blob: 6dab70b53b82d29e68c9052bdd6cc039cd182489 [file] [log] [blame]
/*
* Copyright 2018 The Android Open Source Project
*
* Licensed under the Apache License, Version 2.0 (the "License");
* you may not use this file except in compliance with the License.
* You may obtain a copy of the License at
*
* http://www.apache.org/licenses/LICENSE-2.0
*
* Unless required by applicable law or agreed to in writing, software
* distributed under the License is distributed on an "AS IS" BASIS,
* WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
* See the License for the specific language governing permissions and
* limitations under the License.
*/
//#define LOG_NDEBUG 0
#define LOG_TAG "C2SoftVpxEnc"
#include <log/log.h>
#include <utils/misc.h>
#include <media/hardware/VideoAPI.h>
#include <Codec2BufferUtils.h>
#include <C2Debug.h>
#include "C2SoftVpxEnc.h"
#ifndef INT32_MAX
#define INT32_MAX 2147483647
#endif
namespace android {
#if 0
static size_t getCpuCoreCount() {
long cpuCoreCount = 1;
#if defined(_SC_NPROCESSORS_ONLN)
cpuCoreCount = sysconf(_SC_NPROCESSORS_ONLN);
#else
// _SC_NPROC_ONLN must be defined...
cpuCoreCount = sysconf(_SC_NPROC_ONLN);
#endif
CHECK(cpuCoreCount >= 1);
ALOGV("Number of CPU cores: %ld", cpuCoreCount);
return (size_t)cpuCoreCount;
}
#endif
C2SoftVpxEnc::C2SoftVpxEnc(const char* name, c2_node_id_t id,
const std::shared_ptr<IntfImpl>& intfImpl)
: SimpleC2Component(
std::make_shared<SimpleInterface<IntfImpl>>(name, id, intfImpl)),
mIntf(intfImpl),
mCodecContext(nullptr),
mCodecConfiguration(nullptr),
mCodecInterface(nullptr),
mStrideAlign(2),
mColorFormat(VPX_IMG_FMT_I420),
mBitrateControlMode(VPX_VBR),
mErrorResilience(false),
mMinQuantizer(0),
mMaxQuantizer(0),
mTemporalLayers(0),
mTemporalPatternType(VPXTemporalLayerPatternNone),
mTemporalPatternLength(0),
mTemporalPatternIdx(0),
mLastTimestamp(0x7FFFFFFFFFFFFFFFull),
mSignalledOutputEos(false),
mSignalledError(false) {
memset(mTemporalLayerBitrateRatio, 0, sizeof(mTemporalLayerBitrateRatio));
mTemporalLayerBitrateRatio[0] = 100;
}
C2SoftVpxEnc::~C2SoftVpxEnc() {
onRelease();
}
c2_status_t C2SoftVpxEnc::onInit() {
status_t err = initEncoder();
return err == OK ? C2_OK : C2_CORRUPTED;
}
void C2SoftVpxEnc::onRelease() {
if (mCodecContext) {
vpx_codec_destroy(mCodecContext);
delete mCodecContext;
mCodecContext = nullptr;
}
if (mCodecConfiguration) {
delete mCodecConfiguration;
mCodecConfiguration = nullptr;
}
// this one is not allocated by us
mCodecInterface = nullptr;
}
c2_status_t C2SoftVpxEnc::onStop() {
onRelease();
mLastTimestamp = 0x7FFFFFFFFFFFFFFFLL;
mSignalledOutputEos = false;
mSignalledError = false;
return C2_OK;
}
void C2SoftVpxEnc::onReset() {
(void)onStop();
}
c2_status_t C2SoftVpxEnc::onFlush_sm() {
return onStop();
}
status_t C2SoftVpxEnc::initEncoder() {
vpx_codec_err_t codec_return;
status_t result = UNKNOWN_ERROR;
{
IntfImpl::Lock lock = mIntf->lock();
mSize = mIntf->getSize_l();
mBitrate = mIntf->getBitrate_l();
