blob: f5862919024da49885c707cd872faa29f8b1518f [file] [log] [blame]
/*
**
** Copyright 2012, The Android Open Source Project
**
** Licensed under the Apache License, Version 2.0 (the "License");
** you may not use this file except in compliance with the License.
** You may obtain a copy of the License at
**
** http://www.apache.org/licenses/LICENSE-2.0
**
** Unless required by applicable law or agreed to in writing, software
** distributed under the License is distributed on an "AS IS" BASIS,
** WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
** See the License for the specific language governing permissions and
** limitations under the License.
*/
#define LOG_TAG "AudioFlinger"
//#define LOG_NDEBUG 0
#define ATRACE_TAG ATRACE_TAG_AUDIO
#include "Configuration.h"
#include <math.h>
#include <fcntl.h>
#include <linux/futex.h>
#include <sys/stat.h>
#include <sys/syscall.h>
#include <cutils/properties.h>
#include <media/AudioParameter.h>
#include <media/AudioResamplerPublic.h>
#include <utils/Log.h>
#include <utils/Trace.h>
#include <private/media/AudioTrackShared.h>
#include <hardware/audio.h>
#include <audio_effects/effect_ns.h>
#include <audio_effects/effect_aec.h>
#include <audio_utils/primitives.h>
#include <audio_utils/format.h>
#include <audio_utils/minifloat.h>
// NBAIO implementations
#include <media/nbaio/AudioStreamInSource.h>
#include <media/nbaio/AudioStreamOutSink.h>
#include <media/nbaio/MonoPipe.h>
#include <media/nbaio/MonoPipeReader.h>
#include <media/nbaio/Pipe.h>
#include <media/nbaio/PipeReader.h>
#include <media/nbaio/SourceAudioBufferProvider.h>
#include <powermanager/PowerManager.h>
#include <common_time/cc_helper.h>
#include <common_time/local_clock.h>
#include "AudioFlinger.h"
#include "AudioMixer.h"
#include "BufferProviders.h"
#include "FastMixer.h"
#include "FastCapture.h"
#include "ServiceUtilities.h"
#include "mediautils/SchedulingPolicyService.h"
#ifdef ADD_BATTERY_DATA
#include <media/IMediaPlayerService.h>
#include <media/IMediaDeathNotifier.h>
#endif
#ifdef DEBUG_CPU_USAGE
#include <cpustats/CentralTendencyStatistics.h>
#include <cpustats/ThreadCpuUsage.h>
#endif
// ----------------------------------------------------------------------------
// Note: the following macro is used for extremely verbose logging message. In
// order to run with ALOG_ASSERT turned on, we need to have LOG_NDEBUG set to
// 0; but one side effect of this is to turn all LOGV's as well. Some messages
// are so verbose that we want to suppress them even when we have ALOG_ASSERT
// turned on. Do not uncomment the #def below unless you really know what you
// are doing and want to see all of the extremely verbose messages.
//#define VERY_VERY_VERBOSE_LOGGING
#ifdef VERY_VERY_VERBOSE_LOGGING
#define ALOGVV ALOGV
#else
#define ALOGVV(a...) do { } while(0)
#endif
// TODO: Move these macro/inlines to a header file.
#define max(a, b) ((a) > (b) ? (a) : (b))
template <typename T>
static inline T min(const T& a, const T& b)
{
return a < b ? a : b;
}
#ifndef ARRAY_SIZE
#define ARRAY_SIZE(a) (sizeof(a) / sizeof(a[0]))
#endif
namespace android {
// retry counts for buffer fill timeout
// 50 * ~20msecs = 1 second
static const int8_t kMaxTrackRetries = 50;
static const int8_t kMaxTrackStartupRetries = 50;
// allow less retry attempts on direct output thread.
// direct outputs can be a scarce resource in audio hardware and should
// be released as quickly as possible.
static const int8_t kMaxTrackRetriesDirect = 2;
// don't warn about blocked writes or record buffer overflows more often than this
static const nsecs_t kWarningThrottleNs = seconds(5);
// RecordThread loop sleep time upon application overrun or audio HAL read error
static const int kRecordThreadSleepUs = 5000;
// maximum time to wait in sendConfigEvent_l() for a status to be received
static const nsecs_t kConfigEventTimeoutNs = seconds(2);
// minimum sleep time for the mixer thread loop when tracks are active but in underrun
static const uint32_t kMinThreadSleepTimeUs = 5000;
// maximum divider applied to the active sleep time in the mixer thread loop
static const uint32_t kMaxThreadSleepTimeShift = 2;
// minimum normal sink buffer size, expressed in milliseconds rather than frames
// FIXME This should be based on experimentally observed scheduling jitter
static const uint32_t kMinNormalSinkBufferSizeMs = 20;
// maximum normal sink buffer size
static const uint32_t kMaxNormalSinkBufferSizeMs = 24;
// minimum capture buffer size in milliseconds to _not_ need a fast capture thread
// FIXME This should be based on experimentally observed scheduling jitter
static const uint32_t kMinNormalCaptureBufferSizeMs = 12;
// Offloaded output thread standby delay: allows track transition without going to standby
static const nsecs_t kOffloadStandbyDelayNs = seconds(1);
// Whether to use fast mixer
static const enum {
FastMixer_Never, // never initialize or use: for debugging only
FastMixer_Always, // always initialize and use, even if not needed: for debugging only
// normal mixer multiplier is 1
FastMixer_Static, // initialize if needed, then use all the time if initialized,
// multiplier is calculated based on min & max normal mixer buffer size
FastMixer_Dynamic, // initialize if needed, then use dynamically depending on track load,
// multiplier is calculated based on min & max normal mixer buffer size
// FIXME for FastMixer_Dynamic:
// Supporting this option will require fixing HALs that can't handle large writes.
// For example, one HAL implementation returns an error from a large write,
// and another HAL implementation corrupts memory, possibly in the sample rate converter.
// We could either fix the HAL implementations, or provide a wrapper that breaks
// up large writes into smaller ones, and the wrapper would need to deal with scheduler.
} kUseFastMixer = FastMixer_Static;
// Whether to use fast capture
static const enum {
FastCapture_Never, // never initialize or use: for debugging only
FastCapture_Always, // always initialize and use, even if not needed: for debugging only
FastCapture_Static, // initialize if needed, then use all the time if initialized
} kUseFastCapture = FastCapture_Static;
// Priorities for requestPriority
static const int kPriorityAudioApp = 2;
static const int kPriorityFastMixer = 3;
static const int kPriorityFastCapture = 3;
// IAudioFlinger::createTrack() reports back to client the total size of shared memory area
// for the track. The client then sub-divides this into smaller buffers for its use.
// Currently the client uses N-buffering by default, but doesn't tell us about the value of N.
// So for now we just assume that client is double-buffered for fast tracks.
// FIXME It would be better for client to tell AudioFlinger the value of N,
// so AudioFlinger could allocate the right amount of memory.
// See the client's minBufCount and mNotificationFramesAct calculations for details.
// This is the default value, if not specified by property.
static const int kFastTrackMultiplier = 2;
// The minimum and maximum allowed values
static const int kFastTrackMultiplierMin = 1;
static const int kFastTrackMultiplierMax = 2;
// The actual value to use, which can be specified per-device via property af.fast_track_multiplier.
static int sFastTrackMultiplier = kFastTrackMultiplier;
// See Thread::readOnlyHeap().
// Initially this heap is used to allocate client buffers for "fast" AudioRecord.
// Eventually it will be the single buffer that FastCapture writes into via HAL read(),
// and that all "fast" AudioRecord clients read from. In either case, the size can be small.
static const size_t kRecordThreadReadOnlyHeapSize = 0x2000;
// ----------------------------------------------------------------------------
static pthread_once_t sFastTrackMultiplierOnce = PTHREAD_ONCE_INIT;
static void sFastTrackMultiplierInit()
{
char value[PROPERTY_VALUE_MAX];
if (property_get("af.fast_track_multiplier", value, NULL) > 0) {
char *endptr;
unsigned long ul = strtoul(value, &endptr, 0);
if (*endptr == '\0' && kFastTrackMultiplierMin <= ul && ul <= kFastTrackMultiplierMax) {
sFastTrackMultiplier = (int) ul;
}
}
}
// ----------------------------------------------------------------------------
#ifdef ADD_BATTERY_DATA
// To collect the amplifier usage
static void addBatteryData(uint32_t params) {
sp<IMediaPlayerService> service = IMediaDeathNotifier::getMediaPlayerService();
if (service == NULL) {
// it already logged
return;
}
service->addBatteryData(params);
}
#endif
// ----------------------------------------------------------------------------
// CPU Stats
// ----------------------------------------------------------------------------
class CpuStats {
public:
CpuStats();
void sample(const String8 &title);
#ifdef DEBUG_CPU_USAGE
private:
ThreadCpuUsage mCpuUsage; // instantaneous thread CPU usage in wall clock ns
CentralTendencyStatistics mWcStats; // statistics on thread CPU usage in wall clock ns
CentralTendencyStatistics mHzStats; // statistics on thread CPU usage in cycles
int mCpuNum; // thread's current CPU number
int mCpukHz; // frequency of thread's current CPU in kHz
#endif
};
CpuStats::CpuStats()
#ifdef DEBUG_CPU_USAGE
: mCpuNum(-1), mCpukHz(-1)
#endif
{
}
void CpuStats::sample(const String8 &title
#ifndef DEBUG_CPU_USAGE
__unused
#endif
) {
#ifdef DEBUG_CPU_USAGE
// get current thread's delta CPU time in wall clock ns
double wcNs;
bool valid = mCpuUsage.sampleAndEnable(wcNs);
// record sample for wall clock statistics
if (valid) {
mWcStats.sample(wcNs);
}
// get the current CPU number
int cpuNum = sched_getcpu();
// get the current CPU frequency in kHz
int cpukHz = mCpuUsage.getCpukHz(cpuNum);
// check if either CPU number or frequency changed
if (cpuNum != mCpuNum || cpukHz != mCpukHz) {
mCpuNum = cpuNum;
mCpukHz = cpukHz;
// ignore sample for purposes of cycles
valid = false;
}
// if no change in CPU number or frequency, then record sample for cycle statistics
if (valid && mCpukHz > 0) {
double cycles = wcNs * cpukHz * 0.000001;
mHzStats.sample(cycles);
}
unsigned n = mWcStats.n();
// mCpuUsage.elapsed() is expensive, so don't call it every loop
if ((n & 127) == 1) {
long long elapsed = mCpuUsage.elapsed();
if (elapsed >= DEBUG_CPU_USAGE * 1000000000LL) {
double perLoop = elapsed / (double) n;
double perLoop100 = perLoop * 0.01;
double perLoop1k = perLoop * 0.001;
double mean = mWcStats.mean();
double stddev = mWcStats.stddev();
double minimum = mWcStats.minimum();
double maximum = mWcStats.maximum();
double meanCycles = mHzStats.mean();
double stddevCycles = mHzStats.stddev();
double minCycles = mHzStats.minimum();
double maxCycles = mHzStats.maximum();
mCpuUsage.resetElapsed();
mWcStats.reset();
mHzStats.reset();
ALOGD("CPU usage for %s over past %.1f secs\n"
" (%u mixer loops at %.1f mean ms per loop):\n"
" us per mix loop: mean=%.0f stddev=%.0f min=%.0f max=%.0f\n"
" %% of wall: mean=%.1f stddev=%.1f min=%.1f max=%.1f\n"
" MHz: mean=%.1f, stddev=%.1f, min=%.1f max=%.1f",
title.string(),
elapsed * .000000001, n, perLoop * .000001,
mean * .001,
stddev * .001,
minimum * .001,
maximum * .001,
mean / perLoop100,
stddev / perLoop100,
minimum / perLoop100,
maximum / perLoop100,
meanCycles / perLoop1k,
stddevCycles / perLoop1k,
minCycles / perLoop1k,
maxCycles / perLoop1k);
}
}
#endif
};
// ----------------------------------------------------------------------------
// ThreadBase
// ----------------------------------------------------------------------------
// static
const char *AudioFlinger::ThreadBase::threadTypeToString(AudioFlinger::ThreadBase::type_t type)
{
switch (type) {
case MIXER:
return "MIXER";
case DIRECT:
return "DIRECT";
case DUPLICATING:
return "DUPLICATING";
case RECORD:
return "RECORD";
case OFFLOAD:
return "OFFLOAD";
default:
return "unknown";
}
}
String8 devicesToString(audio_devices_t devices)
{
static const struct mapping {
audio_devices_t mDevices;
const char * mString;
} mappingsOut[] = {
AUDIO_DEVICE_OUT_EARPIECE, "EARPIECE",
AUDIO_DEVICE_OUT_SPEAKER, "SPEAKER",
AUDIO_DEVICE_OUT_WIRED_HEADSET, "WIRED_HEADSET",
AUDIO_DEVICE_OUT_WIRED_HEADPHONE, "WIRED_HEADPHONE",
AUDIO_DEVICE_OUT_BLUETOOTH_SCO, "BLUETOOTH_SCO",
AUDIO_DEVICE_OUT_BLUETOOTH_SCO_HEADSET, "BLUETOOTH_SCO_HEADSET",
AUDIO_DEVICE_OUT_BLUETOOTH_SCO_CARKIT, "BLUETOOTH_SCO_CARKIT",
AUDIO_DEVICE_OUT_BLUETOOTH_A2DP, "BLUETOOTH_A2DP",
AUDIO_DEVICE_OUT_BLUETOOTH_A2DP_HEADPHONES, "BLUETOOTH_A2DP_HEADPHONES",
AUDIO_DEVICE_OUT_BLUETOOTH_A2DP_SPEAKER, "BLUETOOTH_A2DP_SPEAKER",
AUDIO_DEVICE_OUT_AUX_DIGITAL, "AUX_DIGITAL",
AUDIO_DEVICE_OUT_HDMI, "HDMI",
AUDIO_DEVICE_OUT_ANLG_DOCK_HEADSET, "ANLG_DOCK_HEADSET",
AUDIO_DEVICE_OUT_DGTL_DOCK_HEADSET, "DGTL_DOCK_HEADSET",
AUDIO_DEVICE_OUT_USB_ACCESSORY, "USB_ACCESSORY",
AUDIO_DEVICE_OUT_USB_DEVICE, "USB_DEVICE",
AUDIO_DEVICE_OUT_TELEPHONY_TX, "TELEPHONY_TX",
AUDIO_DEVICE_OUT_LINE, "LINE",
AUDIO_DEVICE_OUT_HDMI_ARC, "HDMI_ARC",
AUDIO_DEVICE_OUT_SPDIF, "SPDIF",
AUDIO_DEVICE_OUT_FM, "FM",
AUDIO_DEVICE_OUT_AUX_LINE, "AUX_LINE",
AUDIO_DEVICE_OUT_SPEAKER_SAFE, "SPEAKER_SAFE",
AUDIO_DEVICE_OUT_IP, "IP",
AUDIO_DEVICE_NONE, "NONE", // must be last
}, mappingsIn[] = {
AUDIO_DEVICE_IN_COMMUNICATION, "COMMUNICATION",
AUDIO_DEVICE_IN_AMBIENT, "AMBIENT",
AUDIO_DEVICE_IN_BUILTIN_MIC, "BUILTIN_MIC",
AUDIO_DEVICE_IN_BLUETOOTH_SCO_HEADSET, "BLUETOOTH_SCO_HEADSET",
AUDIO_DEVICE_IN_WIRED_HEADSET, "WIRED_HEADSET",
AUDIO_DEVICE_IN_AUX_DIGITAL, "AUX_DIGITAL",
AUDIO_DEVICE_IN_VOICE_CALL, "VOICE_CALL",
AUDIO_DEVICE_IN_TELEPHONY_RX, "TELEPHONY_RX",
AUDIO_DEVICE_IN_BACK_MIC, "BACK_MIC",
AUDIO_DEVICE_IN_REMOTE_SUBMIX, "REMOTE_SUBMIX",
AUDIO_DEVICE_IN_ANLG_DOCK_HEADSET, "ANLG_DOCK_HEADSET",
AUDIO_DEVICE_IN_DGTL_DOCK_HEADSET, "DGTL_DOCK_HEADSET",
AUDIO_DEVICE_IN_USB_ACCESSORY, "USB_ACCESSORY",
AUDIO_DEVICE_IN_USB_DEVICE, "USB_DEVICE",
AUDIO_DEVICE_IN_FM_TUNER, "FM_TUNER",
AUDIO_DEVICE_IN_TV_TUNER, "TV_TUNER",
AUDIO_DEVICE_IN_LINE, "LINE",
AUDIO_DEVICE_IN_SPDIF, "SPDIF",
AUDIO_DEVICE_IN_BLUETOOTH_A2DP, "BLUETOOTH_A2DP",
AUDIO_DEVICE_IN_LOOPBACK, "LOOPBACK",
AUDIO_DEVICE_IN_IP, "IP",
AUDIO_DEVICE_NONE, "NONE", // must be last
};
String8 result;
audio_devices_t allDevices = AUDIO_DEVICE_NONE;
const mapping *entry;
if (devices & AUDIO_DEVICE_BIT_IN) {
devices &= ~AUDIO_DEVICE_BIT_IN;
entry = mappingsIn;
} else {
entry = mappingsOut;
}
for ( ; entry->mDevices != AUDIO_DEVICE_NONE; entry++) {
allDevices = (audio_devices_t) (allDevices | entry->mDevices);
if (devices & entry->mDevices) {
if (!result.isEmpty()) {
result.append("|");
}
result.append(entry->mString);
}
}
if (devices & ~allDevices) {
if (!result.isEmpty()) {
result.append("|");
}
result.appendFormat("0x%X", devices & ~allDevices);
}
if (result.isEmpty()) {
result.append(entry->mString);
}
return result;
}
String8 inputFlagsToString(audio_input_flags_t flags)
{
static const struct mapping {
audio_input_flags_t mFlag;
const char * mString;
} mappings[] = {
AUDIO_INPUT_FLAG_FAST, "FAST",
AUDIO_INPUT_FLAG_HW_HOTWORD, "HW_HOTWORD",
AUDIO_INPUT_FLAG_NONE, "NONE", // must be last
};
String8 result;
audio_input_flags_t allFlags = AUDIO_INPUT_FLAG_NONE;
const mapping *entry;
for (entry = mappings; entry->mFlag != AUDIO_INPUT_FLAG_NONE; entry++) {
allFlags = (audio_input_flags_t) (allFlags | entry->mFlag);
if (flags & entry->mFlag) {
if (!result.isEmpty()) {
result.append("|");
}
result.append(entry->mString);
}
}
if (flags & ~allFlags) {
if (!result.isEmpty()) {
result.append("|");
}
result.appendFormat("0x%X", flags & ~allFlags);
}
if (result.isEmpty()) {
result.append(entry->mString);
}
return result;
}
String8 outputFlagsToString(audio_output_flags_t flags)
{
static const struct mapping {
audio_output_flags_t mFlag;
const char * mString;
} mappings[] = {
AUDIO_OUTPUT_FLAG_DIRECT, "DIRECT",
AUDIO_OUTPUT_FLAG_PRIMARY, "PRIMARY",
AUDIO_OUTPUT_FLAG_FAST, "FAST",
AUDIO_OUTPUT_FLAG_DEEP_BUFFER, "DEEP_BUFFER",
AUDIO_OUTPUT_FLAG_COMPRESS_OFFLOAD, "COMPRESS_OFFLOAD",
AUDIO_OUTPUT_FLAG_NON_BLOCKING, "NON_BLOCKING",
AUDIO_OUTPUT_FLAG_HW_AV_SYNC, "HW_AV_SYNC",
AUDIO_OUTPUT_FLAG_NONE, "NONE", // must be last
};
String8 result;
audio_output_flags_t allFlags = AUDIO_OUTPUT_FLAG_NONE;
const mapping *entry;
for (entry = mappings; entry->mFlag != AUDIO_OUTPUT_FLAG_NONE; entry++) {
allFlags = (audio_output_flags_t) (allFlags | entry->mFlag);
if (flags & entry->mFlag) {
if (!result.isEmpty()) {
result.append("|");
}
result.append(entry->mString);
}
}
if (flags & ~allFlags) {
if (!result.isEmpty()) {
result.append("|");
}
result.appendFormat("0x%X", flags & ~allFlags);
}
if (result.isEmpty()) {
result.append(entry->mString);
}
return result;
}
const char *sourceToString(audio_source_t source)
{
switch (source) {
case AUDIO_SOURCE_DEFAULT: return "default";
case AUDIO_SOURCE_MIC: return "mic";
case AUDIO_SOURCE_VOICE_UPLINK: return "voice uplink";
case AUDIO_SOURCE_VOICE_DOWNLINK: return "voice downlink";
case AUDIO_SOURCE_VOICE_CALL: return "voice call";
case AUDIO_SOURCE_CAMCORDER: return "camcorder";
case AUDIO_SOURCE_VOICE_RECOGNITION: return "voice recognition";
case AUDIO_SOURCE_VOICE_COMMUNICATION: return "voice communication";
case AUDIO_SOURCE_REMOTE_SUBMIX: return "remote submix";
case AUDIO_SOURCE_FM_TUNER: return "FM tuner";
case AUDIO_SOURCE_HOTWORD: return "hotword";
default: return "unknown";
}
}
AudioFlinger::ThreadBase::ThreadBase(const sp<AudioFlinger>& audioFlinger, audio_io_handle_t id,
audio_devices_t outDevice, audio_devices_t inDevice, type_t type, bool systemReady)
: Thread(false /*canCallJava*/),
mType(type),
mAudioFlinger(audioFlinger),
// mSampleRate, mFrameCount, mChannelMask, mChannelCount, mFrameSize, mFormat, mBufferSize
// are set by PlaybackThread::readOutputParameters_l() or
// RecordThread::readInputParameters_l()
//FIXME: mStandby should be true here. Is this some kind of hack?
mStandby(false), mOutDevice(outDevice), mInDevice(inDevice),
mPrevOutDevice(AUDIO_DEVICE_NONE), mPrevInDevice(AUDIO_DEVICE_NONE),
mAudioSource(AUDIO_SOURCE_DEFAULT), mId(id),
// mName will be set by concrete (non-virtual) subclass
mDeathRecipient(new PMDeathRecipient(this)),
mSystemReady(systemReady)
{
memset(&mPatch, 0, sizeof(struct audio_patch));
}
AudioFlinger::ThreadBase::~ThreadBase()
{
// mConfigEvents should be empty, but just in case it isn't, free the memory it owns
mConfigEvents.clear();
// do not lock the mutex in destructor
releaseWakeLock_l();
if (mPowerManager != 0) {
sp<IBinder> binder = IInterface::asBinder(mPowerManager);
binder->unlinkToDeath(mDeathRecipient);
}
}
status_t AudioFlinger::ThreadBase::readyToRun()
{
status_t status = initCheck();
if (status == NO_ERROR) {
ALOGI("AudioFlinger's thread %p ready to run", this);
} else {
ALOGE("No working audio driver found.");
}
return status;
}
void AudioFlinger::ThreadBase::exit()
{
ALOGV("ThreadBase::exit");
// do any cleanup required for exit to succeed
preExit();
{
// This lock prevents the following race in thread (uniprocessor for illustration):
// if (!exitPending()) {
// // context switch from here to exit()
// // exit() calls requestExit(), what exitPending() observes
// // exit() calls signal(), which is dropped since no waiters
// // context switch back from exit() to here
// mWaitWorkCV.wait(...);
// // now thread is hung
// }
AutoMutex lock(mLock);
requestExit();
mWaitWorkCV.broadcast();
}
// When Thread::requestExitAndWait is made virtual and this method is renamed to
// "virtual status_t requestExitAndWait()", replace by "return Thread::requestExitAndWait();"
requestExitAndWait();
}
status_t AudioFlinger::ThreadBase::setParameters(const String8& keyValuePairs)
{
status_t status;
ALOGV("ThreadBase::setParameters() %s", keyValuePairs.string());
Mutex::Autolock _l(mLock);
return sendSetParameterConfigEvent_l(keyValuePairs);
}
// sendConfigEvent_l() must be called with ThreadBase::mLock held
// Can temporarily release the lock if waiting for a reply from processConfigEvents_l().
status_t AudioFlinger::ThreadBase::sendConfigEvent_l(sp<ConfigEvent>& event)
{
status_t status = NO_ERROR;
if (event->mRequiresSystemReady && !mSystemReady) {
event->mWaitStatus = false;
mPendingConfigEvents.add(event);
return status;
}
mConfigEvents.add(event);
ALOGV("sendConfigEvent_l() num events %d event %d", mConfigEvents.size(), event->mType);
mWaitWorkCV.signal();
mLock.unlock();
{
Mutex::Autolock _l(event->mLock);
while (event->mWaitStatus) {
if (event->mCond.waitRelative(event->mLock, kConfigEventTimeoutNs) != NO_ERROR) {
event->mStatus = TIMED_OUT;
event->mWaitStatus = false;
}
}
status = event->mStatus;
}
mLock.lock();
return status;
}
void AudioFlinger::ThreadBase::sendIoConfigEvent(audio_io_config_event event, pid_t pid)
{
Mutex::Autolock _l(mLock);
sendIoConfigEvent_l(event, pid);
}
// sendIoConfigEvent_l() must be called with ThreadBase::mLock held
void AudioFlinger::ThreadBase::sendIoConfigEvent_l(audio_io_config_event event, pid_t pid)
{
sp<ConfigEvent> configEvent = (ConfigEvent *)new IoConfigEvent(event, pid);
sendConfigEvent_l(configEvent);
}
void AudioFlinger::ThreadBase::sendPrioConfigEvent(pid_t pid, pid_t tid, int32_t prio)
{
Mutex::Autolock _l(mLock);
sendPrioConfigEvent_l(pid, tid, prio);
}
// sendPrioConfigEvent_l() must be called with ThreadBase::mLock held
void AudioFlinger::ThreadBase::sendPrioConfigEvent_l(pid_t pid, pid_t tid, int32_t prio)
{
sp<ConfigEvent> configEvent = (ConfigEvent *)new PrioConfigEvent(pid, tid, prio);
sendConfigEvent_l(configEvent);
}
// sendSetParameterConfigEvent_l() must be called with ThreadBase::mLock held
status_t AudioFlinger::ThreadBase::sendSetParameterConfigEvent_l(const String8& keyValuePair)
{
sp<ConfigEvent> configEvent = (ConfigEvent *)new SetParameterConfigEvent(keyValuePair);
return sendConfigEvent_l(configEvent);
}
status_t AudioFlinger::ThreadBase::sendCreateAudioPatchConfigEvent(
const struct audio_patch *patch,
audio_patch_handle_t *handle)
{
Mutex::Autolock _l(mLock);
sp<ConfigEvent> configEvent = (ConfigEvent *)new CreateAudioPatchConfigEvent(*patch, *handle);
status_t status = sendConfigEvent_l(configEvent);
if (status == NO_ERROR) {
CreateAudioPatchConfigEventData *data =
(CreateAudioPatchConfigEventData *)configEvent->mData.get();
*handle = data->mHandle;
}
return status;
}
status_t AudioFlinger::ThreadBase::sendReleaseAudioPatchConfigEvent(
const audio_patch_handle_t handle)
{
Mutex::Autolock _l(mLock);
sp<ConfigEvent> configEvent = (ConfigEvent *)new ReleaseAudioPatchConfigEvent(handle);
return sendConfigEvent_l(configEvent);
}
// post condition: mConfigEvents.isEmpty()
void AudioFlinger::ThreadBase::processConfigEvents_l()
{
bool configChanged = false;
while (!mConfigEvents.isEmpty()) {
ALOGV("processConfigEvents_l() remaining events %d", mConfigEvents.size());
sp<ConfigEvent> event = mConfigEvents[0];
mConfigEvents.removeAt(0);
switch (event->mType) {
case CFG_EVENT_PRIO: {
PrioConfigEventData *data = (PrioConfigEventData *)event->mData.get();
// FIXME Need to understand why this has to be done asynchronously
int err = requestPriority(data->mPid, data->mTid, data->mPrio,
true /*asynchronous*/);
if (err != 0) {
ALOGW("Policy SCHED_FIFO priority %d is unavailable for pid %d tid %d; error %d",
data->mPrio, data->mPid, data->mTid, err);
}
} break;
case CFG_EVENT_IO: {
IoConfigEventData *data = (IoConfigEventData *)event->mData.get();
ioConfigChanged(data->mEvent, data->mPid);
} break;
case CFG_EVENT_SET_PARAMETER: {
SetParameterConfigEventData *data = (SetParameterConfigEventData *)event->mData.get();
if (checkForNewParameter_l(data->mKeyValuePairs, event->mStatus)) {
configChanged = true;
}
} break;
case CFG_EVENT_CREATE_AUDIO_PATCH: {
CreateAudioPatchConfigEventData *data =
(CreateAudioPatchConfigEventData *)event->mData.get();
event->mStatus = createAudioPatch_l(&data->mPatch, &data->mHandle);
} break;
case CFG_EVENT_RELEASE_AUDIO_PATCH: {
ReleaseAudioPatchConfigEventData *data =
(ReleaseAudioPatchConfigEventData *)event->mData.get();
event->mStatus = releaseAudioPatch_l(data->mHandle);
} break;
default:
ALOG_ASSERT(false, "processConfigEvents_l() unknown event type %d", event->mType);
break;
}
{
Mutex::Autolock _l(event->mLock);
if (event->mWaitStatus) {
event->mWaitStatus = false;
event->mCond.signal();
}
}
ALOGV_IF(mConfigEvents.isEmpty(), "processConfigEvents_l() DONE thread %p", this);
}
if (configChanged) {
cacheParameters_l();
}
}
String8 channelMaskToString(audio_channel_mask_t mask, bool output) {
String8 s;
const audio_channel_representation_t representation =
audio_channel_mask_get_representation(mask);
switch (representation) {
case AUDIO_CHANNEL_REPRESENTATION_POSITION: {
if (output) {
if (mask & AUDIO_CHANNEL_OUT_FRONT_LEFT) s.append("front-left, ");
if (mask & AUDIO_CHANNEL_OUT_FRONT_RIGHT) s.append("front-right, ");
if (mask & AUDIO_CHANNEL_OUT_FRONT_CENTER) s.append("front-center, ");
if (mask & AUDIO_CHANNEL_OUT_LOW_FREQUENCY) s.append("low freq, ");
if (mask & AUDIO_CHANNEL_OUT_BACK_LEFT) s.append("back-left, ");
if (mask & AUDIO_CHANNEL_OUT_BACK_RIGHT) s.append("back-right, ");
if (mask & AUDIO_CHANNEL_OUT_FRONT_LEFT_OF_CENTER) s.append("front-left-of-center, ");
if (mask & AUDIO_CHANNEL_OUT_FRONT_RIGHT_OF_CENTER) s.append("front-right-of-center, ");
if (mask & AUDIO_CHANNEL_OUT_BACK_CENTER) s.append("back-center, ");
if (mask & AUDIO_CHANNEL_OUT_SIDE_LEFT) s.append("side-left, ");
if (mask & AUDIO_CHANNEL_OUT_SIDE_RIGHT) s.append("side-right, ");
if (mask & AUDIO_CHANNEL_OUT_TOP_CENTER) s.append("top-center ,");
if (mask & AUDIO_CHANNEL_OUT_TOP_FRONT_LEFT) s.append("top-front-left, ");
if (mask & AUDIO_CHANNEL_OUT_TOP_FRONT_CENTER) s.append("top-front-center, ");
if (mask & AUDIO_CHANNEL_OUT_TOP_FRONT_RIGHT) s.append("top-front-right, ");
if (mask & AUDIO_CHANNEL_OUT_TOP_BACK_LEFT) s.append("top-back-left, ");
if (mask & AUDIO_CHANNEL_OUT_TOP_BACK_CENTER) s.append("top-back-center, " );
if (mask & AUDIO_CHANNEL_OUT_TOP_BACK_RIGHT) s.append("top-back-right, " );
if (mask & ~AUDIO_CHANNEL_OUT_ALL) s.append("unknown, ");
} else {
if (mask & AUDIO_CHANNEL_IN_LEFT) s.append("left, ");
if (mask & AUDIO_CHANNEL_IN_RIGHT) s.append("right, ");
if (mask & AUDIO_CHANNEL_IN_FRONT) s.append("front, ");
if (mask & AUDIO_CHANNEL_IN_BACK) s.append("back, ");
if (mask & AUDIO_CHANNEL_IN_LEFT_PROCESSED) s.append("left-processed, ");
if (mask & AUDIO_CHANNEL_IN_RIGHT_PROCESSED) s.append("right-processed, ");
if (mask & AUDIO_CHANNEL_IN_FRONT_PROCESSED) s.append("front-processed, ");
if (mask & AUDIO_CHANNEL_IN_BACK_PROCESSED) s.append("back-processed, ");
if (mask & AUDIO_CHANNEL_IN_PRESSURE) s.append("pressure, ");
if (mask & AUDIO_CHANNEL_IN_X_AXIS) s.append("X, ");
if (mask & AUDIO_CHANNEL_IN_Y_AXIS) s.append("Y, ");
if (mask & AUDIO_CHANNEL_IN_Z_AXIS) s.append("Z, ");
if (mask & AUDIO_CHANNEL_IN_VOICE_UPLINK) s.append("voice-uplink, ");
if (mask & AUDIO_CHANNEL_IN_VOICE_DNLINK) s.append("voice-dnlink, ");
if (mask & ~AUDIO_CHANNEL_IN_ALL) s.append("unknown, ");
}
const int len = s.length();
if (len > 2) {
char *str = s.lockBuffer(len); // needed?
