| /* ----------------------------------------------------------------------------- |
| Software License for The Fraunhofer FDK AAC Codec Library for Android |
| |
| © Copyright 1995 - 2018 Fraunhofer-Gesellschaft zur Förderung der angewandten |
| Forschung e.V. All rights reserved. |
| |
| 1. INTRODUCTION |
| The Fraunhofer FDK AAC Codec Library for Android ("FDK AAC Codec") is software |
| that implements the MPEG Advanced Audio Coding ("AAC") encoding and decoding |
| scheme for digital audio. This FDK AAC Codec software is intended to be used on |
| a wide variety of Android devices. |
| |
| AAC's HE-AAC and HE-AAC v2 versions are regarded as today's most efficient |
| general perceptual audio codecs. AAC-ELD is considered the best-performing |
| full-bandwidth communications codec by independent studies and is widely |
| deployed. AAC has been standardized by ISO and IEC as part of the MPEG |
| specifications. |
| |
| Patent licenses for necessary patent claims for the FDK AAC Codec (including |
| those of Fraunhofer) may be obtained through Via Licensing |
| (www.vialicensing.com) or through the respective patent owners individually for |
| the purpose of encoding or decoding bit streams in products that are compliant |
| with the ISO/IEC MPEG audio standards. Please note that most manufacturers of |
| Android devices already license these patent claims through Via Licensing or |
| directly from the patent owners, and therefore FDK AAC Codec software may |
| already be covered under those patent licenses when it is used for those |
| licensed purposes only. |
| |
| Commercially-licensed AAC software libraries, including floating-point versions |
| with enhanced sound quality, are also available from Fraunhofer. Users are |
| encouraged to check the Fraunhofer website for additional applications |
| information and documentation. |
| |
| 2. COPYRIGHT LICENSE |
| |
| Redistribution and use in source and binary forms, with or without modification, |
| are permitted without payment of copyright license fees provided that you |
| satisfy the following conditions: |
| |
| You must retain the complete text of this software license in redistributions of |
| the FDK AAC Codec or your modifications thereto in source code form. |
| |
| You must retain the complete text of this software license in the documentation |
| and/or other materials provided with redistributions of the FDK AAC Codec or |
| your modifications thereto in binary form. You must make available free of |
| charge copies of the complete source code of the FDK AAC Codec and your |
| modifications thereto to recipients of copies in binary form. |
| |
| The name of Fraunhofer may not be used to endorse or promote products derived |
| from this library without prior written permission. |
| |
| You may not charge copyright license fees for anyone to use, copy or distribute |
| the FDK AAC Codec software or your modifications thereto. |
| |
| Your modified versions of the FDK AAC Codec must carry prominent notices stating |
| that you changed the software and the date of any change. For modified versions |
| of the FDK AAC Codec, the term "Fraunhofer FDK AAC Codec Library for Android" |
| must be replaced by the term "Third-Party Modified Version of the Fraunhofer FDK |
| AAC Codec Library for Android." |
| |
| 3. NO PATENT LICENSE |
| |
| NO EXPRESS OR IMPLIED LICENSES TO ANY PATENT CLAIMS, including without |
| limitation the patents of Fraunhofer, ARE GRANTED BY THIS SOFTWARE LICENSE. |
| Fraunhofer provides no warranty of patent non-infringement with respect to this |
| software. |
| |
| You may use this FDK AAC Codec software or modifications thereto only for |
| purposes that are authorized by appropriate patent licenses. |
| |
| 4. DISCLAIMER |
| |
| This FDK AAC Codec software is provided by Fraunhofer on behalf of the copyright |
| holders and contributors "AS IS" and WITHOUT ANY EXPRESS OR IMPLIED WARRANTIES, |
| including but not limited to the implied warranties of merchantability and |
| fitness for a particular purpose. IN NO EVENT SHALL THE COPYRIGHT HOLDER OR |
| CONTRIBUTORS BE LIABLE for any direct, indirect, incidental, special, exemplary, |
| or consequential damages, including but not limited to procurement of substitute |
| goods or services; loss of use, data, or profits, or business interruption, |
| however caused and on any theory of liability, whether in contract, strict |
| liability, or tort (including negligence), arising in any way out of the use of |
| this software, even if advised of the possibility of such damage. |
| |
| 5. CONTACT INFORMATION |
| |
| Fraunhofer Institute for Integrated Circuits IIS |
| Attention: Audio and Multimedia Departments - FDK AAC LL |
| Am Wolfsmantel 33 |
| 91058 Erlangen, Germany |
| |
| www.iis.fraunhofer.de/amm |
| amm-info@iis.fraunhofer.de |
| ----------------------------------------------------------------------------- */ |
| |
| /**************************** AAC encoder library ****************************** |
| |
| Author(s): M. Werner |
| |
| Description: Threshold compensation |
| |
| *******************************************************************************/ |
| |
| #include "adj_thr.h" |
| #include "sf_estim.h" |
| #include "aacEnc_ram.h" |
| |
| #define NUM_NRG_LEVS (8) |
| #define INV_INT_TAB_SIZE (8) |
| static const FIXP_DBL invInt[INV_INT_TAB_SIZE] = { |
| 0x7fffffff, 0x7fffffff, 0x40000000, 0x2aaaaaaa, |
| 0x20000000, 0x19999999, 0x15555555, 0x12492492}; |
| |
| #define INV_SQRT4_TAB_SIZE (8) |
| static const FIXP_DBL invSqrt4[INV_SQRT4_TAB_SIZE] = { |
| 0x7fffffff, 0x7fffffff, 0x6ba27e65, 0x61424bb5, |
| 0x5a827999, 0x55994845, 0x51c8e33c, 0x4eb160d1}; |
| |
| /*static const INT invRedExp = 4;*/ |
| static const FIXP_DBL SnrLdMin1 = |
| (FIXP_DBL)0xfcad0ddf; /*FL2FXCONST_DBL(FDKlog(0.316)/FDKlog(2.0)/LD_DATA_SCALING);*/ |
| static const FIXP_DBL SnrLdMin2 = |
| (FIXP_DBL)0x0351e1a2; /*FL2FXCONST_DBL(FDKlog(3.16) |
| /FDKlog(2.0)/LD_DATA_SCALING);*/ |
| static const FIXP_DBL SnrLdFac = |
| (FIXP_DBL)0xff5b2c3e; /*FL2FXCONST_DBL(FDKlog(0.8) |
| /FDKlog(2.0)/LD_DATA_SCALING);*/ |
| |
| static const FIXP_DBL SnrLdMin3 = |
| (FIXP_DBL)0xfe000000; /*FL2FXCONST_DBL(FDKlog(0.5) |
| /FDKlog(2.0)/LD_DATA_SCALING);*/ |
| static const FIXP_DBL SnrLdMin4 = |
| (FIXP_DBL)0x02000000; /*FL2FXCONST_DBL(FDKlog(2.0) |
