blob: b7a9be18deb51c875981e73e159f82d0238728c1 [file] [log] [blame]
/* -----------------------------------------------------------------------------
Software License for The Fraunhofer FDK AAC Codec Library for Android
© Copyright 1995 - 2018 Fraunhofer-Gesellschaft zur Förderung der angewandten
Forschung e.V. All rights reserved.
1. INTRODUCTION
The Fraunhofer FDK AAC Codec Library for Android ("FDK AAC Codec") is software
that implements the MPEG Advanced Audio Coding ("AAC") encoding and decoding
scheme for digital audio. This FDK AAC Codec software is intended to be used on
a wide variety of Android devices.
AAC's HE-AAC and HE-AAC v2 versions are regarded as today's most efficient
general perceptual audio codecs. AAC-ELD is considered the best-performing
full-bandwidth communications codec by independent studies and is widely
deployed. AAC has been standardized by ISO and IEC as part of the MPEG
specifications.
Patent licenses for necessary patent claims for the FDK AAC Codec (including
those of Fraunhofer) may be obtained through Via Licensing
(www.vialicensing.com) or through the respective patent owners individually for
the purpose of encoding or decoding bit streams in products that are compliant
with the ISO/IEC MPEG audio standards. Please note that most manufacturers of
Android devices already license these patent claims through Via Licensing or
directly from the patent owners, and therefore FDK AAC Codec software may
already be covered under those patent licenses when it is used for those
licensed purposes only.
Commercially-licensed AAC software libraries, including floating-point versions
with enhanced sound quality, are also available from Fraunhofer. Users are
encouraged to check the Fraunhofer website for additional applications
information and documentation.
2. COPYRIGHT LICENSE
Redistribution and use in source and binary forms, with or without modification,
are permitted without payment of copyright license fees provided that you
satisfy the following conditions:
You must retain the complete text of this software license in redistributions of
the FDK AAC Codec or your modifications thereto in source code form.
You must retain the complete text of this software license in the documentation
and/or other materials provided with redistributions of the FDK AAC Codec or
your modifications thereto in binary form. You must make available free of
charge copies of the complete source code of the FDK AAC Codec and your
modifications thereto to recipients of copies in binary form.
The name of Fraunhofer may not be used to endorse or promote products derived
from this library without prior written permission.
You may not charge copyright license fees for anyone to use, copy or distribute
the FDK AAC Codec software or your modifications thereto.
Your modified versions of the FDK AAC Codec must carry prominent notices stating
that you changed the software and the date of any change. For modified versions
of the FDK AAC Codec, the term "Fraunhofer FDK AAC Codec Library for Android"
must be replaced by the term "Third-Party Modified Version of the Fraunhofer FDK
AAC Codec Library for Android."
3. NO PATENT LICENSE
NO EXPRESS OR IMPLIED LICENSES TO ANY PATENT CLAIMS, including without
limitation the patents of Fraunhofer, ARE GRANTED BY THIS SOFTWARE LICENSE.
Fraunhofer provides no warranty of patent non-infringement with respect to this
software.
You may use this FDK AAC Codec software or modifications thereto only for
purposes that are authorized by appropriate patent licenses.
4. DISCLAIMER
This FDK AAC Codec software is provided by Fraunhofer on behalf of the copyright
holders and contributors "AS IS" and WITHOUT ANY EXPRESS OR IMPLIED WARRANTIES,
including but not limited to the implied warranties of merchantability and
fitness for a particular purpose. IN NO EVENT SHALL THE COPYRIGHT HOLDER OR
CONTRIBUTORS BE LIABLE for any direct, indirect, incidental, special, exemplary,
or consequential damages, including but not limited to procurement of substitute
goods or services; loss of use, data, or profits, or business interruption,
however caused and on any theory of liability, whether in contract, strict
liability, or tort (including negligence), arising in any way out of the use of
this software, even if advised of the possibility of such damage.
5. CONTACT INFORMATION
Fraunhofer Institute for Integrated Circuits IIS
Attention: Audio and Multimedia Departments - FDK AAC LL
Am Wolfsmantel 33
91058 Erlangen, Germany
www.iis.fraunhofer.de/amm
amm-info@iis.fraunhofer.de
----------------------------------------------------------------------------- */
/**************************** AAC decoder library ******************************
Author(s):
Description:
*******************************************************************************/
/*!
\file
\brief RVLC Decoder
\author Robert Weidner
*/
#include "rvlc.h"
#include "block.h"
#include "aac_rom.h"
#include "rvlcbit.h"
#include "rvlcconceal.h"
#include "aacdec_hcr.h"
/*---------------------------------------------------------------------------------------------
function: rvlcInit
description: init RVLC by data from channelinfo, which was decoded
previously and set up pointers
-----------------------------------------------------------------------------------------------
input: - pointer rvlc structure
- pointer channel info structure
- pointer bitstream structure
-----------------------------------------------------------------------------------------------
return: -
--------------------------------------------------------------------------------------------
*/
static void rvlcInit(CErRvlcInfo *pRvlc,
CAacDecoderChannelInfo *pAacDecoderChannelInfo,
HANDLE_FDK_BITSTREAM bs) {
/* RVLC common initialization part 2 of 2 */
SHORT *pScfEsc = pAacDecoderChannelInfo->pComData->overlay.aac.aRvlcScfEsc;