s.unlockBuffer(len - 2); // remove trailing ", "
}
return s;
}
case AUDIO_CHANNEL_REPRESENTATION_INDEX:
s.appendFormat("index mask, bits:%#x", audio_channel_mask_get_bits(mask));
return s;
default:
s.appendFormat("unknown mask, representation:%d bits:%#x",
representation, audio_channel_mask_get_bits(mask));
return s;
}
}
void AudioFlinger::ThreadBase::dumpBase(int fd, const Vector<String16>& args __unused)
{
const size_t SIZE = 256;
char buffer[SIZE];
String8 result;
bool locked = AudioFlinger::dumpTryLock(mLock);
if (!locked) {
dprintf(fd, "thread %p may be deadlocked\n", this);
}
dprintf(fd, " Thread name: %s\n", mThreadName);
dprintf(fd, " I/O handle: %d\n", mId);
dprintf(fd, " TID: %d\n", getTid());
dprintf(fd, " Standby: %s\n", mStandby ? "yes" : "no");
dprintf(fd, " Sample rate: %u Hz\n", mSampleRate);
dprintf(fd, " HAL frame count: %zu\n", mFrameCount);
dprintf(fd, " HAL format: 0x%x (%s)\n", mHALFormat, formatToString(mHALFormat));
dprintf(fd, " HAL buffer size: %u bytes\n", mBufferSize);
dprintf(fd, " Channel count: %u\n", mChannelCount);
dprintf(fd, " Channel mask: 0x%08x (%s)\n", mChannelMask,
channelMaskToString(mChannelMask, mType != RECORD).string());
dprintf(fd, " Format: 0x%x (%s)\n", mFormat, formatToString(mFormat));
dprintf(fd, " Frame size: %zu bytes\n", mFrameSize);
dprintf(fd, " Pending config events:");
size_t numConfig = mConfigEvents.size();
if (numConfig) {
for (size_t i = 0; i < numConfig; i++) {
mConfigEvents[i]->dump(buffer, SIZE);
dprintf(fd, "\n %s", buffer);
}
dprintf(fd, "\n");
} else {
dprintf(fd, " none\n");
}
dprintf(fd, " Output device: %#x (%s)\n", mOutDevice, devicesToString(mOutDevice).string());
dprintf(fd, " Input device: %#x (%s)\n", mInDevice, devicesToString(mInDevice).string());
dprintf(fd, " Audio source: %d (%s)\n", mAudioSource, sourceToString(mAudioSource));
if (locked) {
mLock.unlock();
}
}
void AudioFlinger::ThreadBase::dumpEffectChains(int fd, const Vector<String16>& args)
{
const size_t SIZE = 256;
char buffer[SIZE];
String8 result;
size_t numEffectChains = mEffectChains.size();
snprintf(buffer, SIZE, " %zu Effect Chains\n", numEffectChains);
write(fd, buffer, strlen(buffer));
for (size_t i = 0; i < numEffectChains; ++i) {
sp<EffectChain> chain = mEffectChains[i];
if (chain != 0) {
chain->dump(fd, args);
}
}
}
void AudioFlinger::ThreadBase::acquireWakeLock(int uid)
{
Mutex::Autolock _l(mLock);
acquireWakeLock_l(uid);
}
String16 AudioFlinger::ThreadBase::getWakeLockTag()
{
switch (mType) {
case MIXER:
return String16("AudioMix");
case DIRECT:
return String16("AudioDirectOut");
case DUPLICATING:
return String16("AudioDup");
case RECORD:
return String16("AudioIn");
case OFFLOAD:
return String16("AudioOffload");
default:
ALOG_ASSERT(false);
return String16("AudioUnknown");
}
}
void AudioFlinger::ThreadBase::acquireWakeLock_l(int uid)
{
getPowerManager_l();
if (mPowerManager != 0) {
sp<IBinder> binder = new BBinder();
status_t status;
if (uid >= 0) {
status = mPowerManager->acquireWakeLockWithUid(POWERMANAGER_PARTIAL_WAKE_LOCK,
binder,
getWakeLockTag(),
String16("media"),
uid,
true /* FIXME force oneway contrary to .aidl */);
} else {
status = mPowerManager->acquireWakeLock(POWERMANAGER_PARTIAL_WAKE_LOCK,
binder,
getWakeLockTag(),
String16("media"),
true /* FIXME force oneway contrary to .aidl */);
}
if (status == NO_ERROR) {
mWakeLockToken = binder;
}
ALOGV("acquireWakeLock_l() %s status %d", mThreadName, status);
}
}
void AudioFlinger::ThreadBase::releaseWakeLock()
{
Mutex::Autolock _l(mLock);
releaseWakeLock_l();
}
void AudioFlinger::ThreadBase::releaseWakeLock_l()
{
if (mWakeLockToken != 0) {
ALOGV("releaseWakeLock_l() %s", mThreadName);
if (mPowerManager != 0) {
mPowerManager->releaseWakeLock(mWakeLockToken, 0,
true /* FIXME force oneway contrary to .aidl */);
}
mWakeLockToken.clear();
}
}
void AudioFlinger::ThreadBase::updateWakeLockUids(const SortedVector<int> &uids) {
Mutex::Autolock _l(mLock);
updateWakeLockUids_l(uids);
}
void AudioFlinger::ThreadBase::getPowerManager_l() {
if (mSystemReady && mPowerManager == 0) {
// use checkService() to avoid blocking if power service is not up yet
sp<IBinder> binder =
defaultServiceManager()->checkService(String16("power"));
if (binder == 0) {
ALOGW("Thread %s cannot connect to the power manager service", mThreadName);
} else {
mPowerManager = interface_cast<IPowerManager>(binder);
binder->linkToDeath(mDeathRecipient);
}
}
}
void AudioFlinger::ThreadBase::updateWakeLockUids_l(const SortedVector<int> &uids) {
getPowerManager_l();
if (mWakeLockToken == NULL) {
ALOGE("no wake lock to update!");
return;
}
if (mPowerManager != 0) {
sp<IBinder> binder = new BBinder();
status_t status;
status = mPowerManager->updateWakeLockUids(mWakeLockToken, uids.size(), uids.array(),
true /* FIXME force oneway contrary to .aidl */);
ALOGV("acquireWakeLock_l() %s status %d", mThreadName, status);
}
}
void AudioFlinger::ThreadBase::clearPowerManager()
{
Mutex::Autolock _l(mLock);
releaseWakeLock_l();
mPowerManager.clear();
}
void AudioFlinger::ThreadBase::PMDeathRecipient::binderDied(const wp<IBinder>& who __unused)
{
sp<ThreadBase> thread = mThread.promote();
if (thread != 0) {
thread->clearPowerManager();
}
ALOGW("power manager service died !!!");
}
void AudioFlinger::ThreadBase::setEffectSuspended(
const effect_uuid_t *type, bool suspend, int sessionId)
{
Mutex::Autolock _l(mLock);
setEffectSuspended_l(type, suspend, sessionId);
}
void AudioFlinger::ThreadBase::setEffectSuspended_l(
const effect_uuid_t *type, bool suspend, int sessionId)
{
sp<EffectChain> chain = getEffectChain_l(sessionId);
if (chain != 0) {
if (type != NULL) {
chain->setEffectSuspended_l(type, suspend);
} else {
chain->setEffectSuspendedAll_l(suspend);
}
}
updateSuspendedSessions_l(type, suspend, sessionId);
}
void AudioFlinger::ThreadBase::checkSuspendOnAddEffectChain_l(const sp<EffectChain>& chain)
{
ssize_t index = mSuspendedSessions.indexOfKey(chain->sessionId());
if (index < 0) {
return;
}
const KeyedVector <int, sp<SuspendedSessionDesc> >& sessionEffects =
mSuspendedSessions.valueAt(index);
for (size_t i = 0; i < sessionEffects.size(); i++) {
sp<SuspendedSessionDesc> desc = sessionEffects.valueAt(i);
for (int j = 0; j < desc->mRefCount; j++) {
if (sessionEffects.keyAt(i) == EffectChain::kKeyForSuspendAll) {
chain->setEffectSuspendedAll_l(true);
} else {
ALOGV("checkSuspendOnAddEffectChain_l() suspending effects %08x",
desc->mType.timeLow);
chain->setEffectSuspended_l(&desc->mType, true);
}
}
}
}
void AudioFlinger::ThreadBase::updateSuspendedSessions_l(const effect_uuid_t *type,
bool suspend,
int sessionId)
{
ssize_t index = mSuspendedSessions.indexOfKey(sessionId);
KeyedVector <int, sp<SuspendedSessionDesc> > sessionEffects;
if (suspend) {
if (index >= 0) {
sessionEffects = mSuspendedSessions.valueAt(index);
} else {
mSuspendedSessions.add(sessionId, sessionEffects);
}
} else {
if (index < 0) {
return;
}
sessionEffects = mSuspendedSessions.valueAt(index);
}
int key = EffectChain::kKeyForSuspendAll;
if (type != NULL) {
key = type->timeLow;
}
index = sessionEffects.indexOfKey(key);
sp<SuspendedSessionDesc> desc;
if (suspend) {
if (index >= 0) {
desc = sessionEffects.valueAt(index);
} else {
desc = new SuspendedSessionDesc();
if (type != NULL) {
desc->mType = *type;
}
sessionEffects.add(key, desc);
ALOGV("updateSuspendedSessions_l() suspend adding effect %08x", key);
}
desc->mRefCount++;
} else {
if (index < 0) {
return;
}
desc = sessionEffects.valueAt(index);
if (--desc->mRefCount == 0) {
ALOGV("updateSuspendedSessions_l() restore removing effect %08x", key);
sessionEffects.removeItemsAt(index);
if (sessionEffects.isEmpty()) {
ALOGV("updateSuspendedSessions_l() restore removing session %d",
sessionId);
mSuspendedSessions.removeItem(sessionId);
}
}
}
if (!sessionEffects.isEmpty()) {
mSuspendedSessions.replaceValueFor(sessionId, sessionEffects);
}
}
void AudioFlinger::ThreadBase::checkSuspendOnEffectEnabled(const sp<EffectModule>& effect,
bool enabled,
int sessionId)
{
Mutex::Autolock _l(mLock);
checkSuspendOnEffectEnabled_l(effect, enabled, sessionId);
}
void AudioFlinger::ThreadBase::checkSuspendOnEffectEnabled_l(const sp<EffectModule>& effect,
bool enabled,
int sessionId)
{
if (mType != RECORD) {
// suspend all effects in AUDIO_SESSION_OUTPUT_MIX when enabling any effect on
// another session. This gives the priority to well behaved effect control panels
// and applications not using global effects.
// Enabling post processing in AUDIO_SESSION_OUTPUT_STAGE session does not affect
// global effects
if ((sessionId != AUDIO_SESSION_OUTPUT_MIX) && (sessionId != AUDIO_SESSION_OUTPUT_STAGE)) {
setEffectSuspended_l(NULL, enabled, AUDIO_SESSION_OUTPUT_MIX);
}
}
sp<EffectChain> chain = getEffectChain_l(sessionId);
if (chain != 0) {
chain->checkSuspendOnEffectEnabled(effect, enabled);
}
}
// ThreadBase::createEffect_l() must be called with AudioFlinger::mLock held
sp<AudioFlinger::EffectHandle> AudioFlinger::ThreadBase::createEffect_l(
const sp<AudioFlinger::Client>& client,
const sp<IEffectClient>& effectClient,
int32_t priority,
int sessionId,
effect_descriptor_t *desc,
int *enabled,
status_t *status)
{
sp<EffectModule> effect;
sp<EffectHandle> handle;
status_t lStatus;
sp<EffectChain> chain;
bool chainCreated = false;
bool effectCreated = false;
bool effectRegistered = false;
lStatus = initCheck();
if (lStatus != NO_ERROR) {
ALOGW("createEffect_l() Audio driver not initialized.");
goto Exit;
}
// Reject any effect on Direct output threads for now, since the format of
// mSinkBuffer is not guaranteed to be compatible with effect processing (PCM 16 stereo).
if (mType == DIRECT) {
ALOGW("createEffect_l() Cannot add effect %s on Direct output type thread %s",
desc->name, mThreadName);
lStatus = BAD_VALUE;
goto Exit;
}
// Reject any effect on mixer or duplicating multichannel sinks.
// TODO: fix both format and multichannel issues with effects.
if ((mType == MIXER || mType == DUPLICATING) && mChannelCount != FCC_2) {
ALOGW("createEffect_l() Cannot add effect %s for multichannel(%d) %s threads",
desc->name, mChannelCount, mType == MIXER ? "MIXER" : "DUPLICATING");
lStatus = BAD_VALUE;
goto Exit;
}
// Allow global effects only on offloaded and mixer threads
if (sessionId == AUDIO_SESSION_OUTPUT_MIX) {
switch (mType) {
case MIXER:
case OFFLOAD:
break;
case DIRECT:
case DUPLICATING:
case RECORD:
default:
ALOGW("createEffect_l() Cannot add global effect %s on thread %s",
desc->name, mThreadName);
lStatus = BAD_VALUE;
goto Exit;
}
}
// Only Pre processor effects are allowed on input threads and only on input threads
if ((mType == RECORD) != ((desc->flags & EFFECT_FLAG_TYPE_MASK) == EFFECT_FLAG_TYPE_PRE_PROC)) {
ALOGW("createEffect_l() effect %s (flags %08x) created on wrong thread type %d",
desc->name, desc->flags, mType);
lStatus = BAD_VALUE;
goto Exit;
}
ALOGV("createEffect_l() thread %p effect %s on session %d", this, desc->name, sessionId);
{ // scope for mLock
Mutex::Autolock _l(mLock);
// check for existing effect chain with the requested audio session
chain = getEffectChain_l(sessionId);
if (chain == 0) {
// create a new chain for this session
ALOGV("createEffect_l() new effect chain for session %d", sessionId);
chain = new EffectChain(this, sessionId);
addEffectChain_l(chain);
chain->setStrategy(getStrategyForSession_l(sessionId));
chainCreated = true;
} else {
effect = chain->getEffectFromDesc_l(desc);
}
ALOGV("createEffect_l() got effect %p on chain %p", effect.get(), chain.get());
if (effect == 0) {
int id = mAudioFlinger->nextUniqueId();
// Check CPU and memory usage
lStatus = AudioSystem::registerEffect(desc, mId, chain->strategy(), sessionId, id);
if (lStatus != NO_ERROR) {
goto Exit;
}
effectRegistered = true;
// create a new effect module if none present in the chain
effect = new EffectModule(this, chain, desc, id, sessionId);
lStatus = effect->status();
if (lStatus != NO_ERROR) {
goto Exit;
}
effect->setOffloaded(mType == OFFLOAD, mId);
lStatus = chain->addEffect_l(effect);
if (lStatus != NO_ERROR) {
goto Exit;
}
effectCreated = true;
effect->setDevice(mOutDevice);
effect->setDevice(mInDevice);
effect->setMode(mAudioFlinger->getMode());
effect->setAudioSource(mAudioSource);
}
// create effect handle and connect it to effect module
handle = new EffectHandle(effect, client, effectClient, priority);
lStatus = handle->initCheck();
if (lStatus == OK) {
lStatus = effect->addHandle(handle.get());
}
if (enabled != NULL) {
*enabled = (int)effect->isEnabled();
}
}
Exit:
if (lStatus != NO_ERROR && lStatus != ALREADY_EXISTS) {
Mutex::Autolock _l(mLock);
if (effectCreated) {
chain->removeEffect_l(effect);
}
if (effectRegistered) {
AudioSystem::unregisterEffect(effect->id());
}
if (chainCreated) {
removeEffectChain_l(chain);
}
handle.clear();
}
*status = lStatus;
return handle;
}
sp<AudioFlinger::EffectModule> AudioFlinger::ThreadBase::getEffect(int sessionId, int effectId)
{
Mutex::Autolock _l(mLock);
return getEffect_l(sessionId, effectId);
}
sp<AudioFlinger::EffectModule> AudioFlinger::ThreadBase::getEffect_l(int sessionId, int effectId)
{
sp<EffectChain> chain = getEffectChain_l(sessionId);
return chain != 0 ? chain->getEffectFromId_l(effectId) : 0;
}
// PlaybackThread::addEffect_l() must be called with AudioFlinger::mLock and
// PlaybackThread::mLock held
status_t AudioFlinger::ThreadBase::addEffect_l(const sp<EffectModule>& effect)
{
// check for existing effect chain with the requested audio session
int sessionId = effect->sessionId();
sp<EffectChain> chain = getEffectChain_l(sessionId);
bool chainCreated = false;
ALOGD_IF((mType == OFFLOAD) && !effect->isOffloadable(),
"addEffect_l() on offloaded thread %p: effect %s does not support offload flags %x",
this, effect->desc().name, effect->desc().flags);
if (chain == 0) {
// create a new chain for this session
ALOGV("addEffect_l() new effect chain for session %d", sessionId);
chain = new EffectChain(this, sessionId);
addEffectChain_l(chain);
chain->setStrategy(getStrategyForSession_l(sessionId));
chainCreated = true;
}
ALOGV("addEffect_l() %p chain %p effect %p", this, chain.get(), effect.get());
if (chain->getEffectFromId_l(effect->id()) != 0) {
ALOGW("addEffect_l() %p effect %s already present in chain %p",
this, effect->desc().name, chain.get());
return BAD_VALUE;
}
effect->setOffloaded(mType == OFFLOAD, mId);
status_t status = chain->addEffect_l(effect);
if (status != NO_ERROR) {
if (chainCreated) {
removeEffectChain_l(chain);
}
return status;
}
effect->setDevice(mOutDevice);
effect->setDevice(mInDevice);
effect->setMode(mAudioFlinger->getMode());
effect->setAudioSource(mAudioSource);
return NO_ERROR;
}
void AudioFlinger::ThreadBase::removeEffect_l(const sp<EffectModule>& effect) {
ALOGV("removeEffect_l() %p effect %p", this, effect.get());
effect_descriptor_t desc = effect->desc();
if ((desc.flags & EFFECT_FLAG_TYPE_MASK) == EFFECT_FLAG_TYPE_AUXILIARY) {
detachAuxEffect_l(effect->id());
}
sp<EffectChain> chain = effect->chain().promote();
if (chain != 0) {
// remove effect chain if removing last effect
if (chain->removeEffect_l(effect) == 0) {
removeEffectChain_l(chain);
}
} else {
ALOGW("removeEffect_l() %p cannot promote chain for effect %p", this, effect.get());
}
}
void AudioFlinger::ThreadBase::lockEffectChains_l(
Vector< sp<AudioFlinger::EffectChain> >& effectChains)
{
effectChains = mEffectChains;
for (size_t i = 0; i < mEffectChains.size(); i++) {
mEffectChains[i]->lock();
}
}
void AudioFlinger::ThreadBase::unlockEffectChains(
const Vector< sp<AudioFlinger::EffectChain> >& effectChains)
{
for (size_t i = 0; i < effectChains.size(); i++) {
effectChains[i]->unlock();
}
}
sp<AudioFlinger::EffectChain> AudioFlinger::ThreadBase::getEffectChain(int sessionId)
{
Mutex::Autolock _l(mLock);
return getEffectChain_l(sessionId);
}
sp<AudioFlinger::EffectChain> AudioFlinger::ThreadBase::getEffectChain_l(int sessionId) const
{
size_t size = mEffectChains.size();
for (size_t i = 0; i < size; i++) {
if (mEffectChains[i]->sessionId() == sessionId) {
return mEffectChains[i];
}
}
return 0;
}
void AudioFlinger::ThreadBase::setMode(audio_mode_t mode)
{
Mutex::Autolock _l(mLock);
size_t size = mEffectChains.size();
for (size_t i = 0; i < size; i++) {
mEffectChains[i]->setMode_l(mode);
}
}
void AudioFlinger::ThreadBase::getAudioPortConfig(struct audio_port_config *config)
{
config->type = AUDIO_PORT_TYPE_MIX;
config->ext.mix.handle = mId;
config->sample_rate = mSampleRate;
config->format = mFormat;
config->channel_mask = mChannelMask;
config->config_mask = AUDIO_PORT_CONFIG_SAMPLE_RATE|AUDIO_PORT_CONFIG_CHANNEL_MASK|
AUDIO_PORT_CONFIG_FORMAT;
}
void AudioFlinger::ThreadBase::systemReady()
{
Mutex::Autolock _l(mLock);
if (mSystemReady) {
return;
}
mSystemReady = true;
for (size_t i = 0; i < mPendingConfigEvents.size(); i++) {
sendConfigEvent_l(mPendingConfigEvents.editItemAt(i));
}
mPendingConfigEvents.clear();
}
// ----------------------------------------------------------------------------
// Playback
// ----------------------------------------------------------------------------
AudioFlinger::PlaybackThread::PlaybackThread(const sp<AudioFlinger>& audioFlinger,
AudioStreamOut* output,
audio_io_handle_t id,
audio_devices_t device,
type_t type,
bool systemReady)
: ThreadBase(audioFlinger, id, device, AUDIO_DEVICE_NONE, type, systemReady),
mNormalFrameCount(0), mSinkBuffer(NULL),
mMixerBufferEnabled(AudioFlinger::kEnableExtendedPrecision),
mMixerBuffer(NULL),
mMixerBufferSize(0),
mMixerBufferFormat(AUDIO_FORMAT_INVALID),
mMixerBufferValid(false),
mEffectBufferEnabled(AudioFlinger::kEnableExtendedPrecision),
mEffectBuffer(NULL),
mEffectBufferSize(0),
mEffectBufferFormat(AUDIO_FORMAT_INVALID),
mEffectBufferValid(false),
mSuspended(0), mBytesWritten(0),
mActiveTracksGeneration(0),
// mStreamTypes[] initialized in constructor body
mOutput(output),
mLastWriteTime(0), mNumWrites(0), mNumDelayedWrites(0), mInWrite(false),
mMixerStatus(MIXER_IDLE),
mMixerStatusIgnoringFastTracks(MIXER_IDLE),
mStandbyDelayNs(AudioFlinger::mStandbyTimeInNsecs),
mBytesRemaining(0),
mCurrentWriteLength(0),
mUseAsyncWrite(false),
mWriteAckSequence(0),
mDrainSequence(0),
mSignalPending(false),
mScreenState(AudioFlinger::mScreenState),
// index 0 is reserved for normal mixer's submix
mFastTrackAvailMask(((1 << FastMixerState::kMaxFastTracks) - 1) & ~1),
mHwSupportsPause(false), mHwPaused(false), mFlushPending(false),
// mLatchD, mLatchQ,
mLatchDValid(false), mLatchQValid(false)
{
snprintf(mThreadName, kThreadNameLength, "AudioOut_%X", id);
mNBLogWriter = audioFlinger->newWriter_l(kLogSize, mThreadName);
// Assumes constructor is called by AudioFlinger with it's mLock held, but
// it would be safer to explicitly pass initial masterVolume/masterMute as
// parameter.
//
// If the HAL we are using has support for master volume or master mute,
// then do not attenuate or mute during mixing (just leave the volume at 1.0
// and the mute set to false).
mMasterVolume = audioFlinger->masterVolume_l();
mMasterMute = audioFlinger->masterMute_l();
if (mOutput && mOutput->audioHwDev) {
if (mOutput->audioHwDev->canSetMasterVolume()) {
mMasterVolume = 1.0;
}
if (mOutput->audioHwDev->canSetMasterMute()) {
mMasterMute = false;
}
}
readOutputParameters_l();
// ++ operator does not compile
for (audio_stream_type_t stream = AUDIO_STREAM_MIN; stream < AUDIO_STREAM_CNT;
stream = (audio_stream_type_t) (stream + 1)) {
mStreamTypes[stream].volume = mAudioFlinger->streamVolume_l(stream);
mStreamTypes[stream].mute = mAudioFlinger->streamMute_l(stream);
}
}
AudioFlinger::PlaybackThread::~PlaybackThread()
{
mAudioFlinger->unregisterWriter(mNBLogWriter);
free(mSinkBuffer);
free(mMixerBuffer);
free(mEffectBuffer);
}
void AudioFlinger::PlaybackThread::dump(int fd, const Vector<String16>& args)
{
dumpInternals(fd, args);
dumpTracks(fd, args);
dumpEffectChains(fd, args);
}
void AudioFlinger::PlaybackThread::dumpTracks(int fd, const Vector<String16>& args __unused)
{
const size_t SIZE = 256;
char buffer[SIZE];
String8 result;
result.appendFormat(" Stream volumes in dB: ");
for (int i = 0; i < AUDIO_STREAM_CNT; ++i) {
const stream_type_t *st = &mStreamTypes[i];
if (i > 0) {
result.appendFormat(", ");
}
result.appendFormat("%d:%.2g", i, 20.0 * log10(st->volume));
if (st->mute) {
result.append("M");
}
}
result.append("\n");
write(fd, result.string(), result.length());
result.clear();
// These values are "raw"; they will wrap around. See prepareTracks_l() for a better way.
FastTrackUnderruns underruns = getFastTrackUnderruns(0);
dprintf(fd, " Normal mixer raw underrun counters: partial=%u empty=%u\n",
underruns.mBitFields.mPartial, underruns.mBitFields.mEmpty);
size_t numtracks = mTracks.size();
size_t numactive = mActiveTracks.size();
dprintf(fd, " %d Tracks", numtracks);
size_t numactiveseen = 0;
if (numtracks) {
dprintf(fd, " of which %d are active\n", numactive);
Track::appendDumpHeader(result);
for (size_t i = 0; i < numtracks; ++i) {
sp<Track> track = mTracks[i];
if (track != 0) {
bool active = mActiveTracks.indexOf(track) >= 0;
if (active) {
numactiveseen++;
}
track->dump(buffer, SIZE, active);
result.append(buffer);
}
}
} else {
result.append("\n");
}
if (numactiveseen != numactive) {
// some tracks in the active list were not in the tracks list
snprintf(buffer, SIZE, " The following tracks are in the active list but"
" not in the track list\n");
result.append(buffer);
Track::appendDumpHeader(result);
for (size_t i = 0; i < numactive; ++i) {
sp<Track> track = mActiveTracks[i].promote();
if (track != 0 && mTracks.indexOf(track) < 0) {
track->dump(buffer, SIZE, true);
result.append(buffer);
}
}
}
write(fd, result.string(), result.size());
}
void AudioFlinger::PlaybackThread::dumpInternals(int fd, const Vector<String16>& args)
{
dprintf(fd, "\nOutput thread %p type %d (%s):\n", this, type(), threadTypeToString(type()));
dumpBase(fd, args);
dprintf(fd, " Normal frame count: %zu\n", mNormalFrameCount);
dprintf(fd, " Last write occurred (msecs): %llu\n", ns2ms(systemTime() - mLastWriteTime));
dprintf(fd, " Total writes: %d\n", mNumWrites);
dprintf(fd, " Delayed writes: %d\n", mNumDelayedWrites);
dprintf(fd, " Blocked in write: %s\n", mInWrite ? "yes" : "no");
dprintf(fd, " Suspend count: %d\n", mSuspended);
dprintf(fd, " Sink buffer : %p\n", mSinkBuffer);
dprintf(fd, " Mixer buffer: %p\n", mMixerBuffer);
dprintf(fd, " Effect buffer: %p\n", mEffectBuffer);
dprintf(fd, " Fast track availMask=%#x\n", mFastTrackAvailMask);
AudioStreamOut *output = mOutput;
audio_output_flags_t flags = output != NULL ? output->flags : AUDIO_OUTPUT_FLAG_NONE;
String8 flagsAsString = outputFlagsToString(flags);
dprintf(fd, " AudioStreamOut: %p flags %#x (%s)\n", output, flags, flagsAsString.string());
}
// Thread virtuals
void AudioFlinger::PlaybackThread::onFirstRef()
{
run(mThreadName, ANDROID_PRIORITY_URGENT_AUDIO);
}
// ThreadBase virtuals
void AudioFlinger::PlaybackThread::preExit()
{
ALOGV(" preExit()");
// FIXME this is using hard-coded strings but in the future, this functionality will be
// converted to use audio HAL extensions required to support tunneling
mOutput->stream->common.set_parameters(&mOutput->stream->common, "exiting=1");
}
// PlaybackThread::createTrack_l() must be called with AudioFlinger::mLock held
sp<AudioFlinger::PlaybackThread::Track> AudioFlinger::PlaybackThread::createTrack_l(
const sp<AudioFlinger::Client>& client,
audio_stream_type_t streamType,
uint32_t sampleRate,
audio_format_t format,
audio_channel_mask_t channelMask,
size_t *pFrameCount,
const sp<IMemory>& sharedBuffer,
int sessionId,
IAudioFlinger::track_flags_t *flags,
pid_t tid,
int uid,
status_t *status)
{
size_t frameCount = *pFrameCount;
sp<Track> track;
status_t lStatus;
bool isTimed = (*flags & IAudioFlinger::TRACK_TIMED) != 0;
// client expresses a preference for FAST, but we get the final say
if (*flags & IAudioFlinger::TRACK_FAST) {
if (
// not timed
(!isTimed) &&
// either of these use cases:
(
// use case 1: shared buffer with any frame count
(
(sharedBuffer != 0)
) ||
// use case 2: frame count is default or at least as large as HAL
(
// we formerly checked for a callback handler (non-0 tid),
// but that is no longer required for TRANSFER_OBTAIN mode
((frameCount == 0) ||
(frameCount >= mFrameCount))
)
) &&
// PCM data
audio_is_linear_pcm(format) &&
// TODO: extract as a data library function that checks that a computationally
// expensive downmixer is not required: isFastOutputChannelConversion()
(channelMask == mChannelMask ||
mChannelMask != AUDIO_CHANNEL_OUT_STEREO ||
(channelMask == AUDIO_CHANNEL_OUT_MONO
/* && mChannelMask == AUDIO_CHANNEL_OUT_STEREO */)) &&
// hardware sample rate
(sampleRate == mSampleRate) &&
// normal mixer has an associated fast mixer
hasFastMixer() &&
// there are sufficient fast track slots available
(mFastTrackAvailMask != 0)
// FIXME test that MixerThread for this fast track has a capable output HAL
// FIXME add a permission test also?
) {
// if frameCount not specified, then it defaults to fast mixer (HAL) frame count
if (frameCount == 0) {
// read the fast track multiplier property the first time it is needed
int ok = pthread_once(&sFastTrackMultiplierOnce, sFastTrackMultiplierInit);
if (ok != 0) {
ALOGE("%s pthread_once failed: %d", __func__, ok);
}
frameCount = mFrameCount * sFastTrackMultiplier;
}
ALOGV("AUDIO_OUTPUT_FLAG_FAST accepted: frameCount=%d mFrameCount=%d",
frameCount, mFrameCount);
} else {
ALOGV("AUDIO_OUTPUT_FLAG_FAST denied: isTimed=%d sharedBuffer=%p frameCount=%d "
"mFrameCount=%d format=%#x mFormat=%#x isLinear=%d channelMask=%#x "
"sampleRate=%u mSampleRate=%u "
"hasFastMixer=%d tid=%d fastTrackAvailMask=%#x",
isTimed, sharedBuffer.get(), frameCount, mFrameCount, format, mFormat,
audio_is_linear_pcm(format),
channelMask, sampleRate, mSampleRate, hasFastMixer(), tid, mFastTrackAvailMask);
*flags &= ~IAudioFlinger::TRACK_FAST;
}
}
// For normal PCM streaming tracks, update minimum frame count.
