blob: eef6658ac6828b9333956c349b0c3b1c8f24b01f [file] [log] [blame]
/*
* Copyright (C) 2018 The Android Open Source Project
*
* Licensed under the Apache License, Version 2.0 (the "License");
* you may not use this file except in compliance with the License.
* You may obtain a copy of the License at
*
* http://www.apache.org/licenses/LICENSE-2.0
*
* Unless required by applicable law or agreed to in writing, software
* distributed under the License is distributed on an "AS IS" BASIS,
* WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
* See the License for the specific language governing permissions and
* limitations under the License.
*/
#define LOG_TAG "Camera3-DistMapper"
#define ATRACE_TAG ATRACE_TAG_CAMERA
//#define LOG_NDEBUG 0
#include <algorithm>
#include <cmath>
#include "device3/DistortionMapper.h"
namespace android {
namespace camera3 {
/**
* Metadata keys to correct when adjusting coordinates for distortion correction
*/
// Both capture request and result
constexpr std::array<uint32_t, 3> DistortionMapper::kMeteringRegionsToCorrect = {
ANDROID_CONTROL_AF_REGIONS,
ANDROID_CONTROL_AE_REGIONS,
ANDROID_CONTROL_AWB_REGIONS
};
// Only capture request
constexpr std::array<uint32_t, 1> DistortionMapper::kRequestRectsToCorrect = {
ANDROID_SCALER_CROP_REGION,
};
// Only for capture result
constexpr std::array<uint32_t, 1> DistortionMapper::kResultRectsToCorrect = {
ANDROID_SCALER_CROP_REGION,
};
// Only for capture result
constexpr std::array<uint32_t, 2> DistortionMapper::kResultPointsToCorrect = {
ANDROID_STATISTICS_FACE_RECTANGLES, // Says rectangles, is really points
ANDROID_STATISTICS_FACE_LANDMARKS,
};
DistortionMapper::DistortionMapper() : mValidMapping(false), mValidGrids(false) {
}
bool DistortionMapper::isDistortionSupported(const CameraMetadata &result) {
bool isDistortionCorrectionSupported = false;
camera_metadata_ro_entry_t distortionCorrectionModes =
result.find(ANDROID_DISTORTION_CORRECTION_AVAILABLE_MODES);
for (size_t i = 0; i < distortionCorrectionModes.count; i++) {
if (distortionCorrectionModes.data.u8[i] !=
ANDROID_DISTORTION_CORRECTION_MODE_OFF) {
isDistortionCorrectionSupported = true;
break;
}
}
return isDistortionCorrectionSupported;
}
status_t DistortionMapper::setupStaticInfo(const CameraMetadata &deviceInfo) {
std::lock_guard<std::mutex> lock(mMutex);
camera_metadata_ro_entry_t array;
array = deviceInfo.find(ANDROID_SENSOR_INFO_PRE_CORRECTION_ACTIVE_ARRAY_SIZE);
if (array.count != 4) return BAD_VALUE;
mArrayWidth = array.data.i32[2];
mArrayHeight = array.data.i32[3];
array = deviceInfo.find(ANDROID_SENSOR_INFO_ACTIVE_ARRAY_SIZE);
mActiveWidth = array.data.i32[2];
mActiveHeight = array.data.i32[3];
return updateCalibration(deviceInfo);
}
bool DistortionMapper::calibrationValid() const {
std::lock_guard<std::mutex> lock(mMutex);
return mValidMapping;
}
status_t DistortionMapper::correctCaptureRequest(CameraMetadata *request) {
std::lock_guard<std::mutex> lock(mMutex);
status_t res;
if (!mValidMapping) return OK;
camera_metadata_entry_t e;
e = request->find(ANDROID_DISTORTION_CORRECTION_MODE);
if (e.count != 0 && e.data.u8[0] != ANDROID_DISTORTION_CORRECTION_MODE_OFF) {
for (auto region : kMeteringRegionsToCorrect) {
e = request->find(region);
for (size_t j = 0; j < e.count; j += 5) {
int32_t weight = e.data.i32[j + 4];
if (weight == 0) {
continue;
}
res = mapCorrectedToRaw(e.data.i32 + j, 2);
if (res != OK) return res;
for (size_t k = 0; k < 4; k+=2) {
