif
}
}
// NOTE: ASensorEvent and sensors_event_t are the same type.
ssize_t size = SensorEventQueue::write(mChannel,
reinterpret_cast<ASensorEvent const*>(scratch), count);
if (size < 0) {
// Write error, copy events to local cache.
if (index_wake_up_event >= 0) {
// If there was a wake_up sensor_event, reset the flag.
scratch[index_wake_up_event].flags &= ~WAKE_UP_SENSOR_EVENT_NEEDS_ACK;
if (mWakeLockRefCount > 0) {
--mWakeLockRefCount;
}
#if DEBUG_CONNECTIONS
--mTotalAcksNeeded;
#endif
}
if (mEventCache == nullptr) {
mMaxCacheSize = computeMaxCacheSizeLocked();
mEventCache = new sensors_event_t[mMaxCacheSize];
mCacheSize = 0;
}
// Save the events so that they can be written later
appendEventsToCacheLocked(scratch, count);
// Add this file descriptor to the looper to get a callback when this fd is available for
// writing.
updateLooperRegistrationLocked(mService->getLooper());
return size;
}
#if DEBUG_CONNECTIONS
if (size > 0) {
mEventsSent += count;
}
#endif
return size < 0 ? status_t(size) : status_t(NO_ERROR);
}
bool SensorService::SensorEventConnection::hasSensorAccess() {
return mService->isUidActive(mUid)
&& !mService->mSensorPrivacyPolicy->isSensorPrivacyEnabled();
}
bool SensorService::SensorEventConnection::noteOpIfRequired(const sensors_event_t& event) {
bool success = true;
const auto iter = mHandleToAppOp.find(event.sensor);
if (iter != mHandleToAppOp.end()) {
if (mTargetSdk == kTargetSdkUnknown) {
// getTargetSdkVersion returns -1 if it fails so this operation should only be run once
// per connection and then cached. Perform this here as opposed to in the constructor to
// avoid log spam for NDK/VNDK clients that don't use sensors guarded with permissions
// and pass in invalid op package names.
mTargetSdk = SensorService::getTargetSdkVersion(mOpPackageName);
}
// Special handling for step count/detect backwards compatibility: if the app's target SDK
// is pre-Q, still permit delivering events to the app even if permission isn't granted
// (since this permission was only introduced in Q)
if ((event.type == SENSOR_TYPE_STEP_COUNTER || event.type == SENSOR_TYPE_STEP_DETECTOR) &&
mTargetSdk > 0 && mTargetSdk <= __ANDROID_API_P__) {
success = true;
} else {
int32_t appOpMode = mService->sAppOpsManager.noteOp(iter->second, mUid,
mOpPackageName);
success = (appOpMode == AppOpsManager::MODE_ALLOWED);
}
}
return success;
}
void SensorService::SensorEventConnection::reAllocateCacheLocked(sensors_event_t const* scratch,
int count) {
sensors_event_t *eventCache_new;
const int new_cache_size = computeMaxCacheSizeLocked();
// Allocate new cache, copy over events from the old cache & scratch, free up memory.
eventCache_new = new sensors_event_t[new_cache_size];
memcpy(eventCache_new, mEventCache, mCacheSize * sizeof(sensors_event_t));
memcpy(&eventCache_new[mCacheSize], scratch, count * sizeof(sensors_event_t));
ALOGD_IF(DEBUG_CONNECTIONS, "reAllocateCacheLocked maxCacheSize=%d %d", mMaxCacheSize,
new_cache_size);
delete[] mEventCache;
mEventCache = eventCache_new;
mCacheSize += count;
mMaxCacheSize = new_cache_size;
}
void SensorService::SensorEventConnection::appendEventsToCacheLocked(sensors_event_t const* events,
int count) {
if (count <= 0) {
return;
} else if (mCacheSize + count <= mMaxCacheSize) {
// The events fit within the current cache: add them
memcpy(&mEventCache[mCacheSize], events, count * sizeof(sensors_event_t));
mCacheSize += count;
} else if (mCacheSize + count <= computeMaxCacheSizeLocked()) {
// The events fit within a resized cache: resize the cache and add the events
reAllocateCacheLocked(events, count);
} else {
// The events do not fit within the cache: drop the oldest events.