mBitrateMode = mIntf->getBitrateMode_l();
mFrameRate = mIntf->getFrameRate_l();
mIntraRefresh = mIntf->getIntraRefresh_l();
mRequestSync = mIntf->getRequestSync_l();
mTemporalLayers = mIntf->getTemporalLayers_l()->m.layerCount;
}
switch (mBitrateMode->value) {
case C2Config::BITRATE_CONST:
mBitrateControlMode = VPX_CBR;
break;
case C2Config::BITRATE_VARIABLE:
[[fallthrough]];
default:
mBitrateControlMode = VPX_VBR;
break;
}
setCodecSpecificInterface();
if (!mCodecInterface) goto CleanUp;
ALOGD("VPx: initEncoder. BRMode: %u. TSLayers: %zu. KF: %u. QP: %u - %u",
(uint32_t)mBitrateControlMode, mTemporalLayers, mIntf->getSyncFramePeriod(),
mMinQuantizer, mMaxQuantizer);
mCodecConfiguration = new vpx_codec_enc_cfg_t;
if (!mCodecConfiguration) goto CleanUp;
codec_return = vpx_codec_enc_config_default(mCodecInterface,
mCodecConfiguration,
0);
if (codec_return != VPX_CODEC_OK) {
ALOGE("Error populating default configuration for vpx encoder.");
goto CleanUp;
}
mCodecConfiguration->g_w = mSize->width;
mCodecConfiguration->g_h = mSize->height;
//mCodecConfiguration->g_threads = getCpuCoreCount();
mCodecConfiguration->g_threads = 0;
mCodecConfiguration->g_error_resilient = mErrorResilience;
// timebase unit is microsecond
// g_timebase is in seconds (i.e. 1/1000000 seconds)
mCodecConfiguration->g_timebase.num = 1;
mCodecConfiguration->g_timebase.den = 1000000;
// rc_target_bitrate is in kbps, mBitrate in bps
mCodecConfiguration->rc_target_bitrate = (mBitrate->value + 500) / 1000;
mCodecConfiguration->rc_end_usage = mBitrateControlMode;
// Disable frame drop - not allowed in MediaCodec now.
mCodecConfiguration->rc_dropframe_thresh = 0;
// Disable lagged encoding.
mCodecConfiguration->g_lag_in_frames = 0;
if (mBitrateControlMode == VPX_CBR) {
// Disable spatial resizing.
mCodecConfiguration->rc_resize_allowed = 0;
// Single-pass mode.
mCodecConfiguration->g_pass = VPX_RC_ONE_PASS;
// Maximum amount of bits that can be subtracted from the target
// bitrate - expressed as percentage of the target bitrate.
mCodecConfiguration->rc_undershoot_pct = 100;
// Maximum amount of bits that can be added to the target
// bitrate - expressed as percentage of the target bitrate.
mCodecConfiguration->rc_overshoot_pct = 15;
// Initial value of the buffer level in ms.
mCodecConfiguration->rc_buf_initial_sz = 500;
// Amount of data that the encoder should try to maintain in ms.
mCodecConfiguration->rc_buf_optimal_sz = 600;
// The amount of data that may be buffered by the decoding
// application in ms.
mCodecConfiguration->rc_buf_sz = 1000;
// Enable error resilience - needed for packet loss.
mCodecConfiguration->g_error_resilient = 1;
// Maximum key frame interval - for CBR boost to 3000
mCodecConfiguration->kf_max_dist = 3000;
// Encoder determines optimal key frame placement automatically.
mCodecConfiguration->kf_mode = VPX_KF_AUTO;
}
// Frames temporal pattern - for now WebRTC like pattern is only supported.
