blob: 100baa3ef3e8fdcb3d6260ccda4c8175a48114ad [file] [log] [blame]
/*
* Copyright (C) 2013 The Android Open Source Project
*
* Licensed under the Apache License, Version 2.0 (the "License");
* you may not use this file except in compliance with the License.
* You may obtain a copy of the License at
*
* http://www.apache.org/licenses/LICENSE-2.0
*
* Unless required by applicable law or agreed to in writing, software
* distributed under the License is distributed on an "AS IS" BASIS,
* WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
* See the License for the specific language governing permissions and
* limitations under the License.
*/
#ifndef ANDROID_AUDIO_RESAMPLER_FIR_GEN_H
#define ANDROID_AUDIO_RESAMPLER_FIR_GEN_H
#include "utils/Compat.h"
namespace android {
/*
* generates a sine wave at equal steps.
*
* As most of our functions use sine or cosine at equal steps,
* it is very efficient to compute them that way (single multiply and subtract),
* rather than invoking the math library sin() or cos() each time.
*
* SineGen uses Goertzel's Algorithm (as a generator not a filter)
* to calculate sine(wstart + n * wstep) or cosine(wstart + n * wstep)
* by stepping through 0, 1, ... n.
*
* e^i(wstart+wstep) = 2cos(wstep) * e^i(wstart) - e^i(wstart-wstep)
*
* or looking at just the imaginary sine term, as the cosine follows identically:
*
* sin(wstart+wstep) = 2cos(wstep) * sin(wstart) - sin(wstart-wstep)
*
* Goertzel's algorithm is more efficient than the angle addition formula,
* e^i(wstart+wstep) = e^i(wstart) * e^i(wstep), which takes up to
* 4 multiplies and 2 adds (or 3* and 3+) and requires both sine and
* cosine generation due to the complex * complex multiply (full rotation).
*
* See: http://en.wikipedia.org/wiki/Goertzel_algorithm
*
*/
class SineGen {
public:
SineGen(double wstart, double wstep, bool cosine = false) {
if (cosine) {
mCurrent = cos(wstart);
mPrevious = cos(wstart - wstep);
} else {
mCurrent = sin(wstart);
mPrevious = sin(wstart - wstep);
}
mTwoCos = 2.*cos(wstep);
}
SineGen(double expNow, double expPrev, double twoCosStep) {
mCurrent = expNow;
mPrevious = expPrev;
mTwoCos = twoCosStep;
}
inline double value() const {
return mCurrent;
}
inline void advance() {
double tmp = mCurrent;
mCurrent = mCurrent*mTwoCos - mPrevious;
mPrevious = tmp;
}
inline double valueAdvance() {
double tmp = mCurrent;
mCurrent = mCurrent*mTwoCos - mPrevious;
mPrevious = tmp;
return tmp;
}
private:
double mCurrent; // current value of sine/cosine
double mPrevious; // previous value of sine/cosine
double mTwoCos; // stepping factor
};
/*
* generates a series of sine generators, phase offset by fixed steps.
*
* This is used to generate polyphase sine generators, one per polyphase
* in the filter code below.
*
* The SineGen returned by value() starts at innerStart = outerStart + n*outerStep;
* increments by innerStep.
*
*/
class SineGenGen {
public:
SineGenGen(double outerStart, double outerStep, double innerStep, bool cosine = false)
: mSineInnerCur(outerStart, outerStep, cosine),
mSineInnerPrev(outerStart-innerStep, outerStep, cosine)
{
mTwoCos = 2.*cos(innerStep);
}
inline SineGen value() {
return SineGen(mSineInnerCur.value(), mSineInnerPrev.value(), mTwoCos);
}
inline void advance() {
mSineInnerCur.advance();
mSineInnerPrev.advance();
}
inline SineGen valueAdvance() {
return SineGen(mSineInnerCur.valueAdvance(), mSineInnerPrev.valueAdvance(), mTwoCos);
}
private:
SineGen mSineInnerCur; // generate the inner sine values (stepped by outerStep).