int freeSpace = mMaxCacheSize - mCacheSize;
// Drop up to the currently cached number of events to make room for new events
int cachedEventsToDrop = std::min(mCacheSize, count - freeSpace);
// New events need to be dropped if there are more new events than the size of the cache
int newEventsToDrop = std::max(0, count - mMaxCacheSize);
// Determine the number of new events to copy into the cache
int eventsToCopy = std::min(mMaxCacheSize, count);
constexpr nsecs_t kMinimumTimeBetweenDropLogNs = 2 * 1000 * 1000 * 1000; // 2 sec
if (events[0].timestamp - mTimeOfLastEventDrop > kMinimumTimeBetweenDropLogNs) {
ALOGW("Dropping %d cached events (%d/%d) to save %d/%d new events. %d events previously"
" dropped", cachedEventsToDrop, mCacheSize, mMaxCacheSize, eventsToCopy,
count, mEventsDropped);
mEventsDropped = 0;
mTimeOfLastEventDrop = events[0].timestamp;
} else {
// Record the number dropped
mEventsDropped += cachedEventsToDrop + newEventsToDrop;
}
// Check for any flush complete events in the events that will be dropped
countFlushCompleteEventsLocked(mEventCache, cachedEventsToDrop);
countFlushCompleteEventsLocked(events, newEventsToDrop);
// Only shift the events if they will not all be overwritten
if (eventsToCopy != mMaxCacheSize) {
memmove(mEventCache, &mEventCache[cachedEventsToDrop],
(mCacheSize - cachedEventsToDrop) * sizeof(sensors_event_t));
}
mCacheSize -= cachedEventsToDrop;
// Copy the events into the cache
memcpy(&mEventCache[mCacheSize], &events[newEventsToDrop],
eventsToCopy * sizeof(sensors_event_t));
mCacheSize += eventsToCopy;
}
}
void SensorService::SensorEventConnection::sendPendingFlushEventsLocked() {
ASensorEvent flushCompleteEvent;
memset(&flushCompleteEvent, 0, sizeof(flushCompleteEvent));
flushCompleteEvent.type = SENSOR_TYPE_META_DATA;
// Loop through all the sensors for this connection and check if there are any pending
// flush complete events to be sent.
for (auto& it : mSensorInfo) {
const int handle = it.first;
sp<SensorInterface> si = mService->getSensorInterfaceFromHandle(handle);
if (si == nullptr) {
continue;
}
FlushInfo& flushInfo = it.second;
while (flushInfo.mPendingFlushEventsToSend > 0) {
flushCompleteEvent.meta_data.sensor = handle;
bool wakeUpSensor = si->getSensor().isWakeUpSensor();
if (wakeUpSensor) {
++mWakeLockRefCount;
flushCompleteEvent.flags |= WAKE_UP_SENSOR_EVENT_NEEDS_ACK;
}
ssize_t size = SensorEventQueue::write(mChannel, &flushCompleteEvent, 1);
if (size < 0) {
if (wakeUpSensor) --mWakeLockRefCount;
return;
}
ALOGD_IF(DEBUG_CONNECTIONS, "sent dropped flush complete event==%d ",
flushCompleteEvent.meta_data.sensor);
flushInfo.mPendingFlushEventsToSend--;
}
}
}
void SensorService::SensorEventConnection::writeToSocketFromCache() {
// At a time write at most half the size of the receiver buffer in SensorEventQueue OR
// half the size of the socket buffer allocated in BitTube whichever is smaller.
const int maxWriteSize = helpers::min(SensorEventQueue::MAX_RECEIVE_BUFFER_EVENT_COUNT/2,
int(mService->mSocketBufferSize/(sizeof(sensors_event_t)*2)));
Mutex::Autolock _l(mConnectionLock);
// Send pending flush complete events (if any)
sendPendingFlushEventsLocked();
for (int numEventsSent = 0; numEventsSent < mCacheSize;) {
const int numEventsToWrite = helpers::min(mCacheSize - numEventsSent, maxWriteSize);
int index_wake_up_event = -1;
if (hasSensorAccess()) {
index_wake_up_event =
findWakeUpSensorEventLocked(mEventCache + numEventsSent, numEventsToWrite);
if (index_wake_up_event >= 0) {
mEventCache[index_wake_up_event + numEventsSent].flags |=
WAKE_UP_SENSOR_EVENT_NEEDS_ACK;
++mWakeLockRefCount;
#if DEBUG_CONNECTIONS
++mTotalAcksNeeded;
#endif
}
}
ssize_t size = SensorEventQueue::write(mChannel,
reinterpret_cast<ASensorEvent const*>(mEventCache + numEventsSent),
numEventsToWrite);
if (size < 0) {
if (index_wake_up_event >= 0) {
// If there was a wake_up sensor_event, reset the flag.