int32_t& x = e.data.i32[j + k];
int32_t& y = e.data.i32[j + k + 1];
// Clamp to within active array
x = std::max(0, x);
x = std::min(mActiveWidth - 1, x);
y = std::max(0, y);
y = std::min(mActiveHeight - 1, y);
}
}
}
for (auto rect : kRequestRectsToCorrect) {
e = request->find(rect);
res = mapCorrectedRectToRaw(e.data.i32, e.count / 4);
if (res != OK) return res;
}
}
return OK;
}
status_t DistortionMapper::correctCaptureResult(CameraMetadata *result) {
std::lock_guard<std::mutex> lock(mMutex);
status_t res;
if (!mValidMapping) return OK;
res = updateCalibration(*result);
if (res != OK) {
ALOGE("Failure to update lens calibration information");
return INVALID_OPERATION;
}
camera_metadata_entry_t e;
e = result->find(ANDROID_DISTORTION_CORRECTION_MODE);
if (e.count != 0 && e.data.u8[0] != ANDROID_DISTORTION_CORRECTION_MODE_OFF) {
for (auto region : kMeteringRegionsToCorrect) {
e = result->find(region);
for (size_t j = 0; j < e.count; j += 5) {
int32_t weight = e.data.i32[j + 4];
if (weight == 0) {
continue;
}
res = mapRawToCorrected(e.data.i32 + j, 2);
if (res != OK) return res;
for (size_t k = 0; k < 4; k+=2) {
int32_t& x = e.data.i32[j + k];
int32_t& y = e.data.i32[j + k + 1];
// Clamp to within active array
x = std::max(0, x);
x = std::min(mActiveWidth - 1, x);
y = std::max(0, y);
y = std::min(mActiveHeight - 1, y);
}
}
}
for (auto rect : kResultRectsToCorrect) {
e = result->find(rect);
res = mapRawRectToCorrected(e.data.i32, e.count / 4);
if (res != OK) return res;
}
for (auto pts : kResultPointsToCorrect) {
e = result->find(pts);
res = mapRawToCorrected(e.data.i32, e.count / 2);
if (res != OK) return res;
}
}
return OK;
}
// Utility methods; not guarded by mutex
status_t DistortionMapper::updateCalibration(const CameraMetadata &result) {
camera_metadata_ro_entry_t calib, distortion;
calib = result.find(ANDROID_LENS_INTRINSIC_CALIBRATION);
distortion = result.find(ANDROID_LENS_DISTORTION);
if (calib.count != 5) return BAD_VALUE;
if (distortion.count != 5) return BAD_VALUE;
// Skip redoing work if no change to calibration fields
if (mValidMapping &&
mFx == calib.data.f[0] &&
mFy == calib.data.f[1] &&
mCx == calib.data.f[2] &&
mCy == calib.data.f[3] &&
mS == calib.data.f[4]) {
bool noChange = true;
for (size_t i = 0; i < distortion.count; i++) {
if (mK[i] != distortion.data.f[i]) {
noChange = false;
break;
}
}
if (noChange) return OK;
}
mFx = calib.data.f[0];
mFy = calib.data.f[1];
mCx = calib.data.f[2];
mCy = calib.data.f[3];
mS = calib.data.f[4];
mInvFx = 1 / mFx;
mInvFy = 1 / mFy;
for (size_t i = 0; i < distortion.count; i++) {
mK[i] = distortion.data.f[i];
}
mValidMapping = true;
// Need to recalculate grid
mValidGrids = false;
return OK;
}
status_t DistortionMapper::mapRawToCorrected(int32_t *coordPairs, int coordCount) {
if (!mValidMapping) return INVALID_OPERATION;
if (!mValidGrids) {
status_t res = buildGrids();
if (res != OK) return res;
}
for (int i = 0; i < coordCount * 2; i += 2) {
const GridQuad *quad = findEnclosingQuad(coordPairs + i, mDistortedGrid);
if (quad == nullptr) {
ALOGE("Raw to corrected mapping failure: No quad found for (%d, %d)",
*(coordPairs + i), *(coordPairs + i + 1));
return INVALID_OPERATION;
}
ALOGV("src xy: %d, %d, enclosing quad: (%f, %f), (%f, %f), (%f, %f), (%f, %f)",
coordPairs[i], coordPairs[i+1],
quad->coords[0], quad->coords[1],
quad->coords[2], quad->coords[3],
quad->coords[4], quad->coords[5],
quad->coords[6], quad->coords[7]);
const GridQuad *corrQuad = quad->src;