SHORT *pScfFwd = pAacDecoderChannelInfo->pComData->overlay.aac.aRvlcScfFwd;
SHORT *pScfBwd = pAacDecoderChannelInfo->pComData->overlay.aac.aRvlcScfBwd;
SHORT *pScaleFactor = pAacDecoderChannelInfo->pDynData->aScaleFactor;
int bnds;
pAacDecoderChannelInfo->pDynData->specificTo.aac.rvlcIntensityUsed = 0;
pRvlc->numDecodedEscapeWordsEsc = 0;
pRvlc->numDecodedEscapeWordsFwd = 0;
pRvlc->numDecodedEscapeWordsBwd = 0;
pRvlc->intensity_used = 0;
pRvlc->errorLogRvlc = 0;
pRvlc->conceal_max = CONCEAL_MAX_INIT;
pRvlc->conceal_min = CONCEAL_MIN_INIT;
pRvlc->conceal_max_esc = CONCEAL_MAX_INIT;
pRvlc->conceal_min_esc = CONCEAL_MIN_INIT;
pRvlc->pHuffTreeRvlcEscape = aHuffTreeRvlcEscape;
pRvlc->pHuffTreeRvlCodewds = aHuffTreeRvlCodewds;
/* init scf arrays (for savety (in case of there are only zero codebooks)) */
for (bnds = 0; bnds < RVLC_MAX_SFB; bnds++) {
pScfFwd[bnds] = 0;
pScfBwd[bnds] = 0;
pScfEsc[bnds] = 0;
pScaleFactor[bnds] = 0;
}
/* set base bitstream ptr to the RVL-coded part (start of RVLC data (ESC 2))
*/
FDKsyncCache(bs);
pRvlc->bsAnchor = (INT)FDKgetValidBits(bs);
pRvlc->bitstreamIndexRvlFwd =
0; /* first bit within RVL coded block as start address for forward
decoding */
pRvlc->bitstreamIndexRvlBwd =
pRvlc->length_of_rvlc_sf - 1; /* last bit within RVL coded block as start
address for backward decoding */
/* skip RVLC-bitstream-part -- pointing now to escapes (if present) or to TNS
* data (if present) */
FDKpushFor(bs, pRvlc->length_of_rvlc_sf);
if (pRvlc->sf_escapes_present != 0) {
/* locate internal bitstream ptr at escapes (which is the second part) */
FDKsyncCache(bs);
pRvlc->bitstreamIndexEsc = pRvlc->bsAnchor - (INT)FDKgetValidBits(bs);
/* skip escapeRVLC-bitstream-part -- pointing to TNS data (if present) to
* make decoder continue */
/* decoding of RVLC should work despite this second pushFor during
* initialization because */
/* bitstream initialization is valid for both ESC2 data parts (RVL-coded
* values and ESC-coded values) */
FDKpushFor(bs, pRvlc->length_of_rvlc_escapes);
}
}
/*---------------------------------------------------------------------------------------------
function: rvlcCheckIntensityCb
description: Check if a intensity codebook is used in the current channel.
-----------------------------------------------------------------------------------------------
input: - pointer rvlc structure
- pointer channel info structure
-----------------------------------------------------------------------------------------------
output: - intensity_used: 0 no intensity codebook is used
1 intensity codebook is used
-----------------------------------------------------------------------------------------------
return: -
--------------------------------------------------------------------------------------------
*/
static void rvlcCheckIntensityCb(
CErRvlcInfo *pRvlc, CAacDecoderChannelInfo *pAacDecoderChannelInfo) {
int group, band, bnds;
pRvlc->intensity_used = 0;
for (group = 0; group < pRvlc->numWindowGroups; group++) {
for (band = 0; band < pRvlc->maxSfbTransmitted; band++) {
bnds = 16 * group + band;
if ((pAacDecoderChannelInfo->pDynData->aCodeBook[bnds] ==
INTENSITY_HCB) ||
(pAacDecoderChannelInfo->pDynData->aCodeBook[bnds] ==
INTENSITY_HCB2)) {
pRvlc->intensity_used = 1;
break;
}
}
}
}
/*---------------------------------------------------------------------------------------------
function: rvlcDecodeEscapeWord
description: Decode a huffman coded RVLC Escape-word. This value is part
of a DPCM coded scalefactor.
-----------------------------------------------------------------------------------------------
input: - pointer rvlc structure
-----------------------------------------------------------------------------------------------
return: - a single RVLC-Escape value which had to be applied to a
DPCM value (which has a absolute value of 7)
--------------------------------------------------------------------------------------------
*/
static SCHAR rvlcDecodeEscapeWord(CErRvlcInfo *pRvlc, HANDLE_FDK_BITSTREAM bs) {
int i;
SCHAR value;
UCHAR carryBit;
UINT treeNode;
UINT branchValue;
UINT branchNode;
INT *pBitstreamIndexEsc;
const UINT *pEscTree;
pEscTree = pRvlc->pHuffTreeRvlcEscape;
pBitstreamIndexEsc = &(pRvlc->bitstreamIndexEsc);
treeNode = *pEscTree; /* init at starting node */
for (i = MAX_LEN_RVLC_ESCAPE_WORD - 1; i >= 0; i--) {
carryBit =
rvlcReadBitFromBitstream(bs, /* get next bit */
pRvlc->bsAnchor, pBitstreamIndexEsc, FWD);
CarryBitToBranchValue(carryBit, /* huffman decoding, do a single step in
huffman decoding tree */
treeNode, &branchValue, &branchNode);
if ((branchNode & TEST_BIT_10) ==
TEST_BIT_10) { /* test bit 10 ; if set --> a RVLC-escape-word is
completely decoded */
value = (SCHAR)branchNode & CLR_BIT_10;
pRvlc->length_of_rvlc_escapes -= (MAX_LEN_RVLC_ESCAPE_WORD - i);
if (pRvlc->length_of_rvlc_escapes < 0) {
pRvlc->errorLogRvlc |= RVLC_ERROR_ALL_ESCAPE_WORDS_INVALID;
value = -1;
}
return value;
} else {
treeNode = *(
pEscTree +
branchValue); /* update treeNode for further step in decoding tree */
}
}
pRvlc->errorLogRvlc |= RVLC_ERROR_ALL_ESCAPE_WORDS_INVALID;
return -1; /* should not be reached */
}
/*---------------------------------------------------------------------------------------------
function: rvlcDecodeEscapes
description: Decodes all huffman coded RVLC Escape Words.
Here a difference to the pseudo-code-implementation from
standard can be found. A while loop (and not two nested for loops) is used for
two reasons:
1. The plain huffman encoded escapes are decoded before the
RVL-coded scalefactors. Therefore the escapes are present in the second step
when decoding the RVL-coded-scalefactor values in forward
and backward direction.
When the RVL-coded scalefactors are decoded and there a
escape is needed, then it is just taken out of the array in ascending order.
