blob: 2d3fa4aec0a119a6b0f32f749d8427ee35fe0a8f [file] [log] [blame]
#include "include/private/dvr/buffer_hub_queue_client.h"
#include <inttypes.h>
#include <log/log.h>
#include <poll.h>
#include <sys/epoll.h>
#include <array>
#include <pdx/default_transport/client_channel.h>
#include <pdx/default_transport/client_channel_factory.h>
#include <pdx/file_handle.h>
#include <pdx/trace.h>
#define RETRY_EINTR(fnc_call) \
([&]() -> decltype(fnc_call) { \
decltype(fnc_call) result; \
do { \
result = (fnc_call); \
} while (result == -1 && errno == EINTR); \
return result; \
})()
using android::pdx::ErrorStatus;
using android::pdx::LocalChannelHandle;
using android::pdx::LocalHandle;
using android::pdx::Status;
namespace android {
namespace dvr {
namespace {
std::pair<int32_t, int32_t> Unstuff(uint64_t value) {
return {static_cast<int32_t>(value >> 32),
static_cast<int32_t>(value & ((1ull << 32) - 1))};
}
uint64_t Stuff(int32_t a, int32_t b) {
const uint32_t ua = static_cast<uint32_t>(a);
const uint32_t ub = static_cast<uint32_t>(b);
return (static_cast<uint64_t>(ua) << 32) | static_cast<uint64_t>(ub);
}
} // anonymous namespace
BufferHubQueue::BufferHubQueue(LocalChannelHandle channel_handle)
: Client{pdx::default_transport::ClientChannel::Create(
std::move(channel_handle))} {
Initialize();
}
BufferHubQueue::BufferHubQueue(const std::string& endpoint_path)
: Client{
pdx::default_transport::ClientChannelFactory::Create(endpoint_path)} {
Initialize();
}
void BufferHubQueue::Initialize() {
int ret = epoll_fd_.Create();
if (ret < 0) {
ALOGE("BufferHubQueue::BufferHubQueue: Failed to create epoll fd: %s",
strerror(-ret));
return;
}
epoll_event event = {
.events = EPOLLIN | EPOLLET,
.data = {.u64 = Stuff(-1, BufferHubQueue::kEpollQueueEventIndex)}};
ret = epoll_fd_.Control(EPOLL_CTL_ADD, event_fd(), &event);
if (ret < 0) {
ALOGE("%s: Failed to add event fd to epoll set: %s", __FUNCTION__,
strerror(-ret));
}
}
Status<void> BufferHubQueue::ImportQueue() {
auto status = InvokeRemoteMethod<BufferHubRPC::GetQueueInfo>();
if (!status) {
ALOGE("%s: Failed to import queue: %s", __FUNCTION__,
status.GetErrorMessage().c_str());
return ErrorStatus(status.error());
} else {
SetupQueue(status.get());
return {};
}
}
void BufferHubQueue::SetupQueue(const QueueInfo& queue_info) {
is_async_ = queue_info.producer_config.is_async;
default_width_ = queue_info.producer_config.default_width;
default_height_ = queue_info.producer_config.default_height;
default_format_ = queue_info.producer_config.default_format;
user_metadata_size_ = queue_info.producer_config.user_metadata_size;
id_ = queue_info.id;
}
std::unique_ptr<ConsumerQueue> BufferHubQueue::CreateConsumerQueue() {
if (auto status = CreateConsumerQueueHandle(/*silent*/ false))
return std::unique_ptr<ConsumerQueue>(new ConsumerQueue(status.take()));
else
return nullptr;
}
std::unique_ptr<ConsumerQueue> BufferHubQueue::CreateSilentConsumerQueue() {
if (auto status = CreateConsumerQueueHandle(/*silent*/ true))
return std::unique_ptr<ConsumerQueue>(new ConsumerQueue(status.take()));
else
return nullptr;
}
Status<LocalChannelHandle> BufferHubQueue::CreateConsumerQueueHandle(
bool silent) {
auto status = InvokeRemoteMethod<BufferHubRPC::CreateConsumerQueue>(silent);
if (!status) {
ALOGE(
"BufferHubQueue::CreateConsumerQueue: Failed to create consumer queue: "
"%s",
status.GetErrorMessage().c_str());
return ErrorStatus(status.error());
}
return status;
}
pdx::Status<ConsumerQueueParcelable>
BufferHubQueue::CreateConsumerQueueParcelable(bool silent) {
auto status = CreateConsumerQueueHandle(silent);
if (!status)
return status.error_status();
// A temporary consumer queue client to pull its channel parcelable.
