blob: f556e3787c1ec6968133b6a1cbaba75f14d77c79 [file] [log] [blame]
/*
* Copyright (C) 2018 The Android Open Source Project
*
* Licensed under the Apache License, Version 2.0 (the "License");
* you may not use this file except in compliance with the License.
* You may obtain a copy of the License at
*
* http://www.apache.org/licenses/LICENSE-2.0
*
* Unless required by applicable law or agreed to in writing, software
* distributed under the License is distributed on an "AS IS" BASIS,
* WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
* See the License for the specific language governing permissions and
* limitations under the License.
*/
#define LOG_TAG "NBLog"
//#define LOG_NDEBUG 0
#include <memory>
#include <stddef.h>
#include <string>
#include <unordered_set>
#include <audio_utils/fifo.h>
#include <binder/IMemory.h>
#include <media/nblog/Entry.h>
#include <media/nblog/Events.h>
#include <media/nblog/Reader.h>
#include <media/nblog/Timeline.h>
#include <utils/Log.h>
#include <utils/String8.h>
namespace android {
namespace NBLog {
Reader::Reader(const void *shared, size_t size, const std::string &name)
: mName(name),
mShared((/*const*/ Shared *) shared), /*mIMemory*/
mFifo(mShared != NULL ?
new audio_utils_fifo(size, sizeof(uint8_t),
mShared->mBuffer, mShared->mRear, NULL /*throttlesFront*/) : NULL),
mFifoReader(mFifo != NULL ? new audio_utils_fifo_reader(*mFifo) : NULL)
{
}
Reader::Reader(const sp<IMemory>& iMemory, size_t size, const std::string &name)
: Reader(iMemory != 0 ? (Shared *) iMemory->pointer() : NULL, size, name)
{
mIMemory = iMemory;
}
Reader::~Reader()
{
delete mFifoReader;
delete mFifo;
}
// Copies content of a Reader FIFO into its Snapshot
// The Snapshot has the same raw data, but represented as a sequence of entries
// and an EntryIterator making it possible to process the data.
std::unique_ptr<Snapshot> Reader::getSnapshot(bool flush)
{
if (mFifoReader == NULL) {
return std::unique_ptr<Snapshot>(new Snapshot());
}
// This emulates the behaviour of audio_utils_fifo_reader::read, but without incrementing the
// reader index. The index is incremented after handling corruption, to after the last complete
// entry of the buffer
size_t lost = 0;
audio_utils_iovec iovec[2];
const size_t capacity = mFifo->capacity();
ssize_t availToRead;
// A call to audio_utils_fifo_reader::obtain() places the read pointer one buffer length
// before the writer's pointer (since mFifoReader was constructed with flush=false). The
// do while loop is an attempt to read all of the FIFO's contents regardless of how behind
// the reader is with respect to the writer. However, the following scheduling sequence is
// possible and can lead to a starvation situation:
// - Writer T1 writes, overrun with respect to Reader T2
// - T2 calls obtain() and gets EOVERFLOW, T2 ptr placed one buffer size behind T1 ptr
// - T1 write, overrun
// - T2 obtain(), EOVERFLOW (and so on...)
// To address this issue, we limit the number of tries for the reader to catch up with
// the writer.