switch (mTemporalLayers) {
case 0:
mTemporalPatternLength = 0;
break;
case 1:
mCodecConfiguration->ts_number_layers = 1;
mCodecConfiguration->ts_rate_decimator[0] = 1;
mCodecConfiguration->ts_periodicity = 1;
mCodecConfiguration->ts_layer_id[0] = 0;
mTemporalPattern[0] = kTemporalUpdateLastRefAll;
mTemporalPatternLength = 1;
break;
case 2:
mCodecConfiguration->ts_number_layers = 2;
mCodecConfiguration->ts_rate_decimator[0] = 2;
mCodecConfiguration->ts_rate_decimator[1] = 1;
mCodecConfiguration->ts_periodicity = 2;
mCodecConfiguration->ts_layer_id[0] = 0;
mCodecConfiguration->ts_layer_id[1] = 1;
mTemporalPattern[0] = kTemporalUpdateLastAndGoldenRefAltRef;
mTemporalPattern[1] = kTemporalUpdateGoldenWithoutDependencyRefAltRef;
mTemporalPattern[2] = kTemporalUpdateLastRefAltRef;
mTemporalPattern[3] = kTemporalUpdateGoldenRefAltRef;
mTemporalPattern[4] = kTemporalUpdateLastRefAltRef;
mTemporalPattern[5] = kTemporalUpdateGoldenRefAltRef;
mTemporalPattern[6] = kTemporalUpdateLastRefAltRef;
mTemporalPattern[7] = kTemporalUpdateNone;
mTemporalPatternLength = 8;
break;
case 3:
mCodecConfiguration->ts_number_layers = 3;
mCodecConfiguration->ts_rate_decimator[0] = 4;
mCodecConfiguration->ts_rate_decimator[1] = 2;
mCodecConfiguration->ts_rate_decimator[2] = 1;
mCodecConfiguration->ts_periodicity = 4;
mCodecConfiguration->ts_layer_id[0] = 0;
mCodecConfiguration->ts_layer_id[1] = 2;
mCodecConfiguration->ts_layer_id[2] = 1;
mCodecConfiguration->ts_layer_id[3] = 2;
mTemporalPattern[0] = kTemporalUpdateLastAndGoldenRefAltRef;
mTemporalPattern[1] = kTemporalUpdateNoneNoRefGoldenRefAltRef;
mTemporalPattern[2] = kTemporalUpdateGoldenWithoutDependencyRefAltRef;
mTemporalPattern[3] = kTemporalUpdateNone;
mTemporalPattern[4] = kTemporalUpdateLastRefAltRef;
mTemporalPattern[5] = kTemporalUpdateNone;
mTemporalPattern[6] = kTemporalUpdateGoldenRefAltRef;
mTemporalPattern[7] = kTemporalUpdateNone;
mTemporalPatternLength = 8;
break;
default:
ALOGE("Wrong number of temporal layers %zu", mTemporalLayers);
goto CleanUp;
}
// Set bitrate values for each layer
for (size_t i = 0; i < mCodecConfiguration->ts_number_layers; i++) {
mCodecConfiguration->ts_target_bitrate[i] =
mCodecConfiguration->rc_target_bitrate *
mTemporalLayerBitrateRatio[i] / 100;
}
if (mIntf->getSyncFramePeriod() >= 0) {
mCodecConfiguration->kf_max_dist = mIntf->getSyncFramePeriod();
mCodecConfiguration->kf_min_dist = mIntf->getSyncFramePeriod();
mCodecConfiguration->kf_mode = VPX_KF_AUTO;
}
if (mMinQuantizer > 0) {
mCodecConfiguration->rc_min_quantizer = mMinQuantizer;
}
if (mMaxQuantizer > 0) {
mCodecConfiguration->rc_max_quantizer = mMaxQuantizer;
}
setCodecSpecificConfiguration();
mCodecContext = new vpx_codec_ctx_t;
if (!mCodecContext) goto CleanUp;
codec_return = vpx_codec_enc_init(mCodecContext,
mCodecInterface,
mCodecConfiguration,
0); // flags
if (codec_return != VPX_CODEC_OK) {
ALOGE("Error initializing vpx encoder");
goto CleanUp;
}
// Extra CBR settings
if (mBitrateControlMode == VPX_CBR) {
codec_return = vpx_codec_control(mCodecContext,
VP8E_SET_STATIC_THRESHOLD,
1);
if (codec_return == VPX_CODEC_OK) {
uint32_t rc_max_intra_target =
(uint32_t)(mCodecConfiguration->rc_buf_optimal_sz * mFrameRate->value / 20 + 0.5);
// Don't go below 3 times per frame bandwidth.