// For compatibility with AudioTrack calculation, buffer depth is forced
// to be at least 2 x the normal mixer frame count and cover audio hardware latency.
// This is probably too conservative, but legacy application code may depend on it.
// If you change this calculation, also review the start threshold which is related.
if (!(*flags & IAudioFlinger::TRACK_FAST)
&& audio_is_linear_pcm(format) && sharedBuffer == 0) {
// this must match AudioTrack.cpp calculateMinFrameCount().
// TODO: Move to a common library
uint32_t latencyMs = mOutput->stream->get_latency(mOutput->stream);
uint32_t minBufCount = latencyMs / ((1000 * mNormalFrameCount) / mSampleRate);
if (minBufCount < 2) {
minBufCount = 2;
}
// For normal mixing tracks, if speed is > 1.0f (normal), AudioTrack
// or the client should compute and pass in a larger buffer request.
size_t minFrameCount =
minBufCount * sourceFramesNeededWithTimestretch(
sampleRate, mNormalFrameCount,
mSampleRate, AUDIO_TIMESTRETCH_SPEED_NORMAL /*speed*/);
if (frameCount < minFrameCount) { // including frameCount == 0
frameCount = minFrameCount;
}
}
*pFrameCount = frameCount;
switch (mType) {
case DIRECT:
if (audio_is_linear_pcm(format)) {
if (sampleRate != mSampleRate || format != mFormat || channelMask != mChannelMask) {
ALOGE("createTrack_l() Bad parameter: sampleRate %u format %#x, channelMask 0x%08x "
"for output %p with format %#x",
sampleRate, format, channelMask, mOutput, mFormat);
lStatus = BAD_VALUE;
goto Exit;
}
}
break;
case OFFLOAD:
if (sampleRate != mSampleRate || format != mFormat || channelMask != mChannelMask) {
ALOGE("createTrack_l() Bad parameter: sampleRate %d format %#x, channelMask 0x%08x \""
"for output %p with format %#x",
sampleRate, format, channelMask, mOutput, mFormat);
lStatus = BAD_VALUE;
goto Exit;
}
break;
default:
if (!audio_is_linear_pcm(format)) {
ALOGE("createTrack_l() Bad parameter: format %#x \""
"for output %p with format %#x",
format, mOutput, mFormat);
lStatus = BAD_VALUE;
goto Exit;
}
if (sampleRate > mSampleRate * AUDIO_RESAMPLER_DOWN_RATIO_MAX) {
ALOGE("Sample rate out of range: %u mSampleRate %u", sampleRate, mSampleRate);
lStatus = BAD_VALUE;
goto Exit;
}
break;
}
lStatus = initCheck();
if (lStatus != NO_ERROR) {
ALOGE("createTrack_l() audio driver not initialized");
goto Exit;
}
{ // scope for mLock
Mutex::Autolock _l(mLock);
// all tracks in same audio session must share the same routing strategy otherwise
// conflicts will happen when tracks are moved from one output to another by audio policy
// manager
uint32_t strategy = AudioSystem::getStrategyForStream(streamType);
for (size_t i = 0; i < mTracks.size(); ++i) {
sp<Track> t = mTracks[i];
if (t != 0 && t->isExternalTrack()) {
uint32_t actual = AudioSystem::getStrategyForStream(t->streamType());
if (sessionId == t->sessionId() && strategy != actual) {
ALOGE("createTrack_l() mismatched strategy; expected %u but found %u",
strategy, actual);
lStatus = BAD_VALUE;
goto Exit;
}
}
}
if (!isTimed) {
track = new Track(this, client, streamType, sampleRate, format,
channelMask, frameCount, NULL, sharedBuffer,
sessionId, uid, *flags, TrackBase::TYPE_DEFAULT);
} else {
track = TimedTrack::create(this, client, streamType, sampleRate, format,
channelMask, frameCount, sharedBuffer, sessionId, uid);
}
// new Track always returns non-NULL,
// but TimedTrack::create() is a factory that could fail by returning NULL
lStatus = track != 0 ? track->initCheck() : (status_t) NO_MEMORY;
if (lStatus != NO_ERROR) {
ALOGE("createTrack_l() initCheck failed %d; no control block?", lStatus);
// track must be cleared from the caller as the caller has the AF lock
goto Exit;
}
mTracks.add(track);
sp<EffectChain> chain = getEffectChain_l(sessionId);
if (chain != 0) {
ALOGV("createTrack_l() setting main buffer %p", chain->inBuffer());
track->setMainBuffer(chain->inBuffer());
chain->setStrategy(AudioSystem::getStrategyForStream(track->streamType()));
chain->incTrackCnt();
}
if ((*flags & IAudioFlinger::TRACK_FAST) && (tid != -1)) {
pid_t callingPid = IPCThreadState::self()->getCallingPid();
// we don't have CAP_SYS_NICE, nor do we want to have it as it's too powerful,
// so ask activity manager to do this on our behalf
sendPrioConfigEvent_l(callingPid, tid, kPriorityAudioApp);
}
}
lStatus = NO_ERROR;
Exit:
*status = lStatus;
return track;
}
uint32_t AudioFlinger::PlaybackThread::correctLatency_l(uint32_t latency) const
{
return latency;
}
uint32_t AudioFlinger::PlaybackThread::latency() const
{
Mutex::Autolock _l(mLock);
return latency_l();
}
uint32_t AudioFlinger::PlaybackThread::latency_l() const
{
if (initCheck() == NO_ERROR) {
return correctLatency_l(mOutput->stream->get_latency(mOutput->stream));
} else {
return 0;
}
}
void AudioFlinger::PlaybackThread::setMasterVolume(float value)
{
Mutex::Autolock _l(mLock);
// Don't apply master volume in SW if our HAL can do it for us.
if (mOutput && mOutput->audioHwDev &&
mOutput->audioHwDev->canSetMasterVolume()) {
mMasterVolume = 1.0;
} else {
mMasterVolume = value;
}
}
void AudioFlinger::PlaybackThread::setMasterMute(bool muted)
{
Mutex::Autolock _l(mLock);
// Don't apply master mute in SW if our HAL can do it for us.
if (mOutput && mOutput->audioHwDev &&
mOutput->audioHwDev->canSetMasterMute()) {
mMasterMute = false;
} else {
mMasterMute = muted;
}
}
void AudioFlinger::PlaybackThread::setStreamVolume(audio_stream_type_t stream, float value)
{
Mutex::Autolock _l(mLock);
mStreamTypes[stream].volume = value;
broadcast_l();
}
void AudioFlinger::PlaybackThread::setStreamMute(audio_stream_type_t stream, bool muted)
{
Mutex::Autolock _l(mLock);
mStreamTypes[stream].mute = muted;
broadcast_l();
}
float AudioFlinger::PlaybackThread::streamVolume(audio_stream_type_t stream) const
{
Mutex::Autolock _l(mLock);
return mStreamTypes[stream].volume;
}
// addTrack_l() must be called with ThreadBase::mLock held
status_t AudioFlinger::PlaybackThread::addTrack_l(const sp<Track>& track)
{
status_t status = ALREADY_EXISTS;
// set retry count for buffer fill
track->mRetryCount = kMaxTrackStartupRetries;
if (mActiveTracks.indexOf(track) < 0) {
// the track is newly added, make sure it fills up all its
// buffers before playing. This is to ensure the client will
// effectively get the latency it requested.
if (track->isExternalTrack()) {
TrackBase::track_state state = track->mState;
mLock.unlock();
status = AudioSystem::startOutput(mId, track->streamType(),
(audio_session_t)track->sessionId());
mLock.lock();
// abort track was stopped/paused while we released the lock
if (state != track->mState) {
if (status == NO_ERROR) {
mLock.unlock();
AudioSystem::stopOutput(mId, track->streamType(),
(audio_session_t)track->sessionId());
mLock.lock();
}
return INVALID_OPERATION;
}
// abort if start is rejected by audio policy manager
if (status != NO_ERROR) {
return PERMISSION_DENIED;
}
#ifdef ADD_BATTERY_DATA
// to track the speaker usage
addBatteryData(IMediaPlayerService::kBatteryDataAudioFlingerStart);
#endif
}
track->mFillingUpStatus = track->sharedBuffer() != 0 ? Track::FS_FILLED : Track::FS_FILLING;
track->mResetDone = false;
track->mPresentationCompleteFrames = 0;
mActiveTracks.add(track);
mWakeLockUids.add(track->uid());
mActiveTracksGeneration++;
mLatestActiveTrack = track;
sp<EffectChain> chain = getEffectChain_l(track->sessionId());
if (chain != 0) {
ALOGV("addTrack_l() starting track on chain %p for session %d", chain.get(),
track->sessionId());
chain->incActiveTrackCnt();
}
status = NO_ERROR;
}
onAddNewTrack_l();
return status;
}
bool AudioFlinger::PlaybackThread::destroyTrack_l(const sp<Track>& track)
{
track->terminate();
// active tracks are removed by threadLoop()
bool trackActive = (mActiveTracks.indexOf(track) >= 0);
track->mState = TrackBase::STOPPED;
if (!trackActive) {
removeTrack_l(track);
} else if (track->isFastTrack() || track->isOffloaded() || track->isDirect()) {
track->mState = TrackBase::STOPPING_1;
}
return trackActive;
}
void AudioFlinger::PlaybackThread::removeTrack_l(const sp<Track>& track)
{
track->triggerEvents(AudioSystem::SYNC_EVENT_PRESENTATION_COMPLETE);
mTracks.remove(track);
deleteTrackName_l(track->name());
// redundant as track is about to be destroyed, for dumpsys only
track->mName = -1;
if (track->isFastTrack()) {
int index = track->mFastIndex;
ALOG_ASSERT(0 < index && index < (int)FastMixerState::kMaxFastTracks);
ALOG_ASSERT(!(mFastTrackAvailMask & (1 << index)));
mFastTrackAvailMask |= 1 << index;
// redundant as track is about to be destroyed, for dumpsys only
track->mFastIndex = -1;
}
sp<EffectChain> chain = getEffectChain_l(track->sessionId());
if (chain != 0) {
chain->decTrackCnt();
}
}
void AudioFlinger::PlaybackThread::broadcast_l()
{
// Thread could be blocked waiting for async
// so signal it to handle state changes immediately
// If threadLoop is currently unlocked a signal of mWaitWorkCV will
// be lost so we also flag to prevent it blocking on mWaitWorkCV
mSignalPending = true;
mWaitWorkCV.broadcast();
}
String8 AudioFlinger::PlaybackThread::getParameters(const String8& keys)
{
Mutex::Autolock _l(mLock);
if (initCheck() != NO_ERROR) {
return String8();
}
char *s = mOutput->stream->common.get_parameters(&mOutput->stream->common, keys.string());
const String8 out_s8(s);
free(s);
return out_s8;
}
void AudioFlinger::PlaybackThread::ioConfigChanged(audio_io_config_event event, pid_t pid) {
sp<AudioIoDescriptor> desc = new AudioIoDescriptor();
ALOGV("PlaybackThread::ioConfigChanged, thread %p, event %d", this, event);
desc->mIoHandle = mId;
switch (event) {
case AUDIO_OUTPUT_OPENED:
case AUDIO_OUTPUT_CONFIG_CHANGED:
desc->mPatch = mPatch;
desc->mChannelMask = mChannelMask;
desc->mSamplingRate = mSampleRate;
desc->mFormat = mFormat;
desc->mFrameCount = mNormalFrameCount; // FIXME see
// AudioFlinger::frameCount(audio_io_handle_t)
desc->mLatency = latency_l();
break;
case AUDIO_OUTPUT_CLOSED:
default:
break;
}
mAudioFlinger->ioConfigChanged(event, desc, pid);
}
void AudioFlinger::PlaybackThread::writeCallback()
{
ALOG_ASSERT(mCallbackThread != 0);
mCallbackThread->resetWriteBlocked();
}
void AudioFlinger::PlaybackThread::drainCallback()
{
ALOG_ASSERT(mCallbackThread != 0);
mCallbackThread->resetDraining();
}
void AudioFlinger::PlaybackThread::resetWriteBlocked(uint32_t sequence)
{
Mutex::Autolock _l(mLock);
// reject out of sequence requests
if ((mWriteAckSequence & 1) && (sequence == mWriteAckSequence)) {
mWriteAckSequence &= ~1;
mWaitWorkCV.signal();
}
}
void AudioFlinger::PlaybackThread::resetDraining(uint32_t sequence)
{
Mutex::Autolock _l(mLock);
// reject out of sequence requests
if ((mDrainSequence & 1) && (sequence == mDrainSequence)) {
mDrainSequence &= ~1;
mWaitWorkCV.signal();
}
}
// static
int AudioFlinger::PlaybackThread::asyncCallback(stream_callback_event_t event,
void *param __unused,
void *cookie)
{
AudioFlinger::PlaybackThread *me = (AudioFlinger::PlaybackThread *)cookie;
ALOGV("asyncCallback() event %d", event);
switch (event) {
case STREAM_CBK_EVENT_WRITE_READY:
me->writeCallback();
break;
case STREAM_CBK_EVENT_DRAIN_READY:
me->drainCallback();
break;
default:
ALOGW("asyncCallback() unknown event %d", event);
break;
}
return 0;
}
void AudioFlinger::PlaybackThread::readOutputParameters_l()
{
// unfortunately we have no way of recovering from errors here, hence the LOG_ALWAYS_FATAL
mSampleRate = mOutput->getSampleRate();
mChannelMask = mOutput->getChannelMask();
if (!audio_is_output_channel(mChannelMask)) {
LOG_ALWAYS_FATAL("HAL channel mask %#x not valid for output", mChannelMask);
}
if ((mType == MIXER || mType == DUPLICATING)
&& !isValidPcmSinkChannelMask(mChannelMask)) {
LOG_ALWAYS_FATAL("HAL channel mask %#x not supported for mixed output",
mChannelMask);
}
mChannelCount = audio_channel_count_from_out_mask(mChannelMask);
// Get actual HAL format.
mHALFormat = mOutput->stream->common.get_format(&mOutput->stream->common);
// Get format from the shim, which will be different than the HAL format
// if playing compressed audio over HDMI passthrough.
mFormat = mOutput->getFormat();
if (!audio_is_valid_format(mFormat)) {
LOG_ALWAYS_FATAL("HAL format %#x not valid for output", mFormat);
}
if ((mType == MIXER || mType == DUPLICATING)
&& !isValidPcmSinkFormat(mFormat)) {
LOG_FATAL("HAL format %#x not supported for mixed output",
mFormat);
}
mFrameSize = mOutput->getFrameSize();
mBufferSize = mOutput->stream->common.get_buffer_size(&mOutput->stream->common);
mFrameCount = mBufferSize / mFrameSize;
if (mFrameCount & 15) {
ALOGW("HAL output buffer size is %u frames but AudioMixer requires multiples of 16 frames",
mFrameCount);
}
if ((mOutput->flags & AUDIO_OUTPUT_FLAG_NON_BLOCKING) &&
(mOutput->stream->set_callback != NULL)) {
if (mOutput->stream->set_callback(mOutput->stream,
AudioFlinger::PlaybackThread::asyncCallback, this) == 0) {
mUseAsyncWrite = true;
mCallbackThread = new AudioFlinger::AsyncCallbackThread(this);
}
}
mHwSupportsPause = false;
if (mOutput->flags & AUDIO_OUTPUT_FLAG_DIRECT) {
if (mOutput->stream->pause != NULL) {
if (mOutput->stream->resume != NULL) {
mHwSupportsPause = true;
} else {
ALOGW("direct output implements pause but not resume");
}
} else if (mOutput->stream->resume != NULL) {
ALOGW("direct output implements resume but not pause");
}
}
if (!mHwSupportsPause && mOutput->flags & AUDIO_OUTPUT_FLAG_HW_AV_SYNC) {
LOG_ALWAYS_FATAL("HW_AV_SYNC requested but HAL does not implement pause and resume");
}
if (mType == DUPLICATING && mMixerBufferEnabled && mEffectBufferEnabled) {
// For best precision, we use float instead of the associated output
// device format (typically PCM 16 bit).
mFormat = AUDIO_FORMAT_PCM_FLOAT;
mFrameSize = mChannelCount * audio_bytes_per_sample(mFormat);
mBufferSize = mFrameSize * mFrameCount;
// TODO: We currently use the associated output device channel mask and sample rate.
// (1) Perhaps use the ORed channel mask of all downstream MixerThreads
// (if a valid mask) to avoid premature downmix.
// (2) Perhaps use the maximum sample rate of all downstream MixerThreads
// instead of the output device sample rate to avoid loss of high frequency information.
// This may need to be updated as MixerThread/OutputTracks are added and not here.
}
// Calculate size of normal sink buffer relative to the HAL output buffer size
double multiplier = 1.0;
if (mType == MIXER && (kUseFastMixer == FastMixer_Static ||
kUseFastMixer == FastMixer_Dynamic)) {
size_t minNormalFrameCount = (kMinNormalSinkBufferSizeMs * mSampleRate) / 1000;
size_t maxNormalFrameCount = (kMaxNormalSinkBufferSizeMs * mSampleRate) / 1000;
// round up minimum and round down maximum to nearest 16 frames to satisfy AudioMixer
minNormalFrameCount = (minNormalFrameCount + 15) & ~15;
maxNormalFrameCount = maxNormalFrameCount & ~15;
if (maxNormalFrameCount < minNormalFrameCount) {
maxNormalFrameCount = minNormalFrameCount;
}
multiplier = (double) minNormalFrameCount / (double) mFrameCount;
if (multiplier <= 1.0) {
multiplier = 1.0;
} else if (multiplier <= 2.0) {
if (2 * mFrameCount <= maxNormalFrameCount) {
multiplier = 2.0;
} else {
multiplier = (double) maxNormalFrameCount / (double) mFrameCount;
}
} else {
// prefer an even multiplier, for compatibility with doubling of fast tracks due to HAL
// SRC (it would be unusual for the normal sink buffer size to not be a multiple of fast
// track, but we sometimes have to do this to satisfy the maximum frame count
// constraint)
// FIXME this rounding up should not be done if no HAL SRC
uint32_t truncMult = (uint32_t) multiplier;
if ((truncMult & 1)) {
if ((truncMult + 1) * mFrameCount <= maxNormalFrameCount) {
++truncMult;
}
}
multiplier = (double) truncMult;
}
}
mNormalFrameCount = multiplier * mFrameCount;
// round up to nearest 16 frames to satisfy AudioMixer
if (mType == MIXER || mType == DUPLICATING) {
mNormalFrameCount = (mNormalFrameCount + 15) & ~15;
}
ALOGI("HAL output buffer size %u frames, normal sink buffer size %u frames", mFrameCount,
mNormalFrameCount);
// Check if we want to throttle the processing to no more than 2x normal rate
mThreadThrottle = property_get_bool("af.thread.throttle", true /* default_value */);
mThreadThrottleTimeMs = 0;
mThreadThrottleEndMs = 0;
mHalfBufferMs = mNormalFrameCount * 1000 / (2 * mSampleRate);
// mSinkBuffer is the sink buffer. Size is always multiple-of-16 frames.
// Originally this was int16_t[] array, need to remove legacy implications.
free(mSinkBuffer);
mSinkBuffer = NULL;
// For sink buffer size, we use the frame size from the downstream sink to avoid problems
// with non PCM formats for compressed music, e.g. AAC, and Offload threads.
const size_t sinkBufferSize = mNormalFrameCount * mFrameSize;
(void)posix_memalign(&mSinkBuffer, 32, sinkBufferSize);
// We resize the mMixerBuffer according to the requirements of the sink buffer which
// drives the output.
free(mMixerBuffer);
mMixerBuffer = NULL;
if (mMixerBufferEnabled) {
mMixerBufferFormat = AUDIO_FORMAT_PCM_FLOAT; // also valid: AUDIO_FORMAT_PCM_16_BIT.
mMixerBufferSize = mNormalFrameCount * mChannelCount
* audio_bytes_per_sample(mMixerBufferFormat);
(void)posix_memalign(&mMixerBuffer, 32, mMixerBufferSize);
}
free(mEffectBuffer);
mEffectBuffer = NULL;
if (mEffectBufferEnabled) {
mEffectBufferFormat = AUDIO_FORMAT_PCM_16_BIT; // Note: Effects support 16b only
mEffectBufferSize = mNormalFrameCount * mChannelCount
* audio_bytes_per_sample(mEffectBufferFormat);
(void)posix_memalign(&mEffectBuffer, 32, mEffectBufferSize);
}
// force reconfiguration of effect chains and engines to take new buffer size and audio
// parameters into account
// Note that mLock is not held when readOutputParameters_l() is called from the constructor
// but in this case nothing is done below as no audio sessions have effect yet so it doesn't
// matter.
// create a copy of mEffectChains as calling moveEffectChain_l() can reorder some effect chains
Vector< sp<EffectChain> > effectChains = mEffectChains;
for (size_t i = 0; i < effectChains.size(); i ++) {
mAudioFlinger->moveEffectChain_l(effectChains[i]->sessionId(), this, this, false);
}
}
status_t AudioFlinger::PlaybackThread::getRenderPosition(uint32_t *halFrames, uint32_t *dspFrames)
{
if (halFrames == NULL || dspFrames == NULL) {
return BAD_VALUE;
}
Mutex::Autolock _l(mLock);
if (initCheck() != NO_ERROR) {
return INVALID_OPERATION;
}
size_t framesWritten = mBytesWritten / mFrameSize;
*halFrames = framesWritten;
if (isSuspended()) {
// return an estimation of rendered frames when the output is suspended
size_t latencyFrames = (latency_l() * mSampleRate) / 1000;
*dspFrames = framesWritten >= latencyFrames ? framesWritten - latencyFrames : 0;
return NO_ERROR;
} else {
status_t status;
uint32_t frames;
status = mOutput->getRenderPosition(&frames);
*dspFrames = (size_t)frames;
return status;
}
}
uint32_t AudioFlinger::PlaybackThread::hasAudioSession(int sessionId) const
{
Mutex::Autolock _l(mLock);
uint32_t result = 0;
if (getEffectChain_l(sessionId) != 0) {
result = EFFECT_SESSION;
}
for (size_t i = 0; i < mTracks.size(); ++i) {
sp<Track> track = mTracks[i];
if (sessionId == track->sessionId() && !track->isInvalid()) {
result |= TRACK_SESSION;
break;
}
}
return result;
}
uint32_t AudioFlinger::PlaybackThread::getStrategyForSession_l(int sessionId)
{
// session AUDIO_SESSION_OUTPUT_MIX is placed in same strategy as MUSIC stream so that
// it is moved to correct output by audio policy manager when A2DP is connected or disconnected
if (sessionId == AUDIO_SESSION_OUTPUT_MIX) {
return AudioSystem::getStrategyForStream(AUDIO_STREAM_MUSIC);
}
for (size_t i = 0; i < mTracks.size(); i++) {
sp<Track> track = mTracks[i];
if (sessionId == track->sessionId() && !track->isInvalid()) {
return AudioSystem::getStrategyForStream(track->streamType());
}
}
return AudioSystem::getStrategyForStream(AUDIO_STREAM_MUSIC);
}
AudioStreamOut* AudioFlinger::PlaybackThread::getOutput() const
{
Mutex::Autolock _l(mLock);
return mOutput;
}
AudioStreamOut* AudioFlinger::PlaybackThread::clearOutput()
{
Mutex::Autolock _l(mLock);
AudioStreamOut *output = mOutput;
mOutput = NULL;
// FIXME FastMixer might also have a raw ptr to mOutputSink;
// must push a NULL and wait for ack
mOutputSink.clear();
mPipeSink.clear();
mNormalSink.clear();
return output;
}
// this method must always be called either with ThreadBase mLock held or inside the thread loop
audio_stream_t* AudioFlinger::PlaybackThread::stream() const
{
if (mOutput == NULL) {
return NULL;
}
return &mOutput->stream->common;
}
uint32_t AudioFlinger::PlaybackThread::activeSleepTimeUs() const
{
return (uint32_t)((uint32_t)((mNormalFrameCount * 1000) / mSampleRate) * 1000);
}
status_t AudioFlinger::PlaybackThread::setSyncEvent(const sp<SyncEvent>& event)
{
if (!isValidSyncEvent(event)) {
return BAD_VALUE;
}
Mutex::Autolock _l(mLock);
for (size_t i = 0; i < mTracks.size(); ++i) {
sp<Track> track = mTracks[i];
if (event->triggerSession() == track->sessionId()) {
(void) track->setSyncEvent(event);
return NO_ERROR;
}
}
return NAME_NOT_FOUND;
}
bool AudioFlinger::PlaybackThread::isValidSyncEvent(const sp<SyncEvent>& event) const
{
return event->type() == AudioSystem::SYNC_EVENT_PRESENTATION_COMPLETE;
}
void AudioFlinger::PlaybackThread::threadLoop_removeTracks(
const Vector< sp<Track> >& tracksToRemove)
{
size_t count = tracksToRemove.size();
if (count > 0) {
for (size_t i = 0 ; i < count ; i++) {
const sp<Track>& track = tracksToRemove.itemAt(i);
if (track->isExternalTrack()) {
AudioSystem::stopOutput(mId, track->streamType(),
(audio_session_t)track->sessionId());
#ifdef ADD_BATTERY_DATA
// to track the speaker usage
addBatteryData(IMediaPlayerService::kBatteryDataAudioFlingerStop);
#endif
if (track->isTerminated()) {
AudioSystem::releaseOutput(mId, track->streamType(),
(audio_session_t)track->sessionId());
}
}
}
}
}
void AudioFlinger::PlaybackThread::checkSilentMode_l()
{
if (!mMasterMute) {
char value[PROPERTY_VALUE_MAX];
if (property_get("ro.audio.silent", value, "0") > 0) {
char *endptr;
unsigned long ul = strtoul(value, &endptr, 0);
if (*endptr == '\0' && ul != 0) {
ALOGD("Silence is golden");
// The setprop command will not allow a property to be changed after
// the first time it is set, so we don't have to worry about un-muting.
setMasterMute_l(true);
}
}
}
}
// shared by MIXER and DIRECT, overridden by DUPLICATING
ssize_t AudioFlinger::PlaybackThread::threadLoop_write()
{
// FIXME rewrite to reduce number of system calls
mLastWriteTime = systemTime();
mInWrite = true;
ssize_t bytesWritten;
const size_t offset = mCurrentWriteLength - mBytesRemaining;
// If an NBAIO sink is present, use it to write the normal mixer's submix
if (mNormalSink != 0) {
const size_t count = mBytesRemaining / mFrameSize;
ATRACE_BEGIN("write");
// update the setpoint when AudioFlinger::mScreenState changes
uint32_t screenState = AudioFlinger::mScreenState;
if (screenState != mScreenState) {
mScreenState = screenState;
MonoPipe *pipe = (MonoPipe *)mPipeSink.get();
if (pipe != NULL) {
pipe->setAvgFrames((mScreenState & 1) ?
(pipe->maxFrames() * 7) / 8 : mNormalFrameCount * 2);
}
}
ssize_t framesWritten = mNormalSink->write((char *)mSinkBuffer + offset, count);
ATRACE_END();
if (framesWritten > 0) {
bytesWritten = framesWritten * mFrameSize;
} else {
bytesWritten = framesWritten;
}
mLatchDValid = false;
status_t status = mNormalSink->getTimestamp(mLatchD.mTimestamp);
if (status == NO_ERROR) {
size_t totalFramesWritten = mNormalSink->framesWritten();
if (totalFramesWritten >= mLatchD.mTimestamp.mPosition) {
mLatchD.mUnpresentedFrames = totalFramesWritten - mLatchD.mTimestamp.mPosition;
// mLatchD.mFramesReleased is set immediately before D is clocked into Q
mLatchDValid = true;
}
}
// otherwise use the HAL / AudioStreamOut directly
} else {
// Direct output and offload threads
if (mUseAsyncWrite) {
ALOGW_IF(mWriteAckSequence & 1, "threadLoop_write(): out of sequence write request");
mWriteAckSequence += 2;
mWriteAckSequence |= 1;
ALOG_ASSERT(mCallbackThread != 0);
mCallbackThread->setWriteBlocked(mWriteAckSequence);
}
// FIXME We should have an implementation of timestamps for direct output threads.