SineGen mSineInnerPrev; // generate the inner sine previous values
// (behind by innerStep, stepped by outerStep).
double mTwoCos; // the inner stepping factor for the returned SineGen.
};
static inline double sqr(double x) {
return x * x;
}
/*
* rounds a double to the nearest integer for FIR coefficients.
*
* One variant uses noise shaping, which must keep error history
* to work (the err parameter, initialized to 0).
* The other variant is a non-noise shaped version for
* S32 coefficients (noise shaping doesn't gain much).
*
* Caution: No bounds saturation is applied, but isn't needed in this case.
*
* @param x is the value to round.
*
* @param maxval is the maximum integer scale factor expressed as an int64 (for headroom).
* Typically this may be the maximum positive integer+1 (using the fact that double precision
* FIR coefficients generated here are never that close to 1.0 to pose an overflow condition).
*
* @param err is the previous error (actual - rounded) for the previous rounding op.
* For 16b coefficients this can improve stopband dB performance by up to 2dB.
*
* Many variants exist for the noise shaping: http://en.wikipedia.org/wiki/Noise_shaping
*
*/
static inline int64_t toint(double x, int64_t maxval, double& err) {
double val = x * maxval;
double ival = floor(val + 0.5 + err*0.2);
err = val - ival;
return static_cast<int64_t>(ival);
}
static inline int64_t toint(double x, int64_t maxval) {
return static_cast<int64_t>(floor(x * maxval + 0.5));
}
/*
* Modified Bessel function of the first kind
* http://en.wikipedia.org/wiki/Bessel_function
*
* The formulas are taken from Abramowitz and Stegun,
* _Handbook of Mathematical Functions_ (links below):
*
* http://people.math.sfu.ca/~cbm/aands/page_375.htm
* http://people.math.sfu.ca/~cbm/aands/page_378.htm
*
* http://dlmf.nist.gov/10.25
* http://dlmf.nist.gov/10.40
*
* Note we assume x is nonnegative (the function is symmetric,
* pass in the absolute value as needed).
*
* Constants are compile time derived with templates I0Term<> and
* I0ATerm<> to the precision of the compiler. The series can be expanded
* to any precision needed, but currently set around 24b precision.
*
* We use a bit of template math here, constexpr would probably be
* more appropriate for a C++11 compiler.
*
* For the intermediate range 3.75 < x < 15, we use minimax polynomial fit.
*
*/
template <int N>
struct I0Term {
static const CONSTEXPR double value = I0Term<N-1>::value / (4. * N * N);
};
template <>
struct I0Term<0> {
static const CONSTEXPR double value = 1.;
};
template <int N>
struct I0ATerm {
static const CONSTEXPR double value = I0ATerm<N-1>::value * (2.*N-1.) * (2.*N-1.) / (8. * N);
};
template <>
struct I0ATerm<0> { // 1/sqrt(2*PI);
static const CONSTEXPR double value =
0.398942280401432677939946059934381868475858631164934657665925;
};
#if USE_HORNERS_METHOD
/* Polynomial evaluation of A + Bx + Cx^2 + Dx^3 + ...
* using Horner's Method: http://en.wikipedia.org/wiki/Horner's_method
*
* This has fewer multiplications than Estrin's method below, but has back to back
* floating point dependencies.
*
* On ARM this appears to work slower, so USE_HORNERS_METHOD is not default enabled.
*/
inline double Poly2(double A, double B, double x) {
return A + x * B;
}
inline double Poly4(double A, double B, double C, double D, double x) {
return A + x * (B + x * (C + x * (D)));
}
inline double Poly7(double A, double B, double C, double D, double E, double F, double G,
double x) {
return A + x * (B + x * (C + x * (D + x * (E + x * (F + x * (G))))));
}
inline double Poly9(double A, double B, double C, double D, double E, double F, double G,
double H, double I, double x) {
return A + x * (B + x * (C + x * (D + x * (E + x * (F + x * (G + x * (H + x * (I))))))));
}
#else
/* Polynomial evaluation of A + Bx + Cx^2 + Dx^3 + ...