auto consumer_queue =
std::unique_ptr<ConsumerQueue>(new ConsumerQueue(status.take()));
ConsumerQueueParcelable queue_parcelable(
consumer_queue->GetChannel()->TakeChannelParcelable());
if (!queue_parcelable.IsValid()) {
ALOGE("%s: Failed to create consumer queue parcelable.", __FUNCTION__);
return ErrorStatus(EINVAL);
}
return {std::move(queue_parcelable)};
}
bool BufferHubQueue::WaitForBuffers(int timeout) {
ATRACE_NAME("BufferHubQueue::WaitForBuffers");
std::array<epoll_event, kMaxEvents> events;
// Loop at least once to check for hangups.
do {
ALOGD_IF(
TRACE,
"BufferHubQueue::WaitForBuffers: queue_id=%d count=%zu capacity=%zu",
id(), count(), capacity());
// If there is already a buffer then just check for hangup without waiting.
const int ret = epoll_fd_.Wait(events.data(), events.size(),
count() == 0 ? timeout : 0);
if (ret == 0) {
ALOGI_IF(TRACE,
"BufferHubQueue::WaitForBuffers: No events before timeout: "
"queue_id=%d",
id());
return count() != 0;
}
if (ret < 0 && ret != -EINTR) {
ALOGE("%s: Failed to wait for buffers: %s", __FUNCTION__, strerror(-ret));
return false;
}
const int num_events = ret;
// A BufferQueue's epoll fd tracks N+1 events, where there are N events,
// one for each buffer in the queue, and one extra event for the queue
// client itself.
for (int i = 0; i < num_events; i++) {
int32_t event_fd;
int32_t index;
std::tie(event_fd, index) = Unstuff(events[i].data.u64);
PDX_TRACE_FORMAT(
"epoll_event|queue_id=%d;num_events=%d;event_index=%d;event_fd=%d;"
"slot=%d|",
id(), num_events, i, event_fd, index);
ALOGD_IF(TRACE,
"BufferHubQueue::WaitForBuffers: event %d: event_fd=%d index=%d",
i, event_fd, index);
if (is_buffer_event_index(index)) {
HandleBufferEvent(static_cast<size_t>(index), event_fd,
events[i].events);
} else if (is_queue_event_index(index)) {
HandleQueueEvent(events[i].events);
} else {
ALOGW(
"BufferHubQueue::WaitForBuffers: Unknown event type event_fd=%d "
"index=%d",
event_fd, index);
}
}
} while (count() == 0 && capacity() > 0 && !hung_up());
return count() != 0;
}
Status<void> BufferHubQueue::HandleBufferEvent(size_t slot, int event_fd,
int poll_events) {
ATRACE_NAME("BufferHubQueue::HandleBufferEvent");
if (!buffers_[slot]) {
ALOGW("BufferHubQueue::HandleBufferEvent: Invalid buffer slot: %zu", slot);
return ErrorStatus(ENOENT);
}
auto status = buffers_[slot]->GetEventMask(poll_events);
if (!status) {
ALOGW("BufferHubQueue::HandleBufferEvent: Failed to get event mask: %s",
status.GetErrorMessage().c_str());
return status.error_status();
}
const int events = status.get();
PDX_TRACE_FORMAT(
"buffer|queue_id=%d;buffer_id=%d;slot=%zu;event_fd=%d;poll_events=%x;"
"events=%d|",
id(), buffers_[slot]->id(), slot, event_fd, poll_events, events);
if (events & EPOLLIN) {
return Enqueue({buffers_[slot], slot, buffers_[slot]->GetQueueIndex()});
} else if (events & EPOLLHUP) {
ALOGW(
"BufferHubQueue::HandleBufferEvent: Received EPOLLHUP event: slot=%zu "
"event_fd=%d buffer_id=%d",
slot, buffers_[slot]->event_fd(), buffers_[slot]->id());
return RemoveBuffer(slot);
} else {
ALOGW(
"BufferHubQueue::HandleBufferEvent: Unknown event, slot=%zu, epoll "
"events=%d",
slot, events);
}
return {};
}
Status<void> BufferHubQueue::HandleQueueEvent(int poll_event) {
ATRACE_NAME("BufferHubQueue::HandleQueueEvent");
auto status = GetEventMask(poll_event);
if (!status) {
ALOGW("BufferHubQueue::HandleQueueEvent: Failed to get event mask: %s",
status.GetErrorMessage().c_str());
return status.error_status();
}
const int events = status.get();
if (events & EPOLLIN) {
// Note that after buffer imports, if |count()| still returns 0, epoll
// wait will be tried again to acquire the newly imported buffer.