// They are used e.g for multichannel PCM playback over HDMI.
bytesWritten = mOutput->write((char *)mSinkBuffer + offset, mBytesRemaining);
if (mUseAsyncWrite &&
((bytesWritten < 0) || (bytesWritten == (ssize_t)mBytesRemaining))) {
// do not wait for async callback in case of error of full write
mWriteAckSequence &= ~1;
ALOG_ASSERT(mCallbackThread != 0);
mCallbackThread->setWriteBlocked(mWriteAckSequence);
}
}
mNumWrites++;
mInWrite = false;
mStandby = false;
return bytesWritten;
}
void AudioFlinger::PlaybackThread::threadLoop_drain()
{
if (mOutput->stream->drain) {
ALOGV("draining %s", (mMixerStatus == MIXER_DRAIN_TRACK) ? "early" : "full");
if (mUseAsyncWrite) {
ALOGW_IF(mDrainSequence & 1, "threadLoop_drain(): out of sequence drain request");
mDrainSequence |= 1;
ALOG_ASSERT(mCallbackThread != 0);
mCallbackThread->setDraining(mDrainSequence);
}
mOutput->stream->drain(mOutput->stream,
(mMixerStatus == MIXER_DRAIN_TRACK) ? AUDIO_DRAIN_EARLY_NOTIFY
: AUDIO_DRAIN_ALL);
}
}
void AudioFlinger::PlaybackThread::threadLoop_exit()
{
{
Mutex::Autolock _l(mLock);
for (size_t i = 0; i < mTracks.size(); i++) {
sp<Track> track = mTracks[i];
track->invalidate();
}
}
}
/*
The derived values that are cached:
- mSinkBufferSize from frame count * frame size
- mActiveSleepTimeUs from activeSleepTimeUs()
- mIdleSleepTimeUs from idleSleepTimeUs()
- mStandbyDelayNs from mActiveSleepTimeUs (DIRECT only)
- maxPeriod from frame count and sample rate (MIXER only)
The parameters that affect these derived values are:
- frame count
- frame size
- sample rate
- device type: A2DP or not
- device latency
- format: PCM or not
- active sleep time
- idle sleep time
*/
void AudioFlinger::PlaybackThread::cacheParameters_l()
{
mSinkBufferSize = mNormalFrameCount * mFrameSize;
mActiveSleepTimeUs = activeSleepTimeUs();
mIdleSleepTimeUs = idleSleepTimeUs();
}
void AudioFlinger::PlaybackThread::invalidateTracks(audio_stream_type_t streamType)
{
ALOGV("MixerThread::invalidateTracks() mixer %p, streamType %d, mTracks.size %d",
this, streamType, mTracks.size());
Mutex::Autolock _l(mLock);
size_t size = mTracks.size();
for (size_t i = 0; i < size; i++) {
sp<Track> t = mTracks[i];
if (t->streamType() == streamType) {
t->invalidate();
}
}
}
status_t AudioFlinger::PlaybackThread::addEffectChain_l(const sp<EffectChain>& chain)
{
int session = chain->sessionId();
int16_t* buffer = reinterpret_cast<int16_t*>(mEffectBufferEnabled
? mEffectBuffer : mSinkBuffer);
bool ownsBuffer = false;
ALOGV("addEffectChain_l() %p on thread %p for session %d", chain.get(), this, session);
if (session > 0) {
// Only one effect chain can be present in direct output thread and it uses
// the sink buffer as input
if (mType != DIRECT) {
size_t numSamples = mNormalFrameCount * mChannelCount;
buffer = new int16_t[numSamples];
memset(buffer, 0, numSamples * sizeof(int16_t));
ALOGV("addEffectChain_l() creating new input buffer %p session %d", buffer, session);
ownsBuffer = true;
}
// Attach all tracks with same session ID to this chain.
for (size_t i = 0; i < mTracks.size(); ++i) {
sp<Track> track = mTracks[i];
if (session == track->sessionId()) {
ALOGV("addEffectChain_l() track->setMainBuffer track %p buffer %p", track.get(),
buffer);
track->setMainBuffer(buffer);
chain->incTrackCnt();
}
}
// indicate all active tracks in the chain
for (size_t i = 0 ; i < mActiveTracks.size() ; ++i) {
sp<Track> track = mActiveTracks[i].promote();
if (track == 0) {
continue;
}
if (session == track->sessionId()) {
ALOGV("addEffectChain_l() activating track %p on session %d", track.get(), session);
chain->incActiveTrackCnt();
}
}
}
chain->setThread(this);
chain->setInBuffer(buffer, ownsBuffer);
chain->setOutBuffer(reinterpret_cast<int16_t*>(mEffectBufferEnabled
? mEffectBuffer : mSinkBuffer));
// Effect chain for session AUDIO_SESSION_OUTPUT_STAGE is inserted at end of effect
// chains list in order to be processed last as it contains output stage effects
// Effect chain for session AUDIO_SESSION_OUTPUT_MIX is inserted before
// session AUDIO_SESSION_OUTPUT_STAGE to be processed
// after track specific effects and before output stage
// It is therefore mandatory that AUDIO_SESSION_OUTPUT_MIX == 0 and
// that AUDIO_SESSION_OUTPUT_STAGE < AUDIO_SESSION_OUTPUT_MIX
// Effect chain for other sessions are inserted at beginning of effect
// chains list to be processed before output mix effects. Relative order between other
// sessions is not important
size_t size = mEffectChains.size();
size_t i = 0;
for (i = 0; i < size; i++) {
if (mEffectChains[i]->sessionId() < session) {
break;
}
}
mEffectChains.insertAt(chain, i);
checkSuspendOnAddEffectChain_l(chain);
return NO_ERROR;
}
size_t AudioFlinger::PlaybackThread::removeEffectChain_l(const sp<EffectChain>& chain)
{
int session = chain->sessionId();
ALOGV("removeEffectChain_l() %p from thread %p for session %d", chain.get(), this, session);
for (size_t i = 0; i < mEffectChains.size(); i++) {
if (chain == mEffectChains[i]) {
mEffectChains.removeAt(i);
// detach all active tracks from the chain
for (size_t i = 0 ; i < mActiveTracks.size() ; ++i) {
sp<Track> track = mActiveTracks[i].promote();
if (track == 0) {
continue;
}
if (session == track->sessionId()) {
ALOGV("removeEffectChain_l(): stopping track on chain %p for session Id: %d",
chain.get(), session);
chain->decActiveTrackCnt();
}
}
// detach all tracks with same session ID from this chain
for (size_t i = 0; i < mTracks.size(); ++i) {
sp<Track> track = mTracks[i];
if (session == track->sessionId()) {
track->setMainBuffer(reinterpret_cast<int16_t*>(mSinkBuffer));
chain->decTrackCnt();
}
}
break;
}
}
return mEffectChains.size();
}
status_t AudioFlinger::PlaybackThread::attachAuxEffect(
const sp<AudioFlinger::PlaybackThread::Track> track, int EffectId)
{
Mutex::Autolock _l(mLock);
return attachAuxEffect_l(track, EffectId);
}
status_t AudioFlinger::PlaybackThread::attachAuxEffect_l(
const sp<AudioFlinger::PlaybackThread::Track> track, int EffectId)
{
status_t status = NO_ERROR;
if (EffectId == 0) {
track->setAuxBuffer(0, NULL);
} else {
// Auxiliary effects are always in audio session AUDIO_SESSION_OUTPUT_MIX
sp<EffectModule> effect = getEffect_l(AUDIO_SESSION_OUTPUT_MIX, EffectId);
if (effect != 0) {
if ((effect->desc().flags & EFFECT_FLAG_TYPE_MASK) == EFFECT_FLAG_TYPE_AUXILIARY) {
track->setAuxBuffer(EffectId, (int32_t *)effect->inBuffer());
} else {
status = INVALID_OPERATION;
}
} else {
status = BAD_VALUE;
}
}
return status;
}
void AudioFlinger::PlaybackThread::detachAuxEffect_l(int effectId)
{
for (size_t i = 0; i < mTracks.size(); ++i) {
sp<Track> track = mTracks[i];
if (track->auxEffectId() == effectId) {
attachAuxEffect_l(track, 0);
}
}
}
bool AudioFlinger::PlaybackThread::threadLoop()
{
Vector< sp<Track> > tracksToRemove;
mStandbyTimeNs = systemTime();
// MIXER
nsecs_t lastWarning = 0;
// DUPLICATING
// FIXME could this be made local to while loop?
writeFrames = 0;
int lastGeneration = 0;
cacheParameters_l();
mSleepTimeUs = mIdleSleepTimeUs;
if (mType == MIXER) {
sleepTimeShift = 0;
}
CpuStats cpuStats;
const String8 myName(String8::format("thread %p type %d TID %d", this, mType, gettid()));
acquireWakeLock();
// mNBLogWriter->log can only be called while thread mutex mLock is held.
// So if you need to log when mutex is unlocked, set logString to a non-NULL string,
// and then that string will be logged at the next convenient opportunity.
const char *logString = NULL;
checkSilentMode_l();
while (!exitPending())
{
cpuStats.sample(myName);
Vector< sp<EffectChain> > effectChains;
{ // scope for mLock
Mutex::Autolock _l(mLock);
processConfigEvents_l();
if (logString != NULL) {
mNBLogWriter->logTimestamp();
mNBLogWriter->log(logString);
logString = NULL;
}
// Gather the framesReleased counters for all active tracks,
// and latch them atomically with the timestamp.
// FIXME We're using raw pointers as indices. A unique track ID would be a better index.
mLatchD.mFramesReleased.clear();
size_t size = mActiveTracks.size();
for (size_t i = 0; i < size; i++) {
sp<Track> t = mActiveTracks[i].promote();
if (t != 0) {
mLatchD.mFramesReleased.add(t.get(),
t->mAudioTrackServerProxy->framesReleased());
}
}
if (mLatchDValid) {
mLatchQ = mLatchD;
mLatchDValid = false;
mLatchQValid = true;
}
saveOutputTracks();
if (mSignalPending) {
// A signal was raised while we were unlocked
mSignalPending = false;
} else if (waitingAsyncCallback_l()) {
if (exitPending()) {
break;
}
bool released = false;
// The following works around a bug in the offload driver. Ideally we would release
// the wake lock every time, but that causes the last offload buffer(s) to be
// dropped while the device is on battery, so we need to hold a wake lock during
// the drain phase.
if (mBytesRemaining && !(mDrainSequence & 1)) {
releaseWakeLock_l();
released = true;
}
mWakeLockUids.clear();
mActiveTracksGeneration++;
ALOGV("wait async completion");
mWaitWorkCV.wait(mLock);
ALOGV("async completion/wake");
if (released) {
acquireWakeLock_l();
}
mStandbyTimeNs = systemTime() + mStandbyDelayNs;
mSleepTimeUs = 0;
continue;
}
if ((!mActiveTracks.size() && systemTime() > mStandbyTimeNs) ||
isSuspended()) {
// put audio hardware into standby after short delay
if (shouldStandby_l()) {
threadLoop_standby();
mStandby = true;
}
if (!mActiveTracks.size() && mConfigEvents.isEmpty()) {
// we're about to wait, flush the binder command buffer
IPCThreadState::self()->flushCommands();
clearOutputTracks();
if (exitPending()) {
break;
}
releaseWakeLock_l();
mWakeLockUids.clear();
mActiveTracksGeneration++;
// wait until we have something to do...
ALOGV("%s going to sleep", myName.string());
mWaitWorkCV.wait(mLock);
ALOGV("%s waking up", myName.string());
acquireWakeLock_l();
mMixerStatus = MIXER_IDLE;
mMixerStatusIgnoringFastTracks = MIXER_IDLE;
mBytesWritten = 0;
mBytesRemaining = 0;
checkSilentMode_l();
mStandbyTimeNs = systemTime() + mStandbyDelayNs;
mSleepTimeUs = mIdleSleepTimeUs;
if (mType == MIXER) {
sleepTimeShift = 0;
}
continue;
}
}
// mMixerStatusIgnoringFastTracks is also updated internally
mMixerStatus = prepareTracks_l(&tracksToRemove);
// compare with previously applied list
if (lastGeneration != mActiveTracksGeneration) {
// update wakelock
updateWakeLockUids_l(mWakeLockUids);
lastGeneration = mActiveTracksGeneration;
}
// prevent any changes in effect chain list and in each effect chain
// during mixing and effect process as the audio buffers could be deleted
// or modified if an effect is created or deleted
lockEffectChains_l(effectChains);
} // mLock scope ends
if (mBytesRemaining == 0) {
mCurrentWriteLength = 0;
if (mMixerStatus == MIXER_TRACKS_READY) {
// threadLoop_mix() sets mCurrentWriteLength
threadLoop_mix();
} else if ((mMixerStatus != MIXER_DRAIN_TRACK)
&& (mMixerStatus != MIXER_DRAIN_ALL)) {
// threadLoop_sleepTime sets mSleepTimeUs to 0 if data
// must be written to HAL
threadLoop_sleepTime();
if (mSleepTimeUs == 0) {
mCurrentWriteLength = mSinkBufferSize;
}
}
// Either threadLoop_mix() or threadLoop_sleepTime() should have set
// mMixerBuffer with data if mMixerBufferValid is true and mSleepTimeUs == 0.
// Merge mMixerBuffer data into mEffectBuffer (if any effects are valid)
// or mSinkBuffer (if there are no effects).
//
// This is done pre-effects computation; if effects change to
// support higher precision, this needs to move.
//
// mMixerBufferValid is only set true by MixerThread::prepareTracks_l().
// TODO use mSleepTimeUs == 0 as an additional condition.
if (mMixerBufferValid) {
void *buffer = mEffectBufferValid ? mEffectBuffer : mSinkBuffer;
audio_format_t format = mEffectBufferValid ? mEffectBufferFormat : mFormat;
memcpy_by_audio_format(buffer, format, mMixerBuffer, mMixerBufferFormat,
mNormalFrameCount * mChannelCount);
}
mBytesRemaining = mCurrentWriteLength;
if (isSuspended()) {
mSleepTimeUs = suspendSleepTimeUs();
// simulate write to HAL when suspended
mBytesWritten += mSinkBufferSize;
mBytesRemaining = 0;
}
// only process effects if we're going to write
if (mSleepTimeUs == 0 && mType != OFFLOAD) {
for (size_t i = 0; i < effectChains.size(); i ++) {
effectChains[i]->process_l();
}
}
}
// Process effect chains for offloaded thread even if no audio
// was read from audio track: process only updates effect state
// and thus does have to be synchronized with audio writes but may have
// to be called while waiting for async write callback
if (mType == OFFLOAD) {
for (size_t i = 0; i < effectChains.size(); i ++) {
effectChains[i]->process_l();
}
}
// Only if the Effects buffer is enabled and there is data in the
// Effects buffer (buffer valid), we need to
// copy into the sink buffer.
// TODO use mSleepTimeUs == 0 as an additional condition.
if (mEffectBufferValid) {
//ALOGV("writing effect buffer to sink buffer format %#x", mFormat);
memcpy_by_audio_format(mSinkBuffer, mFormat, mEffectBuffer, mEffectBufferFormat,
mNormalFrameCount * mChannelCount);
}
// enable changes in effect chain
unlockEffectChains(effectChains);
if (!waitingAsyncCallback()) {
// mSleepTimeUs == 0 means we must write to audio hardware
if (mSleepTimeUs == 0) {
ssize_t ret = 0;
if (mBytesRemaining) {
ret = threadLoop_write();
if (ret < 0) {
mBytesRemaining = 0;
} else {
mBytesWritten += ret;
mBytesRemaining -= ret;
}
} else if ((mMixerStatus == MIXER_DRAIN_TRACK) ||
(mMixerStatus == MIXER_DRAIN_ALL)) {
threadLoop_drain();
}
if (mType == MIXER && !mStandby) {
// write blocked detection
nsecs_t now = systemTime();
nsecs_t delta = now - mLastWriteTime;
if (delta > maxPeriod) {
mNumDelayedWrites++;
if ((now - lastWarning) > kWarningThrottleNs) {
ATRACE_NAME("underrun");
ALOGW("write blocked for %llu msecs, %d delayed writes, thread %p",
ns2ms(delta), mNumDelayedWrites, this);
lastWarning = now;
}
}
if (mThreadThrottle
&& mMixerStatus == MIXER_TRACKS_READY // we are mixing (active tracks)
&& ret > 0) { // we wrote something
// Limit MixerThread data processing to no more than twice the
// expected processing rate.
//
// This helps prevent underruns with NuPlayer and other applications
// which may set up buffers that are close to the minimum size, or use
// deep buffers, and rely on a double-buffering sleep strategy to fill.
//
// The throttle smooths out sudden large data drains from the device,
// e.g. when it comes out of standby, which often causes problems with
// (1) mixer threads without a fast mixer (which has its own warm-up)
// (2) minimum buffer sized tracks (even if the track is full,
// the app won't fill fast enough to handle the sudden draw).
const int32_t deltaMs = delta / 1000000;
const int32_t throttleMs = mHalfBufferMs - deltaMs;
if ((signed)mHalfBufferMs >= throttleMs && throttleMs > 0) {
usleep(throttleMs * 1000);
// notify of throttle start on verbose log
ALOGV_IF(mThreadThrottleEndMs == mThreadThrottleTimeMs,
"mixer(%p) throttle begin:"
" ret(%zd) deltaMs(%d) requires sleep %d ms",
this, ret, deltaMs, throttleMs);
mThreadThrottleTimeMs += throttleMs;
} else {
uint32_t diff = mThreadThrottleTimeMs - mThreadThrottleEndMs;
if (diff > 0) {
// notify of throttle end on debug log
ALOGD("mixer(%p) throttle end: throttle time(%u)", this, diff);
mThreadThrottleEndMs = mThreadThrottleTimeMs;
}
}
}
}
} else {
ATRACE_BEGIN("sleep");
usleep(mSleepTimeUs);
ATRACE_END();
}
}
// Finally let go of removed track(s), without the lock held
// since we can't guarantee the destructors won't acquire that
// same lock. This will also mutate and push a new fast mixer state.
threadLoop_removeTracks(tracksToRemove);
tracksToRemove.clear();
// FIXME I don't understand the need for this here;
// it was in the original code but maybe the
// assignment in saveOutputTracks() makes this unnecessary?
clearOutputTracks();
// Effect chains will be actually deleted here if they were removed from
// mEffectChains list during mixing or effects processing
effectChains.clear();
// FIXME Note that the above .clear() is no longer necessary since effectChains
// is now local to this block, but will keep it for now (at least until merge done).
}
threadLoop_exit();
if (!mStandby) {
threadLoop_standby();
mStandby = true;
}
releaseWakeLock();
mWakeLockUids.clear();
mActiveTracksGeneration++;
ALOGV("Thread %p type %d exiting", this, mType);
return false;
}
// removeTracks_l() must be called with ThreadBase::mLock held
void AudioFlinger::PlaybackThread::removeTracks_l(const Vector< sp<Track> >& tracksToRemove)
{
size_t count = tracksToRemove.size();
if (count > 0) {
for (size_t i=0 ; i<count ; i++) {
const sp<Track>& track = tracksToRemove.itemAt(i);
mActiveTracks.remove(track);
mWakeLockUids.remove(track->uid());
mActiveTracksGeneration++;
ALOGV("removeTracks_l removing track on session %d", track->sessionId());
sp<EffectChain> chain = getEffectChain_l(track->sessionId());
if (chain != 0) {
ALOGV("stopping track on chain %p for session Id: %d", chain.get(),
track->sessionId());
chain->decActiveTrackCnt();
}
if (track->isTerminated()) {
removeTrack_l(track);
}
}
}
}
status_t AudioFlinger::PlaybackThread::getTimestamp_l(AudioTimestamp& timestamp)
{
if (mNormalSink != 0) {
return mNormalSink->getTimestamp(timestamp);
}
if ((mType == OFFLOAD || mType == DIRECT)
&& mOutput != NULL && mOutput->stream->get_presentation_position) {
uint64_t position64;
int ret = mOutput->getPresentationPosition(&position64, &timestamp.mTime);
if (ret == 0) {
timestamp.mPosition = (uint32_t)position64;
return NO_ERROR;
}
}
return INVALID_OPERATION;
}
status_t AudioFlinger::MixerThread::createAudioPatch_l(const struct audio_patch *patch,
audio_patch_handle_t *handle)
{
// if !&IDLE, holds the FastMixer state to restore after new parameters processed
FastMixerState::Command previousCommand = FastMixerState::HOT_IDLE;
if (mFastMixer != 0) {
FastMixerStateQueue *sq = mFastMixer->sq();
FastMixerState *state = sq->begin();
if (!(state->mCommand & FastMixerState::IDLE)) {
previousCommand = state->mCommand;
state->mCommand = FastMixerState::HOT_IDLE;
sq->end();
sq->push(FastMixerStateQueue::BLOCK_UNTIL_ACKED);
} else {
sq->end(false /*didModify*/);
}
}
status_t status = PlaybackThread::createAudioPatch_l(patch, handle);
if (!(previousCommand & FastMixerState::IDLE)) {
ALOG_ASSERT(mFastMixer != 0);
FastMixerStateQueue *sq = mFastMixer->sq();
FastMixerState *state = sq->begin();
ALOG_ASSERT(state->mCommand == FastMixerState::HOT_IDLE);
state->mCommand = previousCommand;
sq->end();
sq->push(FastMixerStateQueue::BLOCK_UNTIL_PUSHED);
}
return status;
}
status_t AudioFlinger::PlaybackThread::createAudioPatch_l(const struct audio_patch *patch,
audio_patch_handle_t *handle)
{
status_t status = NO_ERROR;
// store new device and send to effects
audio_devices_t type = AUDIO_DEVICE_NONE;
for (unsigned int i = 0; i < patch->num_sinks; i++) {
type |= patch->sinks[i].ext.device.type;
}
#ifdef ADD_BATTERY_DATA
// when changing the audio output device, call addBatteryData to notify
// the change
if (mOutDevice != type) {
uint32_t params = 0;
// check whether speaker is on
if (type & AUDIO_DEVICE_OUT_SPEAKER) {
params |= IMediaPlayerService::kBatteryDataSpeakerOn;
}
audio_devices_t deviceWithoutSpeaker
= AUDIO_DEVICE_OUT_ALL & ~AUDIO_DEVICE_OUT_SPEAKER;
// check if any other device (except speaker) is on
if (type & deviceWithoutSpeaker) {
params |= IMediaPlayerService::kBatteryDataOtherAudioDeviceOn;
}
if (params != 0) {
addBatteryData(params);
}
}
#endif
for (size_t i = 0; i < mEffectChains.size(); i++) {
mEffectChains[i]->setDevice_l(type);
}
// mPrevOutDevice is the latest device set by createAudioPatch_l(). It is not set when
// the thread is created so that the first patch creation triggers an ioConfigChanged callback
bool configChanged = mPrevOutDevice != type;
mOutDevice = type;
mPatch = *patch;
if (mOutput->audioHwDev->version() >= AUDIO_DEVICE_API_VERSION_3_0) {
audio_hw_device_t *hwDevice = mOutput->audioHwDev->hwDevice();
status = hwDevice->create_audio_patch(hwDevice,
patch->num_sources,
patch->sources,
patch->num_sinks,
patch->sinks,
handle);
} else {
char *address;
if (strcmp(patch->sinks[0].ext.device.address, "") != 0) {
//FIXME: we only support address on first sink with HAL version < 3.0
address = audio_device_address_to_parameter(
patch->sinks[0].ext.device.type,
patch->sinks[0].ext.device.address);
} else {
address = (char *)calloc(1, 1);
}
AudioParameter param = AudioParameter(String8(address));
free(address);
param.addInt(String8(AUDIO_PARAMETER_STREAM_ROUTING), (int)type);
status = mOutput->stream->common.set_parameters(&mOutput->stream->common,
param.toString().string());
*handle = AUDIO_PATCH_HANDLE_NONE;
}
if (configChanged) {
mPrevOutDevice = type;
sendIoConfigEvent_l(AUDIO_OUTPUT_CONFIG_CHANGED);
}
return status;
}
status_t AudioFlinger::MixerThread::releaseAudioPatch_l(const audio_patch_handle_t handle)
{
// if !&IDLE, holds the FastMixer state to restore after new parameters processed
FastMixerState::Command previousCommand = FastMixerState::HOT_IDLE;
if (mFastMixer != 0) {
FastMixerStateQueue *sq = mFastMixer->sq();
FastMixerState *state = sq->begin();
if (!(state->mCommand & FastMixerState::IDLE)) {
previousCommand = state->mCommand;
state->mCommand = FastMixerState::HOT_IDLE;
sq->end();
sq->push(FastMixerStateQueue::BLOCK_UNTIL_ACKED);
} else {
sq->end(false /*didModify*/);
}
}
status_t status = PlaybackThread::releaseAudioPatch_l(handle);
if (!(previousCommand & FastMixerState::IDLE)) {
ALOG_ASSERT(mFastMixer != 0);
FastMixerStateQueue *sq = mFastMixer->sq();
FastMixerState *state = sq->begin();
ALOG_ASSERT(state->mCommand == FastMixerState::HOT_IDLE);
state->mCommand = previousCommand;
sq->end();
sq->push(FastMixerStateQueue::BLOCK_UNTIL_PUSHED);
}
return status;
}
status_t AudioFlinger::PlaybackThread::releaseAudioPatch_l(const audio_patch_handle_t handle)
{
status_t status = NO_ERROR;
mOutDevice = AUDIO_DEVICE_NONE;
if (mOutput->audioHwDev->version() >= AUDIO_DEVICE_API_VERSION_3_0) {
audio_hw_device_t *hwDevice = mOutput->audioHwDev->hwDevice();
status = hwDevice->release_audio_patch(hwDevice, handle);
} else {
AudioParameter param;
param.addInt(String8(AUDIO_PARAMETER_STREAM_ROUTING), 0);
status = mOutput->stream->common.set_parameters(&mOutput->stream->common,
param.toString().string());
}
return status;
}
void AudioFlinger::PlaybackThread::addPatchTrack(const sp<PatchTrack>& track)
{
Mutex::Autolock _l(mLock);
mTracks.add(track);
}
void AudioFlinger::PlaybackThread::deletePatchTrack(const sp<PatchTrack>& track)
{
Mutex::Autolock _l(mLock);
destroyTrack_l(track);
}
void AudioFlinger::PlaybackThread::getAudioPortConfig(struct audio_port_config *config)
{
ThreadBase::getAudioPortConfig(config);
config->role = AUDIO_PORT_ROLE_SOURCE;
config->ext.mix.hw_module = mOutput->audioHwDev->handle();
config->ext.mix.usecase.stream = AUDIO_STREAM_DEFAULT;
}
// ----------------------------------------------------------------------------
AudioFlinger::MixerThread::MixerThread(const sp<AudioFlinger>& audioFlinger, AudioStreamOut* output,
audio_io_handle_t id, audio_devices_t device, bool systemReady, type_t type)
: PlaybackThread(audioFlinger, output, id, device, type, systemReady),
// mAudioMixer below
// mFastMixer below
mFastMixerFutex(0)
// mOutputSink below
// mPipeSink below
// mNormalSink below
{
ALOGV("MixerThread() id=%d device=%#x type=%d", id, device, type);
ALOGV("mSampleRate=%u, mChannelMask=%#x, mChannelCount=%u, mFormat=%d, mFrameSize=%u, "
"mFrameCount=%d, mNormalFrameCount=%d",
mSampleRate, mChannelMask, mChannelCount, mFormat, mFrameSize, mFrameCount,
mNormalFrameCount);
mAudioMixer = new AudioMixer(mNormalFrameCount, mSampleRate);
if (type == DUPLICATING) {
// The Duplicating thread uses the AudioMixer and delivers data to OutputTracks
// (downstream MixerThreads) in DuplicatingThread::threadLoop_write().
// Do not create or use mFastMixer, mOutputSink, mPipeSink, or mNormalSink.
return;
}
// create an NBAIO sink for the HAL output stream, and negotiate
mOutputSink = new AudioStreamOutSink(output->stream);
size_t numCounterOffers = 0;
const NBAIO_Format offers[1] = {Format_from_SR_C(mSampleRate, mChannelCount, mFormat)};
ssize_t index = mOutputSink->negotiate(offers, 1, NULL, numCounterOffers);
ALOG_ASSERT(index == 0);
// initialize fast mixer depending on configuration
bool initFastMixer;
switch (kUseFastMixer) {
case FastMixer_Never:
initFastMixer = false;
break;
case FastMixer_Always:
initFastMixer = true;
break;
case FastMixer_Static:
case FastMixer_Dynamic:
initFastMixer = mFrameCount < mNormalFrameCount;
break;
}
if (initFastMixer) {
audio_format_t fastMixerFormat;
if (mMixerBufferEnabled && mEffectBufferEnabled) {
fastMixerFormat = AUDIO_FORMAT_PCM_FLOAT;
} else {
fastMixerFormat = AUDIO_FORMAT_PCM_16_BIT;
}
if (mFormat != fastMixerFormat) {
// change our Sink format to accept our intermediate precision
mFormat = fastMixerFormat;
free(mSinkBuffer);
mFrameSize = mChannelCount * audio_bytes_per_sample(mFormat);
const size_t sinkBufferSize = mNormalFrameCount * mFrameSize;
(void)posix_memalign(&mSinkBuffer, 32, sinkBufferSize);
}
// create a MonoPipe to connect our submix to FastMixer
NBAIO_Format format = mOutputSink->format();
NBAIO_Format origformat = format;
// adjust format to match that of the Fast Mixer
ALOGV("format changed from %d to %d", format.mFormat, fastMixerFormat);
format.mFormat = fastMixerFormat;
format.mFrameSize = audio_bytes_per_sample(format.mFormat) * format.mChannelCount;
// This pipe depth compensates for scheduling latency of the normal mixer thread.
// When it wakes up after a maximum latency, it runs a few cycles quickly before
// finally blocking. Note the pipe implementation rounds up the request to a power of 2.
MonoPipe *monoPipe = new MonoPipe(mNormalFrameCount * 4, format, true /*writeCanBlock*/);
const NBAIO_Format offers[1] = {format};
size_t numCounterOffers = 0;
ssize_t index = monoPipe->negotiate(offers, 1, NULL, numCounterOffers);
ALOG_ASSERT(index == 0);
monoPipe->setAvgFrames((mScreenState & 1) ?
(monoPipe->maxFrames() * 7) / 8 : mNormalFrameCount * 2);
mPipeSink = monoPipe;
#ifdef TEE_SINK
if (mTeeSinkOutputEnabled) {
// create a Pipe to archive a copy of FastMixer's output for dumpsys
Pipe *teeSink = new Pipe(mTeeSinkOutputFrames, origformat);
const NBAIO_Format offers2[1] = {origformat};
numCounterOffers = 0;
index = teeSink->negotiate(offers2, 1, NULL, numCounterOffers);
ALOG_ASSERT(index == 0);
mTeeSink = teeSink;
PipeReader *teeSource = new PipeReader(*teeSink);
numCounterOffers = 0;
index = teeSource->negotiate(offers2, 1, NULL, numCounterOffers);
ALOG_ASSERT(index == 0);
mTeeSource = teeSource;
}
#endif
// create fast mixer and configure it initially with just one fast track for our submix
mFastMixer = new FastMixer();
FastMixerStateQueue *sq = mFastMixer->sq();
#ifdef STATE_QUEUE_DUMP
sq->setObserverDump(&mStateQueueObserverDump);
sq->setMutatorDump(&mStateQueueMutatorDump);
#endif
FastMixerState *state = sq->begin();
FastTrack *fastTrack = &state->mFastTracks[0];
// wrap the source side of the MonoPipe to make it an AudioBufferProvider
fastTrack->mBufferProvider = new SourceAudioBufferProvider(new MonoPipeReader(monoPipe));
fastTrack->mVolumeProvider = NULL;
fastTrack->mChannelMask = mChannelMask; // mPipeSink channel mask for audio to FastMixer
fastTrack->mFormat = mFormat; // mPipeSink format for audio to FastMixer
fastTrack->mGeneration++;
state->mFastTracksGen++;
state->mTrackMask = 1;
// fast mixer will use the HAL output sink
state->mOutputSink = mOutputSink.get();
state->mOutputSinkGen++;
state->mFrameCount = mFrameCount;
state->mCommand = FastMixerState::COLD_IDLE;
// already done in constructor initialization list
//mFastMixerFutex = 0;
state->mColdFutexAddr = &mFastMixerFutex;
state->mColdGen++;
state->mDumpState = &mFastMixerDumpState;
#ifdef TEE_SINK
state->mTeeSink = mTeeSink.get();
#endif
mFastMixerNBLogWriter = audioFlinger->newWriter_l(kFastMixerLogSize, "FastMixer");
state->mNBLogWriter = mFastMixerNBLogWriter.get();
sq->end();
sq->push(FastMixerStateQueue::BLOCK_UNTIL_PUSHED);
// start the fast mixer
mFastMixer->run("FastMixer", PRIORITY_URGENT_AUDIO);
pid_t tid = mFastMixer->getTid();
sendPrioConfigEvent(getpid_cached, tid, kPriorityFastMixer);
#ifdef AUDIO_WATCHDOG
// create and start the watchdog
mAudioWatchdog = new AudioWatchdog();
mAudioWatchdog->setDump(&mAudioWatchdogDump);
mAudioWatchdog->run("AudioWatchdog", PRIORITY_URGENT_AUDIO);
tid = mAudioWatchdog->getTid();
sendPrioConfigEvent(getpid_cached, tid, kPriorityFastMixer);
#endif
}
switch (kUseFastMixer) {
case FastMixer_Never:
case FastMixer_Dynamic:
mNormalSink = mOutputSink;
break;
case FastMixer_Always:
mNormalSink = mPipeSink;
break;
case FastMixer_Static:
mNormalSink = initFastMixer ? mPipeSink : mOutputSink;
break;
}
}
AudioFlinger::MixerThread::~MixerThread()
{
if (mFastMixer != 0) {
FastMixerStateQueue *sq = mFastMixer->sq();
FastMixerState *state = sq->begin();
if (state->mCommand == FastMixerState::COLD_IDLE) {
int32_t old = android_atomic_inc(&mFastMixerFutex);
if (old == -1) {
(void) syscall(__NR_futex, &mFastMixerFutex, FUTEX_WAKE_PRIVATE, 1);
}
}
state->mCommand = FastMixerState::EXIT;
sq->end();
sq->push(FastMixerStateQueue::BLOCK_UNTIL_PUSHED);
mFastMixer->join();
// Though the fast mixer thread has exited, it's state queue is still valid.
// We'll use that extract the final state which contains one remaining fast track
// corresponding to our sub-mix.
state = sq->begin();
ALOG_ASSERT(state->mTrackMask == 1);
FastTrack *fastTrack = &state->mFastTracks[0];
ALOG_ASSERT(fastTrack->mBufferProvider != NULL);
delete fastTrack->mBufferProvider;
sq->end(false /*didModify*/);
mFastMixer.clear();
#ifdef AUDIO_WATCHDOG
if (mAudioWatchdog != 0) {
mAudioWatchdog->requestExit();
mAudioWatchdog->requestExitAndWait();
mAudioWatchdog.clear();
}
#endif
}
mAudioFlinger->unregisterWriter(mFastMixerNBLogWriter);
delete mAudioMixer;
}
uint32_t AudioFlinger::MixerThread::correctLatency_l(uint32_t latency) const
{
if (mFastMixer != 0) {
MonoPipe *pipe = (MonoPipe *)mPipeSink.get();
latency += (pipe->getAvgFrames() * 1000) / mSampleRate;
}
return latency;
}
void AudioFlinger::MixerThread::threadLoop_removeTracks(const Vector< sp<Track> >& tracksToRemove)
{
PlaybackThread::threadLoop_removeTracks(tracksToRemove);
}
ssize_t AudioFlinger::MixerThread::threadLoop_write()
{
// FIXME we should only do one push per cycle; confirm this is true
// Start the fast mixer if it's not already running
if (mFastMixer != 0) {
FastMixerStateQueue *sq = mFastMixer->sq();
FastMixerState *state = sq->begin();
if (state->mCommand != FastMixerState::MIX_WRITE &&
(kUseFastMixer != FastMixer_Dynamic || state->mTrackMask > 1)) {
if (state->mCommand == FastMixerState::COLD_IDLE) {
// FIXME workaround for first HAL write being CPU bound on some devices
ATRACE_BEGIN("write");
mOutput->write((char *)mSinkBuffer, 0);
ATRACE_END();
int32_t old = android_atomic_inc(&mFastMixerFutex);
if (old == -1) {
(void) syscall(__NR_futex, &mFastMixerFutex, FUTEX_WAKE_PRIVATE, 1);
}
#ifdef AUDIO_WATCHDOG
if (mAudioWatchdog != 0) {
mAudioWatchdog->resume();
}
#endif
}
state->mCommand = FastMixerState::MIX_WRITE;
#ifdef FAST_THREAD_STATISTICS
mFastMixerDumpState.increaseSamplingN(mAudioFlinger->isLowRamDevice() ?
