blob: d0d3a73574ed502c37c3cabf6ae54d0a8e89a324 [file] [log] [blame]
#include <gtest/gtest.h>
#include <poll.h>
#include <private/dvr/buffer_hub_client.h>
#include <private/dvr/bufferhub_rpc.h>
#include <sys/epoll.h>
#include <sys/eventfd.h>
#include <mutex>
#include <thread>
#define RETRY_EINTR(fnc_call) \
([&]() -> decltype(fnc_call) { \
decltype(fnc_call) result; \
do { \
result = (fnc_call); \
} while (result == -1 && errno == EINTR); \
return result; \
})()
using android::dvr::BufferConsumer;
using android::dvr::BufferHubDefs::kConsumerStateMask;
using android::dvr::BufferHubDefs::kProducerStateBit;
using android::dvr::BufferProducer;
using android::pdx::LocalHandle;
const int kWidth = 640;
const int kHeight = 480;
const int kFormat = HAL_PIXEL_FORMAT_RGBA_8888;
const int kUsage = 0;
const uint64_t kContext = 42;
using LibBufferHubTest = ::testing::Test;
TEST_F(LibBufferHubTest, TestBasicUsage) {
std::unique_ptr<BufferProducer> p = BufferProducer::Create(
kWidth, kHeight, kFormat, kUsage, sizeof(uint64_t));
ASSERT_TRUE(p.get() != nullptr);
std::unique_ptr<BufferConsumer> c =
BufferConsumer::Import(p->CreateConsumer());
ASSERT_TRUE(c.get() != nullptr);
// Check that consumers can spawn other consumers.
std::unique_ptr<BufferConsumer> c2 =
BufferConsumer::Import(c->CreateConsumer());
ASSERT_TRUE(c2.get() != nullptr);
// Producer state mask is unique, i.e. 1.
EXPECT_EQ(p->buffer_state_bit(), kProducerStateBit);
// Consumer state mask cannot have producer bit on.
EXPECT_EQ(c->buffer_state_bit() & kProducerStateBit, 0ULL);
// Consumer state mask must be a single, i.e. power of 2.
EXPECT_NE(c->buffer_state_bit(), 0ULL);
EXPECT_EQ(c->buffer_state_bit() & (c->buffer_state_bit() - 1), 0ULL);
// Consumer state mask cannot have producer bit on.
EXPECT_EQ(c2->buffer_state_bit() & kProducerStateBit, 0ULL);
// Consumer state mask must be a single, i.e. power of 2.
EXPECT_NE(c2->buffer_state_bit(), 0ULL);
EXPECT_EQ(c2->buffer_state_bit() & (c2->buffer_state_bit() - 1), 0ULL);
// Each consumer should have unique bit.
EXPECT_EQ(c->buffer_state_bit() & c2->buffer_state_bit(), 0ULL);
// Initial state: producer not available, consumers not available.
EXPECT_EQ(0, RETRY_EINTR(p->Poll(100)));
EXPECT_EQ(0, RETRY_EINTR(c->Poll(100)));
EXPECT_EQ(0, RETRY_EINTR(c2->Poll(100)));
EXPECT_EQ(0, p->Post(LocalHandle(), kContext));
// New state: producer not available, consumers available.