2. It's faster.
-----------------------------------------------------------------------------------------------
input: - pointer rvlc structure
- handle to FDK bitstream
-----------------------------------------------------------------------------------------------
return: - 0 ok the decoded escapes seem to be valid
- 1 error there was a error detected during decoding escapes
--> all escapes are invalid
--------------------------------------------------------------------------------------------
*/
static void rvlcDecodeEscapes(CErRvlcInfo *pRvlc, SHORT *pEsc,
HANDLE_FDK_BITSTREAM bs) {
SCHAR escWord;
SCHAR escCnt = 0;
SHORT *pEscBitCntSum;
pEscBitCntSum = &(pRvlc->length_of_rvlc_escapes);
/* Decode all RVLC-Escape words with a plain Huffman-Decoder */
while (*pEscBitCntSum > 0) {
escWord = rvlcDecodeEscapeWord(pRvlc, bs);
if (escWord >= 0) {
pEsc[escCnt] = escWord;
escCnt++;
} else {
pRvlc->errorLogRvlc |= RVLC_ERROR_ALL_ESCAPE_WORDS_INVALID;
pRvlc->numDecodedEscapeWordsEsc = escCnt;
return;
}
} /* all RVLC escapes decoded */
pRvlc->numDecodedEscapeWordsEsc = escCnt;
}
/*---------------------------------------------------------------------------------------------
function: decodeRVLCodeword
description: Decodes a RVL-coded dpcm-word (-part).
-----------------------------------------------------------------------------------------------
input: - FDK bitstream handle
- pointer rvlc structure
-----------------------------------------------------------------------------------------------
return: - a dpcm value which is within range [0,1,..,14] in case of
no errors. The offset of 7 must be subtracted to get a valid dpcm scalefactor
value. In case of errors a forbidden codeword is detected --> returning -1
--------------------------------------------------------------------------------------------
*/
SCHAR decodeRVLCodeword(HANDLE_FDK_BITSTREAM bs, CErRvlcInfo *pRvlc) {
int i;
SCHAR value;
UCHAR carryBit;
UINT branchValue;
UINT branchNode;
const UINT *pRvlCodeTree = pRvlc->pHuffTreeRvlCodewds;
UCHAR direction = pRvlc->direction;
INT *pBitstrIndxRvl = pRvlc->pBitstrIndxRvl_RVL;
UINT treeNode = *pRvlCodeTree;
for (i = MAX_LEN_RVLC_CODE_WORD - 1; i >= 0; i--) {
carryBit =
rvlcReadBitFromBitstream(bs, /* get next bit */
pRvlc->bsAnchor, pBitstrIndxRvl, direction);
CarryBitToBranchValue(carryBit, /* huffman decoding, do a single step in
huffman decoding tree */
treeNode, &branchValue, &branchNode);
if ((branchNode & TEST_BIT_10) ==
TEST_BIT_10) { /* test bit 10 ; if set --> a
RVLC-codeword is completely decoded
*/
value = (SCHAR)(branchNode & CLR_BIT_10);
*pRvlc->pRvlBitCnt_RVL -= (MAX_LEN_RVLC_CODE_WORD - i);
/* check available bits for decoding */
if (*pRvlc->pRvlBitCnt_RVL < 0) {
if (direction == FWD) {
pRvlc->errorLogRvlc |= RVLC_ERROR_RVL_SUM_BIT_COUNTER_BELOW_ZERO_FWD;
} else {
pRvlc->errorLogRvlc |= RVLC_ERROR_RVL_SUM_BIT_COUNTER_BELOW_ZERO_BWD;
}
value = -1; /* signalize an error in return value, because too many bits
was decoded */
}
/* check max value of dpcm value */
if (value > MAX_ALLOWED_DPCM_INDEX) {
if (direction == FWD) {
pRvlc->errorLogRvlc |= RVLC_ERROR_FORBIDDEN_CW_DETECTED_FWD;
} else {
pRvlc->errorLogRvlc |= RVLC_ERROR_FORBIDDEN_CW_DETECTED_BWD;
}
value = -1; /* signalize an error in return value, because a forbidden
cw was detected*/
}
return value; /* return a dpcm value with offset +7 or an error status */
} else {
treeNode = *(
pRvlCodeTree +
branchValue); /* update treeNode for further step in decoding tree */
}
}
return -1;
}
/*---------------------------------------------------------------------------------------------
function: rvlcDecodeForward
description: Decode RVL-coded codewords in forward direction.
-----------------------------------------------------------------------------------------------
input: - pointer rvlc structure
- pointer channel info structure
- handle to FDK bitstream
-----------------------------------------------------------------------------------------------
return: -
--------------------------------------------------------------------------------------------
*/
static void rvlcDecodeForward(CErRvlcInfo *pRvlc,
CAacDecoderChannelInfo *pAacDecoderChannelInfo,
HANDLE_FDK_BITSTREAM bs) {
int band = 0;
int group = 0;
int bnds = 0;
SHORT dpcm;
SHORT factor =
pAacDecoderChannelInfo->pDynData->RawDataInfo.GlobalGain - SF_OFFSET;
SHORT position = -SF_OFFSET;
SHORT noisenrg = pAacDecoderChannelInfo->pDynData->RawDataInfo.GlobalGain -
SF_OFFSET - 90 - 256;
SHORT *pScfFwd = pAacDecoderChannelInfo->pComData->overlay.aac.aRvlcScfFwd;
SHORT *pScfEsc = pAacDecoderChannelInfo->pComData->overlay.aac.aRvlcScfEsc;
UCHAR *pEscFwdCnt = &(pRvlc->numDecodedEscapeWordsFwd);