FastThreadDumpState::kSamplingNforLowRamDevice : FastThreadDumpState::kSamplingN);
#endif
sq->end();
sq->push(FastMixerStateQueue::BLOCK_UNTIL_PUSHED);
if (kUseFastMixer == FastMixer_Dynamic) {
mNormalSink = mPipeSink;
}
} else {
sq->end(false /*didModify*/);
}
}
return PlaybackThread::threadLoop_write();
}
void AudioFlinger::MixerThread::threadLoop_standby()
{
// Idle the fast mixer if it's currently running
if (mFastMixer != 0) {
FastMixerStateQueue *sq = mFastMixer->sq();
FastMixerState *state = sq->begin();
if (!(state->mCommand & FastMixerState::IDLE)) {
state->mCommand = FastMixerState::COLD_IDLE;
state->mColdFutexAddr = &mFastMixerFutex;
state->mColdGen++;
mFastMixerFutex = 0;
sq->end();
// BLOCK_UNTIL_PUSHED would be insufficient, as we need it to stop doing I/O now
sq->push(FastMixerStateQueue::BLOCK_UNTIL_ACKED);
if (kUseFastMixer == FastMixer_Dynamic) {
mNormalSink = mOutputSink;
}
#ifdef AUDIO_WATCHDOG
if (mAudioWatchdog != 0) {
mAudioWatchdog->pause();
}
#endif
} else {
sq->end(false /*didModify*/);
}
}
PlaybackThread::threadLoop_standby();
}
bool AudioFlinger::PlaybackThread::waitingAsyncCallback_l()
{
return false;
}
bool AudioFlinger::PlaybackThread::shouldStandby_l()
{
return !mStandby;
}
bool AudioFlinger::PlaybackThread::waitingAsyncCallback()
{
Mutex::Autolock _l(mLock);
return waitingAsyncCallback_l();
}
// shared by MIXER and DIRECT, overridden by DUPLICATING
void AudioFlinger::PlaybackThread::threadLoop_standby()
{
ALOGV("Audio hardware entering standby, mixer %p, suspend count %d", this, mSuspended);
mOutput->standby();
if (mUseAsyncWrite != 0) {
// discard any pending drain or write ack by incrementing sequence
mWriteAckSequence = (mWriteAckSequence + 2) & ~1;
mDrainSequence = (mDrainSequence + 2) & ~1;
ALOG_ASSERT(mCallbackThread != 0);
mCallbackThread->setWriteBlocked(mWriteAckSequence);
mCallbackThread->setDraining(mDrainSequence);
}
mHwPaused = false;
}
void AudioFlinger::PlaybackThread::onAddNewTrack_l()
{
ALOGV("signal playback thread");
broadcast_l();
}
void AudioFlinger::MixerThread::threadLoop_mix()
{
// obtain the presentation timestamp of the next output buffer
int64_t pts;
status_t status = INVALID_OPERATION;
if (mNormalSink != 0) {
status = mNormalSink->getNextWriteTimestamp(&pts);
} else {
status = mOutputSink->getNextWriteTimestamp(&pts);
}
if (status != NO_ERROR) {
pts = AudioBufferProvider::kInvalidPTS;
}
// mix buffers...
mAudioMixer->process(pts);
mCurrentWriteLength = mSinkBufferSize;
// increase sleep time progressively when application underrun condition clears.
// Only increase sleep time if the mixer is ready for two consecutive times to avoid
// that a steady state of alternating ready/not ready conditions keeps the sleep time
// such that we would underrun the audio HAL.
if ((mSleepTimeUs == 0) && (sleepTimeShift > 0)) {
sleepTimeShift--;
}
mSleepTimeUs = 0;
mStandbyTimeNs = systemTime() + mStandbyDelayNs;
//TODO: delay standby when effects have a tail
}
void AudioFlinger::MixerThread::threadLoop_sleepTime()
{
// If no tracks are ready, sleep once for the duration of an output
// buffer size, then write 0s to the output
if (mSleepTimeUs == 0) {
if (mMixerStatus == MIXER_TRACKS_ENABLED) {
mSleepTimeUs = mActiveSleepTimeUs >> sleepTimeShift;
if (mSleepTimeUs < kMinThreadSleepTimeUs) {
mSleepTimeUs = kMinThreadSleepTimeUs;
}
// reduce sleep time in case of consecutive application underruns to avoid
// starving the audio HAL. As activeSleepTimeUs() is larger than a buffer
// duration we would end up writing less data than needed by the audio HAL if
// the condition persists.
if (sleepTimeShift < kMaxThreadSleepTimeShift) {
sleepTimeShift++;
}
} else {
mSleepTimeUs = mIdleSleepTimeUs;
}
} else if (mBytesWritten != 0 || (mMixerStatus == MIXER_TRACKS_ENABLED)) {
// clear out mMixerBuffer or mSinkBuffer, to ensure buffers are cleared
// before effects processing or output.
if (mMixerBufferValid) {
memset(mMixerBuffer, 0, mMixerBufferSize);
} else {
memset(mSinkBuffer, 0, mSinkBufferSize);
}
mSleepTimeUs = 0;
ALOGV_IF(mBytesWritten == 0 && (mMixerStatus == MIXER_TRACKS_ENABLED),
"anticipated start");
}
// TODO add standby time extension fct of effect tail
}
// prepareTracks_l() must be called with ThreadBase::mLock held
AudioFlinger::PlaybackThread::mixer_state AudioFlinger::MixerThread::prepareTracks_l(
Vector< sp<Track> > *tracksToRemove)
{
mixer_state mixerStatus = MIXER_IDLE;
// find out which tracks need to be processed
size_t count = mActiveTracks.size();
size_t mixedTracks = 0;
size_t tracksWithEffect = 0;
// counts only _active_ fast tracks
size_t fastTracks = 0;
uint32_t resetMask = 0; // bit mask of fast tracks that need to be reset
float masterVolume = mMasterVolume;
bool masterMute = mMasterMute;
if (masterMute) {
masterVolume = 0;
}
// Delegate master volume control to effect in output mix effect chain if needed
sp<EffectChain> chain = getEffectChain_l(AUDIO_SESSION_OUTPUT_MIX);
if (chain != 0) {
uint32_t v = (uint32_t)(masterVolume * (1 << 24));
chain->setVolume_l(&v, &v);
masterVolume = (float)((v + (1 << 23)) >> 24);
chain.clear();
}
// prepare a new state to push
FastMixerStateQueue *sq = NULL;
FastMixerState *state = NULL;
bool didModify = false;
FastMixerStateQueue::block_t block = FastMixerStateQueue::BLOCK_UNTIL_PUSHED;
if (mFastMixer != 0) {
sq = mFastMixer->sq();
state = sq->begin();
}
mMixerBufferValid = false; // mMixerBuffer has no valid data until appropriate tracks found.
mEffectBufferValid = false; // mEffectBuffer has no valid data until tracks found.
for (size_t i=0 ; i<count ; i++) {
const sp<Track> t = mActiveTracks[i].promote();
if (t == 0) {
continue;
}
// this const just means the local variable doesn't change
Track* const track = t.get();
// process fast tracks
if (track->isFastTrack()) {
// It's theoretically possible (though unlikely) for a fast track to be created
// and then removed within the same normal mix cycle. This is not a problem, as
// the track never becomes active so it's fast mixer slot is never touched.
// The converse, of removing an (active) track and then creating a new track
// at the identical fast mixer slot within the same normal mix cycle,
// is impossible because the slot isn't marked available until the end of each cycle.
int j = track->mFastIndex;
ALOG_ASSERT(0 < j && j < (int)FastMixerState::kMaxFastTracks);
ALOG_ASSERT(!(mFastTrackAvailMask & (1 << j)));
FastTrack *fastTrack = &state->mFastTracks[j];
// Determine whether the track is currently in underrun condition,
// and whether it had a recent underrun.
FastTrackDump *ftDump = &mFastMixerDumpState.mTracks[j];
FastTrackUnderruns underruns = ftDump->mUnderruns;
uint32_t recentFull = (underruns.mBitFields.mFull -
track->mObservedUnderruns.mBitFields.mFull) & UNDERRUN_MASK;
uint32_t recentPartial = (underruns.mBitFields.mPartial -
track->mObservedUnderruns.mBitFields.mPartial) & UNDERRUN_MASK;
uint32_t recentEmpty = (underruns.mBitFields.mEmpty -
track->mObservedUnderruns.mBitFields.mEmpty) & UNDERRUN_MASK;
uint32_t recentUnderruns = recentPartial + recentEmpty;
track->mObservedUnderruns = underruns;
// don't count underruns that occur while stopping or pausing
// or stopped which can occur when flush() is called while active
if (!(track->isStopping() || track->isPausing() || track->isStopped()) &&
recentUnderruns > 0) {
// FIXME fast mixer will pull & mix partial buffers, but we count as a full underrun
track->mAudioTrackServerProxy->tallyUnderrunFrames(recentUnderruns * mFrameCount);
}
// This is similar to the state machine for normal tracks,
// with a few modifications for fast tracks.
bool isActive = true;
switch (track->mState) {
case TrackBase::STOPPING_1:
// track stays active in STOPPING_1 state until first underrun
if (recentUnderruns > 0 || track->isTerminated()) {
track->mState = TrackBase::STOPPING_2;
}
break;
case TrackBase::PAUSING:
// ramp down is not yet implemented
track->setPaused();
break;
case TrackBase::RESUMING:
// ramp up is not yet implemented
track->mState = TrackBase::ACTIVE;
break;
case TrackBase::ACTIVE:
if (recentFull > 0 || recentPartial > 0) {
// track has provided at least some frames recently: reset retry count
track->mRetryCount = kMaxTrackRetries;
}
if (recentUnderruns == 0) {
// no recent underruns: stay active
break;
}
// there has recently been an underrun of some kind
if (track->sharedBuffer() == 0) {
// were any of the recent underruns "empty" (no frames available)?
if (recentEmpty == 0) {
// no, then ignore the partial underruns as they are allowed indefinitely
break;
}
// there has recently been an "empty" underrun: decrement the retry counter
if (--(track->mRetryCount) > 0) {
break;
}
// indicate to client process that the track was disabled because of underrun;
// it will then automatically call start() when data is available
android_atomic_or(CBLK_DISABLED, &track->mCblk->mFlags);
// remove from active list, but state remains ACTIVE [confusing but true]
isActive = false;
break;
}
// fall through
case TrackBase::STOPPING_2:
case TrackBase::PAUSED:
case TrackBase::STOPPED:
case TrackBase::FLUSHED: // flush() while active
// Check for presentation complete if track is inactive
// We have consumed all the buffers of this track.
// This would be incomplete if we auto-paused on underrun
{
size_t audioHALFrames =
(mOutput->stream->get_latency(mOutput->stream)*mSampleRate) / 1000;
size_t framesWritten = mBytesWritten / mFrameSize;
if (!(mStandby || track->presentationComplete(framesWritten, audioHALFrames))) {
// track stays in active list until presentation is complete
break;
}
}
if (track->isStopping_2()) {
track->mState = TrackBase::STOPPED;
}
if (track->isStopped()) {
// Can't reset directly, as fast mixer is still polling this track
// track->reset();
// So instead mark this track as needing to be reset after push with ack
resetMask |= 1 << i;
}
isActive = false;
break;
case TrackBase::IDLE:
default:
LOG_ALWAYS_FATAL("unexpected track state %d", track->mState);
}
if (isActive) {
// was it previously inactive?
if (!(state->mTrackMask & (1 << j))) {
ExtendedAudioBufferProvider *eabp = track;
VolumeProvider *vp = track;
fastTrack->mBufferProvider = eabp;
fastTrack->mVolumeProvider = vp;
fastTrack->mChannelMask = track->mChannelMask;
fastTrack->mFormat = track->mFormat;
fastTrack->mGeneration++;
state->mTrackMask |= 1 << j;
didModify = true;
// no acknowledgement required for newly active tracks
}
// cache the combined master volume and stream type volume for fast mixer; this
// lacks any synchronization or barrier so VolumeProvider may read a stale value
track->mCachedVolume = masterVolume * mStreamTypes[track->streamType()].volume;
++fastTracks;
} else {
// was it previously active?
if (state->mTrackMask & (1 << j)) {
fastTrack->mBufferProvider = NULL;
fastTrack->mGeneration++;
state->mTrackMask &= ~(1 << j);
didModify = true;
// If any fast tracks were removed, we must wait for acknowledgement
// because we're about to decrement the last sp<> on those tracks.
block = FastMixerStateQueue::BLOCK_UNTIL_ACKED;
} else {
LOG_ALWAYS_FATAL("fast track %d should have been active", j);
}
tracksToRemove->add(track);
// Avoids a misleading display in dumpsys
track->mObservedUnderruns.mBitFields.mMostRecent = UNDERRUN_FULL;
}
continue;
}
{ // local variable scope to avoid goto warning
audio_track_cblk_t* cblk = track->cblk();
// The first time a track is added we wait
// for all its buffers to be filled before processing it
int name = track->name();
// make sure that we have enough frames to mix one full buffer.
// enforce this condition only once to enable draining the buffer in case the client
// app does not call stop() and relies on underrun to stop:
// hence the test on (mMixerStatus == MIXER_TRACKS_READY) meaning the track was mixed
// during last round
size_t desiredFrames;
const uint32_t sampleRate = track->mAudioTrackServerProxy->getSampleRate();
AudioPlaybackRate playbackRate = track->mAudioTrackServerProxy->getPlaybackRate();
desiredFrames = sourceFramesNeededWithTimestretch(
sampleRate, mNormalFrameCount, mSampleRate, playbackRate.mSpeed);
// TODO: ONLY USED FOR LEGACY RESAMPLERS, remove when they are removed.
// add frames already consumed but not yet released by the resampler
// because mAudioTrackServerProxy->framesReady() will include these frames
desiredFrames += mAudioMixer->getUnreleasedFrames(track->name());
uint32_t minFrames = 1;
if ((track->sharedBuffer() == 0) && !track->isStopped() && !track->isPausing() &&
(mMixerStatusIgnoringFastTracks == MIXER_TRACKS_READY)) {
minFrames = desiredFrames;
}
size_t framesReady = track->framesReady();
if (ATRACE_ENABLED()) {
// I wish we had formatted trace names
char traceName[16];
strcpy(traceName, "nRdy");
int name = track->name();
if (AudioMixer::TRACK0 <= name &&
name < (int) (AudioMixer::TRACK0 + AudioMixer::MAX_NUM_TRACKS)) {
name -= AudioMixer::TRACK0;
traceName[4] = (name / 10) + '0';
traceName[5] = (name % 10) + '0';
} else {
traceName[4] = '?';
traceName[5] = '?';
}
traceName[6] = '\0';
ATRACE_INT(traceName, framesReady);
}
if ((framesReady >= minFrames) && track->isReady() &&
!track->isPaused() && !track->isTerminated())
{
ALOGVV("track %d s=%08x [OK] on thread %p", name, cblk->mServer, this);
mixedTracks++;
// track->mainBuffer() != mSinkBuffer or mMixerBuffer means
// there is an effect chain connected to the track
chain.clear();
if (track->mainBuffer() != mSinkBuffer &&
track->mainBuffer() != mMixerBuffer) {
if (mEffectBufferEnabled) {
mEffectBufferValid = true; // Later can set directly.
}
chain = getEffectChain_l(track->sessionId());
// Delegate volume control to effect in track effect chain if needed
if (chain != 0) {
tracksWithEffect++;
} else {
ALOGW("prepareTracks_l(): track %d attached to effect but no chain found on "
"session %d",
name, track->sessionId());
}
}
int param = AudioMixer::VOLUME;
if (track->mFillingUpStatus == Track::FS_FILLED) {
// no ramp for the first volume setting
track->mFillingUpStatus = Track::FS_ACTIVE;
if (track->mState == TrackBase::RESUMING) {
track->mState = TrackBase::ACTIVE;
param = AudioMixer::RAMP_VOLUME;
}
mAudioMixer->setParameter(name, AudioMixer::RESAMPLE, AudioMixer::RESET, NULL);
// FIXME should not make a decision based on mServer
} else if (cblk->mServer != 0) {
// If the track is stopped before the first frame was mixed,
// do not apply ramp
param = AudioMixer::RAMP_VOLUME;
}
// compute volume for this track
uint32_t vl, vr; // in U8.24 integer format
float vlf, vrf, vaf; // in [0.0, 1.0] float format
if (track->isPausing() || mStreamTypes[track->streamType()].mute) {
vl = vr = 0;
vlf = vrf = vaf = 0.;
if (track->isPausing()) {
track->setPaused();
}
} else {
// read original volumes with volume control
float typeVolume = mStreamTypes[track->streamType()].volume;
float v = masterVolume * typeVolume;
AudioTrackServerProxy *proxy = track->mAudioTrackServerProxy;
gain_minifloat_packed_t vlr = proxy->getVolumeLR();
vlf = float_from_gain(gain_minifloat_unpack_left(vlr));
vrf = float_from_gain(gain_minifloat_unpack_right(vlr));
// track volumes come from shared memory, so can't be trusted and must be clamped
if (vlf > GAIN_FLOAT_UNITY) {
ALOGV("Track left volume out of range: %.3g", vlf);
vlf = GAIN_FLOAT_UNITY;
}
if (vrf > GAIN_FLOAT_UNITY) {
ALOGV("Track right volume out of range: %.3g", vrf);
vrf = GAIN_FLOAT_UNITY;
}
// now apply the master volume and stream type volume
vlf *= v;
vrf *= v;
// assuming master volume and stream type volume each go up to 1.0,
// then derive vl and vr as U8.24 versions for the effect chain
const float scaleto8_24 = MAX_GAIN_INT * MAX_GAIN_INT;
vl = (uint32_t) (scaleto8_24 * vlf);
vr = (uint32_t) (scaleto8_24 * vrf);
// vl and vr are now in U8.24 format
uint16_t sendLevel = proxy->getSendLevel_U4_12();
// send level comes from shared memory and so may be corrupt
if (sendLevel > MAX_GAIN_INT) {
ALOGV("Track send level out of range: %04X", sendLevel);
sendLevel = MAX_GAIN_INT;
}
// vaf is represented as [0.0, 1.0] float by rescaling sendLevel
vaf = v * sendLevel * (1. / MAX_GAIN_INT);
}
// Delegate volume control to effect in track effect chain if needed
if (chain != 0 && chain->setVolume_l(&vl, &vr)) {
// Do not ramp volume if volume is controlled by effect
param = AudioMixer::VOLUME;
// Update remaining floating point volume levels
vlf = (float)vl / (1 << 24);
vrf = (float)vr / (1 << 24);
track->mHasVolumeController = true;
} else {
// force no volume ramp when volume controller was just disabled or removed
// from effect chain to avoid volume spike
if (track->mHasVolumeController) {
param = AudioMixer::VOLUME;
}
track->mHasVolumeController = false;
}
// XXX: these things DON'T need to be done each time
mAudioMixer->setBufferProvider(name, track);
mAudioMixer->enable(name);
mAudioMixer->setParameter(name, param, AudioMixer::VOLUME0, &vlf);
mAudioMixer->setParameter(name, param, AudioMixer::VOLUME1, &vrf);
mAudioMixer->setParameter(name, param, AudioMixer::AUXLEVEL, &vaf);
mAudioMixer->setParameter(
name,
AudioMixer::TRACK,
AudioMixer::FORMAT, (void *)track->format());
mAudioMixer->setParameter(
name,
AudioMixer::TRACK,
AudioMixer::CHANNEL_MASK, (void *)(uintptr_t)track->channelMask());
mAudioMixer->setParameter(
name,
AudioMixer::TRACK,
AudioMixer::MIXER_CHANNEL_MASK, (void *)(uintptr_t)mChannelMask);
// limit track sample rate to 2 x output sample rate, which changes at re-configuration
uint32_t maxSampleRate = mSampleRate * AUDIO_RESAMPLER_DOWN_RATIO_MAX;
uint32_t reqSampleRate = track->mAudioTrackServerProxy->getSampleRate();
if (reqSampleRate == 0) {
reqSampleRate = mSampleRate;
} else if (reqSampleRate > maxSampleRate) {
reqSampleRate = maxSampleRate;
}
mAudioMixer->setParameter(
name,
AudioMixer::RESAMPLE,
AudioMixer::SAMPLE_RATE,
(void *)(uintptr_t)reqSampleRate);
AudioPlaybackRate playbackRate = track->mAudioTrackServerProxy->getPlaybackRate();
mAudioMixer->setParameter(
name,
AudioMixer::TIMESTRETCH,
AudioMixer::PLAYBACK_RATE,
&playbackRate);
/*
* Select the appropriate output buffer for the track.
*
* Tracks with effects go into their own effects chain buffer
* and from there into either mEffectBuffer or mSinkBuffer.
*
* Other tracks can use mMixerBuffer for higher precision
* channel accumulation. If this buffer is enabled
* (mMixerBufferEnabled true), then selected tracks will accumulate
* into it.
*
*/
if (mMixerBufferEnabled
&& (track->mainBuffer() == mSinkBuffer
|| track->mainBuffer() == mMixerBuffer)) {
mAudioMixer->setParameter(
name,
AudioMixer::TRACK,
AudioMixer::MIXER_FORMAT, (void *)mMixerBufferFormat);
mAudioMixer->setParameter(
name,
AudioMixer::TRACK,
AudioMixer::MAIN_BUFFER, (void *)mMixerBuffer);
// TODO: override track->mainBuffer()?
mMixerBufferValid = true;
} else {
mAudioMixer->setParameter(
name,
AudioMixer::TRACK,
AudioMixer::MIXER_FORMAT, (void *)AUDIO_FORMAT_PCM_16_BIT);
mAudioMixer->setParameter(
name,
AudioMixer::TRACK,
AudioMixer::MAIN_BUFFER, (void *)track->mainBuffer());
}
mAudioMixer->setParameter(
name,
AudioMixer::TRACK,
AudioMixer::AUX_BUFFER, (void *)track->auxBuffer());
// reset retry count
track->mRetryCount = kMaxTrackRetries;
// If one track is ready, set the mixer ready if:
// - the mixer was not ready during previous round OR
// - no other track is not ready
if (mMixerStatusIgnoringFastTracks != MIXER_TRACKS_READY ||
mixerStatus != MIXER_TRACKS_ENABLED) {
mixerStatus = MIXER_TRACKS_READY;
}
} else {
if (framesReady < desiredFrames && !track->isStopped() && !track->isPaused()) {
ALOGV("track(%p) underrun, framesReady(%zu) < framesDesired(%zd)",
track, framesReady, desiredFrames);
track->mAudioTrackServerProxy->tallyUnderrunFrames(desiredFrames);
}
// clear effect chain input buffer if an active track underruns to avoid sending
// previous audio buffer again to effects
chain = getEffectChain_l(track->sessionId());
if (chain != 0) {
chain->clearInputBuffer();
}
ALOGVV("track %d s=%08x [NOT READY] on thread %p", name, cblk->mServer, this);
if ((track->sharedBuffer() != 0) || track->isTerminated() ||
track->isStopped() || track->isPaused()) {
// We have consumed all the buffers of this track.
// Remove it from the list of active tracks.
// TODO: use actual buffer filling status instead of latency when available from
// audio HAL
size_t audioHALFrames = (latency_l() * mSampleRate) / 1000;
size_t framesWritten = mBytesWritten / mFrameSize;
if (mStandby || track->presentationComplete(framesWritten, audioHALFrames)) {
if (track->isStopped()) {
track->reset();
}
tracksToRemove->add(track);
}
} else {
// No buffers for this track. Give it a few chances to
// fill a buffer, then remove it from active list.
if (--(track->mRetryCount) <= 0) {
ALOGI("BUFFER TIMEOUT: remove(%d) from active list on thread %p", name, this);
tracksToRemove->add(track);
// indicate to client process that the track was disabled because of underrun;
// it will then automatically call start() when data is available
android_atomic_or(CBLK_DISABLED, &cblk->mFlags);
// If one track is not ready, mark the mixer also not ready if:
// - the mixer was ready during previous round OR
// - no other track is ready
} else if (mMixerStatusIgnoringFastTracks == MIXER_TRACKS_READY ||
mixerStatus != MIXER_TRACKS_READY) {
mixerStatus = MIXER_TRACKS_ENABLED;
}
}
mAudioMixer->disable(name);
}
} // local variable scope to avoid goto warning
track_is_ready: ;
}
// Push the new FastMixer state if necessary
bool pauseAudioWatchdog = false;
if (didModify) {
state->mFastTracksGen++;
// if the fast mixer was active, but now there are no fast tracks, then put it in cold idle
if (kUseFastMixer == FastMixer_Dynamic &&
state->mCommand == FastMixerState::MIX_WRITE && state->mTrackMask <= 1) {
state->mCommand = FastMixerState::COLD_IDLE;
state->mColdFutexAddr = &mFastMixerFutex;
state->mColdGen++;
mFastMixerFutex = 0;
if (kUseFastMixer == FastMixer_Dynamic) {
mNormalSink = mOutputSink;
}
// If we go into cold idle, need to wait for acknowledgement
// so that fast mixer stops doing I/O.
block = FastMixerStateQueue::BLOCK_UNTIL_ACKED;
pauseAudioWatchdog = true;
}
}
if (sq != NULL) {
sq->end(didModify);
sq->push(block);
}
#ifdef AUDIO_WATCHDOG
if (pauseAudioWatchdog && mAudioWatchdog != 0) {
mAudioWatchdog->pause();
}
#endif
// Now perform the deferred reset on fast tracks that have stopped
while (resetMask != 0) {
size_t i = __builtin_ctz(resetMask);
ALOG_ASSERT(i < count);
resetMask &= ~(1 << i);
sp<Track> t = mActiveTracks[i].promote();
if (t == 0) {
continue;
}
Track* track = t.get();
ALOG_ASSERT(track->isFastTrack() && track->isStopped());
track->reset();
}
// remove all the tracks that need to be...
removeTracks_l(*tracksToRemove);
if (getEffectChain_l(AUDIO_SESSION_OUTPUT_MIX) != 0) {
mEffectBufferValid = true;
}
if (mEffectBufferValid) {
// as long as there are effects we should clear the effects buffer, to avoid
// passing a non-clean buffer to the effect chain
memset(mEffectBuffer, 0, mEffectBufferSize);
}
// sink or mix buffer must be cleared if all tracks are connected to an
// effect chain as in this case the mixer will not write to the sink or mix buffer
// and track effects will accumulate into it
if ((mBytesRemaining == 0) && ((mixedTracks != 0 && mixedTracks == tracksWithEffect) ||
(mixedTracks == 0 && fastTracks > 0))) {
// FIXME as a performance optimization, should remember previous zero status
if (mMixerBufferValid) {
memset(mMixerBuffer, 0, mMixerBufferSize);
// TODO: In testing, mSinkBuffer below need not be cleared because
// the PlaybackThread::threadLoop() copies mMixerBuffer into mSinkBuffer
// after mixing.
//
// To enforce this guarantee:
// ((mixedTracks != 0 && mixedTracks == tracksWithEffect) ||
// (mixedTracks == 0 && fastTracks > 0))
// must imply MIXER_TRACKS_READY.
// Later, we may clear buffers regardless, and skip much of this logic.