if (rc_max_intra_target < 300) {
rc_max_intra_target = 300;
}
codec_return = vpx_codec_control(mCodecContext,
VP8E_SET_MAX_INTRA_BITRATE_PCT,
rc_max_intra_target);
}
if (codec_return == VPX_CODEC_OK) {
codec_return = vpx_codec_control(mCodecContext,
VP8E_SET_CPUUSED,
-8);
}
if (codec_return != VPX_CODEC_OK) {
ALOGE("Error setting cbr parameters for vpx encoder.");
goto CleanUp;
}
}
codec_return = setCodecSpecificControls();
if (codec_return != VPX_CODEC_OK) goto CleanUp;
{
uint32_t width = mSize->width;
uint32_t height = mSize->height;
if (((uint64_t)width * height) >
((uint64_t)INT32_MAX / 3)) {
ALOGE("b/25812794, Buffer size is too big, width=%u, height=%u.", width, height);
} else {
uint32_t stride = (width + mStrideAlign - 1) & ~(mStrideAlign - 1);
uint32_t vstride = (height + mStrideAlign - 1) & ~(mStrideAlign - 1);
mConversionBuffer = MemoryBlock::Allocate(stride * vstride * 3 / 2);
if (!mConversionBuffer.size()) {
ALOGE("Allocating conversion buffer failed.");
} else {
mNumInputFrames = -1;
return OK;
}
}
}
CleanUp:
onRelease();
return result;
}
vpx_enc_frame_flags_t C2SoftVpxEnc::getEncodeFlags() {
vpx_enc_frame_flags_t flags = 0;
if (mTemporalPatternLength > 0) {
int patternIdx = mTemporalPatternIdx % mTemporalPatternLength;
mTemporalPatternIdx++;
switch (mTemporalPattern[patternIdx]) {
case kTemporalUpdateLast:
flags |= VP8_EFLAG_NO_UPD_GF;
flags |= VP8_EFLAG_NO_UPD_ARF;
flags |= VP8_EFLAG_NO_REF_GF;
flags |= VP8_EFLAG_NO_REF_ARF;
break;
case kTemporalUpdateGoldenWithoutDependency:
flags |= VP8_EFLAG_NO_REF_GF;
[[fallthrough]];
case kTemporalUpdateGolden:
flags |= VP8_EFLAG_NO_REF_ARF;
flags |= VP8_EFLAG_NO_UPD_ARF;
flags |= VP8_EFLAG_NO_UPD_LAST;
break;
case kTemporalUpdateAltrefWithoutDependency:
flags |= VP8_EFLAG_NO_REF_ARF;
flags |= VP8_EFLAG_NO_REF_GF;
[[fallthrough]];
case kTemporalUpdateAltref:
flags |= VP8_EFLAG_NO_UPD_GF;
flags |= VP8_EFLAG_NO_UPD_LAST;
break;
case kTemporalUpdateNoneNoRefAltref:
flags |= VP8_EFLAG_NO_REF_ARF;
[[fallthrough]];
case kTemporalUpdateNone:
flags |= VP8_EFLAG_NO_UPD_GF;
flags |= VP8_EFLAG_NO_UPD_ARF;
flags |= VP8_EFLAG_NO_UPD_LAST;
flags |= VP8_EFLAG_NO_UPD_ENTROPY;
break;
case kTemporalUpdateNoneNoRefGoldenRefAltRef:
flags |= VP8_EFLAG_NO_REF_GF;
flags |= VP8_EFLAG_NO_UPD_GF;
flags |= VP8_EFLAG_NO_UPD_ARF;
flags |= VP8_EFLAG_NO_UPD_LAST;
flags |= VP8_EFLAG_NO_UPD_ENTROPY;
break;
case kTemporalUpdateGoldenWithoutDependencyRefAltRef:
flags |= VP8_EFLAG_NO_REF_GF;
flags |= VP8_EFLAG_NO_UPD_ARF;
flags |= VP8_EFLAG_NO_UPD_LAST;
break;
case kTemporalUpdateLastRefAltRef:
flags |= VP8_EFLAG_NO_UPD_GF;
flags |= VP8_EFLAG_NO_UPD_ARF;
flags |= VP8_EFLAG_NO_REF_GF;
break;
case kTemporalUpdateGoldenRefAltRef:
flags |= VP8_EFLAG_NO_UPD_ARF;
flags |= VP8_EFLAG_NO_UPD_LAST;
break;
case kTemporalUpdateLastAndGoldenRefAltRef:
flags |= VP8_EFLAG_NO_UPD_ARF;
flags |= VP8_EFLAG_NO_REF_GF;