* using Estrin's Method: http://en.wikipedia.org/wiki/Estrin's_scheme
*
* This is typically faster, perhaps gains about 5-10% overall on ARM processors
* over Horner's method above.
*/
inline double Poly2(double A, double B, double x) {
return A + B * x;
}
inline double Poly3(double A, double B, double C, double x, double x2) {
return Poly2(A, B, x) + C * x2;
}
inline double Poly3(double A, double B, double C, double x) {
return Poly2(A, B, x) + C * x * x;
}
inline double Poly4(double A, double B, double C, double D, double x, double x2) {
return Poly2(A, B, x) + Poly2(C, D, x) * x2; // same as poly2(poly2, poly2, x2);
}
inline double Poly4(double A, double B, double C, double D, double x) {
return Poly4(A, B, C, D, x, x * x);
}
inline double Poly7(double A, double B, double C, double D, double E, double F, double G,
double x) {
double x2 = x * x;
return Poly4(A, B, C, D, x, x2) + Poly3(E, F, G, x, x2) * (x2 * x2);
}
inline double Poly8(double A, double B, double C, double D, double E, double F, double G,
double H, double x, double x2, double x4) {
return Poly4(A, B, C, D, x, x2) + Poly4(E, F, G, H, x, x2) * x4;
}
inline double Poly9(double A, double B, double C, double D, double E, double F, double G,
double H, double I, double x) {
double x2 = x * x;
#if 1
// It does not seem faster to explicitly decompose Poly8 into Poly4, but
// could depend on compiler floating point scheduling.
double x4 = x2 * x2;
return Poly8(A, B, C, D, E, F, G, H, x, x2, x4) + I * (x4 * x4);
#else
double val = Poly4(A, B, C, D, x, x2);
double x4 = x2 * x2;
return val + Poly4(E, F, G, H, x, x2) * x4 + I * (x4 * x4);
#endif
}
#endif
static inline double I0(double x) {
if (x < 3.75) {
x *= x;
return Poly7(I0Term<0>::value, I0Term<1>::value,
I0Term<2>::value, I0Term<3>::value,
I0Term<4>::value, I0Term<5>::value,
I0Term<6>::value, x); // e < 1.6e-7
}
if (1) {
/*
* Series expansion coefs are easy to calculate, but are expanded around 0,
* so error is unequal over the interval 0 < x < 3.75, the error being
* significantly better near 0.
*
* A better solution is to use precise minimax polynomial fits.
*
* We use a slightly more complicated solution for 3.75 < x < 15, based on
* the tables in Blair and Edwards, "Stable Rational Minimax Approximations
* to the Modified Bessel Functions I0(x) and I1(x)", Chalk Hill Nuclear Laboratory,
* AECL-4928.
*
* http://www.iaea.org/inis/collection/NCLCollectionStore/_Public/06/178/6178667.pdf
*
* See Table 11 for 0 < x < 15; e < 10^(-7.13).
*
* Note: Beta cannot exceed 15 (hence Stopband cannot exceed 144dB = 24b).
*
* This speeds up overall computation by about 40% over using the else clause below,
* which requires sqrt and exp.
*
*/
x *= x;
double num = Poly9(-0.13544938430e9, -0.33153754512e8,
-0.19406631946e7, -0.48058318783e5,
-0.63269783360e3, -0.49520779070e1,
-0.24970910370e-1, -0.74741159550e-4,
-0.18257612460e-6, x);
double y = x - 225.; // reflection around 15 (squared)
double den = Poly4(-0.34598737196e8, 0.23852643181e6,
-0.70699387620e3, 0.10000000000e1, y);
return num / den;
#if IO_EXTENDED_BETA
/* Table 42 for x > 15; e < 10^(-8.11).
* This is used for Beta>15, but is disabled here as
* we never use Beta that high.
*
* NOTE: This should be enabled only for x > 15.
*/
double y = 1./x;
double z = y - (1./15);
double num = Poly2(0.415079861746e1, -0.5149092496e1, z);
double den = Poly3(0.103150763823e2, -0.14181687413e2,
0.1000000000e1, z);
return exp(x) * sqrt(y) * num / den;
#endif
} else {
/*
* NOT USED, but reference for large Beta.