pRvlc->pRvlBitCnt_RVL = &(pRvlc->length_of_rvlc_sf_fwd);
pRvlc->pBitstrIndxRvl_RVL = &(pRvlc->bitstreamIndexRvlFwd);
*pEscFwdCnt = 0;
pRvlc->direction = FWD;
pRvlc->noise_used = 0;
pRvlc->sf_used = 0;
pRvlc->lastScf = 0;
pRvlc->lastNrg = 0;
pRvlc->lastIs = 0;
rvlcCheckIntensityCb(pRvlc, pAacDecoderChannelInfo);
/* main loop fwd long */
for (group = 0; group < pRvlc->numWindowGroups; group++) {
for (band = 0; band < pRvlc->maxSfbTransmitted; band++) {
bnds = 16 * group + band;
switch (pAacDecoderChannelInfo->pDynData->aCodeBook[bnds]) {
case ZERO_HCB:
pScfFwd[bnds] = 0;
break;
case INTENSITY_HCB2:
case INTENSITY_HCB:
/* store dpcm_is_position */
dpcm = decodeRVLCodeword(bs, pRvlc);
if (dpcm < 0) {
pRvlc->conceal_max = bnds;
return;
}
dpcm -= TABLE_OFFSET;
if ((dpcm == MIN_RVL) || (dpcm == MAX_RVL)) {
if (pRvlc->length_of_rvlc_escapes) {
pRvlc->conceal_max = bnds;
return;
} else {
if (dpcm == MIN_RVL) {
dpcm -= *pScfEsc++;
} else {
dpcm += *pScfEsc++;
}
(*pEscFwdCnt)++;
if (pRvlc->conceal_max_esc == CONCEAL_MAX_INIT) {
pRvlc->conceal_max_esc = bnds;
}
}
}
position += dpcm;
pScfFwd[bnds] = position;
pRvlc->lastIs = position;
break;
case NOISE_HCB:
if (pRvlc->noise_used == 0) {
pRvlc->noise_used = 1;
pRvlc->first_noise_band = bnds;
noisenrg += pRvlc->dpcm_noise_nrg;
pScfFwd[bnds] = 100 + noisenrg;
pRvlc->lastNrg = noisenrg;
} else {
dpcm = decodeRVLCodeword(bs, pRvlc);
if (dpcm < 0) {
pRvlc->conceal_max = bnds;
return;
}
dpcm -= TABLE_OFFSET;
if ((dpcm == MIN_RVL) || (dpcm == MAX_RVL)) {
if (pRvlc->length_of_rvlc_escapes) {
pRvlc->conceal_max = bnds;
return;
} else {
if (dpcm == MIN_RVL) {
dpcm -= *pScfEsc++;
} else {
dpcm += *pScfEsc++;
}
(*pEscFwdCnt)++;
if (pRvlc->conceal_max_esc == CONCEAL_MAX_INIT) {
pRvlc->conceal_max_esc = bnds;
}
}
}
noisenrg += dpcm;
pScfFwd[bnds] = 100 + noisenrg;
pRvlc->lastNrg = noisenrg;
}
pAacDecoderChannelInfo->data.aac.PnsData.pnsUsed[bnds] = 1;
break;
default:
pRvlc->sf_used = 1;
dpcm = decodeRVLCodeword(bs, pRvlc);
if (dpcm < 0) {
pRvlc->conceal_max = bnds;
return;
}
dpcm -= TABLE_OFFSET;
if ((dpcm == MIN_RVL) || (dpcm == MAX_RVL)) {
if (pRvlc->length_of_rvlc_escapes) {
pRvlc->conceal_max = bnds;
return;
} else {
if (dpcm == MIN_RVL) {
dpcm -= *pScfEsc++;
} else {
dpcm += *pScfEsc++;
}
(*pEscFwdCnt)++;
if (pRvlc->conceal_max_esc == CONCEAL_MAX_INIT) {
pRvlc->conceal_max_esc = bnds;
}
}
}
factor += dpcm;
pScfFwd[bnds] = factor;
pRvlc->lastScf = factor;
break;
}
}
}
/* postfetch fwd long */
if (pRvlc->intensity_used) {
dpcm = decodeRVLCodeword(bs, pRvlc); /* dpcm_is_last_position */
if (dpcm < 0) {
pRvlc->conceal_max = bnds;
return;
}
dpcm -= TABLE_OFFSET;
if ((dpcm == MIN_RVL) || (dpcm == MAX_RVL)) {
if (pRvlc->length_of_rvlc_escapes) {
pRvlc->conceal_max = bnds;
return;
} else {
if (dpcm == MIN_RVL) {
dpcm -= *pScfEsc++;
} else {
dpcm += *pScfEsc++;
}
(*pEscFwdCnt)++;
if (pRvlc->conceal_max_esc == CONCEAL_MAX_INIT) {
pRvlc->conceal_max_esc = bnds;
}
}
}
pRvlc->dpcm_is_last_position = dpcm;
}
}
/*---------------------------------------------------------------------------------------------
function: rvlcDecodeBackward
description: Decode RVL-coded codewords in backward direction.
-----------------------------------------------------------------------------------------------
input: - pointer rvlc structure
- pointer channel info structure
- handle FDK bitstream
-----------------------------------------------------------------------------------------------
return: -
--------------------------------------------------------------------------------------------
*/
static void rvlcDecodeBackward(CErRvlcInfo *pRvlc,
CAacDecoderChannelInfo *pAacDecoderChannelInfo,
HANDLE_FDK_BITSTREAM bs) {
SHORT band, group, dpcm, offset;
SHORT bnds = pRvlc->maxSfbTransmitted - 1;
SHORT factor = pRvlc->rev_global_gain - SF_OFFSET;
SHORT position = pRvlc->dpcm_is_last_position - SF_OFFSET;
SHORT noisenrg = pRvlc->rev_global_gain + pRvlc->dpcm_noise_last_position -
SF_OFFSET - 90 - 256;
SHORT *pScfBwd = pAacDecoderChannelInfo->pComData->overlay.aac.aRvlcScfBwd;
SHORT *pScfEsc = pAacDecoderChannelInfo->pComData->overlay.aac.aRvlcScfEsc;
UCHAR *pEscEscCnt = &(pRvlc->numDecodedEscapeWordsEsc);
UCHAR *pEscBwdCnt = &(pRvlc->numDecodedEscapeWordsBwd);
pRvlc->pRvlBitCnt_RVL = &(pRvlc->length_of_rvlc_sf_bwd);
pRvlc->pBitstrIndxRvl_RVL = &(pRvlc->bitstreamIndexRvlBwd);
*pEscBwdCnt = 0;
pRvlc->direction = BWD;
pScfEsc += *pEscEscCnt - 1; /* set pScfEsc to last entry */
pRvlc->firstScf = 0;
pRvlc->firstNrg = 0;
pRvlc->firstIs = 0;
/* prefetch long BWD */
if (pRvlc->intensity_used) {
dpcm = decodeRVLCodeword(bs, pRvlc); /* dpcm_is_last_position */
if (dpcm < 0) {
pRvlc->dpcm_is_last_position = 0;