if (corrQuad == nullptr) {
ALOGE("Raw to corrected mapping failure: No src quad found");
return INVALID_OPERATION;
}
ALOGV(" corr quad: (%f, %f), (%f, %f), (%f, %f), (%f, %f)",
corrQuad->coords[0], corrQuad->coords[1],
corrQuad->coords[2], corrQuad->coords[3],
corrQuad->coords[4], corrQuad->coords[5],
corrQuad->coords[6], corrQuad->coords[7]);
float u = calculateUorV(coordPairs + i, *quad, /*calculateU*/ true);
float v = calculateUorV(coordPairs + i, *quad, /*calculateU*/ false);
ALOGV("uv: %f, %f", u, v);
// Interpolate along top edge of corrected quad (which are axis-aligned) for x
float corrX = corrQuad->coords[0] + u * (corrQuad->coords[2] - corrQuad->coords[0]);
// Interpolate along left edge of corrected quad (which are axis-aligned) for y
float corrY = corrQuad->coords[1] + v * (corrQuad->coords[7] - corrQuad->coords[1]);
coordPairs[i] = static_cast<int32_t>(std::round(corrX));
coordPairs[i + 1] = static_cast<int32_t>(std::round(corrY));
}
return OK;
}
status_t DistortionMapper::mapRawRectToCorrected(int32_t *rects, int rectCount) {
if (!mValidMapping) return INVALID_OPERATION;
for (int i = 0; i < rectCount * 4; i += 4) {
// Map from (l, t, width, height) to (l, t, r, b)
int32_t coords[4] = {
rects[i],
rects[i + 1],
rects[i] + rects[i + 2],
rects[i + 1] + rects[i + 3]
};
mapRawToCorrected(coords, 2);
// Map back to (l, t, width, height)
rects[i] = coords[0];
rects[i + 1] = coords[1];
rects[i + 2] = coords[2] - coords[0];
rects[i + 3] = coords[3] - coords[1];
}
return OK;
}
template<typename T>
status_t DistortionMapper::mapCorrectedToRaw(T *coordPairs, int coordCount) const {
if (!mValidMapping) return INVALID_OPERATION;
for (int i = 0; i < coordCount * 2; i += 2) {
// Move to normalized space
float ywi = (coordPairs[i + 1] - mCy) * mInvFy;
float xwi = (coordPairs[i] - mCx - mS * ywi) * mInvFx;
// Apply distortion model to calculate raw image coordinates
float rSq = xwi * xwi + ywi * ywi;
float Fr = 1.f + (mK[0] * rSq) + (mK[1] * rSq * rSq) + (mK[2] * rSq * rSq * rSq);
float xc = xwi * Fr + (mK[3] * 2 * xwi * ywi) + mK[4] * (rSq + 2 * xwi * xwi);
float yc = ywi * Fr + (mK[4] * 2 * xwi * ywi) + mK[3] * (rSq + 2 * ywi * ywi);
// Move back to image space
float xr = mFx * xc + mS * yc + mCx;
float yr = mFy * yc + mCy;
coordPairs[i] = static_cast<T>(std::round(xr));
coordPairs[i + 1] = static_cast<T>(std::round(yr));
}
return OK;
}
template status_t DistortionMapper::mapCorrectedToRaw(int32_t*, int) const;
template status_t DistortionMapper::mapCorrectedToRaw(float*, int) const;
status_t DistortionMapper::mapCorrectedRectToRaw(int32_t *rects, int rectCount) const {
if (!mValidMapping) return INVALID_OPERATION;
for (int i = 0; i < rectCount * 4; i += 4) {
// Map from (l, t, width, height) to (l, t, r, b)
int32_t coords[4] = {
rects[i],
rects[i + 1],
rects[i] + rects[i + 2],
rects[i + 1] + rects[i + 3]
};
mapCorrectedToRaw(coords, 2);
// Map back to (l, t, width, height)
rects[i] = coords[0];
rects[i + 1] = coords[1];
rects[i + 2] = coords[2] - coords[0];
rects[i + 3] = coords[3] - coords[1];
}
return OK;
}
status_t DistortionMapper::buildGrids() {
if (mCorrectedGrid.size() != kGridSize * kGridSize) {
mCorrectedGrid.resize(kGridSize * kGridSize);
mDistortedGrid.resize(kGridSize * kGridSize);
}
float gridMargin = mArrayWidth * kGridMargin;
float gridSpacingX = (mArrayWidth + 2 * gridMargin) / kGridSize;
float gridSpacingY = (mArrayHeight + 2 * gridMargin) / kGridSize;
size_t index = 0;
float x = -gridMargin;