| /FDKlog(2.0)/LD_DATA_SCALING);*/ |
| static const FIXP_DBL SnrLdMin5 = |
| (FIXP_DBL)0xfc000000; /*FL2FXCONST_DBL(FDKlog(0.25) |
| /FDKlog(2.0)/LD_DATA_SCALING);*/ |
| |
| /* |
| The bits2Pe factors are choosen for the case that some times |
| the crash recovery strategy will be activated once. |
| */ |
| #define AFTERBURNER_STATI 2 |
| #define MAX_ALLOWED_EL_CHANNELS 2 |
| |
| typedef struct { |
| INT bitrate; |
| FIXP_DBL bits2PeFactor[AFTERBURNER_STATI][MAX_ALLOWED_EL_CHANNELS]; |
| } BIT_PE_SFAC; |
| |
| typedef struct { |
| INT sampleRate; |
| const BIT_PE_SFAC *pPeTab; |
| INT nEntries; |
| |
| } BITS2PE_CFG_TAB; |
| |
| #define FL2B2PE(value) FL2FXCONST_DBL((value) / (1 << 2)) |
| |
| static const BIT_PE_SFAC S_Bits2PeTab16000[] = { |
| /* bitrate| afterburner off | afterburner on | | nCh=1 |
| | nCh=2 | nCh=1 | nCh=2 */ |
| {10000, |
| {{FL2B2PE(1.60f), FL2B2PE(0.00f)}, {FL2B2PE(1.40f), FL2B2PE(0.00f)}}}, |
| {24000, |
| {{FL2B2PE(1.80f), FL2B2PE(1.40f)}, {FL2B2PE(1.60f), FL2B2PE(1.20f)}}}, |
| {32000, |
| {{FL2B2PE(1.80f), FL2B2PE(1.60f)}, {FL2B2PE(1.60f), FL2B2PE(1.40f)}}}, |
| {48000, |
| {{FL2B2PE(1.60f), FL2B2PE(1.80f)}, {FL2B2PE(1.60f), FL2B2PE(1.60f)}}}, |
| {64000, |
| {{FL2B2PE(1.20f), FL2B2PE(1.60f)}, {FL2B2PE(1.20f), FL2B2PE(1.60f)}}}, |
| {96000, |
| {{FL2B2PE(1.40f), FL2B2PE(1.80f)}, {FL2B2PE(1.40f), FL2B2PE(1.60f)}}}, |
| {128000, |
| {{FL2B2PE(1.40f), FL2B2PE(1.80f)}, {FL2B2PE(1.40f), FL2B2PE(1.80f)}}}, |
| {148000, |
| {{FL2B2PE(1.40f), FL2B2PE(1.80f)}, {FL2B2PE(1.40f), FL2B2PE(1.40f)}}}}; |
| |
| static const BIT_PE_SFAC S_Bits2PeTab22050[] = { |
| /* bitrate| afterburner off | afterburner on | | nCh=1 |
| | nCh=2 | nCh=1 | nCh=2 */ |
| {16000, |
| {{FL2B2PE(1.60f), FL2B2PE(1.40f)}, {FL2B2PE(1.20f), FL2B2PE(0.80f)}}}, |
| {24000, |
| {{FL2B2PE(1.60f), FL2B2PE(1.40f)}, {FL2B2PE(1.40f), FL2B2PE(1.00f)}}}, |
| {32000, |
| {{FL2B2PE(1.40f), FL2B2PE(1.40f)}, {FL2B2PE(1.40f), FL2B2PE(1.20f)}}}, |
| {48000, |
| {{FL2B2PE(1.20f), FL2B2PE(1.60f)}, {FL2B2PE(1.20f), FL2B2PE(1.40f)}}}, |
| {64000, |
| {{FL2B2PE(1.60f), FL2B2PE(1.60f)}, {FL2B2PE(1.60f), FL2B2PE(1.40f)}}}, |
| {96000, |
| {{FL2B2PE(1.80f), FL2B2PE(1.60f)}, {FL2B2PE(1.80f), FL2B2PE(1.60f)}}}, |
| {128000, |
| {{FL2B2PE(1.80f), FL2B2PE(1.80f)}, {FL2B2PE(1.60f), FL2B2PE(1.60f)}}}, |
| {148000, |
| {{FL2B2PE(1.40f), FL2B2PE(1.80f)}, {FL2B2PE(1.40f), FL2B2PE(1.60f)}}}}; |
| |
| static const BIT_PE_SFAC S_Bits2PeTab24000[] = { |
| /* bitrate| afterburner off | afterburner on | | nCh=1 |
| | nCh=2 | nCh=1 | nCh=2 */ |
| {16000, |
| {{FL2B2PE(1.40f), FL2B2PE(1.40f)}, {FL2B2PE(1.20f), FL2B2PE(0.80f)}}}, |
| {24000, |
| {{FL2B2PE(1.60f), FL2B2PE(1.20f)}, {FL2B2PE(1.40f), FL2B2PE(1.00f)}}}, |
| {32000, |
| {{FL2B2PE(1.40f), FL2B2PE(1.20f)}, {FL2B2PE(1.40f), FL2B2PE(0.80f)}}}, |
| {48000, |
| {{FL2B2PE(1.40f), FL2B2PE(1.60f)}, {FL2B2PE(1.40f), FL2B2PE(1.40f)}}}, |
| {64000, |
| {{FL2B2PE(1.60f), FL2B2PE(1.60f)}, {FL2B2PE(1.60f), FL2B2PE(1.40f)}}}, |
| {96000, |
| {{FL2B2PE(1.80f), FL2B2PE(1.60f)}, {FL2B2PE(1.80f), FL2B2PE(1.60f)}}}, |
| {128000, |
| {{FL2B2PE(1.40f), FL2B2PE(1.60f)}, {FL2B2PE(1.80f), FL2B2PE(1.80f)}}}, |
| {148000, |
| {{FL2B2PE(1.40f), FL2B2PE(1.60f)}, {FL2B2PE(1.40f), FL2B2PE(1.80f)}}}}; |
| |
| static const BIT_PE_SFAC S_Bits2PeTab32000[] = { |
| /* bitrate| afterburner off | afterburner on | | nCh=1 |
| | nCh=2 | nCh=1 | nCh=2 */ |
| {16000, |
| {{FL2B2PE(1.20f), FL2B2PE(1.40f)}, {FL2B2PE(0.80f), FL2B2PE(0.80f)}}}, |
| {24000, |
| {{FL2B2PE(1.40f), FL2B2PE(1.20f)}, {FL2B2PE(1.00f), FL2B2PE(0.60f)}}}, |
| {32000, |
| {{FL2B2PE(1.20f), FL2B2PE(1.20f)}, {FL2B2PE(1.00f), FL2B2PE(0.80f)}}}, |
| {48000, |
| {{FL2B2PE(1.40f), FL2B2PE(1.40f)}, {FL2B2PE(1.20f), FL2B2PE(1.20f)}}}, |
| {64000, |
| {{FL2B2PE(1.60f), FL2B2PE(1.40f)}, {FL2B2PE(1.60f), FL2B2PE(1.20f)}}}, |
| {96000, |
| {{FL2B2PE(1.60f), FL2B2PE(1.40f)}, {FL2B2PE(1.60f), FL2B2PE(1.40f)}}}, |
| {128000, |
| {{FL2B2PE(1.80f), FL2B2PE(1.60f)}, {FL2B2PE(1.80f), FL2B2PE(1.60f)}}}, |
| {148000, |
| {{FL2B2PE(1.80f), FL2B2PE(1.60f)}, {FL2B2PE(1.80f), FL2B2PE(1.60f)}}}, |
| {160000, |
| {{FL2B2PE(1.80f), FL2B2PE(1.60f)}, {FL2B2PE(1.80f), FL2B2PE(1.60f)}}}, |
| {200000, |
| {{FL2B2PE(1.40f), FL2B2PE(1.60f)}, {FL2B2PE(1.40f), FL2B2PE(1.60f)}}}, |
| {320000, |
| {{FL2B2PE(3.20f), FL2B2PE(1.80f)}, {FL2B2PE(3.20f), FL2B2PE(1.80f)}}}}; |
| |
| static const BIT_PE_SFAC S_Bits2PeTab44100[] = { |
| /* bitrate| afterburner off | afterburner on | | nCh=1 |
| | nCh=2 | nCh=1 | nCh=2 */ |
| {16000, |
| {{FL2B2PE(1.20f), FL2B2PE(1.60f)}, {FL2B2PE(0.80f), FL2B2PE(1.00f)}}}, |
| {24000, |
| {{FL2B2PE(1.00f), FL2B2PE(1.20f)}, {FL2B2PE(1.00f), FL2B2PE(0.80f)}}}, |
| {32000, |
| {{FL2B2PE(1.20f), FL2B2PE(1.20f)}, {FL2B2PE(0.80f), FL2B2PE(0.60f)}}}, |
| {48000, |
| {{FL2B2PE(1.20f), FL2B2PE(1.20f)}, {FL2B2PE(1.20f), FL2B2PE(0.80f)}}}, |
| {64000, |
| {{FL2B2PE(1.40f), FL2B2PE(1.20f)}, {FL2B2PE(1.20f), FL2B2PE(1.00f)}}}, |
| {96000, |
| {{FL2B2PE(1.60f), FL2B2PE(1.20f)}, {FL2B2PE(1.60f), FL2B2PE(1.20f)}}}, |
| {128000, |
| {{FL2B2PE(1.60f), FL2B2PE(1.60f)}, {FL2B2PE(1.60f), FL2B2PE(1.40f)}}}, |
| {148000, |
| {{FL2B2PE(1.60f), FL2B2PE(1.60f)}, {FL2B2PE(1.60f), FL2B2PE(1.60f)}}}, |
| {160000, |
| {{FL2B2PE(1.60f), FL2B2PE(1.60f)}, {FL2B2PE(1.60f), FL2B2PE(1.60f)}}}, |
| {200000, |
| {{FL2B2PE(1.80f), FL2B2PE(1.60f)}, {FL2B2PE(1.60f), FL2B2PE(1.60f)}}}, |
| {320000, |
| {{FL2B2PE(3.20f), FL2B2PE(1.60f)}, {FL2B2PE(3.20f), FL2B2PE(1.60f)}}}}; |
| |
| static const BIT_PE_SFAC S_Bits2PeTab48000[] = { |
| /* bitrate| afterburner off | afterburner on | | nCh=1 |
| | nCh=2 | nCh=1 | nCh=2 */ |
| {16000, |
| {{FL2B2PE(1.40f), FL2B2PE(0.00f)}, {FL2B2PE(0.80f), FL2B2PE(0.00f)}}}, |
| {24000, |
| {{FL2B2PE(1.40f), FL2B2PE(1.20f)}, {FL2B2PE(1.00f), FL2B2PE(0.80f)}}}, |
| {32000, |
| {{FL2B2PE(1.00f), FL2B2PE(1.20f)}, {FL2B2PE(0.60f), FL2B2PE(0.80f)}}}, |
| {48000, |
| {{FL2B2PE(1.20f), FL2B2PE(1.00f)}, {FL2B2PE(0.80f), FL2B2PE(0.80f)}}}, |
| {64000, |
| {{FL2B2PE(1.20f), FL2B2PE(1.20f)}, {FL2B2PE(1.20f), FL2B2PE(1.00f)}}}, |
| {96000, |
| {{FL2B2PE(1.60f), FL2B2PE(1.40f)}, {FL2B2PE(1.60f), FL2B2PE(1.20f)}}}, |
| {128000, |
| {{FL2B2PE(1.60f), FL2B2PE(1.60f)}, {FL2B2PE(1.60f), FL2B2PE(1.40f)}}}, |
| {148000, |
| {{FL2B2PE(1.60f), FL2B2PE(1.60f)}, {FL2B2PE(1.60f), FL2B2PE(1.40f)}}}, |
| {160000, |
