blob: f838892e55d85fb2e816b5eb5ec9cd7cc83aca0e [file] [log] [blame]
/*
* Copyright (C) 2010 The Android Open Source Project
*
* Licensed under the Apache License, Version 2.0 (the "License");
* you may not use this file except in compliance with the License.
* You may obtain a copy of the License at
*
* http://www.apache.org/licenses/LICENSE-2.0
*
* Unless required by applicable law or agreed to in writing, software
* distributed under the License is distributed on an "AS IS" BASIS,
* WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
* See the License for the specific language governing permissions and
* limitations under the License.
*/
#define LOG_TAG "EffectVisualizer"
//#define LOG_NDEBUG 0
#include <assert.h>
#include <inttypes.h>
#include <math.h>
#include <stdlib.h>
#include <string.h>
#include <time.h>
#include <algorithm> // max
#include <new>
#include <log/log.h>
#include <audio_effects/effect_visualizer.h>
#include <audio_utils/primitives.h>
#ifdef BUILD_FLOAT
static constexpr audio_format_t kProcessFormat = AUDIO_FORMAT_PCM_FLOAT;
#else
static constexpr audio_format_t kProcessFormat = AUDIO_FORMAT_PCM_16_BIT;
#endif // BUILD_FLOAT
extern "C" {
// effect_handle_t interface implementation for visualizer effect
extern const struct effect_interface_s gVisualizerInterface;
// Google Visualizer UUID: d069d9e0-8329-11df-9168-0002a5d5c51b
const effect_descriptor_t gVisualizerDescriptor = {
{0xe46b26a0, 0xdddd, 0x11db, 0x8afd, {0x00, 0x02, 0xa5, 0xd5, 0xc5, 0x1b}}, // type
{0xd069d9e0, 0x8329, 0x11df, 0x9168, {0x00, 0x02, 0xa5, 0xd5, 0xc5, 0x1b}}, // uuid
EFFECT_CONTROL_API_VERSION,
(EFFECT_FLAG_TYPE_INSERT | EFFECT_FLAG_INSERT_FIRST),
0, // TODO
1,
"Visualizer",
"The Android Open Source Project",
};
enum visualizer_state_e {
VISUALIZER_STATE_UNINITIALIZED,
VISUALIZER_STATE_INITIALIZED,
VISUALIZER_STATE_ACTIVE,
};
// maximum time since last capture buffer update before resetting capture buffer. This means
// that the framework has stopped playing audio and we must start returning silence
#define MAX_STALL_TIME_MS 1000
#define CAPTURE_BUF_SIZE 65536 // "64k should be enough for everyone"
#define DISCARD_MEASUREMENTS_TIME_MS 2000 // discard measurements older than this number of ms
#define MAX_LATENCY_MS 3000 // 3 seconds of latency for audio pipeline
// maximum number of buffers for which we keep track of the measurements
#define MEASUREMENT_WINDOW_MAX_SIZE_IN_BUFFERS 25 // note: buffer index is stored in uint8_t
struct BufferStats {
bool mIsValid;
uint16_t mPeakU16; // the positive peak of the absolute value of the samples in a buffer
float mRmsSquared; // the average square of the samples in a buffer
};
struct VisualizerContext {
const struct effect_interface_s *mItfe;
effect_config_t mConfig;
uint32_t mCaptureIdx;
uint32_t mCaptureSize;
uint32_t mScalingMode;
uint8_t mState;
uint32_t mLastCaptureIdx;
uint32_t mLatency;
struct timespec mBufferUpdateTime;
uint8_t mCaptureBuf[CAPTURE_BUF_SIZE];
// for measurements
uint8_t mChannelCount; // to avoid recomputing it every time a buffer is processed
uint32_t mMeasurementMode;
uint8_t mMeasurementWindowSizeInBuffers;
uint8_t mMeasurementBufferIdx;
BufferStats mPastMeasurements[MEASUREMENT_WINDOW_MAX_SIZE_IN_BUFFERS];
};
//
//--- Local functions
//
uint32_t Visualizer_getDeltaTimeMsFromUpdatedTime(VisualizerContext* pContext) {
uint32_t deltaMs = 0;
if (pContext->mBufferUpdateTime.tv_sec != 0) {
struct timespec ts;
if (clock_gettime(CLOCK_MONOTONIC, &ts) == 0) {
time_t secs = ts.tv_sec - pContext->mBufferUpdateTime.tv_sec;
long nsec = ts.tv_nsec - pContext->mBufferUpdateTime.tv_nsec;
if (nsec < 0) {
--secs;
nsec += 1000000000;
}
deltaMs = secs * 1000 + nsec / 1000000;
}
}
return deltaMs;
}
void Visualizer_reset(VisualizerContext *pContext)
{
pContext->mCaptureIdx = 0;
pContext->mLastCaptureIdx = 0;
pContext->mBufferUpdateTime.tv_sec = 0;
pContext->mLatency = 0;
memset(pContext->mCaptureBuf, 0x80, CAPTURE_BUF_SIZE);
}
//----------------------------------------------------------------------------
// Visualizer_setConfig()
//----------------------------------------------------------------------------
// Purpose: Set input and output audio configuration.