pRvlc->conceal_min = bnds;
return;
}
dpcm -= TABLE_OFFSET;
if ((dpcm == MIN_RVL) || (dpcm == MAX_RVL)) {
if (pRvlc->length_of_rvlc_escapes) {
pRvlc->conceal_min = bnds;
return;
} else {
if (dpcm == MIN_RVL) {
dpcm -= *pScfEsc--;
} else {
dpcm += *pScfEsc--;
}
(*pEscBwdCnt)++;
if (pRvlc->conceal_min_esc == CONCEAL_MIN_INIT) {
pRvlc->conceal_min_esc = bnds;
}
}
}
pRvlc->dpcm_is_last_position = dpcm;
}
/* main loop long BWD */
for (group = pRvlc->numWindowGroups - 1; group >= 0; group--) {
for (band = pRvlc->maxSfbTransmitted - 1; band >= 0; band--) {
bnds = 16 * group + band;
if ((band == 0) && (pRvlc->numWindowGroups != 1))
offset = 16 - pRvlc->maxSfbTransmitted + 1;
else
offset = 1;
switch (pAacDecoderChannelInfo->pDynData->aCodeBook[bnds]) {
case ZERO_HCB:
pScfBwd[bnds] = 0;
break;
case INTENSITY_HCB2:
case INTENSITY_HCB:
/* store dpcm_is_position */
dpcm = decodeRVLCodeword(bs, pRvlc);
if (dpcm < 0) {
pScfBwd[bnds] = position;
pRvlc->conceal_min = fMax(0, bnds - offset);
return;
}
dpcm -= TABLE_OFFSET;
if ((dpcm == MIN_RVL) || (dpcm == MAX_RVL)) {
if (pRvlc->length_of_rvlc_escapes) {
pScfBwd[bnds] = position;
pRvlc->conceal_min = fMax(0, bnds - offset);
return;
} else {
if (dpcm == MIN_RVL) {
dpcm -= *pScfEsc--;
} else {
dpcm += *pScfEsc--;
}
(*pEscBwdCnt)++;
if (pRvlc->conceal_min_esc == CONCEAL_MIN_INIT) {
pRvlc->conceal_min_esc = fMax(0, bnds - offset);
}
}
}
pScfBwd[bnds] = position;
position -= dpcm;
pRvlc->firstIs = position;
break;
case NOISE_HCB:
if (bnds == pRvlc->first_noise_band) {
pScfBwd[bnds] =
pRvlc->dpcm_noise_nrg +
pAacDecoderChannelInfo->pDynData->RawDataInfo.GlobalGain -
SF_OFFSET - 90 - 256;
pRvlc->firstNrg = pScfBwd[bnds];
} else {
dpcm = decodeRVLCodeword(bs, pRvlc);
if (dpcm < 0) {
pScfBwd[bnds] = noisenrg;
pRvlc->conceal_min = fMax(0, bnds - offset);
return;
}
dpcm -= TABLE_OFFSET;
if ((dpcm == MIN_RVL) || (dpcm == MAX_RVL)) {
if (pRvlc->length_of_rvlc_escapes) {
pScfBwd[bnds] = noisenrg;
pRvlc->conceal_min = fMax(0, bnds - offset);
return;
} else {
if (dpcm == MIN_RVL) {
dpcm -= *pScfEsc--;
} else {
dpcm += *pScfEsc--;
}
(*pEscBwdCnt)++;
if (pRvlc->conceal_min_esc == CONCEAL_MIN_INIT) {
pRvlc->conceal_min_esc = fMax(0, bnds - offset);
}
}
}
pScfBwd[bnds] = noisenrg;
noisenrg -= dpcm;
pRvlc->firstNrg = noisenrg;
}
break;
default:
dpcm = decodeRVLCodeword(bs, pRvlc);
if (dpcm < 0) {
pScfBwd[bnds] = factor;
pRvlc->conceal_min = fMax(0, bnds - offset);
return;
}
dpcm -= TABLE_OFFSET;
if ((dpcm == MIN_RVL) || (dpcm == MAX_RVL)) {
if (pRvlc->length_of_rvlc_escapes) {
pScfBwd[bnds] = factor;
pRvlc->conceal_min = fMax(0, bnds - offset);
return;
} else {
if (dpcm == MIN_RVL) {
dpcm -= *pScfEsc--;
} else {
dpcm += *pScfEsc--;
}
(*pEscBwdCnt)++;
if (pRvlc->conceal_min_esc == CONCEAL_MIN_INIT) {
pRvlc->conceal_min_esc = fMax(0, bnds - offset);
}
}
}
pScfBwd[bnds] = factor;
factor -= dpcm;
pRvlc->firstScf = factor;
break;
}
}
}
}
/*---------------------------------------------------------------------------------------------
function: rvlcFinalErrorDetection
description: Call RVLC concealment if error was detected in decoding
process
-----------------------------------------------------------------------------------------------
input: - pointer rvlc structure
- pointer channel info structure
-----------------------------------------------------------------------------------------------
return: -
--------------------------------------------------------------------------------------------
*/
static void rvlcFinalErrorDetection(
CAacDecoderChannelInfo *pAacDecoderChannelInfo,
CAacDecoderStaticChannelInfo *pAacDecoderStaticChannelInfo) {
CErRvlcInfo *pRvlc =
&pAacDecoderChannelInfo->pComData->overlay.aac.erRvlcInfo;
UCHAR ErrorStatusComplete = 0;
UCHAR ErrorStatusLengthFwd = 0;
UCHAR ErrorStatusLengthBwd = 0;
UCHAR ErrorStatusLengthEscapes = 0;
UCHAR ErrorStatusFirstScf = 0;
UCHAR ErrorStatusLastScf = 0;
UCHAR ErrorStatusFirstNrg = 0;
UCHAR ErrorStatusLastNrg = 0;
UCHAR ErrorStatusFirstIs = 0;
UCHAR ErrorStatusLastIs = 0;
UCHAR ErrorStatusForbiddenCwFwd = 0;
UCHAR ErrorStatusForbiddenCwBwd = 0;
UCHAR ErrorStatusNumEscapesFwd = 0;
UCHAR ErrorStatusNumEscapesBwd = 0;
UCHAR ConcealStatus = 1;
UCHAR currentBlockType; /* short: 0, not short: 1*/
pAacDecoderChannelInfo->pDynData->specificTo.aac.rvlcCurrentScaleFactorOK = 1;
/* invalid escape words, bit counter unequal zero, forbidden codeword detected
*/
if (pRvlc->errorLogRvlc & RVLC_ERROR_FORBIDDEN_CW_DETECTED_FWD)
ErrorStatusForbiddenCwFwd = 1;
if (pRvlc->errorLogRvlc & RVLC_ERROR_FORBIDDEN_CW_DETECTED_BWD)
ErrorStatusForbiddenCwBwd = 1;
/* bit counter forward unequal zero */
if (pRvlc->length_of_rvlc_sf_fwd) ErrorStatusLengthFwd = 1;