*
* Abramowitz and Stegun asymptotic formula.
* works for x > 3.75.
*/
double y = 1./x;
return exp(x) * sqrt(y) *
// note: reciprocal squareroot may be easier!
// http://en.wikipedia.org/wiki/Fast_inverse_square_root
Poly9(I0ATerm<0>::value, I0ATerm<1>::value,
I0ATerm<2>::value, I0ATerm<3>::value,
I0ATerm<4>::value, I0ATerm<5>::value,
I0ATerm<6>::value, I0ATerm<7>::value,
I0ATerm<8>::value, y); // (... e) < 1.9e-7
}
}
/* A speed optimized version of the Modified Bessel I0() which incorporates
* the sqrt and numerator multiply and denominator divide into the computation.
* This speeds up filter computation by about 10-15%.
*/
static inline double I0SqrRat(double x2, double num, double den) {
if (x2 < (3.75 * 3.75)) {
return Poly7(I0Term<0>::value, I0Term<1>::value,
I0Term<2>::value, I0Term<3>::value,
I0Term<4>::value, I0Term<5>::value,
I0Term<6>::value, x2) * num / den; // e < 1.6e-7
}
num *= Poly9(-0.13544938430e9, -0.33153754512e8,
-0.19406631946e7, -0.48058318783e5,
-0.63269783360e3, -0.49520779070e1,
-0.24970910370e-1, -0.74741159550e-4,
-0.18257612460e-6, x2); // e < 10^(-7.13).
double y = x2 - 225.; // reflection around 15 (squared)
den *= Poly4(-0.34598737196e8, 0.23852643181e6,
-0.70699387620e3, 0.10000000000e1, y);
return num / den;
}
/*
* calculates the transition bandwidth for a Kaiser filter
*
* Formula 3.2.8, Vaidyanathan, _Multirate Systems and Filter Banks_, p. 48
* Formula 7.76, Oppenheim and Schafer, _Discrete-time Signal Processing, 3e_, p. 542
*
* @param halfNumCoef is half the number of coefficients per filter phase.
*
* @param stopBandAtten is the stop band attenuation desired.
*
* @return the transition bandwidth in normalized frequency (0 <= f <= 0.5)
*/
static inline double firKaiserTbw(int halfNumCoef, double stopBandAtten) {
return (stopBandAtten - 7.95)/((2.*14.36)*halfNumCoef);
}
/*
* calculates the fir transfer response of the overall polyphase filter at w.
*
* Calculates the DTFT transfer coefficient H(w) for 0 <= w <= PI, utilizing the
* fact that h[n] is symmetric (cosines only, no complex arithmetic).
*
* We use Goertzel's algorithm to accelerate the computation to essentially
* a single multiply and 2 adds per filter coefficient h[].
*
* Be careful be careful to consider that h[n] is the overall polyphase filter,
* with L phases, so rescaling H(w)/L is probably what you expect for "unity gain",
* as you only use one of the polyphases at a time.
*/
template <typename T>
static inline double firTransfer(const T* coef, int L, int halfNumCoef, double w) {
double accum = static_cast<double>(coef[0])*0.5; // "center coefficient" from first bank
coef += halfNumCoef; // skip first filterbank (picked up by the last filterbank).
#if SLOW_FIRTRANSFER
/* Original code for reference. This is equivalent to the code below, but slower. */
for (int i=1 ; i<=L ; ++i) {
for (int j=0, ix=i ; j<halfNumCoef ; ++j, ix+=L) {
accum += cos(ix*w)*static_cast<double>(*coef++);
}
}
#else
/*
* Our overall filter is stored striped by polyphases, not a contiguous h[n].
* We could fetch coefficients in a non-contiguous fashion
* but that will not scale to vector processing.
*
* We apply Goertzel's algorithm directly to each polyphase filter bank instead of
* using cosine generation/multiplication, thereby saving one multiply per inner loop.
*
* See: http://en.wikipedia.org/wiki/Goertzel_algorithm
* Also: Oppenheim and Schafer, _Discrete Time Signal Processing, 3e_, p. 720.