EXPECT_EQ(0, RETRY_EINTR(p->Poll(100)));
EXPECT_EQ(1, RETRY_EINTR(c->Poll(100)));
EXPECT_EQ(1, RETRY_EINTR(c2->Poll(100)));
uint64_t context;
LocalHandle fence;
EXPECT_EQ(0, c->Acquire(&fence, &context));
EXPECT_EQ(kContext, context);
EXPECT_EQ(0, RETRY_EINTR(c->Poll(100)));
EXPECT_EQ(1, RETRY_EINTR(c2->Poll(100)));
EXPECT_EQ(0, c2->Acquire(&fence, &context));
EXPECT_EQ(kContext, context);
EXPECT_EQ(0, RETRY_EINTR(c2->Poll(100)));
EXPECT_EQ(0, RETRY_EINTR(c->Poll(100)));
EXPECT_EQ(0, c->Release(LocalHandle()));
EXPECT_EQ(0, RETRY_EINTR(p->Poll(100)));
EXPECT_EQ(0, c2->Discard());
EXPECT_EQ(1, RETRY_EINTR(p->Poll(100)));
EXPECT_EQ(0, p->Gain(&fence));
EXPECT_EQ(0, RETRY_EINTR(p->Poll(100)));
EXPECT_EQ(0, RETRY_EINTR(c->Poll(100)));
EXPECT_EQ(0, RETRY_EINTR(c2->Poll(100)));
}
TEST_F(LibBufferHubTest, TestEpoll) {
std::unique_ptr<BufferProducer> p = BufferProducer::Create(
kWidth, kHeight, kFormat, kUsage, sizeof(uint64_t));
ASSERT_TRUE(p.get() != nullptr);
std::unique_ptr<BufferConsumer> c =
BufferConsumer::Import(p->CreateConsumer());
ASSERT_TRUE(c.get() != nullptr);
LocalHandle epoll_fd{epoll_create1(EPOLL_CLOEXEC)};
ASSERT_TRUE(epoll_fd.IsValid());
epoll_event event;
std::array<epoll_event, 64> events;
auto event_sources = p->GetEventSources();
ASSERT_LT(event_sources.size(), events.size());
for (const auto& event_source : event_sources) {
event = {.events = event_source.event_mask | EPOLLET,
.data = {.fd = p->event_fd()}};
ASSERT_EQ(0, epoll_ctl(epoll_fd.Get(), EPOLL_CTL_ADD, event_source.event_fd,
&event));
}
event_sources = c->GetEventSources();
ASSERT_LT(event_sources.size(), events.size());
for (const auto& event_source : event_sources) {
event = {.events = event_source.event_mask | EPOLLET,
.data = {.fd = c->event_fd()}};
ASSERT_EQ(0, epoll_ctl(epoll_fd.Get(), EPOLL_CTL_ADD, event_source.event_fd,
&event));
}
// No events should be signaled initially.
ASSERT_EQ(0, epoll_wait(epoll_fd.Get(), events.data(), events.size(), 0));
// Post the producer and check for consumer signal.
EXPECT_EQ(0, p->Post({}, kContext));
ASSERT_EQ(1, epoll_wait(epoll_fd.Get(), events.data(), events.size(), 100));
ASSERT_TRUE(events[0].events & EPOLLIN);
ASSERT_EQ(c->event_fd(), events[0].data.fd);
// Save the event bits to translate later.
event = events[0];
// Check for events again. Edge-triggered mode should prevent any.
EXPECT_EQ(0, epoll_wait(epoll_fd.Get(), events.data(), events.size(), 100));
EXPECT_EQ(0, epoll_wait(epoll_fd.Get(), events.data(), events.size(), 100));
EXPECT_EQ(0, epoll_wait(epoll_fd.Get(), events.data(), events.size(), 100));
EXPECT_EQ(0, epoll_wait(epoll_fd.Get(), events.data(), events.size(), 100));
// Translate the events.
auto event_status = c->GetEventMask(event.events);
ASSERT_TRUE(event_status);
ASSERT_TRUE(event_status.get() & EPOLLIN);
// Check for events again. Edge-triggered mode should prevent any.
EXPECT_EQ(0, epoll_wait(epoll_fd.Get(), events.data(), events.size(), 100));
}
TEST_F(LibBufferHubTest, TestStateMask) {
std::unique_ptr<BufferProducer> p = BufferProducer::Create(
kWidth, kHeight, kFormat, kUsage, sizeof(uint64_t));
ASSERT_TRUE(p.get() != nullptr);
// It's ok to create up to 63 consumer buffers.
uint64_t buffer_state_bits = p->buffer_state_bit();
std::array<std::unique_ptr<BufferConsumer>, 63> cs;
for (size_t i = 0; i < 63; i++) {
cs[i] = BufferConsumer::Import(p->CreateConsumer());
ASSERT_TRUE(cs[i].get() != nullptr);
// Expect all buffers have unique state mask.