/* bit counter backward unequal zero */
if (pRvlc->length_of_rvlc_sf_bwd) ErrorStatusLengthBwd = 1;
/* bit counter escape sequences unequal zero */
if (pRvlc->sf_escapes_present)
if (pRvlc->length_of_rvlc_escapes) ErrorStatusLengthEscapes = 1;
if (pRvlc->sf_used) {
/* first decoded scf does not match to global gain in backward direction */
if (pRvlc->firstScf !=
(pAacDecoderChannelInfo->pDynData->RawDataInfo.GlobalGain - SF_OFFSET))
ErrorStatusFirstScf = 1;
/* last decoded scf does not match to rev global gain in forward direction
*/
if (pRvlc->lastScf != (pRvlc->rev_global_gain - SF_OFFSET))
ErrorStatusLastScf = 1;
}
if (pRvlc->noise_used) {
/* first decoded nrg does not match to dpcm_noise_nrg in backward direction
*/
if (pRvlc->firstNrg !=
(pAacDecoderChannelInfo->pDynData->RawDataInfo.GlobalGain +
pRvlc->dpcm_noise_nrg - SF_OFFSET - 90 - 256))
ErrorStatusFirstNrg = 1;
/* last decoded nrg does not match to dpcm_noise_last_position in forward
* direction */
if (pRvlc->lastNrg !=
(pRvlc->rev_global_gain + pRvlc->dpcm_noise_last_position - SF_OFFSET -
90 - 256))
ErrorStatusLastNrg = 1;
}
if (pRvlc->intensity_used) {
/* first decoded is position does not match in backward direction */
if (pRvlc->firstIs != (-SF_OFFSET)) ErrorStatusFirstIs = 1;
/* last decoded is position does not match in forward direction */
if (pRvlc->lastIs != (pRvlc->dpcm_is_last_position - SF_OFFSET))
ErrorStatusLastIs = 1;
}
/* decoded escapes and used escapes in forward direction do not fit */
if ((pRvlc->numDecodedEscapeWordsFwd != pRvlc->numDecodedEscapeWordsEsc) &&
(pRvlc->conceal_max == CONCEAL_MAX_INIT)) {
ErrorStatusNumEscapesFwd = 1;
}
/* decoded escapes and used escapes in backward direction do not fit */
if ((pRvlc->numDecodedEscapeWordsBwd != pRvlc->numDecodedEscapeWordsEsc) &&
(pRvlc->conceal_min == CONCEAL_MIN_INIT)) {
ErrorStatusNumEscapesBwd = 1;
}
if (ErrorStatusLengthEscapes ||
(((pRvlc->conceal_max == CONCEAL_MAX_INIT) &&
(pRvlc->numDecodedEscapeWordsFwd != pRvlc->numDecodedEscapeWordsEsc) &&
(ErrorStatusLastScf || ErrorStatusLastNrg || ErrorStatusLastIs))
&&
((pRvlc->conceal_min == CONCEAL_MIN_INIT) &&
(pRvlc->numDecodedEscapeWordsBwd != pRvlc->numDecodedEscapeWordsEsc) &&
(ErrorStatusFirstScf || ErrorStatusFirstNrg || ErrorStatusFirstIs))) ||
((pRvlc->conceal_max == CONCEAL_MAX_INIT) &&
((pRvlc->rev_global_gain - SF_OFFSET - pRvlc->lastScf) < -15)) ||
((pRvlc->conceal_min == CONCEAL_MIN_INIT) &&
((pAacDecoderChannelInfo->pDynData->RawDataInfo.GlobalGain - SF_OFFSET -
pRvlc->firstScf) < -15))) {
if ((pRvlc->conceal_max == CONCEAL_MAX_INIT) ||
(pRvlc->conceal_min == CONCEAL_MIN_INIT)) {
pRvlc->conceal_max = 0;
pRvlc->conceal_min = fMax(
0, (pRvlc->numWindowGroups - 1) * 16 + pRvlc->maxSfbTransmitted - 1);
} else {
pRvlc->conceal_max = fMin(pRvlc->conceal_max, pRvlc->conceal_max_esc);
pRvlc->conceal_min = fMax(pRvlc->conceal_min, pRvlc->conceal_min_esc);
}
}
ErrorStatusComplete = ErrorStatusLastScf || ErrorStatusFirstScf ||
ErrorStatusLastNrg || ErrorStatusFirstNrg ||
ErrorStatusLastIs || ErrorStatusFirstIs ||
ErrorStatusForbiddenCwFwd ||
ErrorStatusForbiddenCwBwd || ErrorStatusLengthFwd ||
ErrorStatusLengthBwd || ErrorStatusLengthEscapes ||
ErrorStatusNumEscapesFwd || ErrorStatusNumEscapesBwd;
currentBlockType =
(GetWindowSequence(&pAacDecoderChannelInfo->icsInfo) == BLOCK_SHORT) ? 0
: 1;
if (!ErrorStatusComplete) {
int band;
int group;
int bnds;
int lastSfbIndex;
lastSfbIndex = (pRvlc->numWindowGroups > 1) ? 16 : 64;
for (group = 0; group < pRvlc->numWindowGroups; group++) {
for (band = 0; band < pRvlc->maxSfbTransmitted; band++) {
bnds = 16 * group + band;
pAacDecoderChannelInfo->pDynData->aScaleFactor[bnds] =
pAacDecoderStaticChannelInfo->concealmentInfo
.aRvlcPreviousScaleFactor[bnds] =
pAacDecoderChannelInfo->pComData->overlay.aac.aRvlcScfFwd[bnds];
}
}
for (group = 0; group < pRvlc->numWindowGroups; group++) {
for (band = 0; band < pRvlc->maxSfbTransmitted; band++) {
bnds = 16 * group + band;
pAacDecoderStaticChannelInfo->concealmentInfo
.aRvlcPreviousCodebook[bnds] =
pAacDecoderChannelInfo->pDynData->aCodeBook[bnds];
}
for (; band < lastSfbIndex; band++) {
bnds = 16 * group + band;
FDK_ASSERT(bnds >= 0 && bnds < RVLC_MAX_SFB);
pAacDecoderStaticChannelInfo->concealmentInfo
.aRvlcPreviousCodebook[bnds] = ZERO_HCB;
}
}
} else {
int band;
int group;
/* A single bit error was detected in decoding of dpcm values. It also could
be an error with more bits in decoding of escapes and dpcm values whereby
an illegal codeword followed not directly after the corrupted bits but
just after decoding some more (wrong) scalefactors. Use the smaller
scalefactor from forward decoding, backward decoding and previous frame.