//
// Inputs:
// pContext: effect engine context
// pConfig: pointer to effect_config_t structure holding input and output
// configuration parameters
//
// Outputs:
//
//----------------------------------------------------------------------------
int Visualizer_setConfig(VisualizerContext *pContext, effect_config_t *pConfig)
{
ALOGV("Visualizer_setConfig start");
if (pConfig->inputCfg.samplingRate != pConfig->outputCfg.samplingRate) return -EINVAL;
if (pConfig->inputCfg.channels != pConfig->outputCfg.channels) return -EINVAL;
if (pConfig->inputCfg.format != pConfig->outputCfg.format) return -EINVAL;
const uint32_t channelCount = audio_channel_count_from_out_mask(pConfig->inputCfg.channels);
#ifdef SUPPORT_MC
if (channelCount < 1 || channelCount > FCC_8) return -EINVAL;
#else
if (channelCount != FCC_2) return -EINVAL;
#endif
if (pConfig->outputCfg.accessMode != EFFECT_BUFFER_ACCESS_WRITE &&
pConfig->outputCfg.accessMode != EFFECT_BUFFER_ACCESS_ACCUMULATE) return -EINVAL;
if (pConfig->inputCfg.format != kProcessFormat) return -EINVAL;
pContext->mConfig = *pConfig;
Visualizer_reset(pContext);
return 0;
}
//----------------------------------------------------------------------------
// Visualizer_getConfig()
//----------------------------------------------------------------------------
// Purpose: Get input and output audio configuration.
//
// Inputs:
// pContext: effect engine context
// pConfig: pointer to effect_config_t structure holding input and output
// configuration parameters
//
// Outputs:
//
//----------------------------------------------------------------------------
void Visualizer_getConfig(VisualizerContext *pContext, effect_config_t *pConfig)
{
*pConfig = pContext->mConfig;
}
//----------------------------------------------------------------------------
// Visualizer_init()
//----------------------------------------------------------------------------
// Purpose: Initialize engine with default configuration.