break;
case kTemporalUpdateLastRefAll:
flags |= VP8_EFLAG_NO_UPD_ARF;
flags |= VP8_EFLAG_NO_UPD_GF;
break;
}
}
return flags;
}
// TODO: add support for YUV input color formats
// TODO: add support for SVC, ARF. SVC and ARF returns multiple frames
// (hierarchical / noshow) in one call. These frames should be combined in to
// a single buffer and sent back to the client
void C2SoftVpxEnc::process(
const std::unique_ptr<C2Work> &work,
const std::shared_ptr<C2BlockPool> &pool) {
// Initialize output work
work->result = C2_OK;
work->workletsProcessed = 1u;
work->worklets.front()->output.flags = work->input.flags;
if (mSignalledError || mSignalledOutputEos) {
work->result = C2_BAD_VALUE;
return;
}
// Initialize encoder if not already
if (!mCodecContext && OK != initEncoder()) {
ALOGE("Failed to initialize encoder");
mSignalledError = true;
work->result = C2_CORRUPTED;
return;
}
std::shared_ptr<const C2GraphicView> rView;
std::shared_ptr<C2Buffer> inputBuffer;
if (!work->input.buffers.empty()) {
inputBuffer = work->input.buffers[0];
rView = std::make_shared<const C2GraphicView>(
inputBuffer->data().graphicBlocks().front().map().get());
if (rView->error() != C2_OK) {
ALOGE("graphic view map err = %d", rView->error());
work->result = C2_CORRUPTED;
return;
}
} else {
ALOGV("Empty input Buffer");
uint32_t flags = 0;
if (work->input.flags & C2FrameData::FLAG_END_OF_STREAM) {
flags |= C2FrameData::FLAG_END_OF_STREAM;
}
work->worklets.front()->output.flags = (C2FrameData::flags_t)flags;
work->worklets.front()->output.buffers.clear();
work->worklets.front()->output.ordinal = work->input.ordinal;
work->workletsProcessed = 1u;
return;
}
const C2ConstGraphicBlock inBuffer =
inputBuffer->data().graphicBlocks().front();
if (inBuffer.width() != mSize->width ||
inBuffer.height() != mSize->height) {
ALOGE("unexpected Input buffer attributes %d(%d) x %d(%d)",
inBuffer.width(), mSize->width, inBuffer.height(),
mSize->height);
mSignalledError = true;
work->result = C2_BAD_VALUE;
return;
}
bool eos = ((work->input.flags & C2FrameData::FLAG_END_OF_STREAM) != 0);
vpx_image_t raw_frame;
const C2PlanarLayout &layout = rView->layout();
uint32_t width = rView->width();
uint32_t height = rView->height();
if (width > 0x8000 || height > 0x8000) {
ALOGE("Image too big: %u x %u", width, height);
work->result = C2_BAD_VALUE;
return;
}
uint32_t stride = (width + mStrideAlign - 1) & ~(mStrideAlign - 1);
uint32_t vstride = (height + mStrideAlign - 1) & ~(mStrideAlign - 1);
switch (layout.type) {
case C2PlanarLayout::TYPE_RGB:
case C2PlanarLayout::TYPE_RGBA: {
ConvertRGBToPlanarYUV(mConversionBuffer.data(), stride, vstride,
mConversionBuffer.size(), *rView.get());
vpx_img_wrap(&raw_frame, VPX_IMG_FMT_I420, width, height,
mStrideAlign, mConversionBuffer.data());
break;
}
case C2PlanarLayout::TYPE_YUV: {
if (!IsYUV420(*rView)) {
ALOGE("input is not YUV420");