}
// FIXME as a performance optimization, should remember previous zero status
memset(mSinkBuffer, 0, mNormalFrameCount * mFrameSize);
}
// if any fast tracks, then status is ready
mMixerStatusIgnoringFastTracks = mixerStatus;
if (fastTracks > 0) {
mixerStatus = MIXER_TRACKS_READY;
}
return mixerStatus;
}
// getTrackName_l() must be called with ThreadBase::mLock held
int AudioFlinger::MixerThread::getTrackName_l(audio_channel_mask_t channelMask,
audio_format_t format, int sessionId)
{
return mAudioMixer->getTrackName(channelMask, format, sessionId);
}
// deleteTrackName_l() must be called with ThreadBase::mLock held
void AudioFlinger::MixerThread::deleteTrackName_l(int name)
{
ALOGV("remove track (%d) and delete from mixer", name);
mAudioMixer->deleteTrackName(name);
}
// checkForNewParameter_l() must be called with ThreadBase::mLock held
bool AudioFlinger::MixerThread::checkForNewParameter_l(const String8& keyValuePair,
status_t& status)
{
bool reconfig = false;
status = NO_ERROR;
// if !&IDLE, holds the FastMixer state to restore after new parameters processed
FastMixerState::Command previousCommand = FastMixerState::HOT_IDLE;
if (mFastMixer != 0) {
FastMixerStateQueue *sq = mFastMixer->sq();
FastMixerState *state = sq->begin();
if (!(state->mCommand & FastMixerState::IDLE)) {
previousCommand = state->mCommand;
state->mCommand = FastMixerState::HOT_IDLE;
sq->end();
sq->push(FastMixerStateQueue::BLOCK_UNTIL_ACKED);
} else {
sq->end(false /*didModify*/);
}
}
AudioParameter param = AudioParameter(keyValuePair);
int value;
if (param.getInt(String8(AudioParameter::keySamplingRate), value) == NO_ERROR) {
reconfig = true;
}
if (param.getInt(String8(AudioParameter::keyFormat), value) == NO_ERROR) {
if (!isValidPcmSinkFormat((audio_format_t) value)) {
status = BAD_VALUE;
} else {
// no need to save value, since it's constant
reconfig = true;
}
}
if (param.getInt(String8(AudioParameter::keyChannels), value) == NO_ERROR) {
if (!isValidPcmSinkChannelMask((audio_channel_mask_t) value)) {
status = BAD_VALUE;
} else {
// no need to save value, since it's constant
reconfig = true;
}
}
if (param.getInt(String8(AudioParameter::keyFrameCount), value) == NO_ERROR) {
// do not accept frame count changes if tracks are open as the track buffer
// size depends on frame count and correct behavior would not be guaranteed
// if frame count is changed after track creation
if (!mTracks.isEmpty()) {
status = INVALID_OPERATION;
} else {
reconfig = true;
}
}
if (param.getInt(String8(AudioParameter::keyRouting), value) == NO_ERROR) {
#ifdef ADD_BATTERY_DATA
// when changing the audio output device, call addBatteryData to notify
// the change
if (mOutDevice != value) {
uint32_t params = 0;
// check whether speaker is on
if (value & AUDIO_DEVICE_OUT_SPEAKER) {
params |= IMediaPlayerService::kBatteryDataSpeakerOn;
}
audio_devices_t deviceWithoutSpeaker
= AUDIO_DEVICE_OUT_ALL & ~AUDIO_DEVICE_OUT_SPEAKER;
// check if any other device (except speaker) is on
if (value & deviceWithoutSpeaker) {
params |= IMediaPlayerService::kBatteryDataOtherAudioDeviceOn;
}
if (params != 0) {
addBatteryData(params);
}
}
#endif
// forward device change to effects that have requested to be
// aware of attached audio device.
if (value != AUDIO_DEVICE_NONE) {
mOutDevice = value;
for (size_t i = 0; i < mEffectChains.size(); i++) {
mEffectChains[i]->setDevice_l(mOutDevice);
}
}
}
if (status == NO_ERROR) {
status = mOutput->stream->common.set_parameters(&mOutput->stream->common,
keyValuePair.string());
if (!mStandby && status == INVALID_OPERATION) {
mOutput->standby();
mStandby = true;
mBytesWritten = 0;
status = mOutput->stream->common.set_parameters(&mOutput->stream->common,
keyValuePair.string());
}
if (status == NO_ERROR && reconfig) {
readOutputParameters_l();
delete mAudioMixer;
mAudioMixer = new AudioMixer(mNormalFrameCount, mSampleRate);
for (size_t i = 0; i < mTracks.size() ; i++) {
int name = getTrackName_l(mTracks[i]->mChannelMask,
mTracks[i]->mFormat, mTracks[i]->mSessionId);
if (name < 0) {
break;
}
mTracks[i]->mName = name;
}
sendIoConfigEvent_l(AUDIO_OUTPUT_CONFIG_CHANGED);
}
}
if (!(previousCommand & FastMixerState::IDLE)) {
ALOG_ASSERT(mFastMixer != 0);
FastMixerStateQueue *sq = mFastMixer->sq();
FastMixerState *state = sq->begin();
ALOG_ASSERT(state->mCommand == FastMixerState::HOT_IDLE);
state->mCommand = previousCommand;
sq->end();
sq->push(FastMixerStateQueue::BLOCK_UNTIL_PUSHED);
}
return reconfig;
}
void AudioFlinger::MixerThread::dumpInternals(int fd, const Vector<String16>& args)
{
const size_t SIZE = 256;
char buffer[SIZE];
String8 result;
PlaybackThread::dumpInternals(fd, args);
dprintf(fd, " Thread throttle time (msecs): %u\n", mThreadThrottleTimeMs);
dprintf(fd, " AudioMixer tracks: 0x%08x\n", mAudioMixer->trackNames());
// Make a non-atomic copy of fast mixer dump state so it won't change underneath us
const FastMixerDumpState copy(mFastMixerDumpState);
copy.dump(fd);
#ifdef STATE_QUEUE_DUMP
// Similar for state queue
StateQueueObserverDump observerCopy = mStateQueueObserverDump;
observerCopy.dump(fd);
StateQueueMutatorDump mutatorCopy = mStateQueueMutatorDump;
mutatorCopy.dump(fd);
#endif
#ifdef TEE_SINK
// Write the tee output to a .wav file
dumpTee(fd, mTeeSource, mId);
#endif
#ifdef AUDIO_WATCHDOG
if (mAudioWatchdog != 0) {
// Make a non-atomic copy of audio watchdog dump so it won't change underneath us
AudioWatchdogDump wdCopy = mAudioWatchdogDump;
wdCopy.dump(fd);
}
#endif
}
uint32_t AudioFlinger::MixerThread::idleSleepTimeUs() const
{
return (uint32_t)(((mNormalFrameCount * 1000) / mSampleRate) * 1000) / 2;
}
uint32_t AudioFlinger::MixerThread::suspendSleepTimeUs() const
{
return (uint32_t)(((mNormalFrameCount * 1000) / mSampleRate) * 1000);
}
void AudioFlinger::MixerThread::cacheParameters_l()
{
PlaybackThread::cacheParameters_l();
// FIXME: Relaxed timing because of a certain device that can't meet latency
// Should be reduced to 2x after the vendor fixes the driver issue
// increase threshold again due to low power audio mode. The way this warning
// threshold is calculated and its usefulness should be reconsidered anyway.
maxPeriod = seconds(mNormalFrameCount) / mSampleRate * 15;
}
// ----------------------------------------------------------------------------
AudioFlinger::DirectOutputThread::DirectOutputThread(const sp<AudioFlinger>& audioFlinger,
AudioStreamOut* output, audio_io_handle_t id, audio_devices_t device, bool systemReady)
: PlaybackThread(audioFlinger, output, id, device, DIRECT, systemReady)
// mLeftVolFloat, mRightVolFloat
{
}
AudioFlinger::DirectOutputThread::DirectOutputThread(const sp<AudioFlinger>& audioFlinger,
AudioStreamOut* output, audio_io_handle_t id, uint32_t device,
ThreadBase::type_t type, bool systemReady)
: PlaybackThread(audioFlinger, output, id, device, type, systemReady)
// mLeftVolFloat, mRightVolFloat
{
}
AudioFlinger::DirectOutputThread::~DirectOutputThread()
{
}
void AudioFlinger::DirectOutputThread::processVolume_l(Track *track, bool lastTrack)
{
audio_track_cblk_t* cblk = track->cblk();
float left, right;
if (mMasterMute || mStreamTypes[track->streamType()].mute) {
left = right = 0;
} else {
float typeVolume = mStreamTypes[track->streamType()].volume;
float v = mMasterVolume * typeVolume;
AudioTrackServerProxy *proxy = track->mAudioTrackServerProxy;
gain_minifloat_packed_t vlr = proxy->getVolumeLR();
left = float_from_gain(gain_minifloat_unpack_left(vlr));
if (left > GAIN_FLOAT_UNITY) {
left = GAIN_FLOAT_UNITY;
}
left *= v;
right = float_from_gain(gain_minifloat_unpack_right(vlr));
if (right > GAIN_FLOAT_UNITY) {
right = GAIN_FLOAT_UNITY;
}
right *= v;
}
if (lastTrack) {
if (left != mLeftVolFloat || right != mRightVolFloat) {
mLeftVolFloat = left;
mRightVolFloat = right;
// Convert volumes from float to 8.24
uint32_t vl = (uint32_t)(left * (1 << 24));
uint32_t vr = (uint32_t)(right * (1 << 24));
// Delegate volume control to effect in track effect chain if needed
// only one effect chain can be present on DirectOutputThread, so if
// there is one, the track is connected to it
if (!mEffectChains.isEmpty()) {
mEffectChains[0]->setVolume_l(&vl, &vr);
left = (float)vl / (1 << 24);
right = (float)vr / (1 << 24);
}
if (mOutput->stream->set_volume) {
mOutput->stream->set_volume(mOutput->stream, left, right);
}
}
}
}
void AudioFlinger::DirectOutputThread::onAddNewTrack_l()
{
sp<Track> previousTrack = mPreviousTrack.promote();
sp<Track> latestTrack = mLatestActiveTrack.promote();
if (previousTrack != 0 && latestTrack != 0) {
if (mType == DIRECT) {
if (previousTrack.get() != latestTrack.get()) {
mFlushPending = true;
}
} else /* mType == OFFLOAD */ {
if (previousTrack->sessionId() != latestTrack->sessionId()) {
mFlushPending = true;
}
}
}
PlaybackThread::onAddNewTrack_l();
}
AudioFlinger::PlaybackThread::mixer_state AudioFlinger::DirectOutputThread::prepareTracks_l(
Vector< sp<Track> > *tracksToRemove
)
{
size_t count = mActiveTracks.size();
mixer_state mixerStatus = MIXER_IDLE;
bool doHwPause = false;
bool doHwResume = false;
// find out which tracks need to be processed
for (size_t i = 0; i < count; i++) {
sp<Track> t = mActiveTracks[i].promote();
// The track died recently
if (t == 0) {
continue;
}
if (t->isInvalid()) {
ALOGW("An invalidated track shouldn't be in active list");
tracksToRemove->add(t);
continue;
}
Track* const track = t.get();
audio_track_cblk_t* cblk = track->cblk();
// Only consider last track started for volume and mixer state control.
// In theory an older track could underrun and restart after the new one starts
// but as we only care about the transition phase between two tracks on a
// direct output, it is not a problem to ignore the underrun case.
sp<Track> l = mLatestActiveTrack.promote();
bool last = l.get() == track;
if (track->isPausing()) {
track->setPaused();
if (mHwSupportsPause && last && !mHwPaused) {
doHwPause = true;
mHwPaused = true;
}
tracksToRemove->add(track);
} else if (track->isFlushPending()) {
track->flushAck();
if (last) {
mFlushPending = true;
}
} else if (track->isResumePending()) {
track->resumeAck();
if (last && mHwPaused) {
doHwResume = true;
mHwPaused = false;
}
}
// The first time a track is added we wait
// for all its buffers to be filled before processing it.
// Allow draining the buffer in case the client
// app does not call stop() and relies on underrun to stop:
// hence the test on (track->mRetryCount > 1).
// If retryCount<=1 then track is about to underrun and be removed.
// Do not use a high threshold for compressed audio.
uint32_t minFrames;
if ((track->sharedBuffer() == 0) && !track->isStopping_1() && !track->isPausing()
&& (track->mRetryCount > 1) && audio_is_linear_pcm(mFormat)) {
minFrames = mNormalFrameCount;
} else {
minFrames = 1;
}
if ((track->framesReady() >= minFrames) && track->isReady() && !track->isPaused() &&
!track->isStopping_2() && !track->isStopped())
{
ALOGVV("track %d s=%08x [OK]", track->name(), cblk->mServer);
if (track->mFillingUpStatus == Track::FS_FILLED) {
track->mFillingUpStatus = Track::FS_ACTIVE;
// make sure processVolume_l() will apply new volume even if 0
mLeftVolFloat = mRightVolFloat = -1.0;
if (!mHwSupportsPause) {
track->resumeAck();
}
}
// compute volume for this track
processVolume_l(track, last);
if (last) {
sp<Track> previousTrack = mPreviousTrack.promote();
if (previousTrack != 0) {
if (track != previousTrack.get()) {
// Flush any data still being written from last track
mBytesRemaining = 0;
// Invalidate previous track to force a seek when resuming.
previousTrack->invalidate();
}
}
mPreviousTrack = track;
// reset retry count
track->mRetryCount = kMaxTrackRetriesDirect;
mActiveTrack = t;
mixerStatus = MIXER_TRACKS_READY;
if (mHwPaused) {
doHwResume = true;
mHwPaused = false;
}
}
} else {
// clear effect chain input buffer if the last active track started underruns
// to avoid sending previous audio buffer again to effects
if (!mEffectChains.isEmpty() && last) {
mEffectChains[0]->clearInputBuffer();
}
if (track->isStopping_1()) {
track->mState = TrackBase::STOPPING_2;
if (last && mHwPaused) {
doHwResume = true;
mHwPaused = false;
}
}
if ((track->sharedBuffer() != 0) || track->isStopped() ||
track->isStopping_2() || track->isPaused()) {
// We have consumed all the buffers of this track.
// Remove it from the list of active tracks.
size_t audioHALFrames;
if (audio_is_linear_pcm(mFormat)) {
audioHALFrames = (latency_l() * mSampleRate) / 1000;
} else {
audioHALFrames = 0;
}
size_t framesWritten = mBytesWritten / mFrameSize;
if (mStandby || !last ||
track->presentationComplete(framesWritten, audioHALFrames)) {
if (track->isStopping_2()) {
track->mState = TrackBase::STOPPED;
}
if (track->isStopped()) {
track->reset();
}
tracksToRemove->add(track);
}
} else {
// No buffers for this track. Give it a few chances to
// fill a buffer, then remove it from active list.
// Only consider last track started for mixer state control
if (--(track->mRetryCount) <= 0) {
ALOGV("BUFFER TIMEOUT: remove(%d) from active list", track->name());
tracksToRemove->add(track);
// indicate to client process that the track was disabled because of underrun;
// it will then automatically call start() when data is available
android_atomic_or(CBLK_DISABLED, &cblk->mFlags);
} else if (last) {
ALOGW("pause because of UNDERRUN, framesReady = %zu,"
"minFrames = %u, mFormat = %#x",
track->framesReady(), minFrames, mFormat);
mixerStatus = MIXER_TRACKS_ENABLED;
if (mHwSupportsPause && !mHwPaused && !mStandby) {
doHwPause = true;
mHwPaused = true;
}
}
}
}
}
// if an active track did not command a flush, check for pending flush on stopped tracks
if (!mFlushPending) {
for (size_t i = 0; i < mTracks.size(); i++) {
if (mTracks[i]->isFlushPending()) {
mTracks[i]->flushAck();
mFlushPending = true;
}
}
}
// make sure the pause/flush/resume sequence is executed in the right order.
// If a flush is pending and a track is active but the HW is not paused, force a HW pause
// before flush and then resume HW. This can happen in case of pause/flush/resume
// if resume is received before pause is executed.
if (mHwSupportsPause && !mStandby &&
(doHwPause || (mFlushPending && !mHwPaused && (count != 0)))) {
mOutput->stream->pause(mOutput->stream);
}
if (mFlushPending) {
flushHw_l();
}
if (mHwSupportsPause && !mStandby && doHwResume) {
mOutput->stream->resume(mOutput->stream);
}
// remove all the tracks that need to be...
removeTracks_l(*tracksToRemove);
return mixerStatus;
}
void AudioFlinger::DirectOutputThread::threadLoop_mix()
{
size_t frameCount = mFrameCount;
int8_t *curBuf = (int8_t *)mSinkBuffer;
// output audio to hardware
while (frameCount) {
AudioBufferProvider::Buffer buffer;
buffer.frameCount = frameCount;
status_t status = mActiveTrack->getNextBuffer(&buffer);
if (status != NO_ERROR || buffer.raw == NULL) {
memset(curBuf, 0, frameCount * mFrameSize);
break;
}
memcpy(curBuf, buffer.raw, buffer.frameCount * mFrameSize);
frameCount -= buffer.frameCount;
curBuf += buffer.frameCount * mFrameSize;
mActiveTrack->releaseBuffer(&buffer);
}
mCurrentWriteLength = curBuf - (int8_t *)mSinkBuffer;
mSleepTimeUs = 0;
mStandbyTimeNs = systemTime() + mStandbyDelayNs;
mActiveTrack.clear();
}
void AudioFlinger::DirectOutputThread::threadLoop_sleepTime()
{
// do not write to HAL when paused
if (mHwPaused || (usesHwAvSync() && mStandby)) {
mSleepTimeUs = mIdleSleepTimeUs;
return;
}
if (mSleepTimeUs == 0) {
if (mMixerStatus == MIXER_TRACKS_ENABLED) {
mSleepTimeUs = mActiveSleepTimeUs;
} else {
mSleepTimeUs = mIdleSleepTimeUs;
}
} else if (mBytesWritten != 0 && audio_is_linear_pcm(mFormat)) {
memset(mSinkBuffer, 0, mFrameCount * mFrameSize);
mSleepTimeUs = 0;
}
}
void AudioFlinger::DirectOutputThread::threadLoop_exit()
{
{
Mutex::Autolock _l(mLock);
for (size_t i = 0; i < mTracks.size(); i++) {
if (mTracks[i]->isFlushPending()) {
mTracks[i]->flushAck();
mFlushPending = true;
}
}
if (mFlushPending) {
flushHw_l();
}
}
PlaybackThread::threadLoop_exit();
}
// must be called with thread mutex locked
bool AudioFlinger::DirectOutputThread::shouldStandby_l()
{
bool trackPaused = false;
bool trackStopped = false;
// do not put the HAL in standby when paused. AwesomePlayer clear the offloaded AudioTrack
// after a timeout and we will enter standby then.
if (mTracks.size() > 0) {
trackPaused = mTracks[mTracks.size() - 1]->isPaused();
trackStopped = mTracks[mTracks.size() - 1]->isStopped() ||
mTracks[mTracks.size() - 1]->mState == TrackBase::IDLE;
}
return !mStandby && !(trackPaused || (mHwPaused && !trackStopped));
}
// getTrackName_l() must be called with ThreadBase::mLock held
int AudioFlinger::DirectOutputThread::getTrackName_l(audio_channel_mask_t channelMask __unused,
audio_format_t format __unused, int sessionId __unused)
{
return 0;
}
// deleteTrackName_l() must be called with ThreadBase::mLock held
void AudioFlinger::DirectOutputThread::deleteTrackName_l(int name __unused)
{
}
// checkForNewParameter_l() must be called with ThreadBase::mLock held
bool AudioFlinger::DirectOutputThread::checkForNewParameter_l(const String8& keyValuePair,
status_t& status)
{
bool reconfig = false;
status = NO_ERROR;
AudioParameter param = AudioParameter(keyValuePair);
int value;
if (param.getInt(String8(AudioParameter::keyRouting), value) == NO_ERROR) {
// forward device change to effects that have requested to be
// aware of attached audio device.
if (value != AUDIO_DEVICE_NONE) {
mOutDevice = value;
for (size_t i = 0; i < mEffectChains.size(); i++) {
mEffectChains[i]->setDevice_l(mOutDevice);
}
}
}
if (param.getInt(String8(AudioParameter::keyFrameCount), value) == NO_ERROR) {
// do not accept frame count changes if tracks are open as the track buffer
// size depends on frame count and correct behavior would not be garantied
// if frame count is changed after track creation
if (!mTracks.isEmpty()) {
status = INVALID_OPERATION;
} else {
reconfig = true;
}
}
if (status == NO_ERROR) {
status = mOutput->stream->common.set_parameters(&mOutput->stream->common,
keyValuePair.string());
if (!mStandby && status == INVALID_OPERATION) {
mOutput->standby();
mStandby = true;
mBytesWritten = 0;
status = mOutput->stream->common.set_parameters(&mOutput->stream->common,
keyValuePair.string());
}
if (status == NO_ERROR && reconfig) {
readOutputParameters_l();
sendIoConfigEvent_l(AUDIO_OUTPUT_CONFIG_CHANGED);
}
}
return reconfig;
}
uint32_t AudioFlinger::DirectOutputThread::activeSleepTimeUs() const
{
uint32_t time;
if (audio_is_linear_pcm(mFormat)) {
time = PlaybackThread::activeSleepTimeUs();
} else {
time = 10000;
}
return time;
}
uint32_t AudioFlinger::DirectOutputThread::idleSleepTimeUs() const
{
uint32_t time;
if (audio_is_linear_pcm(mFormat)) {
time = (uint32_t)(((mFrameCount * 1000) / mSampleRate) * 1000) / 2;
} else {
time = 10000;
}
return time;
}
uint32_t AudioFlinger::DirectOutputThread::suspendSleepTimeUs() const
{
uint32_t time;
if (audio_is_linear_pcm(mFormat)) {
time = (uint32_t)(((mFrameCount * 1000) / mSampleRate) * 1000);
} else {
time = 10000;
}
return time;
}
void AudioFlinger::DirectOutputThread::cacheParameters_l()
{
PlaybackThread::cacheParameters_l();
// use shorter standby delay as on normal output to release
// hardware resources as soon as possible
// no delay on outputs with HW A/V sync
if (usesHwAvSync()) {
mStandbyDelayNs = 0;
} else if ((mType == OFFLOAD) && !audio_is_linear_pcm(mFormat)) {
mStandbyDelayNs = kOffloadStandbyDelayNs;
} else {
mStandbyDelayNs = microseconds(mActiveSleepTimeUs*2);
}
}
void AudioFlinger::DirectOutputThread::flushHw_l()
{
mOutput->flush();
mHwPaused = false;
mFlushPending = false;
}
// ----------------------------------------------------------------------------
AudioFlinger::AsyncCallbackThread::AsyncCallbackThread(
const wp<AudioFlinger::PlaybackThread>& playbackThread)
: Thread(false /*canCallJava*/),
mPlaybackThread(playbackThread),
mWriteAckSequence(0),
mDrainSequence(0)
{
}
AudioFlinger::AsyncCallbackThread::~AsyncCallbackThread()
{
}
void AudioFlinger::AsyncCallbackThread::onFirstRef()
{
run("Offload Cbk", ANDROID_PRIORITY_URGENT_AUDIO);
}
bool AudioFlinger::AsyncCallbackThread::threadLoop()
{
while (!exitPending()) {
uint32_t writeAckSequence;
uint32_t drainSequence;
{
Mutex::Autolock _l(mLock);
while (!((mWriteAckSequence & 1) ||
(mDrainSequence & 1) ||
exitPending())) {
mWaitWorkCV.wait(mLock);
}
if (exitPending()) {
break;
}
ALOGV("AsyncCallbackThread mWriteAckSequence %d mDrainSequence %d",
mWriteAckSequence, mDrainSequence);
writeAckSequence = mWriteAckSequence;
mWriteAckSequence &= ~1;
drainSequence = mDrainSequence;
mDrainSequence &= ~1;
}
{
sp<AudioFlinger::PlaybackThread> playbackThread = mPlaybackThread.promote();
if (playbackThread != 0) {
if (writeAckSequence & 1) {
playbackThread->resetWriteBlocked(writeAckSequence >> 1);
}
if (drainSequence & 1) {
playbackThread->resetDraining(drainSequence >> 1);
}
}
}
}
return false;
}
void AudioFlinger::AsyncCallbackThread::exit()
{
ALOGV("AsyncCallbackThread::exit");
Mutex::Autolock _l(mLock);
requestExit();
mWaitWorkCV.broadcast();
}
void AudioFlinger::AsyncCallbackThread::setWriteBlocked(uint32_t sequence)
{
Mutex::Autolock _l(mLock);
// bit 0 is cleared
mWriteAckSequence = sequence << 1;
}
void AudioFlinger::AsyncCallbackThread::resetWriteBlocked()
{
Mutex::Autolock _l(mLock);
// ignore unexpected callbacks
if (mWriteAckSequence & 2) {
mWriteAckSequence |= 1;
mWaitWorkCV.signal();
}
}
void AudioFlinger::AsyncCallbackThread::setDraining(uint32_t sequence)
{
Mutex::Autolock _l(mLock);
// bit 0 is cleared
mDrainSequence = sequence << 1;
}
void AudioFlinger::AsyncCallbackThread::resetDraining()
{
Mutex::Autolock _l(mLock);
// ignore unexpected callbacks
if (mDrainSequence & 2) {
mDrainSequence |= 1;
mWaitWorkCV.signal();
}
}
// ----------------------------------------------------------------------------
AudioFlinger::OffloadThread::OffloadThread(const sp<AudioFlinger>& audioFlinger,
AudioStreamOut* output, audio_io_handle_t id, uint32_t device, bool systemReady)
: DirectOutputThread(audioFlinger, output, id, device, OFFLOAD, systemReady),
mPausedBytesRemaining(0)
{
//FIXME: mStandby should be set to true by ThreadBase constructor
mStandby = true;
}
void AudioFlinger::OffloadThread::threadLoop_exit()
{
if (mFlushPending || mHwPaused) {
// If a flush is pending or track was paused, just discard buffered data
flushHw_l();
} else {
mMixerStatus = MIXER_DRAIN_ALL;
threadLoop_drain();
}
if (mUseAsyncWrite) {
ALOG_ASSERT(mCallbackThread != 0);
mCallbackThread->exit();
}
PlaybackThread::threadLoop_exit();
}
AudioFlinger::PlaybackThread::mixer_state AudioFlinger::OffloadThread::prepareTracks_l(
Vector< sp<Track> > *tracksToRemove
)
{
size_t count = mActiveTracks.size();
mixer_state mixerStatus = MIXER_IDLE;
bool doHwPause = false;
bool doHwResume = false;
ALOGV("OffloadThread::prepareTracks_l active tracks %d", count);
// find out which tracks need to be processed
for (size_t i = 0; i < count; i++) {
sp<Track> t = mActiveTracks[i].promote();
// The track died recently
if (t == 0) {
continue;
}
Track* const track = t.get();
audio_track_cblk_t* cblk = track->cblk();
// Only consider last track started for volume and mixer state control.
// In theory an older track could underrun and restart after the new one starts
// but as we only care about the transition phase between two tracks on a
// direct output, it is not a problem to ignore the underrun case.
sp<Track> l = mLatestActiveTrack.promote();
bool last = l.get() == track;
if (track->isInvalid()) {
ALOGW("An invalidated track shouldn't be in active list");
tracksToRemove->add(track);
continue;
}
if (track->mState == TrackBase::IDLE) {
ALOGW("An idle track shouldn't be in active list");
continue;
}
if (track->isPausing()) {
track->setPaused();
if (last) {
if (mHwSupportsPause && !mHwPaused) {
doHwPause = true;
mHwPaused = true;
}
// If we were part way through writing the mixbuffer to
// the HAL we must save this until we resume
// BUG - this will be wrong if a different track is made active,
// in that case we want to discard the pending data in the
// mixbuffer and tell the client to present it again when the
// track is resumed
mPausedWriteLength = mCurrentWriteLength;
mPausedBytesRemaining = mBytesRemaining;
mBytesRemaining = 0; // stop writing
}
tracksToRemove->add(track);
} else if (track->isFlushPending()) {
track->flushAck();
if (last) {
mFlushPending = true;
}
} else if (track->isResumePending()){
track->resumeAck();
if (last) {
if (mPausedBytesRemaining) {
// Need to continue write that was interrupted
mCurrentWriteLength = mPausedWriteLength;
mBytesRemaining = mPausedBytesRemaining;
mPausedBytesRemaining = 0;
}
if (mHwPaused) {
doHwResume = true;
mHwPaused = false;
// threadLoop_mix() will handle the case that we need to
// resume an interrupted write
}
// enable write to audio HAL
mSleepTimeUs = 0;
// Do not handle new data in this iteration even if track->framesReady()
mixerStatus = MIXER_TRACKS_ENABLED;
}
} else if (track->framesReady() && track->isReady() &&
!track->isPaused() && !track->isTerminated() && !track->isStopping_2()) {
ALOGVV("OffloadThread: track %d s=%08x [OK]", track->name(), cblk->mServer);
if (track->mFillingUpStatus == Track::FS_FILLED) {
track->mFillingUpStatus = Track::FS_ACTIVE;
// make sure processVolume_l() will apply new volume even if 0
mLeftVolFloat = mRightVolFloat = -1.0;
}
if (last) {
sp<Track> previousTrack = mPreviousTrack.promote();
if (previousTrack != 0) {
if (track != previousTrack.get()) {
// Flush any data still being written from last track
mBytesRemaining = 0;
if (mPausedBytesRemaining) {
// Last track was paused so we also need to flush saved
// mixbuffer state and invalidate track so that it will
// re-submit that unwritten data when it is next resumed
mPausedBytesRemaining = 0;
// Invalidate is a bit drastic - would be more efficient
// to have a flag to tell client that some of the
// previously written data was lost
previousTrack->invalidate();
}
// flush data already sent to the DSP if changing audio session as audio
// comes from a different source. Also invalidate previous track to force a
// seek when resuming.
if (previousTrack->sessionId() != track->sessionId()) {
previousTrack->invalidate();
}
}
}
mPreviousTrack = track;
// reset retry count
track->mRetryCount = kMaxTrackRetriesOffload;
mActiveTrack = t;
mixerStatus = MIXER_TRACKS_READY;
}
} else {
ALOGVV("OffloadThread: track %d s=%08x [NOT READY]", track->name(), cblk->mServer);
if (track->isStopping_1()) {
// Hardware buffer can hold a large amount of audio so we must
// wait for all current track's data to drain before we say
// that the track is stopped.
if (mBytesRemaining == 0) {
// Only start draining when all data in mixbuffer
// has been written
ALOGV("OffloadThread: underrun and STOPPING_1 -> draining, STOPPING_2");
track->mState = TrackBase::STOPPING_2; // so presentation completes after drain
// do not drain if no data was ever sent to HAL (mStandby == true)
if (last && !mStandby) {
// do not modify drain sequence if we are already draining. This happens
// when resuming from pause after drain.
if ((mDrainSequence & 1) == 0) {
mSleepTimeUs = 0;
mStandbyTimeNs = systemTime() + mStandbyDelayNs;
mixerStatus = MIXER_DRAIN_TRACK;
mDrainSequence += 2;
}
if (mHwPaused) {
// It is possible to move from PAUSED to STOPPING_1 without
// a resume so we must ensure hardware is running
doHwResume = true;
mHwPaused = false;
}
}
}
} else if (track->isStopping_2()) {
// Drain has completed or we are in standby, signal presentation complete
if (!(mDrainSequence & 1) || !last || mStandby) {
track->mState = TrackBase::STOPPED;
size_t audioHALFrames =
(mOutput->stream->get_latency(mOutput->stream)*mSampleRate) / 1000;
size_t framesWritten =
mBytesWritten / mOutput->getFrameSize();
track->presentationComplete(framesWritten, audioHALFrames);
track->reset();
tracksToRemove->add(track);
}
} else {
// No buffers for this track. Give it a few chances to
// fill a buffer, then remove it from active list.
if (--(track->mRetryCount) <= 0) {
ALOGV("OffloadThread: BUFFER TIMEOUT: remove(%d) from active list",
track->name());
tracksToRemove->add(track);
// indicate to client process that the track was disabled because of underrun;
// it will then automatically call start() when data is available
android_atomic_or(CBLK_DISABLED, &cblk->mFlags);
} else if (last){
mixerStatus = MIXER_TRACKS_ENABLED;
}
}
}
// compute volume for this track
processVolume_l(track, last);
}
// make sure the pause/flush/resume sequence is executed in the right order.
// If a flush is pending and a track is active but the HW is not paused, force a HW pause
// before flush and then resume HW. This can happen in case of pause/flush/resume
// if resume is received before pause is executed.
if (!mStandby && (doHwPause || (mFlushPending && !mHwPaused && (count != 0)))) {
mOutput->stream->pause(mOutput->stream);
}
if (mFlushPending) {
flushHw_l();
}
if (!mStandby && doHwResume) {
mOutput->stream->resume(mOutput->stream);
}
// remove all the tracks that need to be...
removeTracks_l(*tracksToRemove);
return mixerStatus;
}
// must be called with thread mutex locked
bool AudioFlinger::OffloadThread::waitingAsyncCallback_l()
{
ALOGVV("waitingAsyncCallback_l mWriteAckSequence %d mDrainSequence %d",
mWriteAckSequence, mDrainSequence);
if (mUseAsyncWrite && ((mWriteAckSequence & 1) || (mDrainSequence & 1))) {
return true;
}
return false;
}
bool AudioFlinger::OffloadThread::waitingAsyncCallback()
{
Mutex::Autolock _l(mLock);
return waitingAsyncCallback_l();
}
void AudioFlinger::OffloadThread::flushHw_l()
{
DirectOutputThread::flushHw_l();
// Flush anything still waiting in the mixbuffer
mCurrentWriteLength = 0;
mBytesRemaining = 0;
mPausedWriteLength = 0;
mPausedBytesRemaining = 0;
if (mUseAsyncWrite) {
// discard any pending drain or write ack by incrementing sequence
mWriteAckSequence = (mWriteAckSequence + 2) & ~1;
mDrainSequence = (mDrainSequence + 2) & ~1;
ALOG_ASSERT(mCallbackThread != 0);
mCallbackThread->setWriteBlocked(mWriteAckSequence);
mCallbackThread->setDraining(mDrainSequence);
}
}
// ----------------------------------------------------------------------------
AudioFlinger::DuplicatingThread::DuplicatingThread(const sp<AudioFlinger>& audioFlinger,
AudioFlinger::MixerThread* mainThread, audio_io_handle_t id, bool systemReady)
: MixerThread(audioFlinger, mainThread->getOutput(), id, mainThread->outDevice(),
systemReady, DUPLICATING),
mWaitTimeMs(UINT_MAX)
{
addOutputTrack(mainThread);
}
AudioFlinger::DuplicatingThread::~DuplicatingThread()
{
for (size_t i = 0; i < mOutputTracks.size(); i++) {
mOutputTracks[i]->destroy();
}
}
void AudioFlinger::DuplicatingThread::threadLoop_mix()
{
// mix buffers...
if (outputsReady(outputTracks)) {
mAudioMixer->process(AudioBufferProvider::kInvalidPTS);
} else {
if (mMixerBufferValid) {
memset(mMixerBuffer, 0, mMixerBufferSize);
} else {
memset(mSinkBuffer, 0, mSinkBufferSize);
}
}
mSleepTimeUs = 0;
writeFrames = mNormalFrameCount;
mCurrentWriteLength = mSinkBufferSize;
mStandbyTimeNs = systemTime() + mStandbyDelayNs;
}
void AudioFlinger::DuplicatingThread::threadLoop_sleepTime()
{
if (mSleepTimeUs == 0) {
if (mMixerStatus == MIXER_TRACKS_ENABLED) {
mSleepTimeUs = mActiveSleepTimeUs;
} else {
mSleepTimeUs = mIdleSleepTimeUs;
}
} else if (mBytesWritten != 0) {
if (mMixerStatus == MIXER_TRACKS_ENABLED) {
writeFrames = mNormalFrameCount;
memset(mSinkBuffer, 0, mSinkBufferSize);
} else {
// flush remaining overflow buffers in output tracks
writeFrames = 0;
}
mSleepTimeUs = 0;
}
}
ssize_t AudioFlinger::DuplicatingThread::threadLoop_write()
{
for (size_t i = 0; i < outputTracks.size(); i++) {
outputTracks[i]->write(mSinkBuffer, writeFrames);
}
mStandby = false;
return (ssize_t)mSinkBufferSize;
}
void AudioFlinger::DuplicatingThread::threadLoop_standby()
{
// DuplicatingThread implements standby by stopping all tracks
for (size_t i = 0; i < outputTracks.size(); i++) {
outputTracks[i]->stop();
}
}
void AudioFlinger::DuplicatingThread::saveOutputTracks()
{
outputTracks = mOutputTracks;
}
void AudioFlinger::DuplicatingThread::clearOutputTracks()
{
outputTracks.clear();
}
void AudioFlinger::DuplicatingThread::addOutputTrack(MixerThread *thread)
{
Mutex::Autolock _l(mLock);
// The downstream MixerThread consumes thread->frameCount() amount of frames per mix pass.