EXPECT_EQ(buffer_state_bits & cs[i]->buffer_state_bit(), 0ULL);
buffer_state_bits |= cs[i]->buffer_state_bit();
}
EXPECT_EQ(buffer_state_bits, kProducerStateBit | kConsumerStateMask);
// The 64th creation will fail with out-of-memory error.
auto state = p->CreateConsumer();
EXPECT_EQ(state.error(), E2BIG);
// Release any consumer should allow us to re-create.
for (size_t i = 0; i < 63; i++) {
buffer_state_bits &= ~cs[i]->buffer_state_bit();
cs[i] = nullptr;
cs[i] = BufferConsumer::Import(p->CreateConsumer());
ASSERT_TRUE(cs[i].get() != nullptr);
// The released state mask will be reused.
EXPECT_EQ(buffer_state_bits & cs[i]->buffer_state_bit(), 0ULL);
buffer_state_bits |= cs[i]->buffer_state_bit();
EXPECT_EQ(buffer_state_bits, kProducerStateBit | kConsumerStateMask);
}
}
TEST_F(LibBufferHubTest, TestStateTransitions) {
std::unique_ptr<BufferProducer> p = BufferProducer::Create(
kWidth, kHeight, kFormat, kUsage, sizeof(uint64_t));
ASSERT_TRUE(p.get() != nullptr);
std::unique_ptr<BufferConsumer> c =
BufferConsumer::Import(p->CreateConsumer());
ASSERT_TRUE(c.get() != nullptr);
uint64_t context;
LocalHandle fence;
// The producer buffer starts in gained state.
// Acquire, release, and gain in gained state should fail.
EXPECT_EQ(-EBUSY, c->Acquire(&fence, &context));
EXPECT_EQ(-EBUSY, c->Release(LocalHandle()));
EXPECT_EQ(-EALREADY, p->Gain(&fence));
// Post in gained state should succeed.
EXPECT_EQ(0, p->Post(LocalHandle(), kContext));
// Post, release, and gain in posted state should fail.
EXPECT_EQ(-EBUSY, p->Post(LocalHandle(), kContext));
EXPECT_EQ(-EBUSY, c->Release(LocalHandle()));
EXPECT_EQ(-EBUSY, p->Gain(&fence));
// Acquire in posted state should succeed.
EXPECT_LE(0, c->Acquire(&fence, &context));
// Acquire, post, and gain in acquired state should fail.
EXPECT_EQ(-EBUSY, c->Acquire(&fence, &context));
EXPECT_EQ(-EBUSY, p->Post(LocalHandle(), kContext));
EXPECT_EQ(-EBUSY, p->Gain(&fence));
// Release in acquired state should succeed.
EXPECT_EQ(0, c->Release(LocalHandle()));
EXPECT_LT(0, RETRY_EINTR(p->Poll(10)));
// Release, acquire, and post in released state should fail.
EXPECT_EQ(-EBUSY, c->Release(LocalHandle()));
EXPECT_EQ(-EBUSY, c->Acquire(&fence, &context));
EXPECT_EQ(-EBUSY, p->Post(LocalHandle(), kContext));
// Gain in released state should succeed.
EXPECT_EQ(0, p->Gain(&fence));
// Acquire, release, and gain in gained state should fail.
EXPECT_EQ(-EBUSY, c->Acquire(&fence, &context));
EXPECT_EQ(-EBUSY, c->Release(LocalHandle()));
EXPECT_EQ(-EALREADY, p->Gain(&fence));
}
TEST_F(LibBufferHubTest, TestWithCustomMetadata) {
struct Metadata {
int64_t field1;
int64_t field2;
};
std::unique_ptr<BufferProducer> p = BufferProducer::Create(
kWidth, kHeight, kFormat, kUsage, sizeof(Metadata));
ASSERT_TRUE(p.get() != nullptr);
std::unique_ptr<BufferConsumer> c =
BufferConsumer::Import(p->CreateConsumer());
ASSERT_TRUE(c.get() != nullptr);
Metadata m = {1, 3};
EXPECT_EQ(0, p->Post(LocalHandle(), m));
EXPECT_LE(0, RETRY_EINTR(c->Poll(10)));
LocalHandle fence;
Metadata m2 = {};
EXPECT_EQ(0, c->Acquire(&fence, &m2));
EXPECT_EQ(m.field1, m2.field1);
EXPECT_EQ(m.field2, m2.field2);
EXPECT_EQ(0, c->Release(LocalHandle()));
EXPECT_LT(0, RETRY_EINTR(p->Poll(0)));
}
TEST_F(LibBufferHubTest, TestPostWithWrongMetaSize) {
struct Metadata {
int64_t field1;
int64_t field2;
};
struct OverSizedMetadata {
int64_t field1;
int64_t field2;
int64_t field3;
};
std::unique_ptr<BufferProducer> p = BufferProducer::Create(
kWidth, kHeight, kFormat, kUsage, sizeof(Metadata));
ASSERT_TRUE(p.get() != nullptr);
std::unique_ptr<BufferConsumer> c =
BufferConsumer::Import(p->CreateConsumer());
ASSERT_TRUE(c.get() != nullptr);
// It is illegal to post metadata larger than originally requested during
// buffer allocation.