*/
if (((pRvlc->conceal_min != CONCEAL_MIN_INIT) ||
(pRvlc->conceal_max != CONCEAL_MAX_INIT)) &&
(pRvlc->conceal_min <= pRvlc->conceal_max) &&
(pAacDecoderStaticChannelInfo->concealmentInfo.rvlcPreviousBlockType ==
currentBlockType) &&
pAacDecoderStaticChannelInfo->concealmentInfo
.rvlcPreviousScaleFactorOK &&
pRvlc->sf_concealment && ConcealStatus) {
BidirectionalEstimation_UseScfOfPrevFrameAsReference(
pAacDecoderChannelInfo, pAacDecoderStaticChannelInfo);
ConcealStatus = 0;
}
/* A single bit error was detected in decoding of dpcm values. It also could
be an error with more bits in decoding of escapes and dpcm values whereby
an illegal codeword followed not directly after the corrupted bits but
just after decoding some more (wrong) scalefactors. Use the smaller
scalefactor from forward and backward decoding. */
if ((pRvlc->conceal_min <= pRvlc->conceal_max) &&
((pRvlc->conceal_min != CONCEAL_MIN_INIT) ||
(pRvlc->conceal_max != CONCEAL_MAX_INIT)) &&
!(pAacDecoderStaticChannelInfo->concealmentInfo
.rvlcPreviousScaleFactorOK &&
pRvlc->sf_concealment &&
(pAacDecoderStaticChannelInfo->concealmentInfo
.rvlcPreviousBlockType == currentBlockType)) &&
ConcealStatus) {
BidirectionalEstimation_UseLowerScfOfCurrentFrame(pAacDecoderChannelInfo);
ConcealStatus = 0;
}
/* No errors were detected in decoding of escapes and dpcm values however
the first and last value of a group (is,nrg,sf) is incorrect */
if ((pRvlc->conceal_min <= pRvlc->conceal_max) &&
((ErrorStatusLastScf && ErrorStatusFirstScf) ||
(ErrorStatusLastNrg && ErrorStatusFirstNrg) ||
(ErrorStatusLastIs && ErrorStatusFirstIs)) &&
!(ErrorStatusForbiddenCwFwd || ErrorStatusForbiddenCwBwd ||
ErrorStatusLengthEscapes) &&
ConcealStatus) {
StatisticalEstimation(pAacDecoderChannelInfo);
ConcealStatus = 0;
}
/* A error with more bits in decoding of escapes and dpcm values was
detected. Use the smaller scalefactor from forward decoding, backward
decoding and previous frame. */
if ((pRvlc->conceal_min <= pRvlc->conceal_max) &&
pAacDecoderStaticChannelInfo->concealmentInfo
.rvlcPreviousScaleFactorOK &&
pRvlc->sf_concealment &&
(pAacDecoderStaticChannelInfo->concealmentInfo.rvlcPreviousBlockType ==
currentBlockType) &&
ConcealStatus) {
PredictiveInterpolation(pAacDecoderChannelInfo,
pAacDecoderStaticChannelInfo);
ConcealStatus = 0;
}
/* Call frame concealment, because no better strategy was found. Setting the
scalefactors to zero is done for debugging purposes */
if (ConcealStatus) {
for (group = 0; group < pRvlc->numWindowGroups; group++) {
for (band = 0; band < pRvlc->maxSfbTransmitted; band++) {
pAacDecoderChannelInfo->pDynData->aScaleFactor[16 * group + band] = 0;
}
}
pAacDecoderChannelInfo->pDynData->specificTo.aac
.rvlcCurrentScaleFactorOK = 0;
}
}
}
/*---------------------------------------------------------------------------------------------
function: CRvlc_Read
description: Read RVLC ESC1 data (side info) from bitstream.