| {{FL2B2PE(1.60f), FL2B2PE(1.60f)}, {FL2B2PE(1.60f), FL2B2PE(1.40f)}}}, |
| {200000, |
| {{FL2B2PE(1.20f), FL2B2PE(1.60f)}, {FL2B2PE(1.60f), FL2B2PE(1.40f)}}}, |
| {320000, |
| {{FL2B2PE(3.20f), FL2B2PE(1.60f)}, {FL2B2PE(3.20f), FL2B2PE(1.60f)}}}}; |
| |
| static const BITS2PE_CFG_TAB bits2PeConfigTab[] = { |
| {16000, S_Bits2PeTab16000, sizeof(S_Bits2PeTab16000) / sizeof(BIT_PE_SFAC)}, |
| {22050, S_Bits2PeTab22050, sizeof(S_Bits2PeTab22050) / sizeof(BIT_PE_SFAC)}, |
| {24000, S_Bits2PeTab24000, sizeof(S_Bits2PeTab24000) / sizeof(BIT_PE_SFAC)}, |
| {32000, S_Bits2PeTab32000, sizeof(S_Bits2PeTab32000) / sizeof(BIT_PE_SFAC)}, |
| {44100, S_Bits2PeTab44100, sizeof(S_Bits2PeTab44100) / sizeof(BIT_PE_SFAC)}, |
| {48000, S_Bits2PeTab48000, |
| sizeof(S_Bits2PeTab48000) / sizeof(BIT_PE_SFAC)}}; |
| |
| /* values for avoid hole flag */ |
| enum _avoid_hole_state { NO_AH = 0, AH_INACTIVE = 1, AH_ACTIVE = 2 }; |
| |
| /* Q format definitions */ |
| #define Q_BITFAC \ |
| (24) /* Q scaling used in FDKaacEnc_bitresCalcBitFac() calculation */ |
| #define Q_AVGBITS (17) /* scale bit values */ |
| |
| /***************************************************************************** |
| functionname: FDKaacEnc_InitBits2PeFactor |
| description: retrieve bits2PeFactor from table |
| *****************************************************************************/ |
| static void FDKaacEnc_InitBits2PeFactor( |
| FIXP_DBL *bits2PeFactor_m, INT *bits2PeFactor_e, const INT bitRate, |
| const INT nChannels, const INT sampleRate, const INT advancedBitsToPe, |
| const INT dZoneQuantEnable, const INT invQuant) { |
| /**** 1) Set default bits2pe factor ****/ |
| FIXP_DBL bit2PE_m = FL2FXCONST_DBL(1.18f / (1 << (1))); |
| INT bit2PE_e = 1; |
| |
| /**** 2) For AAC-(E)LD, make use of advanced bits to pe factor table ****/ |
| if (advancedBitsToPe && nChannels <= (2)) { |
| int i; |
| const BIT_PE_SFAC *peTab = NULL; |
| INT size = 0; |
| |
| /*** 2.1) Get correct table entry ***/ |
| for (i = 0; i < (INT)(sizeof(bits2PeConfigTab) / sizeof(BITS2PE_CFG_TAB)); |
| i++) { |
| if (sampleRate >= bits2PeConfigTab[i].sampleRate) { |
| peTab = bits2PeConfigTab[i].pPeTab; |
| size = bits2PeConfigTab[i].nEntries; |
| } |
| } |
| |
| if ((peTab != NULL) && (size != 0)) { |
| INT startB = -1; /* bitrate entry in table that is the next-lower to |
| actual bitrate */ |
| INT stopB = -1; /* bitrate entry in table that is the next-higher to |
| actual bitrate */ |
| FIXP_DBL startPF = |
| FL2FXCONST_DBL(0.0f); /* bits2PE factor entry in table that is the |
| next-lower to actual bits2PE factor */ |
| FIXP_DBL stopPF = FL2FXCONST_DBL(0.0f); /* bits2PE factor entry in table |
| that is the next-higher to |
| actual bits2PE factor */ |
| FIXP_DBL slope = FL2FXCONST_DBL( |
| 0.0f); /* the slope from the start bits2Pe entry to the next one */ |
| const int qualityIdx = (invQuant == 0) ? 0 : 1; |
| |
| if (bitRate >= peTab[size - 1].bitrate) { |
| /* Chosen bitrate is higher than the highest bitrate in table. |
| The slope for extrapolating the bits2PE factor must be zero. |
| Values are set accordingly. */ |
| startB = peTab[size - 1].bitrate; |
| stopB = |
| bitRate + |
| 1; /* Can be an arbitrary value greater than startB and bitrate. */ |
| startPF = peTab[size - 1].bits2PeFactor[qualityIdx][nChannels - 1]; |
| stopPF = peTab[size - 1].bits2PeFactor[qualityIdx][nChannels - 1]; |
| } else { |
| for (i = 0; i < size - 1; i++) { |
| if ((peTab[i].bitrate <= bitRate) && |
| (peTab[i + 1].bitrate > bitRate)) { |
| startB = peTab[i].bitrate; |
| stopB = peTab[i + 1].bitrate; |
| startPF = peTab[i].bits2PeFactor[qualityIdx][nChannels - 1]; |
| stopPF = peTab[i + 1].bits2PeFactor[qualityIdx][nChannels - 1]; |
| break; |
| } |
| } |
| } |
| |
| /*** 2.2) Configuration available? ***/ |
| if (startB != -1) { |
| /** 2.2.1) linear interpolate to actual PEfactor **/ |
| FIXP_DBL bit2PE = 0; |
| |
| const FIXP_DBL maxBit2PE = FL2FXCONST_DBL(3.f / 4.f); |
| |
| /* bit2PE = ((stopPF-startPF)/(stopB-startB))*(bitRate-startB)+startPF; |
| */ |
| slope = fDivNorm(bitRate - startB, stopB - startB); |
| bit2PE = fMult(slope, stopPF - startPF) + startPF; |
| |
| bit2PE = fMin(maxBit2PE, bit2PE); |
| |
| /** 2.2.2) sanity check if bits2pe value is high enough **/ |
| if (bit2PE >= (FL2FXCONST_DBL(0.35f) >> 2)) { |
| bit2PE_m = bit2PE; |
| bit2PE_e = 2; /* table is fixed scaled */ |
| } |
| } /* br */ |
| } /* sr */ |
| } /* advancedBitsToPe */ |
| |
| if (dZoneQuantEnable) { |
| if (bit2PE_m >= (FL2FXCONST_DBL(0.6f)) >> bit2PE_e) { |
| /* Additional headroom for addition */ |
| bit2PE_m >>= 1; |
| bit2PE_e += 1; |
| } |
| |
| /* the quantTendencyCompensator compensates a lower bit consumption due to |
| * increasing the tendency to quantize low spectral values to the lower |
| * quantizer border for bitrates below a certain bitrate threshold --> see |
| * also function calcSfbDistLD in quantize.c */ |
| if ((bitRate / nChannels > 32000) && (bitRate / nChannels <= 40000)) { |
| bit2PE_m += (FL2FXCONST_DBL(0.4f)) >> bit2PE_e; |
| } else if (bitRate / nChannels > 20000) { |
| bit2PE_m += (FL2FXCONST_DBL(0.3f)) >> bit2PE_e; |
| } else if (bitRate / nChannels >= 16000) { |
| bit2PE_m += (FL2FXCONST_DBL(0.3f)) >> bit2PE_e; |
| } else { |
| bit2PE_m += (FL2FXCONST_DBL(0.0f)) >> bit2PE_e; |
| } |
| } |
| |
| /***** 3.) Return bits2pe factor *****/ |
| *bits2PeFactor_m = bit2PE_m; |
| *bits2PeFactor_e = bit2PE_e; |
| } |
| |
| /***************************************************************************** |
| functionname: FDKaacEnc_bits2pe2 |
| description: convert from bits to pe |
| *****************************************************************************/ |
| FDK_INLINE INT FDKaacEnc_bits2pe2(const INT bits, const FIXP_DBL factor_m, |
| const INT factor_e) { |
| return (INT)(fMult(factor_m, (FIXP_DBL)(bits << Q_AVGBITS)) >> |
| (Q_AVGBITS - factor_e)); |
| } |
| |
| /***************************************************************************** |
| functionname: FDKaacEnc_calcThreshExp |
| description: loudness calculation (threshold to the power of redExp) |
| *****************************************************************************/ |
| static void FDKaacEnc_calcThreshExp( |
| FIXP_DBL thrExp[(2)][MAX_GROUPED_SFB], |
| const QC_OUT_CHANNEL *const qcOutChannel[(2)], |