for (size_t i = 0; i < kGridSize; i++, x += gridSpacingX) {
float y = -gridMargin;
for (size_t j = 0; j < kGridSize; j++, y += gridSpacingY, index++) {
mCorrectedGrid[index].src = nullptr;
mCorrectedGrid[index].coords = {
x, y,
x + gridSpacingX, y,
x + gridSpacingX, y + gridSpacingY,
x, y + gridSpacingY
};
mDistortedGrid[index].src = &mCorrectedGrid[index];
mDistortedGrid[index].coords = mCorrectedGrid[index].coords;
status_t res = mapCorrectedToRaw(mDistortedGrid[index].coords.data(), 4);
if (res != OK) return res;
}
}
mValidGrids = true;
return OK;
}
const DistortionMapper::GridQuad* DistortionMapper::findEnclosingQuad(
const int32_t pt[2], const std::vector<GridQuad>& grid) {
const float x = pt[0];
const float y = pt[1];
for (const GridQuad& quad : grid) {
const float &x1 = quad.coords[0];
const float &y1 = quad.coords[1];
const float &x2 = quad.coords[2];
const float &y2 = quad.coords[3];
const float &x3 = quad.coords[4];
const float &y3 = quad.coords[5];
const float &x4 = quad.coords[6];
const float &y4 = quad.coords[7];
// Point-in-quad test:
// Quad has corners P1-P4; if P is within the quad, then it is on the same side of all the
// edges (or on top of one of the edges or corners), traversed in a consistent direction.
// This means that the cross product of edge En = Pn->P(n+1 mod 4) and line Ep = Pn->P must
// have the same sign (or be zero) for all edges.
// For clockwise traversal, the sign should be negative or zero for Ep x En, indicating that
// En is to the left of Ep, or overlapping.
float s1 = (x - x1) * (y2 - y1) - (y - y1) * (x2 - x1);
if (s1 > 0) continue;
float s2 = (x - x2) * (y3 - y2) - (y - y2) * (x3 - x2);
if (s2 > 0) continue;
float s3 = (x - x3) * (y4 - y3) - (y - y3) * (x4 - x3);
if (s3 > 0) continue;
float s4 = (x - x4) * (y1 - y4) - (y - y4) * (x1 - x4);
if (s4 > 0) continue;
return &quad;
}
return nullptr;
}
float DistortionMapper::calculateUorV(const int32_t pt[2], const GridQuad& quad, bool calculateU) {
const float x = pt[0];
const float y = pt[1];
const float &x1 = quad.coords[0];
const float &y1 = quad.coords[1];
const float &x2 = calculateU ? quad.coords[2] : quad.coords[6];
const float &y2 = calculateU ? quad.coords[3] : quad.coords[7];
const float &x3 = quad.coords[4];
const float &y3 = quad.coords[5];
const float &x4 = calculateU ? quad.coords[6] : quad.coords[2];
const float &y4 = calculateU ? quad.coords[7] : quad.coords[3];
float a = (x1 - x2) * (y1 - y2 + y3 - y4) - (y1 - y2) * (x1 - x2 + x3 - x4);
float b = (x - x1) * (y1 - y2 + y3 - y4) + (x1 - x2) * (y4 - y1) -
(y - y1) * (x1 - x2 + x3 - x4) - (y1 - y2) * (x4 - x1);
float c = (x - x1) * (y4 - y1) - (y - y1) * (x4 - x1);
if (a == 0) {
// One solution may happen if edges are parallel
float u0 = -c / b;
ALOGV("u0: %.9g, b: %f, c: %f", u0, b, c);
return u0;
}
float det = b * b - 4 * a * c;
if (det < 0) {
// Sanity check - should not happen if pt is within the quad
ALOGE("Bad determinant! a: %f, b: %f, c: %f, det: %f", a,b,c,det);
return -1;
}
// Select more numerically stable solution
float sqdet = b > 0 ? -std::sqrt(det) : std::sqrt(det);
float u1 = (-b + sqdet) / (2 * a);
ALOGV("u1: %.9g", u1);
if (0 - kFloatFuzz < u1 && u1 < 1 + kFloatFuzz) return u1;
float u2 = c / (a * u1);
ALOGV("u2: %.9g", u2);
if (0 - kFloatFuzz < u2 && u2 < 1 + kFloatFuzz) return u2;
// Last resort, return the smaller-magnitude solution
return fabs(u1) < fabs(u2) ? u1 : u2;
}
} // namespace camera3
} // namespace android