//
// Inputs:
// pContext: effect engine context
//
// Outputs:
//
//----------------------------------------------------------------------------
int Visualizer_init(VisualizerContext *pContext)
{
pContext->mConfig.inputCfg.accessMode = EFFECT_BUFFER_ACCESS_READ;
pContext->mConfig.inputCfg.channels = AUDIO_CHANNEL_OUT_STEREO;
pContext->mConfig.inputCfg.format = kProcessFormat;
pContext->mConfig.inputCfg.samplingRate = 44100;
pContext->mConfig.inputCfg.bufferProvider.getBuffer = NULL;
pContext->mConfig.inputCfg.bufferProvider.releaseBuffer = NULL;
pContext->mConfig.inputCfg.bufferProvider.cookie = NULL;
pContext->mConfig.inputCfg.mask = EFFECT_CONFIG_ALL;
pContext->mConfig.outputCfg.accessMode = EFFECT_BUFFER_ACCESS_ACCUMULATE;
pContext->mConfig.outputCfg.channels = AUDIO_CHANNEL_OUT_STEREO;
pContext->mConfig.outputCfg.format = kProcessFormat;
pContext->mConfig.outputCfg.samplingRate = 44100;
pContext->mConfig.outputCfg.bufferProvider.getBuffer = NULL;
pContext->mConfig.outputCfg.bufferProvider.releaseBuffer = NULL;
pContext->mConfig.outputCfg.bufferProvider.cookie = NULL;
pContext->mConfig.outputCfg.mask = EFFECT_CONFIG_ALL;
// visualization initialization
pContext->mCaptureSize = VISUALIZER_CAPTURE_SIZE_MAX;
pContext->mScalingMode = VISUALIZER_SCALING_MODE_NORMALIZED;
// measurement initialization
pContext->mChannelCount =
audio_channel_count_from_out_mask(pContext->mConfig.inputCfg.channels);
pContext->mMeasurementMode = MEASUREMENT_MODE_NONE;
pContext->mMeasurementWindowSizeInBuffers = MEASUREMENT_WINDOW_MAX_SIZE_IN_BUFFERS;
pContext->mMeasurementBufferIdx = 0;
for (uint32_t i=0 ; i<pContext->mMeasurementWindowSizeInBuffers ; i++) {
pContext->mPastMeasurements[i].mIsValid = false;
pContext->mPastMeasurements[i].mPeakU16 = 0;
pContext->mPastMeasurements[i].mRmsSquared = 0;
}
Visualizer_setConfig(pContext, &pContext->mConfig);
return 0;
}
//
//--- Effect Library Interface Implementation
//
int VisualizerLib_Create(const effect_uuid_t *uuid,
int32_t /*sessionId*/,
int32_t /*ioId*/,
effect_handle_t *pHandle) {
int ret;
if (pHandle == NULL || uuid == NULL) {
return -EINVAL;
}
if (memcmp(uuid, &gVisualizerDescriptor.uuid, sizeof(effect_uuid_t)) != 0) {
return -EINVAL;
}
VisualizerContext *pContext = new VisualizerContext;
pContext->mItfe = &gVisualizerInterface;
pContext->mState = VISUALIZER_STATE_UNINITIALIZED;
ret = Visualizer_init(pContext);
if (ret < 0) {
ALOGW("VisualizerLib_Create() init failed");
delete pContext;
return ret;
}
*pHandle = (effect_handle_t)pContext;
pContext->mState = VISUALIZER_STATE_INITIALIZED;
ALOGV("VisualizerLib_Create %p", pContext);
return 0;
}
int VisualizerLib_Release(effect_handle_t handle) {
VisualizerContext * pContext = (VisualizerContext *)handle;
ALOGV("VisualizerLib_Release %p", handle);
if (pContext == NULL) {
return -EINVAL;
}
pContext->mState = VISUALIZER_STATE_UNINITIALIZED;
delete pContext;
return 0;
}
int VisualizerLib_GetDescriptor(const effect_uuid_t *uuid,
effect_descriptor_t *pDescriptor) {
if (pDescriptor == NULL || uuid == NULL){
ALOGV("VisualizerLib_GetDescriptor() called with NULL pointer");
return -EINVAL;
}
if (memcmp(uuid, &gVisualizerDescriptor.uuid, sizeof(effect_uuid_t)) == 0) {
*pDescriptor = gVisualizerDescriptor;
return 0;
}
return -EINVAL;
} /* end VisualizerLib_GetDescriptor */
//
//--- Effect Control Interface Implementation
//
int Visualizer_process(
effect_handle_t self, audio_buffer_t *inBuffer, audio_buffer_t *outBuffer)
{
VisualizerContext * pContext = (VisualizerContext *)self;
if (pContext == NULL) {
return -EINVAL;
}
if (inBuffer == NULL || inBuffer->raw == NULL ||
outBuffer == NULL || outBuffer->raw == NULL ||
inBuffer->frameCount != outBuffer->frameCount ||
inBuffer->frameCount == 0) {
return -EINVAL;
}
const size_t sampleLen = inBuffer->frameCount * pContext->mChannelCount;
// perform measurements if needed
if (pContext->mMeasurementMode & MEASUREMENT_MODE_PEAK_RMS) {
// find the peak and RMS squared for the new buffer
float rmsSqAcc = 0;
#ifdef BUILD_FLOAT
float maxSample = 0.f;
for (size_t inIdx = 0; inIdx < sampleLen; ++inIdx) {
maxSample = fmax(maxSample, fabs(inBuffer->f32[inIdx]));
rmsSqAcc += inBuffer->f32[inIdx] * inBuffer->f32[inIdx];
}
maxSample *= 1 << 15; // scale to int16_t, with exactly 1 << 15 representing positive num.