OverSizedMetadata evil_meta = {};
EXPECT_NE(0, p->Post(LocalHandle(), evil_meta));
EXPECT_GE(0, RETRY_EINTR(c->Poll(10)));
// It is ok to post metadata smaller than originally requested during
// buffer allocation.
int64_t sequence = 42;
EXPECT_EQ(0, p->Post(LocalHandle(), sequence));
}
TEST_F(LibBufferHubTest, TestAcquireWithWrongMetaSize) {
struct Metadata {
int64_t field1;
int64_t field2;
};
struct OverSizedMetadata {
int64_t field1;
int64_t field2;
int64_t field3;
};
std::unique_ptr<BufferProducer> p = BufferProducer::Create(
kWidth, kHeight, kFormat, kUsage, sizeof(Metadata));
ASSERT_TRUE(p.get() != nullptr);
std::unique_ptr<BufferConsumer> c =
BufferConsumer::Import(p->CreateConsumer());
ASSERT_TRUE(c.get() != nullptr);
Metadata m = {1, 3};
EXPECT_EQ(0, p->Post(LocalHandle(), m));
LocalHandle fence;
int64_t sequence;
OverSizedMetadata e;
// It is illegal to acquire metadata larger than originally requested during
// buffer allocation.
EXPECT_NE(0, c->Acquire(&fence, &e));
// It is ok to acquire metadata smaller than originally requested during
// buffer allocation.
EXPECT_EQ(0, c->Acquire(&fence, &sequence));
EXPECT_EQ(m.field1, sequence);
}
TEST_F(LibBufferHubTest, TestAcquireWithNoMeta) {
std::unique_ptr<BufferProducer> p = BufferProducer::Create(
kWidth, kHeight, kFormat, kUsage, sizeof(uint64_t));
ASSERT_TRUE(p.get() != nullptr);
std::unique_ptr<BufferConsumer> c =
BufferConsumer::Import(p->CreateConsumer());
ASSERT_TRUE(c.get() != nullptr);
int64_t sequence = 3;
EXPECT_EQ(0, p->Post(LocalHandle(), sequence));
LocalHandle fence;
EXPECT_EQ(0, c->Acquire(&fence));
}
TEST_F(LibBufferHubTest, TestWithNoMeta) {
std::unique_ptr<BufferProducer> p =
BufferProducer::Create(kWidth, kHeight, kFormat, kUsage);
ASSERT_TRUE(p.get() != nullptr);
std::unique_ptr<BufferConsumer> c =
BufferConsumer::Import(p->CreateConsumer());
ASSERT_TRUE(c.get() != nullptr);
LocalHandle fence;
EXPECT_EQ(0, p->Post<void>(LocalHandle()));
EXPECT_EQ(0, c->Acquire(&fence));
}
TEST_F(LibBufferHubTest, TestFailureToPostMetaFromABufferWithoutMeta) {
std::unique_ptr<BufferProducer> p =
BufferProducer::Create(kWidth, kHeight, kFormat, kUsage);
ASSERT_TRUE(p.get() != nullptr);
std::unique_ptr<BufferConsumer> c =
BufferConsumer::Import(p->CreateConsumer());
ASSERT_TRUE(c.get() != nullptr);
int64_t sequence = 3;
EXPECT_NE(0, p->Post(LocalHandle(), sequence));
}
TEST_F(LibBufferHubTest, TestPersistentBufferPersistence) {
auto p = BufferProducer::Create("TestPersistentBuffer", -1, -1, kWidth,
kHeight, kFormat, kUsage);
ASSERT_NE(nullptr, p);
// Record the original buffer id for later comparison.