int tries = 0;
size_t lostTemp;
do {
availToRead = mFifoReader->obtain(iovec, capacity, NULL /*timeout*/, &lostTemp);
lost += lostTemp;
} while (availToRead < 0 || ++tries <= kMaxObtainTries);
if (availToRead <= 0) {
ALOGW_IF(availToRead < 0, "NBLog Reader %s failed to catch up with Writer", mName.c_str());
return std::unique_ptr<Snapshot>(new Snapshot());
}
// Change to #if 1 for debugging. This statement is useful for checking buffer fullness levels
// (as seen by reader) and how much data was lost. If you find that the fullness level is
// getting close to full, or that data loss is happening to often, then you should
// probably try some of the following:
// - log less data
// - log less often
// - increase the initial shared memory allocation for the buffer
#if 0
ALOGD("getSnapshot name=%s, availToRead=%zd, capacity=%zu, fullness=%.3f, lost=%zu",
name().c_str(), availToRead, capacity, (double)availToRead / (double)capacity, lost);
#endif
std::unique_ptr<Snapshot> snapshot(new Snapshot(availToRead));
memcpy(snapshot->mData, (const char *) mFifo->buffer() + iovec[0].mOffset, iovec[0].mLength);
if (iovec[1].mLength > 0) {
memcpy(snapshot->mData + (iovec[0].mLength),
(const char *) mFifo->buffer() + iovec[1].mOffset, iovec[1].mLength);
}
// Handle corrupted buffer
// Potentially, a buffer has corrupted data on both beginning (due to overflow) and end
// (due to incomplete format entry). But even if the end format entry is incomplete,
// it ends in a complete entry (which is not an FMT_END). So is safe to traverse backwards.
// TODO: handle client corruption (in the middle of a buffer)
const uint8_t *back = snapshot->mData + availToRead;
const uint8_t *front = snapshot->mData;
// Find last FMT_END. <back> is sitting on an entry which might be the middle of a FormatEntry.
// We go backwards until we find an EVENT_FMT_END.
const uint8_t *lastEnd = findLastValidEntry(front, back, invalidEndTypes);
if (lastEnd == nullptr) {
snapshot->mEnd = snapshot->mBegin = EntryIterator(front);
} else {
// end of snapshot points to after last FMT_END entry
snapshot->mEnd = EntryIterator(lastEnd).next();
// find first FMT_START
const uint8_t *firstStart = nullptr;
const uint8_t *firstStartTmp = snapshot->mEnd;
while ((firstStartTmp = findLastValidEntry(front, firstStartTmp, invalidBeginTypes))
!= nullptr) {
firstStart = firstStartTmp;
}
// firstStart is null if no FMT_START entry was found before lastEnd
if (firstStart == nullptr) {
snapshot->mBegin = snapshot->mEnd;
} else {
snapshot->mBegin = EntryIterator(firstStart);
}
}
// advance fifo reader index to after last entry read.
if (flush) {
mFifoReader->release(snapshot->mEnd - front);
}
snapshot->mLost = lost;
return snapshot;
}
bool Reader::isIMemory(const sp<IMemory>& iMemory) const
{
return iMemory != 0 && mIMemory != 0 && iMemory->pointer() == mIMemory->pointer();
}
// We make a set of the invalid types rather than the valid types when aligning
// Snapshot EntryIterators to valid entries during log corruption checking.
// This is done in order to avoid the maintenance overhead of adding a new Event
// type to the two sets below whenever a new Event type is created, as it is
// very likely that new types added will be valid types.
// Currently, invalidBeginTypes and invalidEndTypes are used to handle the special
// case of a Format Entry, which consists of a variable number of simple log entries.
// If a new Event is added that consists of a variable number of simple log entries,
// then these sets need to be updated.
// We want the beginning of a Snapshot to point to an entry that is not in
// the middle of a formatted entry and not an FMT_END.
const std::unordered_set<Event> Reader::invalidBeginTypes {
EVENT_FMT_AUTHOR,
EVENT_FMT_END,
EVENT_FMT_FLOAT,
EVENT_FMT_HASH,
EVENT_FMT_INTEGER,
EVENT_FMT_PID,
EVENT_FMT_STRING,
EVENT_FMT_TIMESTAMP,
};
// We want the end of a Snapshot to point to an entry that is not in
// the middle of a formatted entry and not a FMT_START.