rmsSqAcc *= 1 << 30; // scale to int16_t * 2
#else
int maxSample = 0;
for (size_t inIdx = 0; inIdx < sampleLen; ++inIdx) {
maxSample = std::max(maxSample, std::abs(int32_t(inBuffer->s16[inIdx])));
rmsSqAcc += inBuffer->s16[inIdx] * inBuffer->s16[inIdx];
}
#endif
// store the measurement
pContext->mPastMeasurements[pContext->mMeasurementBufferIdx].mPeakU16 = (uint16_t)maxSample;
pContext->mPastMeasurements[pContext->mMeasurementBufferIdx].mRmsSquared =
rmsSqAcc / sampleLen;
pContext->mPastMeasurements[pContext->mMeasurementBufferIdx].mIsValid = true;
if (++pContext->mMeasurementBufferIdx >= pContext->mMeasurementWindowSizeInBuffers) {
pContext->mMeasurementBufferIdx = 0;
}
}
#ifdef BUILD_FLOAT
float fscale; // multiplicative scale
#else
int32_t shift;
#endif // BUILD_FLOAT
if (pContext->mScalingMode == VISUALIZER_SCALING_MODE_NORMALIZED) {
// derive capture scaling factor from peak value in current buffer
// this gives more interesting captures for display.
#ifdef BUILD_FLOAT
float maxSample = 0.f;
for (size_t inIdx = 0; inIdx < sampleLen; ) {
// we reconstruct the actual summed value to ensure proper normalization
// for multichannel outputs (channels > 2 may often be 0).
float smp = 0.f;
for (int i = 0; i < pContext->mChannelCount; ++i) {
smp += inBuffer->f32[inIdx++];
}
maxSample = fmax(maxSample, fabs(smp));
}
if (maxSample > 0.f) {
fscale = 0.99f / maxSample;
int exp; // unused
const float significand = frexp(fscale, &exp);
if (significand == 0.5f) {
fscale *= 255.f / 256.f; // avoid returning unaltered PCM signal
}
} else {
// scale doesn't matter, the values are all 0.
fscale = 1.f;
}
#else
int32_t orAccum = 0;
for (size_t i = 0; i < sampleLen; ++i) {
int32_t smp = inBuffer->s16[i];
if (smp < 0) smp = -smp - 1; // take care to keep the max negative in range
orAccum |= smp;
}
// A maximum amplitude signal will have 17 leading zeros, which we want to
// translate to a shift of 8 (for converting 16 bit to 8 bit)
shift = 25 - __builtin_clz(orAccum);
// Never scale by less than 8 to avoid returning unaltered PCM signal.
if (shift < 3) {
shift = 3;
}
// add one to combine the division by 2 needed after summing left and right channels below
shift++;
#endif // BUILD_FLOAT
} else {
assert(pContext->mScalingMode == VISUALIZER_SCALING_MODE_AS_PLAYED);
#ifdef BUILD_FLOAT
// Note: if channels are uncorrelated, 1/sqrt(N) could be used at the risk of clipping.
fscale = 1.f / pContext->mChannelCount; // account for summing all the channels together.