const int buffer_id = p->id();
auto c = BufferConsumer::Import(p->CreateConsumer());
ASSERT_NE(nullptr, c);
EXPECT_EQ(0, p->Post<void>(LocalHandle()));
// Close the connection to the producer. This should not affect the consumer.
p = nullptr;
LocalHandle fence;
EXPECT_EQ(0, c->Acquire(&fence));
EXPECT_EQ(0, c->Release(LocalHandle()));
// Attempt to reconnect to the persistent buffer.
p = BufferProducer::Create("TestPersistentBuffer");
ASSERT_NE(nullptr, p);
EXPECT_EQ(buffer_id, p->id());
EXPECT_EQ(0, p->Gain(&fence));
}
TEST_F(LibBufferHubTest, TestPersistentBufferMismatchParams) {
auto p = BufferProducer::Create("TestPersistentBuffer", -1, -1, kWidth,
kHeight, kFormat, kUsage);
ASSERT_NE(nullptr, p);
// Close the connection to the producer.
p = nullptr;
// Mismatch the params.
p = BufferProducer::Create("TestPersistentBuffer", -1, -1, kWidth * 2,
kHeight, kFormat, kUsage);
ASSERT_EQ(nullptr, p);
}
TEST_F(LibBufferHubTest, TestRemovePersistentBuffer) {
auto p = BufferProducer::Create("TestPersistentBuffer", -1, -1, kWidth,
kHeight, kFormat, kUsage);
ASSERT_NE(nullptr, p);
LocalHandle fence;
auto c = BufferConsumer::Import(p->CreateConsumer());
ASSERT_NE(nullptr, c);
EXPECT_EQ(0, p->Post<void>(LocalHandle()));
EXPECT_EQ(0, c->Acquire(&fence));
EXPECT_EQ(0, c->Release(LocalHandle()));
EXPECT_LT(0, RETRY_EINTR(p->Poll(10)));
// Test that removing persistence and closing the producer orphans the
// consumer.
EXPECT_EQ(0, p->Gain(&fence));
EXPECT_EQ(0, p->Post<void>(LocalHandle()));
EXPECT_EQ(0, p->RemovePersistence());
p = nullptr;
// Orphaned consumer can acquire the posted buffer one more time in
// asynchronous manner. But synchronous call will fail.
DvrNativeBufferMetadata meta;
EXPECT_EQ(0, c->AcquireAsync(&meta, &fence));
EXPECT_EQ(-EPIPE, c->Release(LocalHandle()));
}
namespace {
int PollFd(int fd, int timeout_ms) {
pollfd p = {fd, POLLIN, 0};
return poll(&p, 1, timeout_ms);
}
} // namespace
TEST_F(LibBufferHubTest, TestAcquireFence) {
std::unique_ptr<BufferProducer> p = BufferProducer::Create(
kWidth, kHeight, kFormat, kUsage, /*metadata_size=*/0);
ASSERT_TRUE(p.get() != nullptr);
std::unique_ptr<BufferConsumer> c =
BufferConsumer::Import(p->CreateConsumer());
ASSERT_TRUE(c.get() != nullptr);
DvrNativeBufferMetadata meta;
LocalHandle f1(eventfd(0, EFD_CLOEXEC | EFD_NONBLOCK));
// Post with unsignaled fence.
EXPECT_EQ(0, p->PostAsync(&meta, f1));
// Should acquire a valid fence.
LocalHandle f2;
EXPECT_LT(0, RETRY_EINTR(c->Poll(10)));
EXPECT_EQ(0, c->AcquireAsync(&meta, &f2));
EXPECT_TRUE(f2.IsValid());
// The original fence and acquired fence should have different fd number.
EXPECT_NE(f1.Get(), f2.Get());
EXPECT_GE(0, PollFd(f2.Get(), 0));
// Signal the original fence will trigger the new fence.
eventfd_write(f1.Get(), 1);
// Now the original FD has been signaled.