const std::unordered_set<Event> Reader::invalidEndTypes {
EVENT_FMT_AUTHOR,
EVENT_FMT_FLOAT,
EVENT_FMT_HASH,
EVENT_FMT_INTEGER,
EVENT_FMT_PID,
EVENT_FMT_START,
EVENT_FMT_STRING,
EVENT_FMT_TIMESTAMP,
};
const uint8_t *Reader::findLastValidEntry(const uint8_t *front, const uint8_t *back,
const std::unordered_set<Event> &invalidTypes) {
if (front == nullptr || back == nullptr) {
return nullptr;
}
while (back + Entry::kPreviousLengthOffset >= front) {
const uint8_t *prev = back - back[Entry::kPreviousLengthOffset] - Entry::kOverhead;
const Event type = (const Event)prev[offsetof(entry, type)];
if (prev < front
|| prev + prev[offsetof(entry, length)] + Entry::kOverhead != back
|| type <= EVENT_RESERVED || type >= EVENT_UPPER_BOUND) {
// prev points to an out of limits or inconsistent entry
return nullptr;
}
// if invalidTypes does not contain the type, then the type is valid.
if (invalidTypes.find(type) == invalidTypes.end()) {
return prev;
}
back = prev;
}
return nullptr; // no entry found
}
// TODO for future compatibility, would prefer to have a dump() go to string, and then go
// to fd only when invoked through binder.
void DumpReader::dump(int fd, size_t indent)
{
if (fd < 0) return;
std::unique_ptr<Snapshot> snapshot = getSnapshot(false /*flush*/);
if (snapshot == nullptr) {
return;
}
String8 timestamp, body;
// TODO all logged types should have a printable format.
// TODO can we make the printing generic?
for (EntryIterator it = snapshot->begin(); it != snapshot->end(); ++it) {
switch (it->type) {
case EVENT_FMT_START:
it = handleFormat(FormatEntry(it), &timestamp, &body);
break;
case EVENT_LATENCY: {
const double latencyMs = it.payload<double>();
body.appendFormat("EVENT_LATENCY,%.3f", latencyMs);
} break;
case EVENT_OVERRUN: {
const int64_t ts = it.payload<int64_t>();
body.appendFormat("EVENT_OVERRUN,%lld", static_cast<long long>(ts));
} break;
case EVENT_THREAD_INFO: {
const thread_info_t info = it.payload<thread_info_t>();
body.appendFormat("EVENT_THREAD_INFO,%d,%s", static_cast<int>(info.id),
threadTypeToString(info.type));
} break;
case EVENT_UNDERRUN: {
const int64_t ts = it.payload<int64_t>();
body.appendFormat("EVENT_UNDERRUN,%lld", static_cast<long long>(ts));
} break;
case EVENT_WARMUP_TIME: {
const double timeMs = it.payload<double>();
body.appendFormat("EVENT_WARMUP_TIME,%.3f", timeMs);
} break;
case EVENT_WORK_TIME: {
const int64_t monotonicNs = it.payload<int64_t>();
body.appendFormat("EVENT_WORK_TIME,%lld", static_cast<long long>(monotonicNs));
} break;
case EVENT_THREAD_PARAMS: {
const thread_params_t params = it.payload<thread_params_t>();
body.appendFormat("EVENT_THREAD_PARAMS,%zu,%u", params.frameCount, params.sampleRate);
} break;
case EVENT_FMT_END:
case EVENT_RESERVED:
case EVENT_UPPER_BOUND:
body.appendFormat("warning: unexpected event %d", it->type);
break;
default:
break;
}
if (!body.isEmpty()) {
dprintf(fd, "%.*s%s %s\n", (int)indent, "", timestamp.string(), body.string());
body.clear();
}
timestamp.clear();
}
}
EntryIterator DumpReader::handleFormat(const FormatEntry &fmtEntry,
String8 *timestamp, String8 *body)
{
String8 timestampLocal;
String8 bodyLocal;
if (timestamp == nullptr) {
timestamp = &timestampLocal;
}
if (body == nullptr) {
body = &bodyLocal;
}
// log timestamp
const int64_t ts = fmtEntry.timestamp();
timestamp->clear();
timestamp->appendFormat("[%d.%03d]", (int) (ts / (1000 * 1000 * 1000)),
(int) ((ts / (1000 * 1000)) % 1000));