auto buffer_status = OnBufferAllocated();
if (!buffer_status) {
ALOGE("%s: Failed to import buffer: %s", __FUNCTION__,
buffer_status.GetErrorMessage().c_str());
}
} else if (events & EPOLLHUP) {
ALOGD_IF(TRACE, "%s: hang up event!", __FUNCTION__);
hung_up_ = true;
} else {
ALOGW("%s: Unknown epoll events=%x", __FUNCTION__, events);
}
return {};
}
Status<void> BufferHubQueue::AddBuffer(
const std::shared_ptr<BufferHubBase>& buffer, size_t slot) {
ALOGD_IF(TRACE, "%s: buffer_id=%d slot=%zu", __FUNCTION__, buffer->id(),
slot);
if (is_full()) {
ALOGE("%s: queue is at maximum capacity: %zu", __FUNCTION__, capacity_);
return ErrorStatus(E2BIG);
}
if (buffers_[slot]) {
// Replace the buffer if the slot is occupied. This could happen when the
// producer side replaced the slot with a newly allocated buffer. Remove the
// buffer before setting up with the new one.
auto remove_status = RemoveBuffer(slot);
if (!remove_status)
return remove_status.error_status();
}
for (const auto& event_source : buffer->GetEventSources()) {
epoll_event event = {.events = event_source.event_mask | EPOLLET,
.data = {.u64 = Stuff(buffer->event_fd(), slot)}};
const int ret =
epoll_fd_.Control(EPOLL_CTL_ADD, event_source.event_fd, &event);
if (ret < 0) {
ALOGE("%s: Failed to add buffer to epoll set: %s", __FUNCTION__,
strerror(-ret));
return ErrorStatus(-ret);
}
}
buffers_[slot] = buffer;
capacity_++;
return {};
}
Status<void> BufferHubQueue::RemoveBuffer(size_t slot) {
ALOGD_IF(TRACE, "%s: slot=%zu", __FUNCTION__, slot);
if (buffers_[slot]) {
for (const auto& event_source : buffers_[slot]->GetEventSources()) {
const int ret =
epoll_fd_.Control(EPOLL_CTL_DEL, event_source.event_fd, nullptr);
if (ret < 0) {
ALOGE("%s: Failed to remove buffer from epoll set: %s", __FUNCTION__,
strerror(-ret));
return ErrorStatus(-ret);
}
}
// Trigger OnBufferRemoved callback if registered.
if (on_buffer_removed_)
on_buffer_removed_(buffers_[slot]);
buffers_[slot] = nullptr;
capacity_--;
}
return {};
}
Status<void> BufferHubQueue::Enqueue(Entry entry) {
if (!is_full()) {
// Find and remove the enqueued buffer from unavailable_buffers_slot if
// exist.
auto enqueued_buffer_iter = std::find_if(
unavailable_buffers_slot_.begin(), unavailable_buffers_slot_.end(),
[&entry](size_t slot) -> bool { return slot == entry.slot; });
if (enqueued_buffer_iter != unavailable_buffers_slot_.end()) {
unavailable_buffers_slot_.erase(enqueued_buffer_iter);
}
available_buffers_.push(std::move(entry));
// Trigger OnBufferAvailable callback if registered.