| const PSY_OUT_CHANNEL *const psyOutChannel[(2)], const INT nChannels) { |
| INT ch, sfb, sfbGrp; |
| FIXP_DBL thrExpLdData; |
| |
| for (ch = 0; ch < nChannels; ch++) { |
| for (sfbGrp = 0; sfbGrp < psyOutChannel[ch]->sfbCnt; |
| sfbGrp += psyOutChannel[ch]->sfbPerGroup) { |
| for (sfb = 0; sfb < psyOutChannel[ch]->maxSfbPerGroup; sfb++) { |
| thrExpLdData = psyOutChannel[ch]->sfbThresholdLdData[sfbGrp + sfb] >> 2; |
| thrExp[ch][sfbGrp + sfb] = CalcInvLdData(thrExpLdData); |
| } |
| } |
| } |
| } |
| |
| /***************************************************************************** |
| functionname: FDKaacEnc_adaptMinSnr |
| description: reduce minSnr requirements for bands with relative low |
| energies |
| *****************************************************************************/ |
| static void FDKaacEnc_adaptMinSnr( |
| QC_OUT_CHANNEL *const qcOutChannel[(2)], |
| const PSY_OUT_CHANNEL *const psyOutChannel[(2)], |
| const MINSNR_ADAPT_PARAM *const msaParam, const INT nChannels) { |
| INT ch, sfb, sfbGrp, nSfb; |
| FIXP_DBL avgEnLD64, dbRatio, minSnrRed; |
| FIXP_DBL minSnrLimitLD64 = |
| FL2FXCONST_DBL(-0.00503012648262f); /* ld64(0.8f) */ |
| FIXP_DBL nSfbLD64; |
| FIXP_DBL accu; |
| |
| FIXP_DBL msaParam_maxRed = msaParam->maxRed; |
| FIXP_DBL msaParam_startRatio = msaParam->startRatio; |
| FIXP_DBL msaParam_redRatioFac = |
| fMult(msaParam->redRatioFac, FL2FXCONST_DBL(0.3010299956f)); |
| FIXP_DBL msaParam_redOffs = msaParam->redOffs; |
| |
| for (ch = 0; ch < nChannels; ch++) { |
| /* calc average energy per scalefactor band */ |
| nSfb = 0; |
| accu = FL2FXCONST_DBL(0.0f); |
| |
| DWORD_ALIGNED(psyOutChannel[ch]->sfbEnergy); |
| |
| for (sfbGrp = 0; sfbGrp < psyOutChannel[ch]->sfbCnt; |
| sfbGrp += psyOutChannel[ch]->sfbPerGroup) { |
| int maxSfbPerGroup = psyOutChannel[ch]->maxSfbPerGroup; |
| nSfb += maxSfbPerGroup; |
| for (sfb = 0; sfb < maxSfbPerGroup; sfb++) { |
| accu += psyOutChannel[ch]->sfbEnergy[sfbGrp + sfb] >> 6; |
| } |
| } |
| |
| if ((accu == FL2FXCONST_DBL(0.0f)) || (nSfb == 0)) { |
| avgEnLD64 = FL2FXCONST_DBL(-1.0f); |
| } else { |
| nSfbLD64 = CalcLdInt(nSfb); |
| avgEnLD64 = CalcLdData(accu); |
| avgEnLD64 = avgEnLD64 + FL2FXCONST_DBL(0.09375f) - |
| nSfbLD64; /* 0.09375f: compensate shift with 6 */ |
| } |
| |
| /* reduce minSnr requirement by minSnr^minSnrRed dependent on avgEn/sfbEn */ |
| int maxSfbPerGroup = psyOutChannel[ch]->maxSfbPerGroup; |
| int sfbCnt = psyOutChannel[ch]->sfbCnt; |
| int sfbPerGroup = psyOutChannel[ch]->sfbPerGroup; |
| |
| for (sfbGrp = 0; sfbGrp < sfbCnt; sfbGrp += sfbPerGroup) { |
| FIXP_DBL *RESTRICT psfbEnergyLdData = |
| &qcOutChannel[ch]->sfbEnergyLdData[sfbGrp]; |
| FIXP_DBL *RESTRICT psfbMinSnrLdData = |
| &qcOutChannel[ch]->sfbMinSnrLdData[sfbGrp]; |
| for (sfb = 0; sfb < maxSfbPerGroup; sfb++) { |
| FIXP_DBL sfbEnergyLdData = *psfbEnergyLdData++; |
| FIXP_DBL sfbMinSnrLdData = *psfbMinSnrLdData; |
| dbRatio = avgEnLD64 - sfbEnergyLdData; |
| int update = (msaParam_startRatio < dbRatio) ? 1 : 0; |
| minSnrRed = msaParam_redOffs + fMult(msaParam_redRatioFac, |
| dbRatio); /* scaled by 1.0f/64.0f*/ |
| minSnrRed = |
| fixMax(minSnrRed, msaParam_maxRed); /* scaled by 1.0f/64.0f*/ |
| minSnrRed = (fMult(sfbMinSnrLdData, minSnrRed)) << 6; |
| minSnrRed = fixMin(minSnrLimitLD64, minSnrRed); |
| *psfbMinSnrLdData++ = update ? minSnrRed : sfbMinSnrLdData; |
| } |
| } |
| } |
| } |
| |
| /***************************************************************************** |
| functionname: FDKaacEnc_initAvoidHoleFlag |
| description: determine bands where avoid hole is not necessary resp. possible |
| *****************************************************************************/ |
| static void FDKaacEnc_initAvoidHoleFlag( |
| QC_OUT_CHANNEL *const qcOutChannel[(2)], |
| const PSY_OUT_CHANNEL *const psyOutChannel[(2)], |
| UCHAR ahFlag[(2)][MAX_GROUPED_SFB], const struct TOOLSINFO *const toolsInfo, |
| const INT nChannels, const AH_PARAM *const ahParam) { |
| INT ch, sfb, sfbGrp; |
| FIXP_DBL sfbEn, sfbEnm1; |
| FIXP_DBL sfbEnLdData; |
| FIXP_DBL avgEnLdData; |
| |
| /* decrease spread energy by 3dB for long blocks, resp. 2dB for shorts |
| (avoid more holes in long blocks) */ |
| for (ch = 0; ch < nChannels; ch++) { |
| QC_OUT_CHANNEL *const qcOutChan = qcOutChannel[ch]; |
| |
| if (psyOutChannel[ch]->lastWindowSequence != SHORT_WINDOW) { |
| for (sfbGrp = 0; sfbGrp < psyOutChannel[ch]->sfbCnt; |
| sfbGrp += psyOutChannel[ch]->sfbPerGroup) |
| for (sfb = 0; sfb < psyOutChannel[ch]->maxSfbPerGroup; sfb++) |
| qcOutChan->sfbSpreadEnergy[sfbGrp + sfb] >>= 1; |
| } else { |
| for (sfbGrp = 0; sfbGrp < psyOutChannel[ch]->sfbCnt; |
| sfbGrp += psyOutChannel[ch]->sfbPerGroup) |
| for (sfb = 0; sfb < psyOutChannel[ch]->maxSfbPerGroup; sfb++) |
| qcOutChan->sfbSpreadEnergy[sfbGrp + sfb] = fMult( |
| FL2FXCONST_DBL(0.63f), qcOutChan->sfbSpreadEnergy[sfbGrp + sfb]); |
| } |
| } |
| |
| /* increase minSnr for local peaks, decrease it for valleys */ |
| if (ahParam->modifyMinSnr) { |
| for (ch = 0; ch < nChannels; ch++) { |
| QC_OUT_CHANNEL *const qcOutChan = qcOutChannel[ch]; |
| for (sfbGrp = 0; sfbGrp < psyOutChannel[ch]->sfbCnt; |
| sfbGrp += psyOutChannel[ch]->sfbPerGroup) { |
| for (sfb = 0; sfb < psyOutChannel[ch]->maxSfbPerGroup; sfb++) { |
| FIXP_DBL sfbEnp1, avgEn; |
| if (sfb > 0) |
| sfbEnm1 = qcOutChan->sfbEnergy[sfbGrp + sfb - 1]; |
| else |
| sfbEnm1 = qcOutChan->sfbEnergy[sfbGrp + sfb]; |
| |
| if (sfb < psyOutChannel[ch]->maxSfbPerGroup - 1) |
| sfbEnp1 = qcOutChan->sfbEnergy[sfbGrp + sfb + 1]; |
| else |
| sfbEnp1 = qcOutChan->sfbEnergy[sfbGrp + sfb]; |
| |
| avgEn = (sfbEnm1 >> 1) + (sfbEnp1 >> 1); |
| avgEnLdData = CalcLdData(avgEn); |
| sfbEn = qcOutChan->sfbEnergy[sfbGrp + sfb]; |
| sfbEnLdData = qcOutChan->sfbEnergyLdData[sfbGrp + sfb]; |
| /* peak ? */ |
| if (sfbEn > avgEn) { |
| FIXP_DBL tmpMinSnrLdData; |
| if (psyOutChannel[ch]->lastWindowSequence == LONG_WINDOW) |
| tmpMinSnrLdData = |
| fixMax(SnrLdFac + (FIXP_DBL)(avgEnLdData - sfbEnLdData), |
| (FIXP_DBL)SnrLdMin1); |
| else |
| tmpMinSnrLdData = |
| fixMax(SnrLdFac + (FIXP_DBL)(avgEnLdData - sfbEnLdData), |
| (FIXP_DBL)SnrLdMin3); |
| |
| qcOutChan->sfbMinSnrLdData[sfbGrp + sfb] = fixMin( |
| qcOutChan->sfbMinSnrLdData[sfbGrp + sfb], tmpMinSnrLdData); |
| } |
| /* valley ? */ |
| if (((sfbEnLdData + (FIXP_DBL)SnrLdMin4) < (FIXP_DBL)avgEnLdData) && |