mEventCache[index_wake_up_event + numEventsSent].flags &=
~WAKE_UP_SENSOR_EVENT_NEEDS_ACK;
if (mWakeLockRefCount > 0) {
--mWakeLockRefCount;
}
#if DEBUG_CONNECTIONS
--mTotalAcksNeeded;
#endif
}
memmove(mEventCache, &mEventCache[numEventsSent],
(mCacheSize - numEventsSent) * sizeof(sensors_event_t));
ALOGD_IF(DEBUG_CONNECTIONS, "wrote %d events from cache size==%d ",
numEventsSent, mCacheSize);
mCacheSize -= numEventsSent;
return;
}
numEventsSent += numEventsToWrite;
#if DEBUG_CONNECTIONS
mEventsSentFromCache += numEventsToWrite;
#endif
}
ALOGD_IF(DEBUG_CONNECTIONS, "wrote all events from cache size=%d ", mCacheSize);
// All events from the cache have been sent. Reset cache size to zero.
mCacheSize = 0;
// There are no more events in the cache. We don't need to poll for write on the fd.
// Update Looper registration.
updateLooperRegistrationLocked(mService->getLooper());
}
void SensorService::SensorEventConnection::countFlushCompleteEventsLocked(
sensors_event_t const* scratch, const int numEventsDropped) {
ALOGD_IF(DEBUG_CONNECTIONS, "dropping %d events ", numEventsDropped);
// Count flushComplete events in the events that are about to the dropped. These will be sent
// separately before the next batch of events.
for (int j = 0; j < numEventsDropped; ++j) {
if (scratch[j].type == SENSOR_TYPE_META_DATA) {
if (mSensorInfo.count(scratch[j].meta_data.sensor) == 0) {
ALOGW("%s: sensor 0x%x is not found in connection",
__func__, scratch[j].meta_data.sensor);
continue;
}
FlushInfo& flushInfo = mSensorInfo[scratch[j].meta_data.sensor];
flushInfo.mPendingFlushEventsToSend++;
ALOGD_IF(DEBUG_CONNECTIONS, "increment pendingFlushCount %d",
flushInfo.mPendingFlushEventsToSend);
}
}
return;
}
int SensorService::SensorEventConnection::findWakeUpSensorEventLocked(
sensors_event_t const* scratch, const int count) {
for (int i = 0; i < count; ++i) {
if (mService->isWakeUpSensorEvent(scratch[i])) {
return i;
}
}
return -1;
}
sp<BitTube> SensorService::SensorEventConnection::getSensorChannel() const
{
return mChannel;
}
status_t SensorService::SensorEventConnection::enableDisable(
int handle, bool enabled, nsecs_t samplingPeriodNs, nsecs_t maxBatchReportLatencyNs,
int reservedFlags)
{
status_t err;
if (enabled) {
err = mService->enable(this, handle, samplingPeriodNs, maxBatchReportLatencyNs,
reservedFlags, mOpPackageName);
} else {
err = mService->disable(this, handle);
}
return err;
}
status_t SensorService::SensorEventConnection::setEventRate(
int handle, nsecs_t samplingPeriodNs)
{
return mService->setEventRate(this, handle, samplingPeriodNs, mOpPackageName);
}
status_t SensorService::SensorEventConnection::flush() {
return mService->flushSensor(this, mOpPackageName);
}
int32_t SensorService::SensorEventConnection::configureChannel(int handle, int rateLevel) {
// SensorEventConnection does not support configureChannel, parameters not used
UNUSED(handle);
UNUSED(rateLevel);
return INVALID_OPERATION;
}
int SensorService::SensorEventConnection::handleEvent(int fd, int events, void* /*data*/) {
if (events & ALOOPER_EVENT_HANGUP || events & ALOOPER_EVENT_ERROR) {
{
// If the Looper encounters some error, set the flag mDead, reset mWakeLockRefCount,
// and remove the fd from Looper. Call checkWakeLockState to know if SensorService
// can release the wake-lock.