if (on_buffer_available_)
on_buffer_available_();
return {};
} else {
ALOGE("%s: Buffer queue is full!", __FUNCTION__);
return ErrorStatus(E2BIG);
}
}
Status<std::shared_ptr<BufferHubBase>> BufferHubQueue::Dequeue(int timeout,
size_t* slot) {
ALOGD_IF(TRACE, "%s: count=%zu, timeout=%d", __FUNCTION__, count(), timeout);
PDX_TRACE_FORMAT("%s|count=%zu|", __FUNCTION__, count());
if (count() == 0) {
if (!WaitForBuffers(timeout))
return ErrorStatus(ETIMEDOUT);
}
auto& entry = available_buffers_.top();
PDX_TRACE_FORMAT("buffer|buffer_id=%d;slot=%zu|", entry.buffer->id(),
entry.slot);
std::shared_ptr<BufferHubBase> buffer = std::move(entry.buffer);
*slot = entry.slot;
available_buffers_.pop();
unavailable_buffers_slot_.push_back(*slot);
return {std::move(buffer)};
}
void BufferHubQueue::SetBufferAvailableCallback(
BufferAvailableCallback callback) {
on_buffer_available_ = callback;
}
void BufferHubQueue::SetBufferRemovedCallback(BufferRemovedCallback callback) {
on_buffer_removed_ = callback;
}
pdx::Status<void> BufferHubQueue::FreeAllBuffers() {
// Clear all available buffers.
while (!available_buffers_.empty())
available_buffers_.pop();
pdx::Status<void> last_error; // No error.
// Clear all buffers this producer queue is tracking.
for (size_t slot = 0; slot < BufferHubQueue::kMaxQueueCapacity; slot++) {
if (buffers_[slot] != nullptr) {
auto status = RemoveBuffer(slot);
if (!status) {
ALOGE(
"ProducerQueue::FreeAllBuffers: Failed to remove buffer at "
"slot=%zu.",
slot);
last_error = status.error_status();
}
}
}
return last_error;
}
ProducerQueue::ProducerQueue(LocalChannelHandle handle)
: BASE(std::move(handle)) {
auto status = ImportQueue();
if (!status) {
ALOGE("ProducerQueue::ProducerQueue: Failed to import queue: %s",
status.GetErrorMessage().c_str());
Close(-status.error());
}
}
ProducerQueue::ProducerQueue(const ProducerQueueConfig& config,
const UsagePolicy& usage)
: BASE(BufferHubRPC::kClientPath) {
auto status =
InvokeRemoteMethod<BufferHubRPC::CreateProducerQueue>(config, usage);
if (!status) {
ALOGE("ProducerQueue::ProducerQueue: Failed to create producer queue: %s",
status.GetErrorMessage().c_str());
Close(-status.error());
return;
}
SetupQueue(status.get());
}
Status<std::vector<size_t>> ProducerQueue::AllocateBuffers(
uint32_t width, uint32_t height, uint32_t layer_count, uint32_t format,
uint64_t usage, size_t buffer_count) {
if (buffer_count == 0) {
return {std::vector<size_t>()};
}
if (capacity() + buffer_count > kMaxQueueCapacity) {
ALOGE(
"ProducerQueue::AllocateBuffers: queue is at capacity: %zu, cannot "
"allocate %zu more buffer(s).",
capacity(), buffer_count);
return ErrorStatus(E2BIG);
}
Status<std::vector<std::pair<LocalChannelHandle, size_t>>> status =
InvokeRemoteMethod<BufferHubRPC::ProducerQueueAllocateBuffers>(
width, height, layer_count, format, usage, buffer_count);
if (!status) {
ALOGE("ProducerQueue::AllocateBuffers: failed to allocate buffers: %s",
status.GetErrorMessage().c_str());
return status.error_status();
}
auto buffer_handle_slots = status.take();
LOG_ALWAYS_FATAL_IF(buffer_handle_slots.size() != buffer_count,
"BufferHubRPC::ProducerQueueAllocateBuffers should "
"return %zu buffer handle(s), but returned %zu instead.",
buffer_count, buffer_handle_slots.size());
std::vector<size_t> buffer_slots;
buffer_slots.reserve(buffer_count);
// Bookkeeping for each buffer.
for (auto& hs : buffer_handle_slots) {
auto& buffer_handle = hs.first;
size_t buffer_slot = hs.second;
// Note that import might (though very unlikely) fail. If so, buffer_handle
// will be closed and included in returned buffer_slots.
if (AddBuffer(ProducerBuffer::Import(std::move(buffer_handle)),
buffer_slot)) {
ALOGD_IF(TRACE, "ProducerQueue::AllocateBuffers: new buffer at slot: %zu",
buffer_slot);
buffer_slots.push_back(buffer_slot);
}
}
if (buffer_slots.size() != buffer_count) {
// Error out if the count of imported buffer(s) is not correct.