| (sfbEn > FL2FXCONST_DBL(0.0))) { |
| FIXP_DBL tmpMinSnrLdData = avgEnLdData - sfbEnLdData - |
| (FIXP_DBL)SnrLdMin4 + |
| qcOutChan->sfbMinSnrLdData[sfbGrp + sfb]; |
| tmpMinSnrLdData = fixMin((FIXP_DBL)SnrLdFac, tmpMinSnrLdData); |
| qcOutChan->sfbMinSnrLdData[sfbGrp + sfb] = |
| fixMin(tmpMinSnrLdData, |
| (FIXP_DBL)(qcOutChan->sfbMinSnrLdData[sfbGrp + sfb] + |
| SnrLdMin2)); |
| } |
| } |
| } |
| } |
| } |
| |
| /* stereo: adapt the minimum requirements sfbMinSnr of mid and |
| side channels to avoid spending unnoticable bits */ |
| if (nChannels == 2) { |
| QC_OUT_CHANNEL *qcOutChanM = qcOutChannel[0]; |
| QC_OUT_CHANNEL *qcOutChanS = qcOutChannel[1]; |
| const PSY_OUT_CHANNEL *const psyOutChanM = psyOutChannel[0]; |
| for (sfbGrp = 0; sfbGrp < psyOutChanM->sfbCnt; |
| sfbGrp += psyOutChanM->sfbPerGroup) { |
| for (sfb = 0; sfb < psyOutChanM->maxSfbPerGroup; sfb++) { |
| if (toolsInfo->msMask[sfbGrp + sfb]) { |
| FIXP_DBL maxSfbEnLd = |
| fixMax(qcOutChanM->sfbEnergyLdData[sfbGrp + sfb], |
| qcOutChanS->sfbEnergyLdData[sfbGrp + sfb]); |
| FIXP_DBL maxThrLd, sfbMinSnrTmpLd; |
| |
| if (((SnrLdMin5 >> 1) + (maxSfbEnLd >> 1) + |
| (qcOutChanM->sfbMinSnrLdData[sfbGrp + sfb] >> 1)) <= |
| FL2FXCONST_DBL(-0.5f)) |
| maxThrLd = FL2FXCONST_DBL(-1.0f); |
| else |
| maxThrLd = SnrLdMin5 + maxSfbEnLd + |
| qcOutChanM->sfbMinSnrLdData[sfbGrp + sfb]; |
| |
| if (qcOutChanM->sfbEnergy[sfbGrp + sfb] > FL2FXCONST_DBL(0.0f)) |
| sfbMinSnrTmpLd = |
| maxThrLd - qcOutChanM->sfbEnergyLdData[sfbGrp + sfb]; |
| else |
| sfbMinSnrTmpLd = FL2FXCONST_DBL(0.0f); |
| |
| qcOutChanM->sfbMinSnrLdData[sfbGrp + sfb] = |
| fixMax(qcOutChanM->sfbMinSnrLdData[sfbGrp + sfb], sfbMinSnrTmpLd); |
| |
| if (qcOutChanM->sfbMinSnrLdData[sfbGrp + sfb] <= FL2FXCONST_DBL(0.0f)) |
| qcOutChanM->sfbMinSnrLdData[sfbGrp + sfb] = fixMin( |
| qcOutChanM->sfbMinSnrLdData[sfbGrp + sfb], (FIXP_DBL)SnrLdFac); |
| |
| if (qcOutChanS->sfbEnergy[sfbGrp + sfb] > FL2FXCONST_DBL(0.0f)) |
| sfbMinSnrTmpLd = |
| maxThrLd - qcOutChanS->sfbEnergyLdData[sfbGrp + sfb]; |
| else |
| sfbMinSnrTmpLd = FL2FXCONST_DBL(0.0f); |
| |
| qcOutChanS->sfbMinSnrLdData[sfbGrp + sfb] = |
| fixMax(qcOutChanS->sfbMinSnrLdData[sfbGrp + sfb], sfbMinSnrTmpLd); |
| |
| if (qcOutChanS->sfbMinSnrLdData[sfbGrp + sfb] <= FL2FXCONST_DBL(0.0f)) |
| qcOutChanS->sfbMinSnrLdData[sfbGrp + sfb] = fixMin( |
| qcOutChanS->sfbMinSnrLdData[sfbGrp + sfb], (FIXP_DBL)SnrLdFac); |
| |
| if (qcOutChanM->sfbEnergy[sfbGrp + sfb] > |
| qcOutChanM->sfbSpreadEnergy[sfbGrp + sfb]) |
| qcOutChanS->sfbSpreadEnergy[sfbGrp + sfb] = fMult( |
| qcOutChanS->sfbEnergy[sfbGrp + sfb], FL2FXCONST_DBL(0.9f)); |
| |
| if (qcOutChanS->sfbEnergy[sfbGrp + sfb] > |
| qcOutChanS->sfbSpreadEnergy[sfbGrp + sfb]) |
| qcOutChanM->sfbSpreadEnergy[sfbGrp + sfb] = fMult( |
| qcOutChanM->sfbEnergy[sfbGrp + sfb], FL2FXCONST_DBL(0.9f)); |
| |
| } /* if (toolsInfo->msMask[sfbGrp+sfb]) */ |
| } /* sfb */ |
| } /* sfbGrp */ |
| } /* nChannels==2 */ |
| |
| /* init ahFlag (0: no ah necessary, 1: ah possible, 2: ah active */ |
| for (ch = 0; ch < nChannels; ch++) { |
| QC_OUT_CHANNEL *qcOutChan = qcOutChannel[ch]; |
| const PSY_OUT_CHANNEL *const psyOutChan = psyOutChannel[ch]; |
| for (sfbGrp = 0; sfbGrp < psyOutChan->sfbCnt; |
| sfbGrp += psyOutChan->sfbPerGroup) { |
| for (sfb = 0; sfb < psyOutChan->maxSfbPerGroup; sfb++) { |
| if ((qcOutChan->sfbSpreadEnergy[sfbGrp + sfb] > |
| qcOutChan->sfbEnergy[sfbGrp + sfb]) || |
| (qcOutChan->sfbMinSnrLdData[sfbGrp + sfb] > FL2FXCONST_DBL(0.0f))) { |
| ahFlag[ch][sfbGrp + sfb] = NO_AH; |
| } else { |
| ahFlag[ch][sfbGrp + sfb] = AH_INACTIVE; |
| } |
| } |
| } |
| } |
| } |
| |
| /** |
| * \brief Calculate constants that do not change during successive pe |
| * calculations. |
| * |
| * \param peData Pointer to structure containing PE data of |
| * current element. |
| * \param psyOutChannel Pointer to PSY_OUT_CHANNEL struct holding |
| * nChannels elements. |
| * \param qcOutChannel Pointer to QC_OUT_CHANNEL struct holding |
| * nChannels elements. |
| * \param nChannels Number of channels in element. |
| * \param peOffset Fixed PE offset defined while |
| * FDKaacEnc_AdjThrInit() depending on bitrate. |
| * |
| * \return void |
| */ |
| static void FDKaacEnc_preparePe(PE_DATA *const peData, |
| const PSY_OUT_CHANNEL *const psyOutChannel[(2)], |
| const QC_OUT_CHANNEL *const qcOutChannel[(2)], |
| const INT nChannels, const INT peOffset) { |
| INT ch; |
| |
| for (ch = 0; ch < nChannels; ch++) { |
| const PSY_OUT_CHANNEL *const psyOutChan = psyOutChannel[ch]; |
| FDKaacEnc_prepareSfbPe( |
| &peData->peChannelData[ch], psyOutChan->sfbEnergyLdData, |
| psyOutChan->sfbThresholdLdData, qcOutChannel[ch]->sfbFormFactorLdData, |
| psyOutChan->sfbOffsets, psyOutChan->sfbCnt, psyOutChan->sfbPerGroup, |
| psyOutChan->maxSfbPerGroup); |
| } |
| peData->offset = peOffset; |
| } |
| |
| /** |
| * \brief Calculate weighting factor for threshold adjustment. |
| * |
| * Calculate weighting factor to be applied at energies and thresholds in ld64 |
| * format. |
| * |
| * \param peData, Pointer to PE data in current element. |
| * \param psyOutChannel Pointer to PSY_OUT_CHANNEL struct holding |
| * nChannels elements. |
| * \param qcOutChannel Pointer to QC_OUT_CHANNEL struct holding |
| * nChannels elements. |
| * \param toolsInfo Pointer to tools info struct of current element. |
| * \param adjThrStateElement Pointer to ATS_ELEMENT holding enFacPatch |
| * states. |
| * \param nChannels Number of channels in element. |
| * \param usePatchTool Apply the weighting tool 0 (no) else (yes). |
| * |
| * \return void |
| */ |
| static void FDKaacEnc_calcWeighting( |
| const PE_DATA *const peData, |
| const PSY_OUT_CHANNEL *const psyOutChannel[(2)], |
| QC_OUT_CHANNEL *const qcOutChannel[(2)], |
| const struct TOOLSINFO *const toolsInfo, |
| ATS_ELEMENT *const adjThrStateElement, const INT nChannels, |
| const INT usePatchTool) { |
| int ch, noShortWindowInFrame = TRUE; |
| INT exePatchM = 0; |
| |
| for (ch = 0; ch < nChannels; ch++) { |
| if (psyOutChannel[ch]->lastWindowSequence == SHORT_WINDOW) { |
| noShortWindowInFrame = FALSE; |
| } |
| FDKmemclear(qcOutChannel[ch]->sfbEnFacLd, |
| MAX_GROUPED_SFB * sizeof(FIXP_DBL)); |
| } |
| |
| if (usePatchTool == 0) { |
| return; /* tool is disabled */ |
| } |
| |