#else
shift = 9;
#endif // BUILD_FLOAT
}
uint32_t captIdx;
uint32_t inIdx;
uint8_t *buf = pContext->mCaptureBuf;
for (inIdx = 0, captIdx = pContext->mCaptureIdx;
inIdx < sampleLen;
captIdx++) {
if (captIdx >= CAPTURE_BUF_SIZE) captIdx = 0; // wrap
#ifdef BUILD_FLOAT
float smp = 0.f;
for (uint32_t i = 0; i < pContext->mChannelCount; ++i) {
smp += inBuffer->f32[inIdx++];
}
buf[captIdx] = clamp8_from_float(smp * fscale);
#else
const int32_t smp = (inBuffer->s16[inIdx] + inBuffer->s16[inIdx + 1]) >> shift;
inIdx += FCC_2; // integer supports stereo only.
buf[captIdx] = ((uint8_t)smp)^0x80;
#endif // BUILD_FLOAT
}
// XXX the following two should really be atomic, though it probably doesn't
// matter much for visualization purposes
pContext->mCaptureIdx = captIdx;
// update last buffer update time stamp
if (clock_gettime(CLOCK_MONOTONIC, &pContext->mBufferUpdateTime) < 0) {
pContext->mBufferUpdateTime.tv_sec = 0;
}
if (inBuffer->raw != outBuffer->raw) {
#ifdef BUILD_FLOAT
if (pContext->mConfig.outputCfg.accessMode == EFFECT_BUFFER_ACCESS_ACCUMULATE) {
for (size_t i = 0; i < sampleLen; ++i) {
outBuffer->f32[i] += inBuffer->f32[i];
}
} else {
memcpy(outBuffer->raw, inBuffer->raw, sampleLen * sizeof(float));
}
#else
if (pContext->mConfig.outputCfg.accessMode == EFFECT_BUFFER_ACCESS_ACCUMULATE) {
for (size_t i = 0; i < outBuffer->frameCount*2; i++) {
outBuffer->s16[i] = clamp16(outBuffer->s16[i] + inBuffer->s16[i]);
}
} else {
memcpy(outBuffer->raw, inBuffer->raw, outBuffer->frameCount * 2 * sizeof(int16_t));
}
#endif // BUILD_FLOAT
}
if (pContext->mState != VISUALIZER_STATE_ACTIVE) {
return -ENODATA;
}
return 0;
} // end Visualizer_process
int Visualizer_command(effect_handle_t self, uint32_t cmdCode, uint32_t cmdSize,
void *pCmdData, uint32_t *replySize, void *pReplyData) {
VisualizerContext * pContext = (VisualizerContext *)self;
if (pContext == NULL || pContext->mState == VISUALIZER_STATE_UNINITIALIZED) {
return -EINVAL;
}
// ALOGV("Visualizer_command command %" PRIu32 " cmdSize %" PRIu32, cmdCode, cmdSize);
switch (cmdCode) {
case EFFECT_CMD_INIT:
if (pReplyData == NULL || replySize == NULL || *replySize != sizeof(int)) {
return -EINVAL;
}
*(int *) pReplyData = Visualizer_init(pContext);
break;
case EFFECT_CMD_SET_CONFIG:
if (pCmdData == NULL || cmdSize != sizeof(effect_config_t)
|| pReplyData == NULL || replySize == NULL || *replySize != sizeof(int)) {
return -EINVAL;
}
*(int *) pReplyData = Visualizer_setConfig(pContext,
(effect_config_t *) pCmdData);
break;
case EFFECT_CMD_GET_CONFIG:
if (pReplyData == NULL || replySize == NULL ||
*replySize != sizeof(effect_config_t)) {
return -EINVAL;
}
Visualizer_getConfig(pContext, (effect_config_t *)pReplyData);
break;
case EFFECT_CMD_RESET:
Visualizer_reset(pContext);
break;
case EFFECT_CMD_ENABLE:
if (pReplyData == NULL || replySize == NULL || *replySize != sizeof(int)) {
return -EINVAL;
}
if (pContext->mState != VISUALIZER_STATE_INITIALIZED) {