work->result = C2_BAD_VALUE;
return;
}
if (layout.planes[layout.PLANE_Y].colInc == 1
&& layout.planes[layout.PLANE_U].colInc == 1
&& layout.planes[layout.PLANE_V].colInc == 1) {
// I420 compatible - though with custom offset and stride
vpx_img_wrap(&raw_frame, VPX_IMG_FMT_I420, width, height,
mStrideAlign, (uint8_t*)rView->data()[0]);
raw_frame.planes[1] = (uint8_t*)rView->data()[1];
raw_frame.planes[2] = (uint8_t*)rView->data()[2];
raw_frame.stride[0] = layout.planes[layout.PLANE_Y].rowInc;
raw_frame.stride[1] = layout.planes[layout.PLANE_U].rowInc;
raw_frame.stride[2] = layout.planes[layout.PLANE_V].rowInc;
} else {
// copy to I420
MediaImage2 img = CreateYUV420PlanarMediaImage2(width, height, stride, vstride);
if (mConversionBuffer.size() >= stride * vstride * 3 / 2) {
status_t err = ImageCopy(mConversionBuffer.data(), &img, *rView);
if (err != OK) {
ALOGE("Buffer conversion failed: %d", err);
work->result = C2_BAD_VALUE;
return;
}
vpx_img_wrap(&raw_frame, VPX_IMG_FMT_I420, stride, vstride,
mStrideAlign, (uint8_t*)rView->data()[0]);
vpx_img_set_rect(&raw_frame, 0, 0, width, height);
} else {
ALOGE("Conversion buffer is too small: %u x %u for %zu",
stride, vstride, mConversionBuffer.size());
work->result = C2_BAD_VALUE;
return;
}
}
break;
}
default:
ALOGE("Unrecognized plane type: %d", layout.type);
work->result = C2_BAD_VALUE;
return;
}
vpx_enc_frame_flags_t flags = getEncodeFlags();
// handle dynamic config parameters
{
IntfImpl::Lock lock = mIntf->lock();
std::shared_ptr<C2StreamIntraRefreshTuning::output> intraRefresh = mIntf->getIntraRefresh_l();
std::shared_ptr<C2StreamBitrateInfo::output> bitrate = mIntf->getBitrate_l();
std::shared_ptr<C2StreamRequestSyncFrameTuning::output> requestSync = mIntf->getRequestSync_l();
lock.unlock();
if (intraRefresh != mIntraRefresh) {
mIntraRefresh = intraRefresh;
ALOGV("Got mIntraRefresh request");
}
if (requestSync != mRequestSync) {
// we can handle IDR immediately
if (requestSync->value) {
// unset request
C2StreamRequestSyncFrameTuning::output clearSync(0u, C2_FALSE);
std::vector<std::unique_ptr<C2SettingResult>> failures;
mIntf->config({ &clearSync }, C2_MAY_BLOCK, &failures);
ALOGV("Got sync request");
flags |= VPX_EFLAG_FORCE_KF;
}
mRequestSync = requestSync;
}
if (bitrate != mBitrate) {
mBitrate = bitrate;
mCodecConfiguration->rc_target_bitrate =
(mBitrate->value + 500) / 1000;
vpx_codec_err_t res = vpx_codec_enc_config_set(mCodecContext,
mCodecConfiguration);
if (res != VPX_CODEC_OK) {
ALOGE("vpx encoder failed to update bitrate: %s",
vpx_codec_err_to_string(res));
mSignalledError = true;
work->result = C2_CORRUPTED;
return;
}
}
}
uint64_t inputTimeStamp = work->input.ordinal.timestamp.peekull();
uint32_t frameDuration;
if (inputTimeStamp > mLastTimestamp) {
frameDuration = (uint32_t)(inputTimeStamp - mLastTimestamp);
} else {
// Use default of 30 fps in case of 0 frame rate.