// Adjust for thread->sampleRate() to determine minimum buffer frame count.
// Then triple buffer because Threads do not run synchronously and may not be clock locked.
const size_t frameCount =
3 * sourceFramesNeeded(mSampleRate, thread->frameCount(), thread->sampleRate());
// TODO: Consider asynchronous sample rate conversion to handle clock disparity
// from different OutputTracks and their associated MixerThreads (e.g. one may
// nearly empty and the other may be dropping data).
sp<OutputTrack> outputTrack = new OutputTrack(thread,
this,
mSampleRate,
mFormat,
mChannelMask,
frameCount,
IPCThreadState::self()->getCallingUid());
if (outputTrack->cblk() != NULL) {
thread->setStreamVolume(AUDIO_STREAM_PATCH, 1.0f);
mOutputTracks.add(outputTrack);
ALOGV("addOutputTrack() track %p, on thread %p", outputTrack.get(), thread);
updateWaitTime_l();
}
}
void AudioFlinger::DuplicatingThread::removeOutputTrack(MixerThread *thread)
{
Mutex::Autolock _l(mLock);
for (size_t i = 0; i < mOutputTracks.size(); i++) {
if (mOutputTracks[i]->thread() == thread) {
mOutputTracks[i]->destroy();
mOutputTracks.removeAt(i);
updateWaitTime_l();
if (thread->getOutput() == mOutput) {
mOutput = NULL;
}
return;
}
}
ALOGV("removeOutputTrack(): unknown thread: %p", thread);
}
// caller must hold mLock
void AudioFlinger::DuplicatingThread::updateWaitTime_l()
{
mWaitTimeMs = UINT_MAX;
for (size_t i = 0; i < mOutputTracks.size(); i++) {
sp<ThreadBase> strong = mOutputTracks[i]->thread().promote();
if (strong != 0) {
uint32_t waitTimeMs = (strong->frameCount() * 2 * 1000) / strong->sampleRate();
if (waitTimeMs < mWaitTimeMs) {
mWaitTimeMs = waitTimeMs;
}
}
}
}
bool AudioFlinger::DuplicatingThread::outputsReady(
const SortedVector< sp<OutputTrack> > &outputTracks)
{
for (size_t i = 0; i < outputTracks.size(); i++) {
sp<ThreadBase> thread = outputTracks[i]->thread().promote();
if (thread == 0) {
ALOGW("DuplicatingThread::outputsReady() could not promote thread on output track %p",
outputTracks[i].get());
return false;
}
PlaybackThread *playbackThread = (PlaybackThread *)thread.get();
// see note at standby() declaration
if (playbackThread->standby() && !playbackThread->isSuspended()) {
ALOGV("DuplicatingThread output track %p on thread %p Not Ready", outputTracks[i].get(),
thread.get());
return false;
}
}
return true;
}
uint32_t AudioFlinger::DuplicatingThread::activeSleepTimeUs() const
{
return (mWaitTimeMs * 1000) / 2;
}
void AudioFlinger::DuplicatingThread::cacheParameters_l()
{
// updateWaitTime_l() sets mWaitTimeMs, which affects activeSleepTimeUs(), so call it first
updateWaitTime_l();
MixerThread::cacheParameters_l();
}
// ----------------------------------------------------------------------------
// Record
// ----------------------------------------------------------------------------
AudioFlinger::RecordThread::RecordThread(const sp<AudioFlinger>& audioFlinger,
AudioStreamIn *input,
audio_io_handle_t id,
audio_devices_t outDevice,
audio_devices_t inDevice,
bool systemReady
#ifdef TEE_SINK
, const sp<NBAIO_Sink>& teeSink
#endif
) :
ThreadBase(audioFlinger, id, outDevice, inDevice, RECORD, systemReady),
mInput(input), mActiveTracksGen(0), mRsmpInBuffer(NULL),
// mRsmpInFrames and mRsmpInFramesP2 are set by readInputParameters_l()
mRsmpInRear(0)
#ifdef TEE_SINK
, mTeeSink(teeSink)
#endif
, mReadOnlyHeap(new MemoryDealer(kRecordThreadReadOnlyHeapSize,
"RecordThreadRO", MemoryHeapBase::READ_ONLY))
// mFastCapture below
, mFastCaptureFutex(0)
// mInputSource
// mPipeSink
// mPipeSource
, mPipeFramesP2(0)
// mPipeMemory
// mFastCaptureNBLogWriter
, mFastTrackAvail(false)
{
snprintf(mThreadName, kThreadNameLength, "AudioIn_%X", id);
mNBLogWriter = audioFlinger->newWriter_l(kLogSize, mThreadName);
readInputParameters_l();
// create an NBAIO source for the HAL input stream, and negotiate
mInputSource = new AudioStreamInSource(input->stream);
size_t numCounterOffers = 0;
const NBAIO_Format offers[1] = {Format_from_SR_C(mSampleRate, mChannelCount, mFormat)};
ssize_t index = mInputSource->negotiate(offers, 1, NULL, numCounterOffers);
ALOG_ASSERT(index == 0);
// initialize fast capture depending on configuration
bool initFastCapture;
switch (kUseFastCapture) {
case FastCapture_Never:
initFastCapture = false;
break;
case FastCapture_Always:
initFastCapture = true;
break;
case FastCapture_Static:
initFastCapture = (mFrameCount * 1000) / mSampleRate < kMinNormalCaptureBufferSizeMs;
break;
// case FastCapture_Dynamic:
}
if (initFastCapture) {
// create a Pipe for FastCapture to write to, and for us and fast tracks to read from
NBAIO_Format format = mInputSource->format();
size_t pipeFramesP2 = roundup(mSampleRate / 25); // double-buffering of 20 ms each
size_t pipeSize = pipeFramesP2 * Format_frameSize(format);
void *pipeBuffer;
const sp<MemoryDealer> roHeap(readOnlyHeap());
sp<IMemory> pipeMemory;
if ((roHeap == 0) ||
(pipeMemory = roHeap->allocate(pipeSize)) == 0 ||
(pipeBuffer = pipeMemory->pointer()) == NULL) {
ALOGE("not enough memory for pipe buffer size=%zu", pipeSize);
goto failed;
}
// pipe will be shared directly with fast clients, so clear to avoid leaking old information
memset(pipeBuffer, 0, pipeSize);
Pipe *pipe = new Pipe(pipeFramesP2, format, pipeBuffer);
const NBAIO_Format offers[1] = {format};
size_t numCounterOffers = 0;
ssize_t index = pipe->negotiate(offers, 1, NULL, numCounterOffers);
ALOG_ASSERT(index == 0);
mPipeSink = pipe;
PipeReader *pipeReader = new PipeReader(*pipe);
numCounterOffers = 0;
index = pipeReader->negotiate(offers, 1, NULL, numCounterOffers);
ALOG_ASSERT(index == 0);
mPipeSource = pipeReader;
mPipeFramesP2 = pipeFramesP2;
mPipeMemory = pipeMemory;
// create fast capture
mFastCapture = new FastCapture();
FastCaptureStateQueue *sq = mFastCapture->sq();
#ifdef STATE_QUEUE_DUMP
// FIXME
#endif
FastCaptureState *state = sq->begin();
state->mCblk = NULL;
state->mInputSource = mInputSource.get();
state->mInputSourceGen++;
state->mPipeSink = pipe;
state->mPipeSinkGen++;
state->mFrameCount = mFrameCount;
state->mCommand = FastCaptureState::COLD_IDLE;
// already done in constructor initialization list
//mFastCaptureFutex = 0;
state->mColdFutexAddr = &mFastCaptureFutex;
state->mColdGen++;
state->mDumpState = &mFastCaptureDumpState;
#ifdef TEE_SINK
// FIXME
#endif
mFastCaptureNBLogWriter = audioFlinger->newWriter_l(kFastCaptureLogSize, "FastCapture");
state->mNBLogWriter = mFastCaptureNBLogWriter.get();
sq->end();
sq->push(FastCaptureStateQueue::BLOCK_UNTIL_PUSHED);
// start the fast capture
mFastCapture->run("FastCapture", ANDROID_PRIORITY_URGENT_AUDIO);
pid_t tid = mFastCapture->getTid();
sendPrioConfigEvent(getpid_cached, tid, kPriorityFastMixer);
#ifdef AUDIO_WATCHDOG
// FIXME
#endif
mFastTrackAvail = true;
}
failed: ;
// FIXME mNormalSource
}
AudioFlinger::RecordThread::~RecordThread()
{
if (mFastCapture != 0) {
FastCaptureStateQueue *sq = mFastCapture->sq();
FastCaptureState *state = sq->begin();
if (state->mCommand == FastCaptureState::COLD_IDLE) {
int32_t old = android_atomic_inc(&mFastCaptureFutex);
if (old == -1) {
(void) syscall(__NR_futex, &mFastCaptureFutex, FUTEX_WAKE_PRIVATE, 1);
}
}
state->mCommand = FastCaptureState::EXIT;
sq->end();
sq->push(FastCaptureStateQueue::BLOCK_UNTIL_PUSHED);
mFastCapture->join();
mFastCapture.clear();
}
mAudioFlinger->unregisterWriter(mFastCaptureNBLogWriter);
mAudioFlinger->unregisterWriter(mNBLogWriter);
free(mRsmpInBuffer);
}
void AudioFlinger::RecordThread::onFirstRef()
{
run(mThreadName, PRIORITY_URGENT_AUDIO);
}
bool AudioFlinger::RecordThread::threadLoop()
{
nsecs_t lastWarning = 0;
inputStandBy();
reacquire_wakelock:
sp<RecordTrack> activeTrack;
int activeTracksGen;
{
Mutex::Autolock _l(mLock);
size_t size = mActiveTracks.size();
activeTracksGen = mActiveTracksGen;
if (size > 0) {
// FIXME an arbitrary choice
activeTrack = mActiveTracks[0];
acquireWakeLock_l(activeTrack->uid());
if (size > 1) {
SortedVector<int> tmp;
for (size_t i = 0; i < size; i++) {
tmp.add(mActiveTracks[i]->uid());
}
updateWakeLockUids_l(tmp);
}
} else {
acquireWakeLock_l(-1);
}
}
// used to request a deferred sleep, to be executed later while mutex is unlocked
uint32_t sleepUs = 0;
// loop while there is work to do
for (;;) {
Vector< sp<EffectChain> > effectChains;
// sleep with mutex unlocked
if (sleepUs > 0) {
ATRACE_BEGIN("sleep");
usleep(sleepUs);
ATRACE_END();
sleepUs = 0;
}
// activeTracks accumulates a copy of a subset of mActiveTracks
Vector< sp<RecordTrack> > activeTracks;
// reference to the (first and only) active fast track
sp<RecordTrack> fastTrack;
// reference to a fast track which is about to be removed
sp<RecordTrack> fastTrackToRemove;
{ // scope for mLock
Mutex::Autolock _l(mLock);
processConfigEvents_l();
// check exitPending here because checkForNewParameters_l() and
// checkForNewParameters_l() can temporarily release mLock
if (exitPending()) {
break;
}
// if no active track(s), then standby and release wakelock
size_t size = mActiveTracks.size();
if (size == 0) {
standbyIfNotAlreadyInStandby();
// exitPending() can't become true here
releaseWakeLock_l();
ALOGV("RecordThread: loop stopping");
// go to sleep
mWaitWorkCV.wait(mLock);
ALOGV("RecordThread: loop starting");
goto reacquire_wakelock;
}
if (mActiveTracksGen != activeTracksGen) {
activeTracksGen = mActiveTracksGen;
SortedVector<int> tmp;
for (size_t i = 0; i < size; i++) {
tmp.add(mActiveTracks[i]->uid());
}
updateWakeLockUids_l(tmp);
}
bool doBroadcast = false;
for (size_t i = 0; i < size; ) {
activeTrack = mActiveTracks[i];
if (activeTrack->isTerminated()) {
if (activeTrack->isFastTrack()) {
ALOG_ASSERT(fastTrackToRemove == 0);
fastTrackToRemove = activeTrack;
}
removeTrack_l(activeTrack);
mActiveTracks.remove(activeTrack);
mActiveTracksGen++;
size--;
continue;
}
TrackBase::track_state activeTrackState = activeTrack->mState;
switch (activeTrackState) {
case TrackBase::PAUSING:
mActiveTracks.remove(activeTrack);
mActiveTracksGen++;
doBroadcast = true;
size--;
continue;
case TrackBase::STARTING_1:
sleepUs = 10000;
i++;
continue;
case TrackBase::STARTING_2:
doBroadcast = true;
mStandby = false;
activeTrack->mState = TrackBase::ACTIVE;
break;
case TrackBase::ACTIVE:
break;
case TrackBase::IDLE:
i++;
continue;
default:
LOG_ALWAYS_FATAL("Unexpected activeTrackState %d", activeTrackState);
}
activeTracks.add(activeTrack);
i++;
if (activeTrack->isFastTrack()) {
ALOG_ASSERT(!mFastTrackAvail);
ALOG_ASSERT(fastTrack == 0);
fastTrack = activeTrack;
}
}
if (doBroadcast) {
mStartStopCond.broadcast();
}
// sleep if there are no active tracks to process
if (activeTracks.size() == 0) {
if (sleepUs == 0) {
sleepUs = kRecordThreadSleepUs;
}
continue;
}
sleepUs = 0;
lockEffectChains_l(effectChains);
}
// thread mutex is now unlocked, mActiveTracks unknown, activeTracks.size() > 0
size_t size = effectChains.size();
for (size_t i = 0; i < size; i++) {
// thread mutex is not locked, but effect chain is locked
effectChains[i]->process_l();
}
// Push a new fast capture state if fast capture is not already running, or cblk change
if (mFastCapture != 0) {
FastCaptureStateQueue *sq = mFastCapture->sq();
FastCaptureState *state = sq->begin();
bool didModify = false;
FastCaptureStateQueue::block_t block = FastCaptureStateQueue::BLOCK_UNTIL_PUSHED;
if (state->mCommand != FastCaptureState::READ_WRITE /* FIXME &&
(kUseFastMixer != FastMixer_Dynamic || state->mTrackMask > 1)*/) {
if (state->mCommand == FastCaptureState::COLD_IDLE) {
int32_t old = android_atomic_inc(&mFastCaptureFutex);
if (old == -1) {
(void) syscall(__NR_futex, &mFastCaptureFutex, FUTEX_WAKE_PRIVATE, 1);
}
}
state->mCommand = FastCaptureState::READ_WRITE;
#if 0 // FIXME
mFastCaptureDumpState.increaseSamplingN(mAudioFlinger->isLowRamDevice() ?
FastThreadDumpState::kSamplingNforLowRamDevice :
FastThreadDumpState::kSamplingN);
#endif
didModify = true;
}
audio_track_cblk_t *cblkOld = state->mCblk;
audio_track_cblk_t *cblkNew = fastTrack != 0 ? fastTrack->cblk() : NULL;
if (cblkNew != cblkOld) {
state->mCblk = cblkNew;
// block until acked if removing a fast track
if (cblkOld != NULL) {
block = FastCaptureStateQueue::BLOCK_UNTIL_ACKED;
}
didModify = true;
}
sq->end(didModify);
if (didModify) {
sq->push(block);
#if 0
if (kUseFastCapture == FastCapture_Dynamic) {
mNormalSource = mPipeSource;
}
#endif
}
}
// now run the fast track destructor with thread mutex unlocked
fastTrackToRemove.clear();
// Read from HAL to keep up with fastest client if multiple active tracks, not slowest one.
// Only the client(s) that are too slow will overrun. But if even the fastest client is too
// slow, then this RecordThread will overrun by not calling HAL read often enough.
// If destination is non-contiguous, first read past the nominal end of buffer, then
// copy to the right place. Permitted because mRsmpInBuffer was over-allocated.
int32_t rear = mRsmpInRear & (mRsmpInFramesP2 - 1);
ssize_t framesRead;
// If an NBAIO source is present, use it to read the normal capture's data
if (mPipeSource != 0) {
size_t framesToRead = mBufferSize / mFrameSize;
framesRead = mPipeSource->read((uint8_t*)mRsmpInBuffer + rear * mFrameSize,
framesToRead, AudioBufferProvider::kInvalidPTS);
if (framesRead == 0) {
// since pipe is non-blocking, simulate blocking input
sleepUs = (framesToRead * 1000000LL) / mSampleRate;
}
// otherwise use the HAL / AudioStreamIn directly
} else {
ssize_t bytesRead = mInput->stream->read(mInput->stream,
(uint8_t*)mRsmpInBuffer + rear * mFrameSize, mBufferSize);
if (bytesRead < 0) {
framesRead = bytesRead;
} else {
framesRead = bytesRead / mFrameSize;
}
}
if (framesRead < 0 || (framesRead == 0 && mPipeSource == 0)) {
ALOGE("read failed: framesRead=%d", framesRead);
// Force input into standby so that it tries to recover at next read attempt
inputStandBy();
sleepUs = kRecordThreadSleepUs;
}
if (framesRead <= 0) {
goto unlock;
}
ALOG_ASSERT(framesRead > 0);
if (mTeeSink != 0) {
(void) mTeeSink->write((uint8_t*)mRsmpInBuffer + rear * mFrameSize, framesRead);
}
// If destination is non-contiguous, we now correct for reading past end of buffer.
{
size_t part1 = mRsmpInFramesP2 - rear;
if ((size_t) framesRead > part1) {
memcpy(mRsmpInBuffer, (uint8_t*)mRsmpInBuffer + mRsmpInFramesP2 * mFrameSize,
(framesRead - part1) * mFrameSize);
}
}
rear = mRsmpInRear += framesRead;
size = activeTracks.size();
// loop over each active track
for (size_t i = 0; i < size; i++) {
activeTrack = activeTracks[i];
// skip fast tracks, as those are handled directly by FastCapture
if (activeTrack->isFastTrack()) {
continue;
}
// TODO: This code probably should be moved to RecordTrack.
// TODO: Update the activeTrack buffer converter in case of reconfigure.
enum {
OVERRUN_UNKNOWN,
OVERRUN_TRUE,
OVERRUN_FALSE
} overrun = OVERRUN_UNKNOWN;
// loop over getNextBuffer to handle circular sink
for (;;) {
activeTrack->mSink.frameCount = ~0;
status_t status = activeTrack->getNextBuffer(&activeTrack->mSink);
size_t framesOut = activeTrack->mSink.frameCount;
LOG_ALWAYS_FATAL_IF((status == OK) != (framesOut > 0));
// check available frames and handle overrun conditions
// if the record track isn't draining fast enough.
bool hasOverrun;
size_t framesIn;
activeTrack->mResamplerBufferProvider->sync(&framesIn, &hasOverrun);
if (hasOverrun) {
overrun = OVERRUN_TRUE;
}
if (framesOut == 0 || framesIn == 0) {
break;
}
// Don't allow framesOut to be larger than what is possible with resampling
// from framesIn.
// This isn't strictly necessary but helps limit buffer resizing in
// RecordBufferConverter. TODO: remove when no longer needed.
framesOut = min(framesOut,
destinationFramesPossible(
framesIn, mSampleRate, activeTrack->mSampleRate));
// process frames from the RecordThread buffer provider to the RecordTrack buffer
framesOut = activeTrack->mRecordBufferConverter->convert(
activeTrack->mSink.raw, activeTrack->mResamplerBufferProvider, framesOut);
if (framesOut > 0 && (overrun == OVERRUN_UNKNOWN)) {
overrun = OVERRUN_FALSE;
}
if (activeTrack->mFramesToDrop == 0) {
if (framesOut > 0) {
activeTrack->mSink.frameCount = framesOut;
activeTrack->releaseBuffer(&activeTrack->mSink);
}
} else {
// FIXME could do a partial drop of framesOut
if (activeTrack->mFramesToDrop > 0) {
activeTrack->mFramesToDrop -= framesOut;
if (activeTrack->mFramesToDrop <= 0) {
activeTrack->clearSyncStartEvent();
}
} else {
activeTrack->mFramesToDrop += framesOut;
if (activeTrack->mFramesToDrop >= 0 || activeTrack->mSyncStartEvent == 0 ||
activeTrack->mSyncStartEvent->isCancelled()) {
ALOGW("Synced record %s, session %d, trigger session %d",
(activeTrack->mFramesToDrop >= 0) ? "timed out" : "cancelled",
activeTrack->sessionId(),
(activeTrack->mSyncStartEvent != 0) ?
activeTrack->mSyncStartEvent->triggerSession() : 0);
activeTrack->clearSyncStartEvent();
}
}
}
if (framesOut == 0) {
break;
}
}
switch (overrun) {
case OVERRUN_TRUE:
// client isn't retrieving buffers fast enough
if (!activeTrack->setOverflow()) {
nsecs_t now = systemTime();
// FIXME should lastWarning per track?
if ((now - lastWarning) > kWarningThrottleNs) {
ALOGW("RecordThread: buffer overflow");
lastWarning = now;
}
}
break;
case OVERRUN_FALSE:
activeTrack->clearOverflow();
break;
case OVERRUN_UNKNOWN:
break;
}
}
unlock:
// enable changes in effect chain
unlockEffectChains(effectChains);
// effectChains doesn't need to be cleared, since it is cleared by destructor at scope end
}
standbyIfNotAlreadyInStandby();
{
Mutex::Autolock _l(mLock);
for (size_t i = 0; i < mTracks.size(); i++) {
sp<RecordTrack> track = mTracks[i];
track->invalidate();
}
mActiveTracks.clear();
mActiveTracksGen++;
mStartStopCond.broadcast();
}
releaseWakeLock();
ALOGV("RecordThread %p exiting", this);
return false;
}
void AudioFlinger::RecordThread::standbyIfNotAlreadyInStandby()
{
if (!mStandby) {
inputStandBy();
mStandby = true;
}
}
void AudioFlinger::RecordThread::inputStandBy()
{
// Idle the fast capture if it's currently running
if (mFastCapture != 0) {
FastCaptureStateQueue *sq = mFastCapture->sq();
FastCaptureState *state = sq->begin();
if (!(state->mCommand & FastCaptureState::IDLE)) {
state->mCommand = FastCaptureState::COLD_IDLE;
state->mColdFutexAddr = &mFastCaptureFutex;
state->mColdGen++;
mFastCaptureFutex = 0;
sq->end();
// BLOCK_UNTIL_PUSHED would be insufficient, as we need it to stop doing I/O now
sq->push(FastCaptureStateQueue::BLOCK_UNTIL_ACKED);
#if 0
if (kUseFastCapture == FastCapture_Dynamic) {
// FIXME
}
#endif
#ifdef AUDIO_WATCHDOG
// FIXME
#endif
} else {
sq->end(false /*didModify*/);
}
}
mInput->stream->common.standby(&mInput->stream->common);
}
// RecordThread::createRecordTrack_l() must be called with AudioFlinger::mLock held
sp<AudioFlinger::RecordThread::RecordTrack> AudioFlinger::RecordThread::createRecordTrack_l(
const sp<AudioFlinger::Client>& client,
uint32_t sampleRate,
audio_format_t format,
audio_channel_mask_t channelMask,
size_t *pFrameCount,
int sessionId,
size_t *notificationFrames,
int uid,
IAudioFlinger::track_flags_t *flags,
pid_t tid,
status_t *status)
{
size_t frameCount = *pFrameCount;
sp<RecordTrack> track;
status_t lStatus;
// client expresses a preference for FAST, but we get the final say
if (*flags & IAudioFlinger::TRACK_FAST) {
if (
// we formerly checked for a callback handler (non-0 tid),
// but that is no longer required for TRANSFER_OBTAIN mode
//
// frame count is not specified, or is exactly the pipe depth
((frameCount == 0) || (frameCount == mPipeFramesP2)) &&
// PCM data
audio_is_linear_pcm(format) &&
// native format
(format == mFormat) &&
// native channel mask
(channelMask == mChannelMask) &&
// native hardware sample rate
(sampleRate == mSampleRate) &&
// record thread has an associated fast capture
hasFastCapture() &&
// there are sufficient fast track slots available
mFastTrackAvail
) {
ALOGV("AUDIO_INPUT_FLAG_FAST accepted: frameCount=%u mFrameCount=%u",
frameCount, mFrameCount);
} else {
ALOGV("AUDIO_INPUT_FLAG_FAST denied: frameCount=%u mFrameCount=%u mPipeFramesP2=%u "
"format=%#x isLinear=%d channelMask=%#x sampleRate=%u mSampleRate=%u "
"hasFastCapture=%d tid=%d mFastTrackAvail=%d",
frameCount, mFrameCount, mPipeFramesP2,
format, audio_is_linear_pcm(format), channelMask, sampleRate, mSampleRate,
hasFastCapture(), tid, mFastTrackAvail);
*flags &= ~IAudioFlinger::TRACK_FAST;
}
}
// compute track buffer size in frames, and suggest the notification frame count
if (*flags & IAudioFlinger::TRACK_FAST) {
// fast track: frame count is exactly the pipe depth
frameCount = mPipeFramesP2;
// ignore requested notificationFrames, and always notify exactly once every HAL buffer
*notificationFrames = mFrameCount;
} else {
// not fast track: max notification period is resampled equivalent of one HAL buffer time
// or 20 ms if there is a fast capture
// TODO This could be a roundupRatio inline, and const
size_t maxNotificationFrames = ((int64_t) (hasFastCapture() ? mSampleRate/50 : mFrameCount)
* sampleRate + mSampleRate - 1) / mSampleRate;
// minimum number of notification periods is at least kMinNotifications,
// and at least kMinMs rounded up to a whole notification period (minNotificationsByMs)
static const size_t kMinNotifications = 3;
static const uint32_t kMinMs = 30;
// TODO This could be a roundupRatio inline
const size_t minFramesByMs = (sampleRate * kMinMs + 1000 - 1) / 1000;
// TODO This could be a roundupRatio inline
const size_t minNotificationsByMs = (minFramesByMs + maxNotificationFrames - 1) /
maxNotificationFrames;
const size_t minFrameCount = maxNotificationFrames *
max(kMinNotifications, minNotificationsByMs);
frameCount = max(frameCount, minFrameCount);
if (*notificationFrames == 0 || *notificationFrames > maxNotificationFrames) {
*notificationFrames = maxNotificationFrames;
}
}
*pFrameCount = frameCount;
lStatus = initCheck();
if (lStatus != NO_ERROR) {
ALOGE("createRecordTrack_l() audio driver not initialized");
goto Exit;
}
{ // scope for mLock
Mutex::Autolock _l(mLock);
track = new RecordTrack(this, client, sampleRate,
format, channelMask, frameCount, NULL, sessionId, uid,
*flags, TrackBase::TYPE_DEFAULT);
lStatus = track->initCheck();
if (lStatus != NO_ERROR) {
ALOGE("createRecordTrack_l() initCheck failed %d; no control block?", lStatus);
// track must be cleared from the caller as the caller has the AF lock
goto Exit;
}
mTracks.add(track);
// disable AEC and NS if the device is a BT SCO headset supporting those pre processings
bool suspend = audio_is_bluetooth_sco_device(mInDevice) &&
mAudioFlinger->btNrecIsOff();
setEffectSuspended_l(FX_IID_AEC, suspend, sessionId);
setEffectSuspended_l(FX_IID_NS, suspend, sessionId);
if ((*flags & IAudioFlinger::TRACK_FAST) && (tid != -1)) {
pid_t callingPid = IPCThreadState::self()->getCallingPid();
// we don't have CAP_SYS_NICE, nor do we want to have it as it's too powerful,
// so ask activity manager to do this on our behalf
sendPrioConfigEvent_l(callingPid, tid, kPriorityAudioApp);
}
}
lStatus = NO_ERROR;
Exit:
*status = lStatus;
return track;
}
status_t AudioFlinger::RecordThread::start(RecordThread::RecordTrack* recordTrack,
AudioSystem::sync_event_t event,
int triggerSession)
{
ALOGV("RecordThread::start event %d, triggerSession %d", event, triggerSession);
sp<ThreadBase> strongMe = this;
status_t status = NO_ERROR;
if (event == AudioSystem::SYNC_EVENT_NONE) {
recordTrack->clearSyncStartEvent();
} else if (event != AudioSystem::SYNC_EVENT_SAME) {
recordTrack->mSyncStartEvent = mAudioFlinger->createSyncEvent(event,
triggerSession,
recordTrack->sessionId(),
syncStartEventCallback,
recordTrack);
// Sync event can be cancelled by the trigger session if the track is not in a
// compatible state in which case we start record immediately
if (recordTrack->mSyncStartEvent->isCancelled()) {
recordTrack->clearSyncStartEvent();
} else {
// do not wait for the event for more than AudioSystem::kSyncRecordStartTimeOutMs
recordTrack->mFramesToDrop = -
((AudioSystem::kSyncRecordStartTimeOutMs * recordTrack->mSampleRate) / 1000);
}
}
{
// This section is a rendezvous between binder thread executing start() and RecordThread
AutoMutex lock(mLock);
if (mActiveTracks.indexOf(recordTrack) >= 0) {
if (recordTrack->mState == TrackBase::PAUSING) {
ALOGV("active record track PAUSING -> ACTIVE");
recordTrack->mState = TrackBase::ACTIVE;
} else {
ALOGV("active record track state %d", recordTrack->mState);
}
return status;
}
// TODO consider other ways of handling this, such as changing the state to :STARTING and
// adding the track to mActiveTracks after returning from AudioSystem::startInput(),
// or using a separate command thread
recordTrack->mState = TrackBase::STARTING_1;
mActiveTracks.add(recordTrack);
mActiveTracksGen++;
status_t status = NO_ERROR;
if (recordTrack->isExternalTrack()) {
mLock.unlock();
status = AudioSystem::startInput(mId, (audio_session_t)recordTrack->sessionId());
mLock.lock();
// FIXME should verify that recordTrack is still in mActiveTracks
if (status != NO_ERROR) {
mActiveTracks.remove(recordTrack);
mActiveTracksGen++;
recordTrack->clearSyncStartEvent();
ALOGV("RecordThread::start error %d", status);
return status;
}
}
// Catch up with current buffer indices if thread is already running.