-----------------------------------------------------------------------------------------------
input: - pointer rvlc structure
- pointer channel info structure
- pointer bitstream structure
-----------------------------------------------------------------------------------------------
return: -
--------------------------------------------------------------------------------------------
*/
void CRvlc_Read(CAacDecoderChannelInfo *pAacDecoderChannelInfo,
HANDLE_FDK_BITSTREAM bs) {
CErRvlcInfo *pRvlc =
&pAacDecoderChannelInfo->pComData->overlay.aac.erRvlcInfo;
int group, band;
/* RVLC long specific initialization Init part 1 of 2 */
pRvlc->numWindowGroups = GetWindowGroups(&pAacDecoderChannelInfo->icsInfo);
pRvlc->maxSfbTransmitted =
GetScaleFactorBandsTransmitted(&pAacDecoderChannelInfo->icsInfo);
pRvlc->noise_used = 0; /* noise detection */
pRvlc->dpcm_noise_nrg = 0; /* only for debugging */
pRvlc->dpcm_noise_last_position = 0; /* only for debugging */
pRvlc->length_of_rvlc_escapes =
-1; /* default value is used for error detection and concealment */
/* read only error sensitivity class 1 data (ESC 1 - data) */
pRvlc->sf_concealment = FDKreadBits(bs, 1); /* #1 */
pRvlc->rev_global_gain = FDKreadBits(bs, 8); /* #2 */
if (GetWindowSequence(&pAacDecoderChannelInfo->icsInfo) == BLOCK_SHORT) {
pRvlc->length_of_rvlc_sf = FDKreadBits(bs, 11); /* #3 */
} else {
pRvlc->length_of_rvlc_sf = FDKreadBits(bs, 9); /* #3 */
}
/* check if noise codebook is used */
for (group = 0; group < pRvlc->numWindowGroups; group++) {
for (band = 0; band < pRvlc->maxSfbTransmitted; band++) {
if (pAacDecoderChannelInfo->pDynData->aCodeBook[16 * group + band] ==
NOISE_HCB) {
pRvlc->noise_used = 1;
break;
}
}
}
if (pRvlc->noise_used)
pRvlc->dpcm_noise_nrg = FDKreadBits(bs, 9); /* #4 PNS */
pRvlc->sf_escapes_present = FDKreadBits(bs, 1); /* #5 */
if (pRvlc->sf_escapes_present) {
pRvlc->length_of_rvlc_escapes = FDKreadBits(bs, 8); /* #6 */
}
if (pRvlc->noise_used) {
pRvlc->dpcm_noise_last_position = FDKreadBits(bs, 9); /* #7 PNS */
pRvlc->length_of_rvlc_sf -= 9;
}
pRvlc->length_of_rvlc_sf_fwd = pRvlc->length_of_rvlc_sf;
pRvlc->length_of_rvlc_sf_bwd = pRvlc->length_of_rvlc_sf;
}
/*---------------------------------------------------------------------------------------------
function: CRvlc_Decode
description: Decode rvlc data
The function reads both the escape sequences and the
scalefactors in forward and backward direction. If an error occured during
decoding process which can not be concealed with the rvlc concealment frame
concealment will be initiated. Then the element "rvlcCurrentScaleFactorOK" in
the decoder channel info is set to 0 otherwise it is set to 1.
-----------------------------------------------------------------------------------------------
input: - pointer rvlc structure
- pointer channel info structure
- pointer to persistent channel info structure
- pointer bitstream structure
-----------------------------------------------------------------------------------------------
return: ErrorStatus = AAC_DEC_OK
--------------------------------------------------------------------------------------------
*/
void CRvlc_Decode(CAacDecoderChannelInfo *pAacDecoderChannelInfo,
CAacDecoderStaticChannelInfo *pAacDecoderStaticChannelInfo,
HANDLE_FDK_BITSTREAM bs) {
CErRvlcInfo *pRvlc =
&pAacDecoderChannelInfo->pComData->overlay.aac.erRvlcInfo;
INT bitCntOffst;
INT saveBitCnt;
rvlcInit(pRvlc, pAacDecoderChannelInfo, bs);
/* save bitstream position */
saveBitCnt = (INT)FDKgetValidBits(bs);
if (pRvlc->sf_escapes_present)
rvlcDecodeEscapes(
pRvlc, pAacDecoderChannelInfo->pComData->overlay.aac.aRvlcScfEsc, bs);
rvlcDecodeForward(pRvlc, pAacDecoderChannelInfo, bs);
rvlcDecodeBackward(pRvlc, pAacDecoderChannelInfo, bs);
rvlcFinalErrorDetection(pAacDecoderChannelInfo, pAacDecoderStaticChannelInfo);
pAacDecoderChannelInfo->pDynData->specificTo.aac.rvlcIntensityUsed =
pRvlc->intensity_used;
pAacDecoderChannelInfo->data.aac.PnsData.PnsActive = pRvlc->noise_used;
/* restore bitstream position */
bitCntOffst = (INT)FDKgetValidBits(bs) - saveBitCnt;
if (bitCntOffst) {
FDKpushBiDirectional(bs, bitCntOffst);
}
}
void CRvlc_ElementCheck(
CAacDecoderChannelInfo *pAacDecoderChannelInfo[],
CAacDecoderStaticChannelInfo *pAacDecoderStaticChannelInfo[],
const UINT flags, const INT elChannels) {
int ch;
/* Required for MPS residuals. */
if (pAacDecoderStaticChannelInfo == NULL) {
return;
}
/* RVLC specific sanity checks */
if ((flags & AC_ER_RVLC) && (elChannels == 2)) { /* to be reviewed */
if (((pAacDecoderChannelInfo[0]
->pDynData->specificTo.aac.rvlcCurrentScaleFactorOK == 0) ||
(pAacDecoderChannelInfo[1]
->pDynData->specificTo.aac.rvlcCurrentScaleFactorOK == 0)) &&
pAacDecoderChannelInfo[0]->pComData->jointStereoData.MsMaskPresent) {
pAacDecoderChannelInfo[0]
->pDynData->specificTo.aac.rvlcCurrentScaleFactorOK = 0;
pAacDecoderChannelInfo[1]
->pDynData->specificTo.aac.rvlcCurrentScaleFactorOK = 0;
}
if ((pAacDecoderChannelInfo[0]
->pDynData->specificTo.aac.rvlcCurrentScaleFactorOK == 0) &&
(pAacDecoderChannelInfo[1]
->pDynData->specificTo.aac.rvlcCurrentScaleFactorOK == 1) &&
(pAacDecoderChannelInfo[1]
->pDynData->specificTo.aac.rvlcIntensityUsed == 1)) {
pAacDecoderChannelInfo[1]
->pDynData->specificTo.aac.rvlcCurrentScaleFactorOK = 0;
}
}
for (ch = 0; ch < elChannels; ch++) {
pAacDecoderStaticChannelInfo[ch]->concealmentInfo.rvlcPreviousBlockType =
(GetWindowSequence(&pAacDecoderChannelInfo[ch]->icsInfo) == BLOCK_SHORT)
? 0
: 1;
if (flags & AC_ER_RVLC) {
pAacDecoderStaticChannelInfo[ch]
->concealmentInfo.rvlcPreviousScaleFactorOK =
pAacDecoderChannelInfo[ch]
->pDynData->specificTo.aac.rvlcCurrentScaleFactorOK;
} else {
pAacDecoderStaticChannelInfo[ch]
->concealmentInfo.rvlcPreviousScaleFactorOK = 0;
}
}
}