ALOGE(
"ProducerQueue::AllocateBuffers: requested to import %zu "
"buffers, but actually imported %zu buffers.",
buffer_count, buffer_slots.size());
return ErrorStatus(ENOMEM);
}
return {std::move(buffer_slots)};
}
Status<size_t> ProducerQueue::AllocateBuffer(uint32_t width, uint32_t height,
uint32_t layer_count,
uint32_t format, uint64_t usage) {
// We only allocate one buffer at a time.
constexpr size_t buffer_count = 1;
auto status =
AllocateBuffers(width, height, layer_count, format, usage, buffer_count);
if (!status) {
ALOGE("ProducerQueue::AllocateBuffer: Failed to allocate buffer: %s",
status.GetErrorMessage().c_str());
return status.error_status();
}
return {status.get()[0]};
}
Status<void> ProducerQueue::AddBuffer(
const std::shared_ptr<ProducerBuffer>& buffer, size_t slot) {
ALOGD_IF(TRACE, "ProducerQueue::AddBuffer: queue_id=%d buffer_id=%d slot=%zu",
id(), buffer->id(), slot);
// For producer buffer, we need to enqueue the newly added buffer
// immediately. Producer queue starts with all buffers in available state.
auto status = BufferHubQueue::AddBuffer(buffer, slot);
if (!status)
return status;
return BufferHubQueue::Enqueue({buffer, slot, 0ULL});
}
Status<size_t> ProducerQueue::InsertBuffer(
const std::shared_ptr<ProducerBuffer>& buffer) {
if (buffer == nullptr ||
!BufferHubDefs::isClientGained(buffer->buffer_state(),
buffer->client_state_mask())) {
ALOGE(
"ProducerQueue::InsertBuffer: Can only insert a buffer when it's in "
"gained state.");
return ErrorStatus(EINVAL);
}
auto status_or_slot =
InvokeRemoteMethod<BufferHubRPC::ProducerQueueInsertBuffer>(
buffer->cid());
if (!status_or_slot) {
ALOGE(
"ProducerQueue::InsertBuffer: Failed to insert producer buffer: "
"buffer_cid=%d, error: %s.",
buffer->cid(), status_or_slot.GetErrorMessage().c_str());
return status_or_slot.error_status();
}
size_t slot = status_or_slot.get();
// Note that we are calling AddBuffer() from the base class to explicitly
// avoid Enqueue() the ProducerBuffer.
auto status = BufferHubQueue::AddBuffer(buffer, slot);
if (!status) {
ALOGE("ProducerQueue::InsertBuffer: Failed to add buffer: %s.",
status.GetErrorMessage().c_str());
return status.error_status();
}
return {slot};
}
Status<void> ProducerQueue::RemoveBuffer(size_t slot) {
auto status =
InvokeRemoteMethod<BufferHubRPC::ProducerQueueRemoveBuffer>(slot);
if (!status) {
ALOGE("%s: Failed to remove producer buffer: %s", __FUNCTION__,
status.GetErrorMessage().c_str());
return status.error_status();
}
return BufferHubQueue::RemoveBuffer(slot);
}
Status<std::shared_ptr<ProducerBuffer>> ProducerQueue::Dequeue(
int timeout, size_t* slot, LocalHandle* release_fence) {
DvrNativeBufferMetadata canonical_meta;
return Dequeue(timeout, slot, &canonical_meta, release_fence);
}
pdx::Status<std::shared_ptr<ProducerBuffer>> ProducerQueue::Dequeue(
int timeout, size_t* slot, DvrNativeBufferMetadata* out_meta,