*
* We use the basic recursion to incorporate the cosine steps into real sequence x[n]:
* s[n] = x[n] + (2cosw)*s[n-1] + s[n-2]
*
* y[n] = s[n] - e^(iw)s[n-1]
* = sum_{k=-\infty}^{n} x[k]e^(-iw(n-k))
* = e^(-iwn) sum_{k=0}^{n} x[k]e^(iwk)
*
* The summation contains the frequency steps we want multiplied by the source
* (similar to a DTFT).
*
* Using symmetry, and just the real part (be careful, this must happen
* after any internal complex multiplications), the polyphase filterbank
* transfer function is:
*
* Hpp[n, w, w_0] = sum_{k=0}^{n} x[k] * cos(wk + w_0)
* = Re{ e^(iwn + iw_0) y[n]}
* = cos(wn+w_0) * s[n] - cos(w(n+1)+w_0) * s[n-1]
*
* using the fact that s[n] of real x[n] is real.
*
*/
double dcos = 2. * cos(L*w);
int start = ((halfNumCoef)*L + 1);
SineGen cc((start - L) * w, w, true); // cosine
SineGen cp(start * w, w, true); // cosine
for (int i=1 ; i<=L ; ++i) {
double sc = 0;
double sp = 0;
for (int j=0 ; j<halfNumCoef ; ++j) {
double tmp = sc;
sc = static_cast<double>(*coef++) + dcos*sc - sp;
sp = tmp;
}
// If we are awfully clever, we can apply Goertzel's algorithm
// again on the sc and sp sequences returned here.
accum += cc.valueAdvance() * sc - cp.valueAdvance() * sp;
}
#endif
return accum*2.;
}
/*
* evaluates the minimum and maximum |H(f)| bound in a band region.
*
* This is usually done with equally spaced increments in the target band in question.
* The passband is often very small, and sampled that way. The stopband is often much
* larger.
*
* We use the fact that the overall polyphase filter has an additional bank at the end
* for interpolation; hence it is overspecified for the H(f) computation. Thus the
* first polyphase is never actually checked, excepting its first term.
*
* In this code we use the firTransfer() evaluator above, which uses Goertzel's
* algorithm to calculate the transfer function at each point.
*
* TODO: An alternative with equal spacing is the FFT/DFT. An alternative with unequal
* spacing is a chirp transform.
*
* @param coef is the designed polyphase filter banks
*
* @param L is the number of phases (for interpolation)
*
* @param halfNumCoef should be half the number of coefficients for a single
* polyphase.
*
* @param fstart is the normalized frequency start.
*
* @param fend is the normalized frequency end.
*
* @param steps is the number of steps to take (sampling) between frequency start and end
*
* @param firMin returns the minimum transfer |H(f)| found
*
* @param firMax returns the maximum transfer |H(f)| found
*
* 0 <= f <= 0.5.
* This is used to test passband and stopband performance.
*/
template <typename T>
static void testFir(const T* coef, int L, int halfNumCoef,
double fstart, double fend, int steps, double &firMin, double &firMax) {
double wstart = fstart*(2.*M_PI);
double wend = fend*(2.*M_PI);
double wstep = (wend - wstart)/steps;
double fmax, fmin;
double trf = firTransfer(coef, L, halfNumCoef, wstart);
if (trf<0) {
trf = -trf;
}
fmin = fmax = trf;
wstart += wstep;
for (int i=1; i<steps; ++i) {
trf = firTransfer(coef, L, halfNumCoef, wstart);
if (trf<0) {
trf = -trf;
}
if (trf>fmax) {
fmax = trf;
}
else if (trf<fmin) {
fmin = trf;
}
wstart += wstep;
}
// renormalize - this is needed for integer filter types, use 1 for float or double.
constexpr int integralShift = std::is_integral<T>::value ? (sizeof(T) * CHAR_BIT - 1) : 0;
const double norm = 1. / (int64_t{L} << integralShift);
firMin = fmin * norm;
firMax = fmax * norm;
}
/*
* evaluates the |H(f)| lowpass band characteristics.