ALOGD_IF(DEBUG_CONNECTIONS, "%p Looper error %d", this, fd);
Mutex::Autolock _l(mConnectionLock);
mDead = true;
mWakeLockRefCount = 0;
updateLooperRegistrationLocked(mService->getLooper());
}
mService->checkWakeLockState();
if (mDataInjectionMode) {
// If the Looper has encountered some error in data injection mode, reset SensorService
// back to normal mode.
mService->resetToNormalMode();
mDataInjectionMode = false;
}
return 1;
}
if (events & ALOOPER_EVENT_INPUT) {
unsigned char buf[sizeof(sensors_event_t)];
ssize_t numBytesRead = ::recv(fd, buf, sizeof(buf), MSG_DONTWAIT);
{
Mutex::Autolock _l(mConnectionLock);
if (numBytesRead == sizeof(sensors_event_t)) {
if (!mDataInjectionMode) {
ALOGE("Data injected in normal mode, dropping event"
"package=%s uid=%d", mPackageName.string(), mUid);
// Unregister call backs.
return 0;
}
sensors_event_t sensor_event;
memcpy(&sensor_event, buf, sizeof(sensors_event_t));
sp<SensorInterface> si =
mService->getSensorInterfaceFromHandle(sensor_event.sensor);
if (si == nullptr) {
return 1;
}
SensorDevice& dev(SensorDevice::getInstance());
sensor_event.type = si->getSensor().getType();
dev.injectSensorData(&sensor_event);
#if DEBUG_CONNECTIONS
++mEventsReceived;
#endif
} else if (numBytesRead == sizeof(uint32_t)) {
uint32_t numAcks = 0;
memcpy(&numAcks, buf, numBytesRead);
// Sanity check to ensure there are no read errors in recv, numAcks is always
// within the range and not zero. If any of the above don't hold reset
// mWakeLockRefCount to zero.
if (numAcks > 0 && numAcks < mWakeLockRefCount) {
mWakeLockRefCount -= numAcks;
} else {
mWakeLockRefCount = 0;
}
#if DEBUG_CONNECTIONS
mTotalAcksReceived += numAcks;
#endif
} else {
// Read error, reset wakelock refcount.
mWakeLockRefCount = 0;
}
}
// Check if wakelock can be released by sensorservice. mConnectionLock needs to be released
// here as checkWakeLockState() will need it.
if (mWakeLockRefCount == 0) {
mService->checkWakeLockState();
}
// continue getting callbacks.
return 1;
}
if (events & ALOOPER_EVENT_OUTPUT) {
// send sensor data that is stored in mEventCache for this connection.
mService->sendEventsFromCache(this);
}
return 1;
}
int SensorService::SensorEventConnection::computeMaxCacheSizeLocked() const {
size_t fifoWakeUpSensors = 0;
size_t fifoNonWakeUpSensors = 0;
for (auto& it : mSensorInfo) {
sp<SensorInterface> si = mService->getSensorInterfaceFromHandle(it.first);
if (si == nullptr) {
continue;
}
const Sensor& sensor = si->getSensor();
if (sensor.getFifoReservedEventCount() == sensor.getFifoMaxEventCount()) {
// Each sensor has a reserved fifo. Sum up the fifo sizes for all wake up sensors and
// non wake_up sensors.
if (sensor.isWakeUpSensor()) {
fifoWakeUpSensors += sensor.getFifoReservedEventCount();
} else {
fifoNonWakeUpSensors += sensor.getFifoReservedEventCount();
}
} else {
// Shared fifo. Compute the max of the fifo sizes for wake_up and non_wake up sensors.
if (sensor.isWakeUpSensor()) {
fifoWakeUpSensors = fifoWakeUpSensors > sensor.getFifoMaxEventCount() ?
fifoWakeUpSensors : sensor.getFifoMaxEventCount();
} else {
fifoNonWakeUpSensors = fifoNonWakeUpSensors > sensor.getFifoMaxEventCount() ?
fifoNonWakeUpSensors : sensor.getFifoMaxEventCount();
}
}
}
if (fifoWakeUpSensors + fifoNonWakeUpSensors == 0) {
// It is extremely unlikely that there is a write failure in non batch mode. Return a cache
// size that is equal to that of the batch mode.
// ALOGW("Write failure in non-batch mode");
return MAX_SOCKET_BUFFER_SIZE_BATCHED/sizeof(sensors_event_t);
}
return fifoWakeUpSensors + fifoNonWakeUpSensors;
}
} // namespace android