| for (ch = 0; ch < nChannels; ch++) { |
| const PSY_OUT_CHANNEL *const psyOutChan = psyOutChannel[ch]; |
| |
| if (noShortWindowInFrame) { /* retain energy ratio between blocks of |
| different length */ |
| |
| FIXP_DBL nrgSum14, nrgSum12, nrgSum34, nrgTotal; |
| FIXP_DBL nrgFacLd_14, nrgFacLd_12, nrgFacLd_34; |
| INT usePatch, exePatch; |
| int sfb, sfbGrp, nLinesSum = 0; |
| |
| nrgSum14 = nrgSum12 = nrgSum34 = nrgTotal = FL2FXCONST_DBL(0.f); |
| |
| /* calculate flatness of audible spectrum, i.e. spectrum above masking |
| * threshold. */ |
| for (sfbGrp = 0; sfbGrp < psyOutChannel[ch]->sfbCnt; |
| sfbGrp += psyOutChannel[ch]->sfbPerGroup) { |
| for (sfb = 0; sfb < psyOutChannel[ch]->maxSfbPerGroup; sfb++) { |
| FIXP_DBL nrgFac12 = CalcInvLdData( |
| psyOutChan->sfbEnergyLdData[sfbGrp + sfb] >> 1); /* nrg^(1/2) */ |
| FIXP_DBL nrgFac14 = CalcInvLdData( |
| psyOutChan->sfbEnergyLdData[sfbGrp + sfb] >> 2); /* nrg^(1/4) */ |
| |
| /* maximal number of bands is 64, results scaling factor 6 */ |
| nLinesSum += peData->peChannelData[ch] |
| .sfbNLines[sfbGrp + sfb]; /* relevant lines */ |
| nrgTotal += |
| (psyOutChan->sfbEnergy[sfbGrp + sfb] >> 6); /* sum up nrg */ |
| nrgSum12 += (nrgFac12 >> 6); /* sum up nrg^(2/4) */ |
| nrgSum14 += (nrgFac14 >> 6); /* sum up nrg^(1/4) */ |
| nrgSum34 += (fMult(nrgFac14, nrgFac12) >> 6); /* sum up nrg^(3/4) */ |
| } |
| } |
| |
| nrgTotal = CalcLdData(nrgTotal); /* get ld64 of total nrg */ |
| |
| nrgFacLd_14 = |
| CalcLdData(nrgSum14) - nrgTotal; /* ld64(nrgSum14/nrgTotal) */ |
| nrgFacLd_12 = |
| CalcLdData(nrgSum12) - nrgTotal; /* ld64(nrgSum12/nrgTotal) */ |
| nrgFacLd_34 = |
| CalcLdData(nrgSum34) - nrgTotal; /* ld64(nrgSum34/nrgTotal) */ |
| |
| /* Note: nLinesSum cannot be larger than the number of total lines, thats |
| * taken care of in line_pe.cpp FDKaacEnc_prepareSfbPe() */ |
| adjThrStateElement->chaosMeasureEnFac[ch] = |
| fMax(FL2FXCONST_DBL(0.1875f), |
| fDivNorm(nLinesSum, psyOutChan->sfbOffsets[psyOutChan->sfbCnt])); |
| |
| usePatch = (adjThrStateElement->chaosMeasureEnFac[ch] > |
| FL2FXCONST_DBL(0.78125f)); |
| exePatch = ((usePatch) && (adjThrStateElement->lastEnFacPatch[ch])); |
| |
| for (sfbGrp = 0; sfbGrp < psyOutChannel[ch]->sfbCnt; |
| sfbGrp += psyOutChannel[ch]->sfbPerGroup) { |
| for (sfb = 0; sfb < psyOutChannel[ch]->maxSfbPerGroup; sfb++) { |
| INT sfbExePatch; |
| /* for MS coupled SFBs, also execute patch in side channel if done in |
| * mid channel */ |
| if ((ch == 1) && (toolsInfo->msMask[sfbGrp + sfb])) { |
| sfbExePatch = exePatchM; |
| } else { |
| sfbExePatch = exePatch; |
| } |
| |
| if ((sfbExePatch) && |
| (psyOutChan->sfbEnergy[sfbGrp + sfb] > FL2FXCONST_DBL(0.f))) { |
| /* execute patch based on spectral flatness calculated above */ |
| if (adjThrStateElement->chaosMeasureEnFac[ch] > |
| FL2FXCONST_DBL(0.8125f)) { |
| qcOutChannel[ch]->sfbEnFacLd[sfbGrp + sfb] = |
| ((nrgFacLd_14 + |
| (psyOutChan->sfbEnergyLdData[sfbGrp + sfb] + |
| (psyOutChan->sfbEnergyLdData[sfbGrp + sfb] >> 1))) >> |
| 1); /* sfbEnergy^(3/4) */ |
| } else if (adjThrStateElement->chaosMeasureEnFac[ch] > |
| FL2FXCONST_DBL(0.796875f)) { |
| qcOutChannel[ch]->sfbEnFacLd[sfbGrp + sfb] = |
| ((nrgFacLd_12 + psyOutChan->sfbEnergyLdData[sfbGrp + sfb]) >> |
| 1); /* sfbEnergy^(2/4) */ |
| } else { |
| qcOutChannel[ch]->sfbEnFacLd[sfbGrp + sfb] = |
| ((nrgFacLd_34 + |
| (psyOutChan->sfbEnergyLdData[sfbGrp + sfb] >> 1)) >> |
| 1); /* sfbEnergy^(1/4) */ |
| } |
| qcOutChannel[ch]->sfbEnFacLd[sfbGrp + sfb] = |
| fixMin(qcOutChannel[ch]->sfbEnFacLd[sfbGrp + sfb], (FIXP_DBL)0); |
| } |
| } |
| } /* sfb loop */ |
| |
| adjThrStateElement->lastEnFacPatch[ch] = usePatch; |
| exePatchM = exePatch; |
| } else { |
| /* !noShortWindowInFrame */ |
| adjThrStateElement->chaosMeasureEnFac[ch] = FL2FXCONST_DBL(0.75f); |
| adjThrStateElement->lastEnFacPatch[ch] = |
| TRUE; /* allow use of sfbEnFac patch in upcoming frame */ |
| } |
| |
| } /* ch loop */ |
| } |
| |
| /***************************************************************************** |
| functionname: FDKaacEnc_calcPe |
| description: calculate pe for both channels |
| *****************************************************************************/ |
| static void FDKaacEnc_calcPe(const PSY_OUT_CHANNEL *const psyOutChannel[(2)], |
| const QC_OUT_CHANNEL *const qcOutChannel[(2)], |
| PE_DATA *const peData, const INT nChannels) { |
| INT ch; |
| |
| peData->pe = peData->offset; |
| peData->constPart = 0; |
| peData->nActiveLines = 0; |
| for (ch = 0; ch < nChannels; ch++) { |
| PE_CHANNEL_DATA *peChanData = &peData->peChannelData[ch]; |
| |
| FDKaacEnc_calcSfbPe( |
| peChanData, qcOutChannel[ch]->sfbWeightedEnergyLdData, |
| qcOutChannel[ch]->sfbThresholdLdData, psyOutChannel[ch]->sfbCnt, |
| psyOutChannel[ch]->sfbPerGroup, psyOutChannel[ch]->maxSfbPerGroup, |
| psyOutChannel[ch]->isBook, psyOutChannel[ch]->isScale); |
| |
| peData->pe += peChanData->pe; |
| peData->constPart += peChanData->constPart; |
| peData->nActiveLines += peChanData->nActiveLines; |
| } |
| } |
| |
| void FDKaacEnc_peCalculation(PE_DATA *const peData, |
| const PSY_OUT_CHANNEL *const psyOutChannel[(2)], |
| QC_OUT_CHANNEL *const qcOutChannel[(2)], |
| const struct TOOLSINFO *const toolsInfo, |
| ATS_ELEMENT *const adjThrStateElement, |
| const INT nChannels) { |
| /* constants that will not change during successive pe calculations */ |
| FDKaacEnc_preparePe(peData, psyOutChannel, qcOutChannel, nChannels, |
| adjThrStateElement->peOffset); |
| |
| /* calculate weighting factor for threshold adjustment */ |
| FDKaacEnc_calcWeighting(peData, psyOutChannel, qcOutChannel, toolsInfo, |
| adjThrStateElement, nChannels, 1); |
| { |
| /* no weighting of threholds and energies for mlout */ |
| /* weight energies and thresholds */ |
| int ch; |
| for (ch = 0; ch < nChannels; ch++) { |
| int sfb, sfbGrp; |
| QC_OUT_CHANNEL *pQcOutCh = qcOutChannel[ch]; |
| |
| for (sfbGrp = 0; sfbGrp < psyOutChannel[ch]->sfbCnt; |
| sfbGrp += psyOutChannel[ch]->sfbPerGroup) { |
| for (sfb = 0; sfb < psyOutChannel[ch]->maxSfbPerGroup; sfb++) { |
| pQcOutCh->sfbWeightedEnergyLdData[sfb + sfbGrp] = |
| pQcOutCh->sfbEnergyLdData[sfb + sfbGrp] - |
| pQcOutCh->sfbEnFacLd[sfb + sfbGrp]; |
| pQcOutCh->sfbThresholdLdData[sfb + sfbGrp] -= |
| pQcOutCh->sfbEnFacLd[sfb + sfbGrp]; |
| } |
| } |
| } |
| } |
| |