return -ENOSYS;
}
pContext->mState = VISUALIZER_STATE_ACTIVE;
ALOGV("EFFECT_CMD_ENABLE() OK");
*(int *)pReplyData = 0;
break;
case EFFECT_CMD_DISABLE:
if (pReplyData == NULL || replySize == NULL || *replySize != sizeof(int)) {
return -EINVAL;
}
if (pContext->mState != VISUALIZER_STATE_ACTIVE) {
return -ENOSYS;
}
pContext->mState = VISUALIZER_STATE_INITIALIZED;
ALOGV("EFFECT_CMD_DISABLE() OK");
*(int *)pReplyData = 0;
break;
case EFFECT_CMD_GET_PARAM: {
if (pCmdData == NULL ||
cmdSize != (int)(sizeof(effect_param_t) + sizeof(uint32_t)) ||
pReplyData == NULL || replySize == NULL ||
*replySize < (int)(sizeof(effect_param_t) + sizeof(uint32_t) + sizeof(uint32_t))) {
return -EINVAL;
}
memcpy(pReplyData, pCmdData, sizeof(effect_param_t) + sizeof(uint32_t));
effect_param_t *p = (effect_param_t *)pReplyData;
p->status = 0;
*replySize = sizeof(effect_param_t) + sizeof(uint32_t);
if (p->psize != sizeof(uint32_t)) {
p->status = -EINVAL;
break;
}
switch (*(uint32_t *)p->data) {
case VISUALIZER_PARAM_CAPTURE_SIZE:
ALOGV("get mCaptureSize = %" PRIu32, pContext->mCaptureSize);
*((uint32_t *)p->data + 1) = pContext->mCaptureSize;
p->vsize = sizeof(uint32_t);
*replySize += sizeof(uint32_t);
break;
case VISUALIZER_PARAM_SCALING_MODE:
ALOGV("get mScalingMode = %" PRIu32, pContext->mScalingMode);
*((uint32_t *)p->data + 1) = pContext->mScalingMode;
p->vsize = sizeof(uint32_t);
*replySize += sizeof(uint32_t);
break;
case VISUALIZER_PARAM_MEASUREMENT_MODE:
ALOGV("get mMeasurementMode = %" PRIu32, pContext->mMeasurementMode);
*((uint32_t *)p->data + 1) = pContext->mMeasurementMode;
p->vsize = sizeof(uint32_t);
*replySize += sizeof(uint32_t);
break;
default:
p->status = -EINVAL;
}
} break;
case EFFECT_CMD_SET_PARAM: {
if (pCmdData == NULL ||
cmdSize != (int)(sizeof(effect_param_t) + sizeof(uint32_t) + sizeof(uint32_t)) ||
pReplyData == NULL || replySize == NULL || *replySize != sizeof(int32_t)) {
return -EINVAL;
}
*(int32_t *)pReplyData = 0;
effect_param_t *p = (effect_param_t *)pCmdData;
if (p->psize != sizeof(uint32_t) || p->vsize != sizeof(uint32_t)) {
*(int32_t *)pReplyData = -EINVAL;
break;
}
switch (*(uint32_t *)p->data) {
case VISUALIZER_PARAM_CAPTURE_SIZE: {
const uint32_t captureSize = *((uint32_t *)p->data + 1);
if (captureSize > VISUALIZER_CAPTURE_SIZE_MAX) {
android_errorWriteLog(0x534e4554, "31781965");
*(int32_t *)pReplyData = -EINVAL;
ALOGW("set mCaptureSize = %u > %u", captureSize, VISUALIZER_CAPTURE_SIZE_MAX);
} else {
pContext->mCaptureSize = captureSize;
ALOGV("set mCaptureSize = %u", captureSize);
}
} break;
case VISUALIZER_PARAM_SCALING_MODE:
pContext->mScalingMode = *((uint32_t *)p->data + 1);
ALOGV("set mScalingMode = %" PRIu32, pContext->mScalingMode);
break;
case VISUALIZER_PARAM_LATENCY: {
uint32_t latency = *((uint32_t *)p->data + 1);
if (latency > MAX_LATENCY_MS) {
latency = MAX_LATENCY_MS; // clamp latency b/31781965
}