float frameRate = mFrameRate->value;
if (frameRate < 0.001) {
frameRate = 30;
}
frameDuration = (uint32_t)(1000000 / frameRate + 0.5);
}
mLastTimestamp = inputTimeStamp;
vpx_codec_err_t codec_return = vpx_codec_encode(mCodecContext, &raw_frame,
inputTimeStamp,
frameDuration, flags,
VPX_DL_REALTIME);
if (codec_return != VPX_CODEC_OK) {
ALOGE("vpx encoder failed to encode frame");
mSignalledError = true;
work->result = C2_CORRUPTED;
return;
}
bool populated = false;
vpx_codec_iter_t encoded_packet_iterator = nullptr;
const vpx_codec_cx_pkt_t* encoded_packet;
while ((encoded_packet = vpx_codec_get_cx_data(
mCodecContext, &encoded_packet_iterator))) {
if (encoded_packet->kind == VPX_CODEC_CX_FRAME_PKT) {
std::shared_ptr<C2LinearBlock> block;
C2MemoryUsage usage = { C2MemoryUsage::CPU_READ, C2MemoryUsage::CPU_WRITE };
c2_status_t err = pool->fetchLinearBlock(encoded_packet->data.frame.sz, usage, &block);
if (err != C2_OK) {
ALOGE("fetchLinearBlock for Output failed with status %d", err);
work->result = C2_NO_MEMORY;
return;
}
C2WriteView wView = block->map().get();
if (wView.error()) {
ALOGE("write view map failed %d", wView.error());
work->result = C2_CORRUPTED;
return;
}
memcpy(wView.data(), encoded_packet->data.frame.buf, encoded_packet->data.frame.sz);
++mNumInputFrames;
ALOGD("bytes generated %zu", encoded_packet->data.frame.sz);
uint32_t flags = 0;
if (eos) {
flags |= C2FrameData::FLAG_END_OF_STREAM;
}
work->worklets.front()->output.flags = (C2FrameData::flags_t)flags;
work->worklets.front()->output.buffers.clear();
std::shared_ptr<C2Buffer> buffer = createLinearBuffer(block);
if (encoded_packet->data.frame.flags & VPX_FRAME_IS_KEY) {
buffer->setInfo(std::make_shared<C2StreamPictureTypeMaskInfo::output>(
0u /* stream id */, C2Config::SYNC_FRAME));
}
work->worklets.front()->output.buffers.push_back(buffer);
work->worklets.front()->output.ordinal = work->input.ordinal;
work->worklets.front()->output.ordinal.timestamp = encoded_packet->data.frame.pts;
work->workletsProcessed = 1u;
populated = true;
if (eos) {
mSignalledOutputEos = true;
ALOGV("signalled EOS");
}
}
}
if (!populated) {
work->workletsProcessed = 0u;
}
}
c2_status_t C2SoftVpxEnc::drain(
uint32_t drainMode,
const std::shared_ptr<C2BlockPool> &pool) {
(void)pool;
if (drainMode == NO_DRAIN) {
ALOGW("drain with NO_DRAIN: no-op");
return C2_OK;
}
if (drainMode == DRAIN_CHAIN) {
ALOGW("DRAIN_CHAIN not supported");
return C2_OMITTED;
}
return C2_OK;
}
} // namespace android