// This is what makes a new client discard all buffered data. If the track's mRsmpInFront
// was initialized to some value closer to the thread's mRsmpInFront, then the track could
// see previously buffered data before it called start(), but with greater risk of overrun.
recordTrack->mResamplerBufferProvider->reset();
// clear any converter state as new data will be discontinuous
recordTrack->mRecordBufferConverter->reset();
recordTrack->mState = TrackBase::STARTING_2;
// signal thread to start
mWaitWorkCV.broadcast();
if (mActiveTracks.indexOf(recordTrack) < 0) {
ALOGV("Record failed to start");
status = BAD_VALUE;
goto startError;
}
return status;
}
startError:
if (recordTrack->isExternalTrack()) {
AudioSystem::stopInput(mId, (audio_session_t)recordTrack->sessionId());
}
recordTrack->clearSyncStartEvent();
// FIXME I wonder why we do not reset the state here?
return status;
}
void AudioFlinger::RecordThread::syncStartEventCallback(const wp<SyncEvent>& event)
{
sp<SyncEvent> strongEvent = event.promote();
if (strongEvent != 0) {
sp<RefBase> ptr = strongEvent->cookie().promote();
if (ptr != 0) {
RecordTrack *recordTrack = (RecordTrack *)ptr.get();
recordTrack->handleSyncStartEvent(strongEvent);
}
}
}
bool AudioFlinger::RecordThread::stop(RecordThread::RecordTrack* recordTrack) {
ALOGV("RecordThread::stop");
AutoMutex _l(mLock);
if (mActiveTracks.indexOf(recordTrack) != 0 || recordTrack->mState == TrackBase::PAUSING) {
return false;
}
// note that threadLoop may still be processing the track at this point [without lock]
recordTrack->mState = TrackBase::PAUSING;
// do not wait for mStartStopCond if exiting
if (exitPending()) {
return true;
}
// FIXME incorrect usage of wait: no explicit predicate or loop
mStartStopCond.wait(mLock);
// if we have been restarted, recordTrack is in mActiveTracks here
if (exitPending() || mActiveTracks.indexOf(recordTrack) != 0) {
ALOGV("Record stopped OK");
return true;
}
return false;
}
bool AudioFlinger::RecordThread::isValidSyncEvent(const sp<SyncEvent>& event __unused) const
{
return false;
}
status_t AudioFlinger::RecordThread::setSyncEvent(const sp<SyncEvent>& event __unused)
{
#if 0 // This branch is currently dead code, but is preserved in case it will be needed in future
if (!isValidSyncEvent(event)) {
return BAD_VALUE;
}
int eventSession = event->triggerSession();
status_t ret = NAME_NOT_FOUND;
Mutex::Autolock _l(mLock);
for (size_t i = 0; i < mTracks.size(); i++) {
sp<RecordTrack> track = mTracks[i];
if (eventSession == track->sessionId()) {
(void) track->setSyncEvent(event);
ret = NO_ERROR;
}
}
return ret;
#else
return BAD_VALUE;
#endif
}
// destroyTrack_l() must be called with ThreadBase::mLock held
void AudioFlinger::RecordThread::destroyTrack_l(const sp<RecordTrack>& track)
{
track->terminate();
track->mState = TrackBase::STOPPED;
// active tracks are removed by threadLoop()
if (mActiveTracks.indexOf(track) < 0) {
removeTrack_l(track);
}
}
void AudioFlinger::RecordThread::removeTrack_l(const sp<RecordTrack>& track)
{
mTracks.remove(track);
// need anything related to effects here?
if (track->isFastTrack()) {
ALOG_ASSERT(!mFastTrackAvail);
mFastTrackAvail = true;
}
}
void AudioFlinger::RecordThread::dump(int fd, const Vector<String16>& args)
{
dumpInternals(fd, args);
dumpTracks(fd, args);
dumpEffectChains(fd, args);
}
void AudioFlinger::RecordThread::dumpInternals(int fd, const Vector<String16>& args)
{
dprintf(fd, "\nInput thread %p:\n", this);
dumpBase(fd, args);
if (mActiveTracks.size() == 0) {
dprintf(fd, " No active record clients\n");
}
dprintf(fd, " Fast capture thread: %s\n", hasFastCapture() ? "yes" : "no");
dprintf(fd, " Fast track available: %s\n", mFastTrackAvail ? "yes" : "no");
// Make a non-atomic copy of fast capture dump state so it won't change underneath us
const FastCaptureDumpState copy(mFastCaptureDumpState);
copy.dump(fd);
}
void AudioFlinger::RecordThread::dumpTracks(int fd, const Vector<String16>& args __unused)
{
const size_t SIZE = 256;
char buffer[SIZE];
String8 result;
size_t numtracks = mTracks.size();
size_t numactive = mActiveTracks.size();
size_t numactiveseen = 0;
dprintf(fd, " %d Tracks", numtracks);
if (numtracks) {
dprintf(fd, " of which %d are active\n", numactive);
RecordTrack::appendDumpHeader(result);
for (size_t i = 0; i < numtracks ; ++i) {
sp<RecordTrack> track = mTracks[i];
if (track != 0) {
bool active = mActiveTracks.indexOf(track) >= 0;
if (active) {
numactiveseen++;
}
track->dump(buffer, SIZE, active);
result.append(buffer);
}
}
} else {
dprintf(fd, "\n");
}
if (numactiveseen != numactive) {
snprintf(buffer, SIZE, " The following tracks are in the active list but"
" not in the track list\n");
result.append(buffer);
RecordTrack::appendDumpHeader(result);
for (size_t i = 0; i < numactive; ++i) {
sp<RecordTrack> track = mActiveTracks[i];
if (mTracks.indexOf(track) < 0) {
track->dump(buffer, SIZE, true);
result.append(buffer);
}
}
}
write(fd, result.string(), result.size());
}
void AudioFlinger::RecordThread::ResamplerBufferProvider::reset()
{
sp<ThreadBase> threadBase = mRecordTrack->mThread.promote();
RecordThread *recordThread = (RecordThread *) threadBase.get();
mRsmpInFront = recordThread->mRsmpInRear;
mRsmpInUnrel = 0;
}
void AudioFlinger::RecordThread::ResamplerBufferProvider::sync(
size_t *framesAvailable, bool *hasOverrun)
{
sp<ThreadBase> threadBase = mRecordTrack->mThread.promote();
RecordThread *recordThread = (RecordThread *) threadBase.get();
const int32_t rear = recordThread->mRsmpInRear;
const int32_t front = mRsmpInFront;
const ssize_t filled = rear - front;
size_t framesIn;
bool overrun = false;
if (filled < 0) {
// should not happen, but treat like a massive overrun and re-sync
framesIn = 0;
mRsmpInFront = rear;
overrun = true;
} else if ((size_t) filled <= recordThread->mRsmpInFrames) {
framesIn = (size_t) filled;
} else {
// client is not keeping up with server, but give it latest data
framesIn = recordThread->mRsmpInFrames;
mRsmpInFront = /* front = */ rear - framesIn;
overrun = true;
}
if (framesAvailable != NULL) {
*framesAvailable = framesIn;
}
if (hasOverrun != NULL) {
*hasOverrun = overrun;
}
}
// AudioBufferProvider interface
status_t AudioFlinger::RecordThread::ResamplerBufferProvider::getNextBuffer(
AudioBufferProvider::Buffer* buffer, int64_t pts __unused)
{
sp<ThreadBase> threadBase = mRecordTrack->mThread.promote();
if (threadBase == 0) {
buffer->frameCount = 0;
buffer->raw = NULL;
return NOT_ENOUGH_DATA;
}
RecordThread *recordThread = (RecordThread *) threadBase.get();
int32_t rear = recordThread->mRsmpInRear;
int32_t front = mRsmpInFront;
ssize_t filled = rear - front;
// FIXME should not be P2 (don't want to increase latency)
// FIXME if client not keeping up, discard
LOG_ALWAYS_FATAL_IF(!(0 <= filled && (size_t) filled <= recordThread->mRsmpInFrames));
// 'filled' may be non-contiguous, so return only the first contiguous chunk
front &= recordThread->mRsmpInFramesP2 - 1;
size_t part1 = recordThread->mRsmpInFramesP2 - front;
if (part1 > (size_t) filled) {
part1 = filled;
}
size_t ask = buffer->frameCount;
ALOG_ASSERT(ask > 0);
if (part1 > ask) {
part1 = ask;
}
if (part1 == 0) {
// out of data is fine since the resampler will return a short-count.
buffer->raw = NULL;
buffer->frameCount = 0;
mRsmpInUnrel = 0;
return NOT_ENOUGH_DATA;
}
buffer->raw = (uint8_t*)recordThread->mRsmpInBuffer + front * recordThread->mFrameSize;
buffer->frameCount = part1;
mRsmpInUnrel = part1;
return NO_ERROR;
}
// AudioBufferProvider interface
void AudioFlinger::RecordThread::ResamplerBufferProvider::releaseBuffer(
AudioBufferProvider::Buffer* buffer)
{
size_t stepCount = buffer->frameCount;
if (stepCount == 0) {
return;
}
ALOG_ASSERT(stepCount <= mRsmpInUnrel);
mRsmpInUnrel -= stepCount;
mRsmpInFront += stepCount;
buffer->raw = NULL;
buffer->frameCount = 0;
}
AudioFlinger::RecordThread::RecordBufferConverter::RecordBufferConverter(
audio_channel_mask_t srcChannelMask, audio_format_t srcFormat,
uint32_t srcSampleRate,
audio_channel_mask_t dstChannelMask, audio_format_t dstFormat,
uint32_t dstSampleRate) :
mSrcChannelMask(AUDIO_CHANNEL_INVALID), // updateParameters will set following vars
// mSrcFormat
// mSrcSampleRate
// mDstChannelMask
// mDstFormat
// mDstSampleRate
// mSrcChannelCount
// mDstChannelCount
// mDstFrameSize
mBuf(NULL), mBufFrames(0), mBufFrameSize(0),
mResampler(NULL),
mIsLegacyDownmix(false),
mIsLegacyUpmix(false),
mRequiresFloat(false),
mInputConverterProvider(NULL)
{
(void)updateParameters(srcChannelMask, srcFormat, srcSampleRate,
dstChannelMask, dstFormat, dstSampleRate);
}
AudioFlinger::RecordThread::RecordBufferConverter::~RecordBufferConverter() {
free(mBuf);
delete mResampler;
delete mInputConverterProvider;
}
size_t AudioFlinger::RecordThread::RecordBufferConverter::convert(void *dst,
AudioBufferProvider *provider, size_t frames)
{
if (mInputConverterProvider != NULL) {
mInputConverterProvider->setBufferProvider(provider);
provider = mInputConverterProvider;
}
if (mResampler == NULL) {
ALOGVV("NO RESAMPLING sampleRate:%u mSrcFormat:%#x mDstFormat:%#x",
mSrcSampleRate, mSrcFormat, mDstFormat);
AudioBufferProvider::Buffer buffer;
for (size_t i = frames; i > 0; ) {
buffer.frameCount = i;
status_t status = provider->getNextBuffer(&buffer, 0);
if (status != OK || buffer.frameCount == 0) {
frames -= i; // cannot fill request.
break;
}
// format convert to destination buffer
convertNoResampler(dst, buffer.raw, buffer.frameCount);
dst = (int8_t*)dst + buffer.frameCount * mDstFrameSize;
i -= buffer.frameCount;
provider->releaseBuffer(&buffer);
}
} else {
ALOGVV("RESAMPLING mSrcSampleRate:%u mDstSampleRate:%u mSrcFormat:%#x mDstFormat:%#x",
mSrcSampleRate, mDstSampleRate, mSrcFormat, mDstFormat);
// reallocate buffer if needed
if (mBufFrameSize != 0 && mBufFrames < frames) {
free(mBuf);
mBufFrames = frames;
(void)posix_memalign(&mBuf, 32, mBufFrames * mBufFrameSize);
}
// resampler accumulates, but we only have one source track
memset(mBuf, 0, frames * mBufFrameSize);
frames = mResampler->resample((int32_t*)mBuf, frames, provider);
// format convert to destination buffer
convertResampler(dst, mBuf, frames);
}
return frames;
}
status_t AudioFlinger::RecordThread::RecordBufferConverter::updateParameters(
audio_channel_mask_t srcChannelMask, audio_format_t srcFormat,
uint32_t srcSampleRate,
audio_channel_mask_t dstChannelMask, audio_format_t dstFormat,
uint32_t dstSampleRate)
{
// quick evaluation if there is any change.
if (mSrcFormat == srcFormat
&& mSrcChannelMask == srcChannelMask
&& mSrcSampleRate == srcSampleRate
&& mDstFormat == dstFormat
&& mDstChannelMask == dstChannelMask
&& mDstSampleRate == dstSampleRate) {
return NO_ERROR;
}
ALOGV("RecordBufferConverter updateParameters srcMask:%#x dstMask:%#x"
" srcFormat:%#x dstFormat:%#x srcRate:%u dstRate:%u",
srcChannelMask, dstChannelMask, srcFormat, dstFormat, srcSampleRate, dstSampleRate);
const bool valid =
audio_is_input_channel(srcChannelMask)
&& audio_is_input_channel(dstChannelMask)
&& audio_is_valid_format(srcFormat) && audio_is_linear_pcm(srcFormat)
&& audio_is_valid_format(dstFormat) && audio_is_linear_pcm(dstFormat)
&& (srcSampleRate <= dstSampleRate * AUDIO_RESAMPLER_DOWN_RATIO_MAX)
; // no upsampling checks for now
if (!valid) {
return BAD_VALUE;
}
mSrcFormat = srcFormat;
mSrcChannelMask = srcChannelMask;
mSrcSampleRate = srcSampleRate;
mDstFormat = dstFormat;
mDstChannelMask = dstChannelMask;
mDstSampleRate = dstSampleRate;
// compute derived parameters
mSrcChannelCount = audio_channel_count_from_in_mask(srcChannelMask);
mDstChannelCount = audio_channel_count_from_in_mask(dstChannelMask);
mDstFrameSize = mDstChannelCount * audio_bytes_per_sample(mDstFormat);
// do we need to resample?
delete mResampler;
mResampler = NULL;
if (mSrcSampleRate != mDstSampleRate) {
mResampler = AudioResampler::create(AUDIO_FORMAT_PCM_FLOAT,
mSrcChannelCount, mDstSampleRate);
mResampler->setSampleRate(mSrcSampleRate);
mResampler->setVolume(AudioMixer::UNITY_GAIN_FLOAT, AudioMixer::UNITY_GAIN_FLOAT);
}
// are we running legacy channel conversion modes?
mIsLegacyDownmix = (mSrcChannelMask == AUDIO_CHANNEL_IN_STEREO
|| mSrcChannelMask == AUDIO_CHANNEL_IN_FRONT_BACK)
&& mDstChannelMask == AUDIO_CHANNEL_IN_MONO;
mIsLegacyUpmix = mSrcChannelMask == AUDIO_CHANNEL_IN_MONO
&& (mDstChannelMask == AUDIO_CHANNEL_IN_STEREO
|| mDstChannelMask == AUDIO_CHANNEL_IN_FRONT_BACK);
// do we need to process in float?
mRequiresFloat = mResampler != NULL || mIsLegacyDownmix || mIsLegacyUpmix;
// do we need a staging buffer to convert for destination (we can still optimize this)?
// we use mBufFrameSize > 0 to indicate both frame size as well as buffer necessity
if (mResampler != NULL) {
mBufFrameSize = max(mSrcChannelCount, FCC_2)
* audio_bytes_per_sample(AUDIO_FORMAT_PCM_FLOAT);
} else if (mIsLegacyUpmix || mIsLegacyDownmix) { // legacy modes always float
mBufFrameSize = mDstChannelCount * audio_bytes_per_sample(AUDIO_FORMAT_PCM_FLOAT);
} else if (mSrcChannelMask != mDstChannelMask && mDstFormat != mSrcFormat) {
mBufFrameSize = mDstChannelCount * audio_bytes_per_sample(mSrcFormat);
} else {
mBufFrameSize = 0;
}
mBufFrames = 0; // force the buffer to be resized.
// do we need an input converter buffer provider to give us float?
delete mInputConverterProvider;
mInputConverterProvider = NULL;
if (mRequiresFloat && mSrcFormat != AUDIO_FORMAT_PCM_FLOAT) {
mInputConverterProvider = new ReformatBufferProvider(
audio_channel_count_from_in_mask(mSrcChannelMask),
mSrcFormat,
AUDIO_FORMAT_PCM_FLOAT,
256 /* provider buffer frame count */);
}
// do we need a remixer to do channel mask conversion
if (!mIsLegacyDownmix && !mIsLegacyUpmix && mSrcChannelMask != mDstChannelMask) {
(void) memcpy_by_index_array_initialization_from_channel_mask(
mIdxAry, ARRAY_SIZE(mIdxAry), mDstChannelMask, mSrcChannelMask);
}
return NO_ERROR;
}
void AudioFlinger::RecordThread::RecordBufferConverter::convertNoResampler(
void *dst, const void *src, size_t frames)
{
// src is native type unless there is legacy upmix or downmix, whereupon it is float.
if (mBufFrameSize != 0 && mBufFrames < frames) {
free(mBuf);
mBufFrames = frames;
(void)posix_memalign(&mBuf, 32, mBufFrames * mBufFrameSize);
}
// do we need to do legacy upmix and downmix?
if (mIsLegacyUpmix || mIsLegacyDownmix) {
void *dstBuf = mBuf != NULL ? mBuf : dst;
if (mIsLegacyUpmix) {
upmix_to_stereo_float_from_mono_float((float *)dstBuf,
(const float *)src, frames);
} else /*mIsLegacyDownmix */ {
downmix_to_mono_float_from_stereo_float((float *)dstBuf,
(const float *)src, frames);
}
if (mBuf != NULL) {
memcpy_by_audio_format(dst, mDstFormat, mBuf, AUDIO_FORMAT_PCM_FLOAT,
frames * mDstChannelCount);
}
return;
}
// do we need to do channel mask conversion?
if (mSrcChannelMask != mDstChannelMask) {
void *dstBuf = mBuf != NULL ? mBuf : dst;
memcpy_by_index_array(dstBuf, mDstChannelCount,
src, mSrcChannelCount, mIdxAry, audio_bytes_per_sample(mSrcFormat), frames);
if (dstBuf == dst) {
return; // format is the same
}
}
// convert to destination buffer
const void *convertBuf = mBuf != NULL ? mBuf : src;
memcpy_by_audio_format(dst, mDstFormat, convertBuf, mSrcFormat,
frames * mDstChannelCount);
}
void AudioFlinger::RecordThread::RecordBufferConverter::convertResampler(
void *dst, /*not-a-const*/ void *src, size_t frames)
{
// src buffer format is ALWAYS float when entering this routine
if (mIsLegacyUpmix) {
; // mono to stereo already handled by resampler
} else if (mIsLegacyDownmix
|| (mSrcChannelMask == mDstChannelMask && mSrcChannelCount == 1)) {
// the resampler outputs stereo for mono input channel (a feature?)
// must convert to mono
downmix_to_mono_float_from_stereo_float((float *)src,
(const float *)src, frames);
} else if (mSrcChannelMask != mDstChannelMask) {
// convert to mono channel again for channel mask conversion (could be skipped
// with further optimization).
if (mSrcChannelCount == 1) {
downmix_to_mono_float_from_stereo_float((float *)src,
(const float *)src, frames);
}
// convert to destination format (in place, OK as float is larger than other types)
if (mDstFormat != AUDIO_FORMAT_PCM_FLOAT) {
memcpy_by_audio_format(src, mDstFormat, src, AUDIO_FORMAT_PCM_FLOAT,
frames * mSrcChannelCount);
}
// channel convert and save to dst
memcpy_by_index_array(dst, mDstChannelCount,
src, mSrcChannelCount, mIdxAry, audio_bytes_per_sample(mDstFormat), frames);
return;
}
// convert to destination format and save to dst
memcpy_by_audio_format(dst, mDstFormat, src, AUDIO_FORMAT_PCM_FLOAT,
frames * mDstChannelCount);
}
bool AudioFlinger::RecordThread::checkForNewParameter_l(const String8& keyValuePair,
status_t& status)
{
bool reconfig = false;
status = NO_ERROR;
audio_format_t reqFormat = mFormat;
uint32_t samplingRate = mSampleRate;
// TODO this may change if we want to support capture from HDMI PCM multi channel (e.g on TVs).
audio_channel_mask_t channelMask = audio_channel_in_mask_from_count(mChannelCount);
AudioParameter param = AudioParameter(keyValuePair);
int value;
// TODO Investigate when this code runs. Check with audio policy when a sample rate and
// channel count change can be requested. Do we mandate the first client defines the
// HAL sampling rate and channel count or do we allow changes on the fly?
if (param.getInt(String8(AudioParameter::keySamplingRate), value) == NO_ERROR) {
samplingRate = value;
reconfig = true;
}
if (param.getInt(String8(AudioParameter::keyFormat), value) == NO_ERROR) {
if (!audio_is_linear_pcm((audio_format_t) value)) {
status = BAD_VALUE;
} else {
reqFormat = (audio_format_t) value;
reconfig = true;
}
}
if (param.getInt(String8(AudioParameter::keyChannels), value) == NO_ERROR) {
audio_channel_mask_t mask = (audio_channel_mask_t) value;
if (!audio_is_input_channel(mask) ||
audio_channel_count_from_in_mask(mask) > FCC_8) {
status = BAD_VALUE;
} else {
channelMask = mask;
reconfig = true;
}
}
if (param.getInt(String8(AudioParameter::keyFrameCount), value) == NO_ERROR) {
// do not accept frame count changes if tracks are open as the track buffer
// size depends on frame count and correct behavior would not be guaranteed
// if frame count is changed after track creation
if (mActiveTracks.size() > 0) {
status = INVALID_OPERATION;
} else {
reconfig = true;
}
}
if (param.getInt(String8(AudioParameter::keyRouting), value) == NO_ERROR) {
// forward device change to effects that have requested to be
// aware of attached audio device.
for (size_t i = 0; i < mEffectChains.size(); i++) {
mEffectChains[i]->setDevice_l(value);
}
// store input device and output device but do not forward output device to audio HAL.
// Note that status is ignored by the caller for output device
// (see AudioFlinger::setParameters()
if (audio_is_output_devices(value)) {
mOutDevice = value;
status = BAD_VALUE;
} else {
mInDevice = value;
if (value != AUDIO_DEVICE_NONE) {
mPrevInDevice = value;
}
// disable AEC and NS if the device is a BT SCO headset supporting those
// pre processings
if (mTracks.size() > 0) {
bool suspend = audio_is_bluetooth_sco_device(mInDevice) &&
mAudioFlinger->btNrecIsOff();
for (size_t i = 0; i < mTracks.size(); i++) {
sp<RecordTrack> track = mTracks[i];
setEffectSuspended_l(FX_IID_AEC, suspend, track->sessionId());
setEffectSuspended_l(FX_IID_NS, suspend, track->sessionId());
}
}
}
}
if (param.getInt(String8(AudioParameter::keyInputSource), value) == NO_ERROR &&
mAudioSource != (audio_source_t)value) {
// forward device change to effects that have requested to be
// aware of attached audio device.
for (size_t i = 0; i < mEffectChains.size(); i++) {
mEffectChains[i]->setAudioSource_l((audio_source_t)value);
}
mAudioSource = (audio_source_t)value;
}
if (status == NO_ERROR) {
status = mInput->stream->common.set_parameters(&mInput->stream->common,
keyValuePair.string());
if (status == INVALID_OPERATION) {
inputStandBy();
status = mInput->stream->common.set_parameters(&mInput->stream->common,
keyValuePair.string());
}
if (reconfig) {
if (status == BAD_VALUE &&
audio_is_linear_pcm(mInput->stream->common.get_format(&mInput->stream->common)) &&
audio_is_linear_pcm(reqFormat) &&
(mInput->stream->common.get_sample_rate(&mInput->stream->common)
<= (AUDIO_RESAMPLER_DOWN_RATIO_MAX * samplingRate)) &&
audio_channel_count_from_in_mask(
mInput->stream->common.get_channels(&mInput->stream->common)) <= FCC_8) {
status = NO_ERROR;
}
if (status == NO_ERROR) {
readInputParameters_l();
sendIoConfigEvent_l(AUDIO_INPUT_CONFIG_CHANGED);
}
}
}
return reconfig;
}
String8 AudioFlinger::RecordThread::getParameters(const String8& keys)
{
Mutex::Autolock _l(mLock);
if (initCheck() != NO_ERROR) {
return String8();
}
char *s = mInput->stream->common.get_parameters(&mInput->stream->common, keys.string());
const String8 out_s8(s);
free(s);
return out_s8;
}
void AudioFlinger::RecordThread::ioConfigChanged(audio_io_config_event event, pid_t pid) {
sp<AudioIoDescriptor> desc = new AudioIoDescriptor();
desc->mIoHandle = mId;
switch (event) {
case AUDIO_INPUT_OPENED:
case AUDIO_INPUT_CONFIG_CHANGED:
desc->mPatch = mPatch;
desc->mChannelMask = mChannelMask;
desc->mSamplingRate = mSampleRate;
desc->mFormat = mFormat;
desc->mFrameCount = mFrameCount;
desc->mLatency = 0;
break;
case AUDIO_INPUT_CLOSED:
default:
break;
}
mAudioFlinger->ioConfigChanged(event, desc, pid);
}
void AudioFlinger::RecordThread::readInputParameters_l()
{
mSampleRate = mInput->stream->common.get_sample_rate(&mInput->stream->common);
mChannelMask = mInput->stream->common.get_channels(&mInput->stream->common);
mChannelCount = audio_channel_count_from_in_mask(mChannelMask);
if (mChannelCount > FCC_8) {
ALOGE("HAL channel count %d > %d", mChannelCount, FCC_8);
}
mHALFormat = mInput->stream->common.get_format(&mInput->stream->common);
mFormat = mHALFormat;
if (!audio_is_linear_pcm(mFormat)) {
ALOGE("HAL format %#x is not linear pcm", mFormat);
}
mFrameSize = audio_stream_in_frame_size(mInput->stream);
mBufferSize = mInput->stream->common.get_buffer_size(&mInput->stream->common);
mFrameCount = mBufferSize / mFrameSize;
// This is the formula for calculating the temporary buffer size.
// With 7 HAL buffers, we can guarantee ability to down-sample the input by ratio of 6:1 to
// 1 full output buffer, regardless of the alignment of the available input.
// The value is somewhat arbitrary, and could probably be even larger.
// A larger value should allow more old data to be read after a track calls start(),
// without increasing latency.
//
// Note this is independent of the maximum downsampling ratio permitted for capture.
mRsmpInFrames = mFrameCount * 7;
mRsmpInFramesP2 = roundup(mRsmpInFrames);
free(mRsmpInBuffer);
// TODO optimize audio capture buffer sizes ...
// Here we calculate the size of the sliding buffer used as a source
// for resampling. mRsmpInFramesP2 is currently roundup(mFrameCount * 7).
// For current HAL frame counts, this is usually 2048 = 40 ms. It would
// be better to have it derived from the pipe depth in the long term.
// The current value is higher than necessary. However it should not add to latency.
// Over-allocate beyond mRsmpInFramesP2 to permit a HAL read past end of buffer
(void)posix_memalign(&mRsmpInBuffer, 32, (mRsmpInFramesP2 + mFrameCount - 1) * mFrameSize);
// AudioRecord mSampleRate and mChannelCount are constant due to AudioRecord API constraints.
// But if thread's mSampleRate or mChannelCount changes, how will that affect active tracks?
}
uint32_t AudioFlinger::RecordThread::getInputFramesLost()
{
Mutex::Autolock _l(mLock);
if (initCheck() != NO_ERROR) {
return 0;
}
return mInput->stream->get_input_frames_lost(mInput->stream);
}
uint32_t AudioFlinger::RecordThread::hasAudioSession(int sessionId) const
{
Mutex::Autolock _l(mLock);
uint32_t result = 0;
if (getEffectChain_l(sessionId) != 0) {
result = EFFECT_SESSION;
}
for (size_t i = 0; i < mTracks.size(); ++i) {
if (sessionId == mTracks[i]->sessionId()) {
result |= TRACK_SESSION;
break;
}
}
return result;
}
KeyedVector<int, bool> AudioFlinger::RecordThread::sessionIds() const
{
KeyedVector<int, bool> ids;
Mutex::Autolock _l(mLock);
for (size_t j = 0; j < mTracks.size(); ++j) {
sp<RecordThread::RecordTrack> track = mTracks[j];
int sessionId = track->sessionId();
if (ids.indexOfKey(sessionId) < 0) {
ids.add(sessionId, true);
}
}
return ids;
}
AudioFlinger::AudioStreamIn* AudioFlinger::RecordThread::clearInput()
{
Mutex::Autolock _l(mLock);
AudioStreamIn *input = mInput;
mInput = NULL;
return input;
}
// this method must always be called either with ThreadBase mLock held or inside the thread loop
audio_stream_t* AudioFlinger::RecordThread::stream() const
{
if (mInput == NULL) {
return NULL;
}
return &mInput->stream->common;
}
status_t AudioFlinger::RecordThread::addEffectChain_l(const sp<EffectChain>& chain)
{
// only one chain per input thread
if (mEffectChains.size() != 0) {
ALOGW("addEffectChain_l() already one chain %p on thread %p", chain.get(), this);
return INVALID_OPERATION;
}
ALOGV("addEffectChain_l() %p on thread %p", chain.get(), this);
chain->setThread(this);
chain->setInBuffer(NULL);
chain->setOutBuffer(NULL);
checkSuspendOnAddEffectChain_l(chain);
// make sure enabled pre processing effects state is communicated to the HAL as we
// just moved them to a new input stream.
chain->syncHalEffectsState();
mEffectChains.add(chain);
return NO_ERROR;
}
size_t AudioFlinger::RecordThread::removeEffectChain_l(const sp<EffectChain>& chain)
{
ALOGV("removeEffectChain_l() %p from thread %p", chain.get(), this);
ALOGW_IF(mEffectChains.size() != 1,
"removeEffectChain_l() %p invalid chain size %d on thread %p",
chain.get(), mEffectChains.size(), this);
if (mEffectChains.size() == 1) {
mEffectChains.removeAt(0);
}
return 0;
}
status_t AudioFlinger::RecordThread::createAudioPatch_l(const struct audio_patch *patch,
audio_patch_handle_t *handle)
{
status_t status = NO_ERROR;
// store new device and send to effects
mInDevice = patch->sources[0].ext.device.type;
mPatch = *patch;
for (size_t i = 0; i < mEffectChains.size(); i++) {
mEffectChains[i]->setDevice_l(mInDevice);
}
// disable AEC and NS if the device is a BT SCO headset supporting those
// pre processings
if (mTracks.size() > 0) {
bool suspend = audio_is_bluetooth_sco_device(mInDevice) &&
mAudioFlinger->btNrecIsOff();
for (size_t i = 0; i < mTracks.size(); i++) {
sp<RecordTrack> track = mTracks[i];
setEffectSuspended_l(FX_IID_AEC, suspend, track->sessionId());
setEffectSuspended_l(FX_IID_NS, suspend, track->sessionId());
}
}
// store new source and send to effects
if (mAudioSource != patch->sinks[0].ext.mix.usecase.source) {
mAudioSource = patch->sinks[0].ext.mix.usecase.source;
for (size_t i = 0; i < mEffectChains.size(); i++) {
mEffectChains[i]->setAudioSource_l(mAudioSource);
}
}
if (mInput->audioHwDev->version() >= AUDIO_DEVICE_API_VERSION_3_0) {
audio_hw_device_t *hwDevice = mInput->audioHwDev->hwDevice();
status = hwDevice->create_audio_patch(hwDevice,
patch->num_sources,
patch->sources,
patch->num_sinks,
patch->sinks,
handle);
} else {
char *address;
if (strcmp(patch->sources[0].ext.device.address, "") != 0) {
address = audio_device_address_to_parameter(
patch->sources[0].ext.device.type,
patch->sources[0].ext.device.address);
} else {
address = (char *)calloc(1, 1);
}
AudioParameter param = AudioParameter(String8(address));
free(address);
param.addInt(String8(AUDIO_PARAMETER_STREAM_ROUTING),
(int)patch->sources[0].ext.device.type);
param.addInt(String8(AUDIO_PARAMETER_STREAM_INPUT_SOURCE),
(int)patch->sinks[0].ext.mix.usecase.source);
status = mInput->stream->common.set_parameters(&mInput->stream->common,
param.toString().string());
*handle = AUDIO_PATCH_HANDLE_NONE;
}
if (mInDevice != mPrevInDevice) {
sendIoConfigEvent_l(AUDIO_INPUT_CONFIG_CHANGED);
mPrevInDevice = mInDevice;
}
return status;
}
status_t AudioFlinger::RecordThread::releaseAudioPatch_l(const audio_patch_handle_t handle)
{
status_t status = NO_ERROR;
mInDevice = AUDIO_DEVICE_NONE;
if (mInput->audioHwDev->version() >= AUDIO_DEVICE_API_VERSION_3_0) {
audio_hw_device_t *hwDevice = mInput->audioHwDev->hwDevice();
status = hwDevice->release_audio_patch(hwDevice, handle);
} else {
AudioParameter param;
param.addInt(String8(AUDIO_PARAMETER_STREAM_ROUTING), 0);
status = mInput->stream->common.set_parameters(&mInput->stream->common,
param.toString().string());
}
return status;
}
void AudioFlinger::RecordThread::addPatchRecord(const sp<PatchRecord>& record)
{
Mutex::Autolock _l(mLock);
mTracks.add(record);
}
void AudioFlinger::RecordThread::deletePatchRecord(const sp<PatchRecord>& record)
{
Mutex::Autolock _l(mLock);
destroyTrack_l(record);
}
void AudioFlinger::RecordThread::getAudioPortConfig(struct audio_port_config *config)
{
ThreadBase::getAudioPortConfig(config);
config->role = AUDIO_PORT_ROLE_SINK;
config->ext.mix.hw_module = mInput->audioHwDev->handle();
config->ext.mix.usecase.source = mAudioSource;
}
} // namespace android