pdx::LocalHandle* release_fence, bool gain_posted_buffer) {
ATRACE_NAME("ProducerQueue::Dequeue");
if (slot == nullptr || out_meta == nullptr || release_fence == nullptr) {
ALOGE("%s: Invalid parameter.", __FUNCTION__);
return ErrorStatus(EINVAL);
}
std::shared_ptr<ProducerBuffer> buffer;
Status<std::shared_ptr<BufferHubBase>> dequeue_status =
BufferHubQueue::Dequeue(timeout, slot);
if (dequeue_status.ok()) {
buffer = std::static_pointer_cast<ProducerBuffer>(dequeue_status.take());
} else {
if (gain_posted_buffer) {
Status<std::shared_ptr<ProducerBuffer>> dequeue_unacquired_status =
ProducerQueue::DequeueUnacquiredBuffer(slot);
if (!dequeue_unacquired_status.ok()) {
ALOGE("%s: DequeueUnacquiredBuffer returned error: %d", __FUNCTION__,
dequeue_unacquired_status.error());
return dequeue_unacquired_status.error_status();
}
buffer = dequeue_unacquired_status.take();
} else {
return dequeue_status.error_status();
}
}
const int ret =
buffer->GainAsync(out_meta, release_fence, gain_posted_buffer);
if (ret < 0 && ret != -EALREADY)
return ErrorStatus(-ret);
return {std::move(buffer)};
}
Status<std::shared_ptr<ProducerBuffer>> ProducerQueue::DequeueUnacquiredBuffer(
size_t* slot) {
if (unavailable_buffers_slot_.size() < 1) {
ALOGE(
"%s: Failed to dequeue un-acquired buffer. All buffer(s) are in "
"acquired state if exist.",
__FUNCTION__);
return ErrorStatus(ENOMEM);
}
// Find the first buffer that is not in acquired state from
// unavailable_buffers_slot_.
for (auto iter = unavailable_buffers_slot_.begin();
iter != unavailable_buffers_slot_.end(); iter++) {
std::shared_ptr<ProducerBuffer> buffer = ProducerQueue::GetBuffer(*iter);
if (buffer == nullptr) {
ALOGE("%s failed. Buffer slot %d is null.", __FUNCTION__,
static_cast<int>(*slot));
return ErrorStatus(EIO);
}
if (!BufferHubDefs::isAnyClientAcquired(buffer->buffer_state())) {
*slot = *iter;
unavailable_buffers_slot_.erase(iter);
unavailable_buffers_slot_.push_back(*slot);
ALOGD("%s: Producer queue dequeue unacquired buffer in slot %d",
__FUNCTION__, static_cast<int>(*slot));
return {std::move(buffer)};
}
}
ALOGE(
"%s: Failed to dequeue un-acquired buffer. No un-acquired buffer exist.",
__FUNCTION__);
return ErrorStatus(EBUSY);
}
pdx::Status<ProducerQueueParcelable> ProducerQueue::TakeAsParcelable() {
if (capacity() != 0) {
ALOGE(
"%s: producer queue can only be taken out as a parcelable when empty. "
"Current queue capacity: %zu",
__FUNCTION__, capacity());
return ErrorStatus(EINVAL);
}
std::unique_ptr<pdx::ClientChannel> channel = TakeChannel();
ProducerQueueParcelable queue_parcelable(channel->TakeChannelParcelable());
// Here the queue parcelable is returned and holds the underlying system
// resources backing the queue; while the original client channel of this
// producer queue is destroyed in place so that this client can no longer
// provide producer operations.