pContext->mLatency = latency;
ALOGV("set mLatency = %u", latency);
} break;
case VISUALIZER_PARAM_MEASUREMENT_MODE:
pContext->mMeasurementMode = *((uint32_t *)p->data + 1);
ALOGV("set mMeasurementMode = %" PRIu32, pContext->mMeasurementMode);
break;
default:
*(int32_t *)pReplyData = -EINVAL;
}
} break;
case EFFECT_CMD_SET_DEVICE:
case EFFECT_CMD_SET_VOLUME:
case EFFECT_CMD_SET_AUDIO_MODE:
break;
case VISUALIZER_CMD_CAPTURE: {
uint32_t captureSize = pContext->mCaptureSize;
if (pReplyData == NULL || replySize == NULL || *replySize != captureSize) {
ALOGV("VISUALIZER_CMD_CAPTURE() error *replySize %" PRIu32 " captureSize %" PRIu32,
*replySize, captureSize);
return -EINVAL;
}
if (pContext->mState == VISUALIZER_STATE_ACTIVE) {
const uint32_t deltaMs = Visualizer_getDeltaTimeMsFromUpdatedTime(pContext);
// if audio framework has stopped playing audio although the effect is still
// active we must clear the capture buffer to return silence
if ((pContext->mLastCaptureIdx == pContext->mCaptureIdx) &&
(pContext->mBufferUpdateTime.tv_sec != 0) &&
(deltaMs > MAX_STALL_TIME_MS)) {
ALOGV("capture going to idle");
pContext->mBufferUpdateTime.tv_sec = 0;
memset(pReplyData, 0x80, captureSize);
} else {
int32_t latencyMs = pContext->mLatency;
latencyMs -= deltaMs;
if (latencyMs < 0) {
latencyMs = 0;
}
uint32_t deltaSmpl = captureSize
+ pContext->mConfig.inputCfg.samplingRate * latencyMs / 1000;
// large sample rate, latency, or capture size, could cause overflow.
// do not offset more than the size of buffer.
if (deltaSmpl > CAPTURE_BUF_SIZE) {
android_errorWriteLog(0x534e4554, "31781965");
deltaSmpl = CAPTURE_BUF_SIZE;
}
int32_t capturePoint;
//capturePoint = (int32_t)pContext->mCaptureIdx - deltaSmpl;
__builtin_sub_overflow((int32_t)pContext->mCaptureIdx, deltaSmpl, &capturePoint);
// a negative capturePoint means we wrap the buffer.
if (capturePoint < 0) {
uint32_t size = -capturePoint;
if (size > captureSize) {
size = captureSize;
}
memcpy(pReplyData,
pContext->mCaptureBuf + CAPTURE_BUF_SIZE + capturePoint,
size);
pReplyData = (char *)pReplyData + size;
captureSize -= size;
capturePoint = 0;
}
memcpy(pReplyData,
pContext->mCaptureBuf + capturePoint,
captureSize);
}
pContext->mLastCaptureIdx = pContext->mCaptureIdx;
} else {
memset(pReplyData, 0x80, captureSize);
}
} break;
case VISUALIZER_CMD_MEASURE: {
if (pReplyData == NULL || replySize == NULL ||
*replySize < (sizeof(int32_t) * MEASUREMENT_COUNT)) {
if (replySize == NULL) {
ALOGV("VISUALIZER_CMD_MEASURE() error replySize NULL");
} else {
ALOGV("VISUALIZER_CMD_MEASURE() error *replySize %" PRIu32
" < (sizeof(int32_t) * MEASUREMENT_COUNT) %" PRIu32,
*replySize,
uint32_t(sizeof(int32_t)) * MEASUREMENT_COUNT);
}
android_errorWriteLog(0x534e4554, "30229821");
return -EINVAL;
}
uint16_t peakU16 = 0;
float sumRmsSquared = 0.0f;
uint8_t nbValidMeasurements = 0;
// reset measurements if last measurement was too long ago (which implies stored