| /* pe without reduction */ |
| FDKaacEnc_calcPe(psyOutChannel, qcOutChannel, peData, nChannels); |
| } |
| |
| /***************************************************************************** |
| functionname: FDKaacEnc_FDKaacEnc_calcPeNoAH |
| description: sum the pe data only for bands where avoid hole is inactive |
| *****************************************************************************/ |
| #define CONSTPART_HEADROOM 4 |
| static void FDKaacEnc_FDKaacEnc_calcPeNoAH( |
| INT *const pe, INT *const constPart, INT *const nActiveLines, |
| const PE_DATA *const peData, const UCHAR ahFlag[(2)][MAX_GROUPED_SFB], |
| const PSY_OUT_CHANNEL *const psyOutChannel[(2)], const INT nChannels) { |
| INT ch, sfb, sfbGrp; |
| |
| INT pe_tmp = peData->offset; |
| INT constPart_tmp = 0; |
| INT nActiveLines_tmp = 0; |
| for (ch = 0; ch < nChannels; ch++) { |
| const PE_CHANNEL_DATA *const peChanData = &peData->peChannelData[ch]; |
| for (sfbGrp = 0; sfbGrp < psyOutChannel[ch]->sfbCnt; |
| sfbGrp += psyOutChannel[ch]->sfbPerGroup) { |
| for (sfb = 0; sfb < psyOutChannel[ch]->maxSfbPerGroup; sfb++) { |
| if (ahFlag[ch][sfbGrp + sfb] < AH_ACTIVE) { |
| pe_tmp += peChanData->sfbPe[sfbGrp + sfb]; |
| constPart_tmp += |
| peChanData->sfbConstPart[sfbGrp + sfb] >> CONSTPART_HEADROOM; |
| nActiveLines_tmp += peChanData->sfbNActiveLines[sfbGrp + sfb]; |
| } |
| } |
| } |
| } |
| /* correct scaled pe and constPart values */ |
| *pe = pe_tmp >> PE_CONSTPART_SHIFT; |
| *constPart = constPart_tmp >> (PE_CONSTPART_SHIFT - CONSTPART_HEADROOM); |
| |
| *nActiveLines = nActiveLines_tmp; |
| } |
| |
| /***************************************************************************** |
| functionname: FDKaacEnc_reduceThresholdsCBR |
| description: apply reduction formula |
| *****************************************************************************/ |
| static const FIXP_DBL limitThrReducedLdData = |
| (FIXP_DBL)0x00008000; /*FL2FXCONST_DBL(FDKpow(2.0,-LD_DATA_SCALING/4.0));*/ |
| |
| static void FDKaacEnc_reduceThresholdsCBR( |
| QC_OUT_CHANNEL *const qcOutChannel[(2)], |
| const PSY_OUT_CHANNEL *const psyOutChannel[(2)], |
| UCHAR ahFlag[(2)][MAX_GROUPED_SFB], |
| const FIXP_DBL thrExp[(2)][MAX_GROUPED_SFB], const INT nChannels, |
| const FIXP_DBL redVal_m, const SCHAR redVal_e) { |
| INT ch, sfb, sfbGrp; |
| FIXP_DBL sfbEnLdData, sfbThrLdData, sfbThrReducedLdData; |
| FIXP_DBL sfbThrExp; |
| |
| for (ch = 0; ch < nChannels; ch++) { |
| QC_OUT_CHANNEL *qcOutChan = qcOutChannel[ch]; |
| for (sfbGrp = 0; sfbGrp < psyOutChannel[ch]->sfbCnt; |
| sfbGrp += psyOutChannel[ch]->sfbPerGroup) { |
| for (sfb = 0; sfb < psyOutChannel[ch]->maxSfbPerGroup; sfb++) { |
| sfbEnLdData = qcOutChan->sfbWeightedEnergyLdData[sfbGrp + sfb]; |
| sfbThrLdData = qcOutChan->sfbThresholdLdData[sfbGrp + sfb]; |
| sfbThrExp = thrExp[ch][sfbGrp + sfb]; |
| if ((sfbEnLdData > sfbThrLdData) && |
| (ahFlag[ch][sfbGrp + sfb] != AH_ACTIVE)) { |
| /* threshold reduction formula: |
| float tmp = thrExp[ch][sfb]+redVal; |
| tmp *= tmp; |
| sfbThrReduced = tmp*tmp; |
| */ |
| int minScale = fixMin(CountLeadingBits(sfbThrExp), |
| CountLeadingBits(redVal_m) - redVal_e) - |
| 1; |
| |
| /* 4*log( sfbThrExp + redVal ) */ |
| sfbThrReducedLdData = |
| CalcLdData(fAbs(scaleValue(sfbThrExp, minScale) + |
| scaleValue(redVal_m, redVal_e + minScale))) - |
| (FIXP_DBL)(minScale << (DFRACT_BITS - 1 - LD_DATA_SHIFT)); |
| sfbThrReducedLdData <<= 2; |
| |
| /* avoid holes */ |
| if ((sfbThrReducedLdData > |
| (qcOutChan->sfbMinSnrLdData[sfbGrp + sfb] + sfbEnLdData)) && |
| (ahFlag[ch][sfbGrp + sfb] != NO_AH)) { |
| if (qcOutChan->sfbMinSnrLdData[sfbGrp + sfb] > |
| (FL2FXCONST_DBL(-1.0f) - sfbEnLdData)) { |
| sfbThrReducedLdData = fixMax( |
| (qcOutChan->sfbMinSnrLdData[sfbGrp + sfb] + sfbEnLdData), |
| sfbThrLdData); |
| } else |
| sfbThrReducedLdData = sfbThrLdData; |
| ahFlag[ch][sfbGrp + sfb] = AH_ACTIVE; |
| } |
| |
| /* minimum of 29 dB Ratio for Thresholds */ |
| if ((sfbEnLdData + (FIXP_DBL)MAXVAL_DBL) > |
| FL2FXCONST_DBL(9.6336206 / LD_DATA_SCALING)) { |
| sfbThrReducedLdData = fixMax( |
| sfbThrReducedLdData, |
| (sfbEnLdData - FL2FXCONST_DBL(9.6336206 / LD_DATA_SCALING))); |
| } |
| |
| qcOutChan->sfbThresholdLdData[sfbGrp + sfb] = sfbThrReducedLdData; |
| } |
| } |
| } |
| } |
| } |
| |
| /* similar to prepareSfbPe1() */ |
| static FIXP_DBL FDKaacEnc_calcChaosMeasure( |
| const PSY_OUT_CHANNEL *const psyOutChannel, |
| const FIXP_DBL *const sfbFormFactorLdData) { |
| #define SCALE_FORM_FAC \ |
| (4) /* (SCALE_FORM_FAC+FORM_FAC_SHIFT) >= ld(FRAME_LENGTH)*/ |
| #define SCALE_NRGS (8) |
| #define SCALE_NLINES (16) |
| #define SCALE_NRGS_SQRT4 (2) /* 0.25 * SCALE_NRGS */ |
| #define SCALE_NLINES_P34 (12) /* 0.75 * SCALE_NLINES */ |
| |
| INT sfbGrp, sfb; |
| FIXP_DBL chaosMeasure; |
| INT frameNLines = 0; |
| FIXP_DBL frameFormFactor = FL2FXCONST_DBL(0.f); |
| FIXP_DBL frameEnergy = FL2FXCONST_DBL(0.f); |
| |
| for (sfbGrp = 0; sfbGrp < psyOutChannel->sfbCnt; |
| sfbGrp += psyOutChannel->sfbPerGroup) { |
| for (sfb = 0; sfb < psyOutChannel->maxSfbPerGroup; sfb++) { |
| if (psyOutChannel->sfbEnergyLdData[sfbGrp + sfb] > |
| psyOutChannel->sfbThresholdLdData[sfbGrp + sfb]) { |
| frameFormFactor += (CalcInvLdData(sfbFormFactorLdData[sfbGrp + sfb]) >> |
| SCALE_FORM_FAC); |
| frameNLines += (psyOutChannel->sfbOffsets[sfbGrp + sfb + 1] - |
| psyOutChannel->sfbOffsets[sfbGrp + sfb]); |
| frameEnergy += (psyOutChannel->sfbEnergy[sfbGrp + sfb] >> SCALE_NRGS); |
| } |
| } |
| } |
| |
| if (frameNLines > 0) { |
| /* frameNActiveLines = frameFormFactor*2^FORM_FAC_SHIFT * ((frameEnergy |
| *2^SCALE_NRGS)/frameNLines)^-0.25 chaosMeasure = frameNActiveLines / |
| frameNLines */ |
| chaosMeasure = CalcInvLdData( |
| (((CalcLdData(frameFormFactor) >> 1) - |
| (CalcLdData(frameEnergy) >> (2 + 1))) - |
| (fMultDiv2(FL2FXCONST_DBL(0.75f), |
| CalcLdData((FIXP_DBL)frameNLines |
| << (DFRACT_BITS - 1 - SCALE_NLINES))) - |
| (((FIXP_DBL)(-((-SCALE_FORM_FAC + SCALE_NRGS_SQRT4 - FORM_FAC_SHIFT + |
| SCALE_NLINES_P34) |
| << (DFRACT_BITS - 1 - LD_DATA_SHIFT)))) >> |
| 1))) |
| << 1); |
| } else { |
| /* assuming total chaos, if no sfb is above thresholds */ |
| chaosMeasure = FL2FXCONST_DBL(1.f); |
| } |
| |
| return chaosMeasure; |
| } |
| |
| /* apply reduction formula for VBR-mode */ |
| static void FDKaacEnc_reduceThresholdsVBR( |