*
* This function tests the lowpass characteristics for the overall polyphase filter,
* and is used to verify the design.
*
* For a polyphase filter (L > 1), typically fp should be set to the
* passband normalized frequency from 0 to 0.5 for the overall filter (thus it
* is the designed polyphase bank value / L). Likewise for fs.
* Similarly the stopSteps should be L * passSteps for equivalent accuracy.
*
* @param coef is the designed polyphase filter banks
*
* @param L is the number of phases (for interpolation)
*
* @param halfNumCoef should be half the number of coefficients for a single
* polyphase.
*
* @param fp is the passband normalized frequency, 0 < fp < fs < 0.5.
*
* @param fs is the stopband normalized frequency, 0 < fp < fs < 0.5.
*
* @param passSteps is the number of passband sampling steps.
*
* @param stopSteps is the number of stopband sampling steps.
*
* @param passMin is the minimum value in the passband
*
* @param passMax is the maximum value in the passband (useful for scaling). This should
* be less than 1., to avoid sine wave test overflow.
*
* @param passRipple is the passband ripple. Typically this should be less than 0.1 for
* an audio filter. Generally speaker/headphone device characteristics will dominate
* the passband term.
*
* @param stopMax is the maximum value in the stopband.
*
* @param stopRipple is the stopband ripple, also known as stopband attenuation.
* Typically this should be greater than ~80dB for low quality, and greater than
* ~100dB for full 16b quality, otherwise aliasing may become noticeable.
*
*/
template <typename T>
static void testFir(const T* coef, int L, int halfNumCoef,
double fp, double fs, int passSteps, int stopSteps,
double &passMin, double &passMax, double &passRipple,
double &stopMax, double &stopRipple) {
double fmin, fmax;
testFir(coef, L, halfNumCoef, 0., fp, passSteps, fmin, fmax);
double d1 = (fmax - fmin)/2.;
passMin = fmin;
passMax = fmax;
passRipple = -20.*log10(1. - d1); // passband ripple
testFir(coef, L, halfNumCoef, fs, 0.5, stopSteps, fmin, fmax);
// fmin is really not important for the stopband.
stopMax = fmax;
stopRipple = -20.*log10(fmax); // stopband ripple/attenuation
}
/*
* Estimate the windowed sinc minimum passband value.
*
* This is the minimum value for a windowed sinc filter in its passband,
* which is identical to the scaling required not to cause overflow of a 0dBFS signal.
* The actual value used to attenuate the filter amplitude should be slightly
* smaller than this (suggest squaring) as this is just an estimate.
*
* As a windowed sinc has a passband ripple commensurate to the stopband attenuation
* due to Gibb's phenomenon from truncating the sinc, we derive this value from
* the design stopbandAttenuationDb (a positive value).
*/
static inline double computeWindowedSincMinimumPassbandValue(
double stopBandAttenuationDb) {
return 1. - pow(10. /* base */, stopBandAttenuationDb * (-1. / 20.));
}
/*
* Compute the windowed sinc passband ripple from stopband attenuation.
*
* As a windowed sinc has an passband ripple commensurate to the stopband attenuation
* due to Gibb's phenomenon from truncating the sinc, we derive this value from
* the design stopbandAttenuationDb (a positive value).
*/
static inline double computeWindowedSincPassbandRippleDb(
double stopBandAttenuationDb) {
return -20. * log10(computeWindowedSincMinimumPassbandValue(stopBandAttenuationDb));
}
/*
* Kaiser window Beta value
*
* Formula 3.2.5, 3.2.7, Vaidyanathan, _Multirate Systems and Filter Banks_, p. 48
* Formula 7.75, Oppenheim and Schafer, _Discrete-time Signal Processing, 3e_, p. 542
*
* See also: http://melodi.ee.washington.edu/courses/ee518/notes/lec17.pdf
*
* Kaiser window and beta parameter
*
* | 0.1102*(A - 8.7) A > 50
* Beta = | 0.5842*(A - 21)^0.4 + 0.07886*(A - 21) 21 < A <= 50
* | 0. A <= 21
*
* with A is the desired stop-band attenuation in positive dBFS
*
* 30 dB 2.210
* 40 dB 3.384
* 50 dB 4.538
* 60 dB 5.658
* 70 dB 6.764
* 80 dB 7.865
* 90 dB 8.960
* 100 dB 10.056
*
* For some values of stopBandAttenuationDb the function may be computed
* at compile time.