EXPECT_LT(0, PollFd(f2.Get(), 10));
// Release the consumer with an invalid fence.
EXPECT_EQ(0, c->ReleaseAsync(&meta, LocalHandle()));
// Should gain an invalid fence.
LocalHandle f3;
EXPECT_LT(0, RETRY_EINTR(p->Poll(10)));
EXPECT_EQ(0, p->GainAsync(&meta, &f3));
EXPECT_FALSE(f3.IsValid());
// Post with a signaled fence.
EXPECT_EQ(0, p->PostAsync(&meta, f1));
// Should acquire a valid fence and it's already signalled.
LocalHandle f4;
EXPECT_LT(0, RETRY_EINTR(c->Poll(10)));
EXPECT_EQ(0, c->AcquireAsync(&meta, &f4));
EXPECT_TRUE(f4.IsValid());
EXPECT_LT(0, PollFd(f4.Get(), 10));
// Release with an unsignalled fence and signal it immediately after release
// without producer gainning.
LocalHandle f5(eventfd(0, EFD_CLOEXEC | EFD_NONBLOCK));
EXPECT_EQ(0, c->ReleaseAsync(&meta, f5));
eventfd_write(f5.Get(), 1);
// Should gain a valid fence, which is already signaled.
LocalHandle f6;
EXPECT_LT(0, RETRY_EINTR(p->Poll(10)));
EXPECT_EQ(0, p->GainAsync(&meta, &f6));
EXPECT_TRUE(f6.IsValid());
EXPECT_LT(0, PollFd(f6.Get(), 10));
}
TEST_F(LibBufferHubTest, TestOrphanedAcquire) {
std::unique_ptr<BufferProducer> p = BufferProducer::Create(
kWidth, kHeight, kFormat, kUsage, sizeof(uint64_t));
ASSERT_TRUE(p.get() != nullptr);
std::unique_ptr<BufferConsumer> c1 =
BufferConsumer::Import(p->CreateConsumer());
ASSERT_TRUE(c1.get() != nullptr);
const uint64_t consumer_state_bit1 = c1->buffer_state_bit();
DvrNativeBufferMetadata meta;
EXPECT_EQ(0, p->PostAsync(&meta, LocalHandle()));
LocalHandle fence;
EXPECT_LT(0, RETRY_EINTR(c1->Poll(10)));
EXPECT_LE(0, c1->AcquireAsync(&meta, &fence));
// Destroy the consumer now will make it orphaned and the buffer is still
// acquired.
c1 = nullptr;
EXPECT_GE(0, RETRY_EINTR(p->Poll(10)));
std::unique_ptr<BufferConsumer> c2 =
BufferConsumer::Import(p->CreateConsumer());
ASSERT_TRUE(c2.get() != nullptr);
const uint64_t consumer_state_bit2 = c2->buffer_state_bit();
EXPECT_NE(consumer_state_bit1, consumer_state_bit2);
// The new consumer is available for acquire.
EXPECT_LT(0, RETRY_EINTR(c2->Poll(10)));
EXPECT_LE(0, c2->AcquireAsync(&meta, &fence));
// Releasing the consumer makes the buffer gainable.
EXPECT_EQ(0, c2->ReleaseAsync(&meta, LocalHandle()));
// The buffer is now available for the producer to gain.
EXPECT_LT(0, RETRY_EINTR(p->Poll(10)));
// But if another consumer is created in released state.
std::unique_ptr<BufferConsumer> c3 =
BufferConsumer::Import(p->CreateConsumer());
ASSERT_TRUE(c3.get() != nullptr);
const uint64_t consumer_state_bit3 = c3->buffer_state_bit();
EXPECT_NE(consumer_state_bit2, consumer_state_bit3);
// The consumer buffer is not acquirable.
EXPECT_GE(0, RETRY_EINTR(c3->Poll(10)));
EXPECT_EQ(-EBUSY, c3->AcquireAsync(&meta, &fence));
// Producer should be able to gain no matter what.
EXPECT_EQ(0, p->GainAsync(&meta, &fence));
}