// log unique hash
log_hash_t hash = fmtEntry.hash();
// print only lower 16bit of hash as hex and line as int to reduce spam in the log
body->appendFormat("%.4X-%d ", (int)(hash >> 16) & 0xFFFF, (int) hash & 0xFFFF);
// log author (if present)
handleAuthor(fmtEntry, body);
// log string
EntryIterator arg = fmtEntry.args();
const char* fmt = fmtEntry.formatString();
size_t fmt_length = fmtEntry.formatStringLength();
for (size_t fmt_offset = 0; fmt_offset < fmt_length; ++fmt_offset) {
if (fmt[fmt_offset] != '%') {
body->append(&fmt[fmt_offset], 1); // TODO optimize to write consecutive strings at once
continue;
}
// case "%%""
if (fmt[++fmt_offset] == '%') {
body->append("%");
continue;
}
// case "%\0"
if (fmt_offset == fmt_length) {
continue;
}
Event event = (Event) arg->type;
size_t length = arg->length;
// TODO check length for event type is correct
if (event == EVENT_FMT_END) {
break;
}
// TODO: implement more complex formatting such as %.3f
const uint8_t *datum = arg->data; // pointer to the current event args
switch(fmt[fmt_offset])
{
case 's': // string
ALOGW_IF(event != EVENT_FMT_STRING,
"NBLog Reader incompatible event for string specifier: %d", event);
body->append((const char*) datum, length);
break;
case 't': // timestamp
ALOGW_IF(event != EVENT_FMT_TIMESTAMP,
"NBLog Reader incompatible event for timestamp specifier: %d", event);
appendTimestamp(body, datum);
break;
case 'd': // integer
ALOGW_IF(event != EVENT_FMT_INTEGER,
"NBLog Reader incompatible event for integer specifier: %d", event);
appendInt(body, datum);
break;
case 'f': // float
ALOGW_IF(event != EVENT_FMT_FLOAT,
"NBLog Reader incompatible event for float specifier: %d", event);
appendFloat(body, datum);
break;
case 'p': // pid
ALOGW_IF(event != EVENT_FMT_PID,
"NBLog Reader incompatible event for pid specifier: %d", event);
appendPID(body, datum, length);
break;
default:
ALOGW("NBLog Reader encountered unknown character %c", fmt[fmt_offset]);
}
++arg;
}
ALOGW_IF(arg->type != EVENT_FMT_END, "Expected end of format, got %d", arg->type);
return arg;
}
void DumpReader::appendInt(String8 *body, const void *data)
{
if (body == nullptr || data == nullptr) {
return;
}
//int x = *((int*) data);
int x;
memcpy(&x, data, sizeof(x));
body->appendFormat("<%d>", x);
}
void DumpReader::appendFloat(String8 *body, const void *data)
{
if (body == nullptr || data == nullptr) {
return;
}
float f;
memcpy(&f, data, sizeof(f));
body->appendFormat("<%f>", f);
}
void DumpReader::appendPID(String8 *body, const void* data, size_t length)
{
if (body == nullptr || data == nullptr) {
return;
}
pid_t id = *((pid_t*) data);
char * name = &((char*) data)[sizeof(pid_t)];
body->appendFormat("<PID: %d, name: %.*s>", id, (int) (length - sizeof(pid_t)), name);
}
void DumpReader::appendTimestamp(String8 *body, const void *data)
{
if (body == nullptr || data == nullptr) {
return;
}
int64_t ts;
memcpy(&ts, data, sizeof(ts));
body->appendFormat("[%d.%03d]", (int) (ts / (1000 * 1000 * 1000)),
(int) ((ts / (1000 * 1000)) % 1000));
}
String8 DumpReader::bufferDump(const uint8_t *buffer, size_t size)
{
String8 str;
if (buffer == nullptr) {
return str;
}
str.append("[ ");
for(size_t i = 0; i < size; i++) {
str.appendFormat("%d ", buffer[i]);
}
str.append("]");
return str;
}
String8 DumpReader::bufferDump(const EntryIterator &it)
{
return bufferDump(it, it->length + Entry::kOverhead);
}
} // namespace NBLog
} // namespace android