// measurements aren't relevant anymore and shouldn't bias the new one)
const int32_t delayMs = Visualizer_getDeltaTimeMsFromUpdatedTime(pContext);
if (delayMs > DISCARD_MEASUREMENTS_TIME_MS) {
ALOGV("Discarding measurements, last measurement is %" PRId32 "ms old", delayMs);
for (uint32_t i=0 ; i<pContext->mMeasurementWindowSizeInBuffers ; i++) {
pContext->mPastMeasurements[i].mIsValid = false;
pContext->mPastMeasurements[i].mPeakU16 = 0;
pContext->mPastMeasurements[i].mRmsSquared = 0;
}
pContext->mMeasurementBufferIdx = 0;
} else {
// only use actual measurements, otherwise the first RMS measure happening before
// MEASUREMENT_WINDOW_MAX_SIZE_IN_BUFFERS have been played will always be artificially
// low
for (uint32_t i=0 ; i < pContext->mMeasurementWindowSizeInBuffers ; i++) {
if (pContext->mPastMeasurements[i].mIsValid) {
if (pContext->mPastMeasurements[i].mPeakU16 > peakU16) {
peakU16 = pContext->mPastMeasurements[i].mPeakU16;
}
sumRmsSquared += pContext->mPastMeasurements[i].mRmsSquared;
nbValidMeasurements++;
}
}
}
float rms = nbValidMeasurements == 0 ? 0.0f : sqrtf(sumRmsSquared / nbValidMeasurements);
int32_t* pIntReplyData = (int32_t*)pReplyData;
// convert from I16 sample values to mB and write results
if (rms < 0.000016f) {
pIntReplyData[MEASUREMENT_IDX_RMS] = -9600; //-96dB
} else {
pIntReplyData[MEASUREMENT_IDX_RMS] = (int32_t) (2000 * log10(rms / 32767.0f));
}
if (peakU16 == 0) {
pIntReplyData[MEASUREMENT_IDX_PEAK] = -9600; //-96dB
} else {
pIntReplyData[MEASUREMENT_IDX_PEAK] = (int32_t) (2000 * log10(peakU16 / 32767.0f));
}
ALOGV("VISUALIZER_CMD_MEASURE peak=%" PRIu16 " (%" PRId32 "mB), rms=%.1f (%" PRId32 "mB)",
peakU16, pIntReplyData[MEASUREMENT_IDX_PEAK],
rms, pIntReplyData[MEASUREMENT_IDX_RMS]);
}
break;
default:
ALOGW("Visualizer_command invalid command %" PRIu32, cmdCode);
return -EINVAL;
}
return 0;
}
/* Effect Control Interface Implementation: get_descriptor */
int Visualizer_getDescriptor(effect_handle_t self,
effect_descriptor_t *pDescriptor)
{
VisualizerContext * pContext = (VisualizerContext *) self;
if (pContext == NULL || pDescriptor == NULL) {
ALOGV("Visualizer_getDescriptor() invalid param");
return -EINVAL;
}
*pDescriptor = gVisualizerDescriptor;
return 0;
} /* end Visualizer_getDescriptor */
// effect_handle_t interface implementation for visualizer effect
const struct effect_interface_s gVisualizerInterface = {
Visualizer_process,
Visualizer_command,
Visualizer_getDescriptor,
NULL,
};
// This is the only symbol that needs to be exported
__attribute__ ((visibility ("default")))
audio_effect_library_t AUDIO_EFFECT_LIBRARY_INFO_SYM = {
.tag = AUDIO_EFFECT_LIBRARY_TAG,
.version = EFFECT_LIBRARY_API_VERSION,
.name = "Visualizer Library",
.implementor = "The Android Open Source Project",
.create_effect = VisualizerLib_Create,
.release_effect = VisualizerLib_Release,
.get_descriptor = VisualizerLib_GetDescriptor,
};
}; // extern "C"