blob: 414f67327134b6f70e9d95728090f8715d8ea809 [file] [log] [blame]
/*
* Copyright (C) 2011 The Android Open Source Project
*
* Licensed under the Apache License, Version 2.0 (the "License");
* you may not use this file except in compliance with the License.
* You may obtain a copy of the License at
*
* http://www.apache.org/licenses/LICENSE-2.0
*
* Unless required by applicable law or agreed to in writing, software
* distributed under the License is distributed on an "AS IS" BASIS,
* WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
* See the License for the specific language governing permissions and
* limitations under the License.
*/
#include "SensorDevice.h"
#include "SensorFusion.h"
#include "SensorService.h"
namespace android {
// ---------------------------------------------------------------------------
ANDROID_SINGLETON_STATIC_INSTANCE(SensorFusion)
SensorFusion::SensorFusion()
: mSensorDevice(SensorDevice::getInstance()),
mAttitude(mAttitudes[FUSION_9AXIS]),
mGyroTime(0), mAccTime(0)
{
sensor_t const* list;
Sensor uncalibratedGyro;
ssize_t count = mSensorDevice.getSensorList(&list);
mEnabled[FUSION_9AXIS] = false;
mEnabled[FUSION_NOMAG] = false;
mEnabled[FUSION_NOGYRO] = false;
if (count > 0) {
for (size_t i=0 ; i<size_t(count) ; i++) {
if (list[i].type == SENSOR_TYPE_ACCELEROMETER) {
mAcc = Sensor(list + i);
}
if (list[i].type == SENSOR_TYPE_MAGNETIC_FIELD) {
mMag = Sensor(list + i);
}
if (list[i].type == SENSOR_TYPE_GYROSCOPE) {
mGyro = Sensor(list + i);
}
if (list[i].type == SENSOR_TYPE_GYROSCOPE_UNCALIBRATED) {
uncalibratedGyro = Sensor(list + i);
}
}
// Use the uncalibrated gyroscope for sensor fusion when available
if (uncalibratedGyro.getType() == SENSOR_TYPE_GYROSCOPE_UNCALIBRATED) {
mGyro = uncalibratedGyro;
}
// 200 Hz for gyro events is a good compromise between precision
// and power/cpu usage.
mEstimatedGyroRate = 200;
mTargetDelayNs = 1000000000LL/mEstimatedGyroRate;
for (int i = 0; i<NUM_FUSION_MODE; ++i) {
mFusions[i].init(i);
}
}
}
void SensorFusion::process(const sensors_event_t& event) {
if (event.type == mGyro.getType()) {
float dT;
if ( event.timestamp - mGyroTime> 0 &&
event.timestamp - mGyroTime< (int64_t)(5e7) ) { //0.05sec
dT = (event.timestamp - mGyroTime) / 1000000000.0f;
// here we estimate the gyro rate (useful for debugging)
const float freq = 1 / dT;
if (freq >= 100 && freq<1000) { // filter values obviously wrong
const float alpha = 1 / (1 + dT); // 1s time-constant
mEstimatedGyroRate = freq + (mEstimatedGyroRate - freq)*alpha;
}
const vec3_t gyro(event.data);
for (int i = 0; i<NUM_FUSION_MODE; ++i) {
if (mEnabled[i]) {
// fusion in no gyro mode will ignore
mFusions[i].handleGyro(gyro, dT);
}
}
}
mGyroTime = event.timestamp;
} else if (event.type == SENSOR_TYPE_MAGNETIC_FIELD) {
const vec3_t mag(event.data);
for (int i = 0; i<NUM_FUSION_MODE; ++i) {
if (mEnabled[i]) {
mFusions[i].handleMag(mag);// fusion in no mag mode will ignore
}
}
} else if (event.type == SENSOR_TYPE_ACCELEROMETER) {
float dT;
if ( event.timestamp - mAccTime> 0 &&
event.timestamp - mAccTime< (int64_t)(1e8) ) { //0.1sec
dT = (event.timestamp - mAccTime) / 1000000000.0f;
const vec3_t acc(event.data);
for (int i = 0; i<NUM_FUSION_MODE; ++i) {
if (mEnabled[i]) {
mFusions[i].handleAcc(acc, dT);
mAttitudes[i] = mFusions[i].getAttitude();
}
}
}
mAccTime = event.timestamp;
}
}
template <typename T> inline T min(T a, T b) { return a<b ? a : b; }
template <typename T> inline T max(T a, T b) { return a>b ? a : b; }
status_t SensorFusion::activate(int mode, void* ident, bool enabled) {
ALOGD_IF(DEBUG_CONNECTIONS,
"SensorFusion::activate(mode=%d, ident=%p, enabled=%d)",
mode, ident, enabled);
const ssize_t idx = mClients[mode].indexOf(ident);
if (enabled) {
if (idx < 0) {
mClients[mode].add(ident);
}
} else {
if (idx >= 0) {
mClients[mode].removeItemsAt(idx);
}
}
const bool newState = mClients[mode].size() != 0;
if (newState != mEnabled[mode]) {
mEnabled[mode] = newState;
if (newState) {
mFusions[mode].init(mode);
}
}
mSensorDevice.activate(ident, mAcc.getHandle(), enabled);
if (mode != FUSION_NOMAG) {
mSensorDevice.activate(ident, mMag.getHandle(), enabled);
}
if (mode != FUSION_NOGYRO) {
mSensorDevice.activate(ident, mGyro.getHandle(), enabled);
}
return NO_ERROR;
}
status_t SensorFusion::setDelay(int mode, void* ident, int64_t ns) {
// Call batch with timeout zero instead of setDelay().