*/
static inline constexpr double computeBeta(double stopBandAttenuationDb) {
if (stopBandAttenuationDb > 50.) {
return 0.1102 * (stopBandAttenuationDb - 8.7);
}
const double offset = stopBandAttenuationDb - 21.;
if (offset > 0.) {
return 0.5842 * pow(offset, 0.4) + 0.07886 * offset;
}
return 0.;
}
/*
* Calculates the overall polyphase filter based on a windowed sinc function.
*
* The windowed sinc is an odd length symmetric filter of exactly L*halfNumCoef*2+1
* taps for the entire kernel. This is then decomposed into L+1 polyphase filterbanks.
* The last filterbank is used for interpolation purposes (and is mostly composed
* of the first bank shifted by one sample), and is unnecessary if one does
* not do interpolation.
*
* We use the last filterbank for some transfer function calculation purposes,
* so it needs to be generated anyways.
*
* @param coef is the caller allocated space for coefficients. This should be
* exactly (L+1)*halfNumCoef in size.
*
* @param L is the number of phases (for interpolation)
*
* @param halfNumCoef should be half the number of coefficients for a single
* polyphase.
*
* @param stopBandAtten is the stopband value, should be >50dB.
*
* @param fcr is cutoff frequency/sampling rate (<0.5). At this point, the energy
* should be 6dB less. (fcr is where the amplitude drops by half). Use the
* firKaiserTbw() to calculate the transition bandwidth. fcr is the midpoint
* between the stop band and the pass band (fstop+fpass)/2.
*
* @param atten is the attenuation (generally slightly less than 1).
*/
template <typename T>
static inline void firKaiserGen(T* coef, int L, int halfNumCoef,
double stopBandAtten, double fcr, double atten) {
const int N = L * halfNumCoef; // non-negative half
const double beta = computeBeta(stopBandAtten);
const double xstep = (2. * M_PI) * fcr / L;
const double xfrac = 1. / N;
const double yscale = atten * L / (I0(beta) * M_PI);
const double sqrbeta = sqr(beta);
// We use sine generators, which computes sines on regular step intervals.
// This speeds up overall computation about 40% from computing the sine directly.
SineGenGen sgg(0., xstep, L*xstep); // generates sine generators (one per polyphase)
for (int i=0 ; i<=L ; ++i) { // generate an extra set of coefs for interpolation
// computation for a single polyphase of the overall filter.
SineGen sg = sgg.valueAdvance(); // current sine generator for "j" inner loop.
double err = 0; // for noise shaping on int16_t coefficients (over each polyphase)
for (int j=0, ix=i ; j<halfNumCoef ; ++j, ix+=L) {
double y;
if (CC_LIKELY(ix)) {
double x = static_cast<double>(ix);
// sine generator: sg.valueAdvance() returns sin(ix*xstep);
// y = I0(beta * sqrt(1.0 - sqr(x * xfrac))) * yscale * sg.valueAdvance() / x;
y = I0SqrRat(sqrbeta * (1.0 - sqr(x * xfrac)), yscale * sg.valueAdvance(), x);
} else {
y = 2. * atten * fcr; // center of filter, sinc(0) = 1.
sg.advance();
}
if (std::is_same<T, int16_t>::value) { // int16_t needs noise shaping
*coef++ = static_cast<T>(toint(y, 1ULL<<(sizeof(T)*8-1), err));
} else if (std::is_same<T, int32_t>::value) {
*coef++ = static_cast<T>(toint(y, 1ULL<<(sizeof(T)*8-1)));
} else { // assumed float or double
*coef++ = static_cast<T>(y);
}
}
}
}
} // namespace android
#endif /*ANDROID_AUDIO_RESAMPLER_FIR_GEN_H*/