return {std::move(queue_parcelable)};
}
/*static */
std::unique_ptr<ConsumerQueue> ConsumerQueue::Import(
LocalChannelHandle handle) {
return std::unique_ptr<ConsumerQueue>(new ConsumerQueue(std::move(handle)));
}
ConsumerQueue::ConsumerQueue(LocalChannelHandle handle)
: BufferHubQueue(std::move(handle)) {
auto status = ImportQueue();
if (!status) {
ALOGE("%s: Failed to import queue: %s", __FUNCTION__,
status.GetErrorMessage().c_str());
Close(-status.error());
}
auto import_status = ImportBuffers();
if (import_status) {
ALOGI("%s: Imported %zu buffers.", __FUNCTION__, import_status.get());
} else {
ALOGE("%s: Failed to import buffers: %s", __FUNCTION__,
import_status.GetErrorMessage().c_str());
}
}
Status<size_t> ConsumerQueue::ImportBuffers() {
auto status = InvokeRemoteMethod<BufferHubRPC::ConsumerQueueImportBuffers>();
if (!status) {
if (status.error() == EBADR) {
ALOGI("%s: Queue is silent, no buffers imported.", __FUNCTION__);
return {0};
} else {
ALOGE("%s: Failed to import consumer buffer: %s", __FUNCTION__,
status.GetErrorMessage().c_str());
return status.error_status();
}
}
int ret;
Status<void> last_error;
size_t imported_buffers_count = 0;
auto buffer_handle_slots = status.take();
for (auto& buffer_handle_slot : buffer_handle_slots) {
ALOGD_IF(TRACE, ": buffer_handle=%d", __FUNCTION__,
buffer_handle_slot.first.value());
std::unique_ptr<ConsumerBuffer> consumer_buffer =
ConsumerBuffer::Import(std::move(buffer_handle_slot.first));
if (!consumer_buffer) {
ALOGE("%s: Failed to import buffer: slot=%zu", __FUNCTION__,
buffer_handle_slot.second);
last_error = ErrorStatus(EPIPE);
continue;
}
auto add_status =
AddBuffer(std::move(consumer_buffer), buffer_handle_slot.second);
if (!add_status) {
ALOGE("%s: Failed to add buffer: %s", __FUNCTION__,
add_status.GetErrorMessage().c_str());
last_error = add_status;
} else {
imported_buffers_count++;
}
}
if (imported_buffers_count > 0)
return {imported_buffers_count};
else
return last_error.error_status();
}
Status<void> ConsumerQueue::AddBuffer(
const std::shared_ptr<ConsumerBuffer>& buffer, size_t slot) {
ALOGD_IF(TRACE, "%s: queue_id=%d buffer_id=%d slot=%zu", __FUNCTION__, id(),
buffer->id(), slot);
return BufferHubQueue::AddBuffer(buffer, slot);
}
Status<std::shared_ptr<ConsumerBuffer>> ConsumerQueue::Dequeue(
int timeout, size_t* slot, void* meta, size_t user_metadata_size,
LocalHandle* acquire_fence) {
if (user_metadata_size != user_metadata_size_) {
ALOGE(
"%s: Metadata size (%zu) for the dequeuing buffer does not match "
"metadata size (%zu) for the queue.",
__FUNCTION__, user_metadata_size, user_metadata_size_);
return ErrorStatus(EINVAL);
}
DvrNativeBufferMetadata canonical_meta;
auto status = Dequeue(timeout, slot, &canonical_meta, acquire_fence);
if (!status)
return status.error_status();
if (meta && user_metadata_size) {
void* metadata_src =
reinterpret_cast<void*>(canonical_meta.user_metadata_ptr);
if (metadata_src) {
memcpy(meta, metadata_src, user_metadata_size);
} else {
ALOGW("%s: no user-defined metadata.", __FUNCTION__);
}
}
return status;
}
Status<std::shared_ptr<ConsumerBuffer>> ConsumerQueue::Dequeue(
int timeout, size_t* slot, DvrNativeBufferMetadata* out_meta,
pdx::LocalHandle* acquire_fence) {
ATRACE_NAME("ConsumerQueue::Dequeue");
if (slot == nullptr || out_meta == nullptr || acquire_fence == nullptr) {
ALOGE("%s: Invalid parameter.", __FUNCTION__);
return ErrorStatus(EINVAL);
}
auto status = BufferHubQueue::Dequeue(timeout, slot);
if (!status)
return status.error_status();
auto buffer = std::static_pointer_cast<ConsumerBuffer>(status.take());
const int ret = buffer->AcquireAsync(out_meta, acquire_fence);
if (ret < 0)
return ErrorStatus(-ret);
return {std::move(buffer)};
}
Status<void> ConsumerQueue::OnBufferAllocated() {
ALOGD_IF(TRACE, "%s: queue_id=%d", __FUNCTION__, id());
auto status = ImportBuffers();
if (!status) {
ALOGE("%s: Failed to import buffers: %s", __FUNCTION__,
status.GetErrorMessage().c_str());
return ErrorStatus(status.error());
} else if (status.get() == 0) {
ALOGW("%s: No new buffers allocated!", __FUNCTION__);
return ErrorStatus(ENOBUFS);
} else {
ALOGD_IF(TRACE, "%s: Imported %zu consumer buffers.", __FUNCTION__,
status.get());
return {};
}
}
} // namespace dvr
} // namespace android