if (ns > (int64_t)5e7) {
ns = (int64_t)(5e7);
}
mSensorDevice.batch(ident, mAcc.getHandle(), 0, ns, 0);
if (mode != FUSION_NOMAG) {
mSensorDevice.batch(ident, mMag.getHandle(), 0, ms2ns(10), 0);
}
if (mode != FUSION_NOGYRO) {
mSensorDevice.batch(ident, mGyro.getHandle(), 0, mTargetDelayNs, 0);
}
return NO_ERROR;
}
float SensorFusion::getPowerUsage(int mode) const {
float power = mAcc.getPowerUsage() +
((mode != FUSION_NOMAG) ? mMag.getPowerUsage() : 0) +
((mode != FUSION_NOGYRO) ? mGyro.getPowerUsage() : 0);
return power;
}
int32_t SensorFusion::getMinDelay() const {
return mAcc.getMinDelay();
}
void SensorFusion::dump(String8& result) {
const Fusion& fusion_9axis(mFusions[FUSION_9AXIS]);
result.appendFormat("9-axis fusion %s (%zd clients), gyro-rate=%7.2fHz, "
"q=< %g, %g, %g, %g > (%g), "
"b=< %g, %g, %g >\n",
mEnabled[FUSION_9AXIS] ? "enabled" : "disabled",
mClients[FUSION_9AXIS].size(),
mEstimatedGyroRate,
fusion_9axis.getAttitude().x,
fusion_9axis.getAttitude().y,
fusion_9axis.getAttitude().z,
fusion_9axis.getAttitude().w,
length(fusion_9axis.getAttitude()),
fusion_9axis.getBias().x,
fusion_9axis.getBias().y,
fusion_9axis.getBias().z);
const Fusion& fusion_nomag(mFusions[FUSION_NOMAG]);
result.appendFormat("game fusion(no mag) %s (%zd clients), "
"gyro-rate=%7.2fHz, "
"q=< %g, %g, %g, %g > (%g), "
"b=< %g, %g, %g >\n",
mEnabled[FUSION_NOMAG] ? "enabled" : "disabled",
mClients[FUSION_NOMAG].size(),
mEstimatedGyroRate,
fusion_nomag.getAttitude().x,
fusion_nomag.getAttitude().y,
fusion_nomag.getAttitude().z,
fusion_nomag.getAttitude().w,
length(fusion_nomag.getAttitude()),
fusion_nomag.getBias().x,
fusion_nomag.getBias().y,
fusion_nomag.getBias().z);
const Fusion& fusion_nogyro(mFusions[FUSION_NOGYRO]);
result.appendFormat("geomag fusion (no gyro) %s (%zd clients), "
"gyro-rate=%7.2fHz, "
"q=< %g, %g, %g, %g > (%g), "
"b=< %g, %g, %g >\n",
mEnabled[FUSION_NOGYRO] ? "enabled" : "disabled",
mClients[FUSION_NOGYRO].size(),
mEstimatedGyroRate,
fusion_nogyro.getAttitude().x,
fusion_nogyro.getAttitude().y,
fusion_nogyro.getAttitude().z,
fusion_nogyro.getAttitude().w,
length(fusion_nogyro.getAttitude()),
fusion_nogyro.getBias().x,
fusion_nogyro.getBias().y,
fusion_nogyro.getBias().z);
}
// ---------------------------------------------------------------------------
}; // namespace android