| QC_OUT_CHANNEL *const qcOutChannel[(2)], |
| const PSY_OUT_CHANNEL *const psyOutChannel[(2)], |
| UCHAR ahFlag[(2)][MAX_GROUPED_SFB], |
| const FIXP_DBL thrExp[(2)][MAX_GROUPED_SFB], const INT nChannels, |
| const FIXP_DBL vbrQualFactor, FIXP_DBL *const chaosMeasureOld) { |
| INT ch, sfbGrp, sfb; |
| FIXP_DBL chGroupEnergy[TRANS_FAC][2]; /*energy for each group and channel*/ |
| FIXP_DBL chChaosMeasure[2]; |
| FIXP_DBL frameEnergy = FL2FXCONST_DBL(1e-10f); |
| FIXP_DBL chaosMeasure = FL2FXCONST_DBL(0.f); |
| FIXP_DBL sfbEnLdData, sfbThrLdData, sfbThrExp; |
| FIXP_DBL sfbThrReducedLdData; |
| FIXP_DBL chaosMeasureAvg; |
| INT groupCnt; /* loop counter */ |
| FIXP_DBL redVal[TRANS_FAC]; /* reduction values; in short-block case one |
| redVal for each group */ |
| QC_OUT_CHANNEL *qcOutChan = NULL; |
| const PSY_OUT_CHANNEL *psyOutChan = NULL; |
| |
| #define SCALE_GROUP_ENERGY (8) |
| |
| #define CONST_CHAOS_MEAS_AVG_FAC_0 (FL2FXCONST_DBL(0.25f)) |
| #define CONST_CHAOS_MEAS_AVG_FAC_1 (FL2FXCONST_DBL(1.f - 0.25f)) |
| |
| #define MIN_LDTHRESH (FL2FXCONST_DBL(-0.515625f)) |
| |
| for (ch = 0; ch < nChannels; ch++) { |
| psyOutChan = psyOutChannel[ch]; |
| |
| /* adding up energy for each channel and each group separately */ |
| FIXP_DBL chEnergy = FL2FXCONST_DBL(0.f); |
| groupCnt = 0; |
| |
| for (sfbGrp = 0; sfbGrp < psyOutChan->sfbCnt; |
| sfbGrp += psyOutChan->sfbPerGroup, groupCnt++) { |
| chGroupEnergy[groupCnt][ch] = FL2FXCONST_DBL(0.f); |
| for (sfb = 0; sfb < psyOutChan->maxSfbPerGroup; sfb++) { |
| chGroupEnergy[groupCnt][ch] += |
| (psyOutChan->sfbEnergy[sfbGrp + sfb] >> SCALE_GROUP_ENERGY); |
| } |
| chEnergy += chGroupEnergy[groupCnt][ch]; |
| } |
| frameEnergy += chEnergy; |
| |
| /* chaosMeasure */ |
| if (psyOutChannel[0]->lastWindowSequence == SHORT_WINDOW) { |
| chChaosMeasure[ch] = FL2FXCONST_DBL( |
| 0.5f); /* assume a constant chaos measure of 0.5f for short blocks */ |
| } else { |
| chChaosMeasure[ch] = FDKaacEnc_calcChaosMeasure( |
| psyOutChannel[ch], qcOutChannel[ch]->sfbFormFactorLdData); |
| } |
| chaosMeasure += fMult(chChaosMeasure[ch], chEnergy); |
| } |
| |
| if (frameEnergy > chaosMeasure) { |
| INT scale = CntLeadingZeros(frameEnergy) - 1; |
| FIXP_DBL num = chaosMeasure << scale; |
| FIXP_DBL denum = frameEnergy << scale; |
| chaosMeasure = schur_div(num, denum, 16); |
| } else { |
| chaosMeasure = FL2FXCONST_DBL(1.f); |
| } |
| |
| chaosMeasureAvg = fMult(CONST_CHAOS_MEAS_AVG_FAC_0, chaosMeasure) + |
| fMult(CONST_CHAOS_MEAS_AVG_FAC_1, |
| *chaosMeasureOld); /* averaging chaos measure */ |
| *chaosMeasureOld = chaosMeasure = (fixMin( |
| chaosMeasure, chaosMeasureAvg)); /* use min-value, safe for next frame */ |
| |
| /* characteristic curve |
| chaosMeasure = 0.2f + 0.7f/0.3f * (chaosMeasure - 0.2f); |
| chaosMeasure = fixMin(1.0f, fixMax(0.1f, chaosMeasure)); |
| constants scaled by 4.f |
| */ |
| chaosMeasure = ((FL2FXCONST_DBL(0.2f) >> 2) + |
| fMult(FL2FXCONST_DBL(0.7f / (4.f * 0.3f)), |
| (chaosMeasure - FL2FXCONST_DBL(0.2f)))); |
| chaosMeasure = |
| (fixMin((FIXP_DBL)(FL2FXCONST_DBL(1.0f) >> 2), |
| fixMax((FIXP_DBL)(FL2FXCONST_DBL(0.1f) >> 2), chaosMeasure))) |
| << 2; |
| |
| /* calculation of reduction value */ |
| if (psyOutChannel[0]->lastWindowSequence == SHORT_WINDOW) { /* short-blocks */ |
| FDK_ASSERT(TRANS_FAC == 8); |
| #define WIN_TYPE_SCALE (3) |
| |
| groupCnt = 0; |
| for (sfbGrp = 0; sfbGrp < psyOutChannel[0]->sfbCnt; |
| sfbGrp += psyOutChannel[0]->sfbPerGroup, groupCnt++) { |
| FIXP_DBL groupEnergy = FL2FXCONST_DBL(0.f); |
| |
| for (ch = 0; ch < nChannels; ch++) { |
| groupEnergy += |
| chGroupEnergy[groupCnt] |
| [ch]; /* adding up the channels groupEnergy */ |
| } |
| |
| FDK_ASSERT(psyOutChannel[0]->groupLen[groupCnt] <= INV_INT_TAB_SIZE); |
| groupEnergy = fMult( |
| groupEnergy, |
| invInt[psyOutChannel[0]->groupLen[groupCnt]]); /* correction of |
| group energy */ |
| groupEnergy = fixMin(groupEnergy, |
| frameEnergy >> WIN_TYPE_SCALE); /* do not allow an |
| higher redVal as |
| calculated |
| framewise */ |
| |
| groupEnergy >>= |
| 2; /* 2*WIN_TYPE_SCALE = 6 => 6+2 = 8 ==> 8/4 = int number */ |
| |
| redVal[groupCnt] = |
| fMult(fMult(vbrQualFactor, chaosMeasure), |
| CalcInvLdData(CalcLdData(groupEnergy) >> 2)) |
| << (int)((2 + (2 * WIN_TYPE_SCALE) + SCALE_GROUP_ENERGY) >> 2); |
| } |
| } else { /* long-block */ |
| |
| redVal[0] = fMult(fMult(vbrQualFactor, chaosMeasure), |
| CalcInvLdData(CalcLdData(frameEnergy) >> 2)) |
| << (int)(SCALE_GROUP_ENERGY >> 2); |
| } |
| |
| for (ch = 0; ch < nChannels; ch++) { |
| qcOutChan = qcOutChannel[ch]; |
| psyOutChan = psyOutChannel[ch]; |
| |
| for (sfbGrp = 0; sfbGrp < psyOutChan->sfbCnt; |
| sfbGrp += psyOutChan->sfbPerGroup) { |
| for (sfb = 0; sfb < psyOutChan->maxSfbPerGroup; sfb++) { |
| sfbEnLdData = (qcOutChan->sfbWeightedEnergyLdData[sfbGrp + sfb]); |
| sfbThrLdData = (qcOutChan->sfbThresholdLdData[sfbGrp + sfb]); |
| sfbThrExp = thrExp[ch][sfbGrp + sfb]; |
| |
| if ((sfbThrLdData >= MIN_LDTHRESH) && (sfbEnLdData > sfbThrLdData) && |
| (ahFlag[ch][sfbGrp + sfb] != AH_ACTIVE)) { |
| /* Short-Window */ |
| if (psyOutChannel[ch]->lastWindowSequence == SHORT_WINDOW) { |
| const int groupNumber = (int)sfb / psyOutChan->sfbPerGroup; |
| |
| FDK_ASSERT(INV_SQRT4_TAB_SIZE > psyOutChan->groupLen[groupNumber]); |
| |
| sfbThrExp = |
| fMult(sfbThrExp, |
| fMult(FL2FXCONST_DBL(2.82f / 4.f), |
| invSqrt4[psyOutChan->groupLen[groupNumber]])) |
| << 2; |
| |
| if (sfbThrExp <= (limitThrReducedLdData - redVal[groupNumber])) { |
| sfbThrReducedLdData = FL2FXCONST_DBL(-1.0f); |
| } else { |
| if ((FIXP_DBL)redVal[groupNumber] >= |
| FL2FXCONST_DBL(1.0f) - sfbThrExp) |
| sfbThrReducedLdData = FL2FXCONST_DBL(0.0f); |
| else { |
| /* threshold reduction formula */ |
| sfbThrReducedLdData = |
| CalcLdData(sfbThrExp + redVal[groupNumber]); |
| sfbThrReducedLdData <<= 2; |
| } |
| } |
| sfbThrReducedLdData += |
| (CalcLdInt(psyOutChan->groupLen[groupNumber]) - |
| ((FIXP_DBL)6 << (DFRACT_BITS - 1 - LD_DATA_SHIFT))); |
| } |
| |
| /* Long-Window */ |
| else { |
| if ((FIXP_DBL)redVal[0] >= FL2FXCONST_DBL(1.0f) - sfbThrExp) { |
| sfbThrReducedLdData = FL2FXCONST_DBL(0.0f); |
| } else { |
| /* threshold reduction formula */ |
| sfbThrReducedLdData = CalcLdData(sfbThrExp + redVal[0]); |
| sfbThrReducedLdData <<= 2; |
| } |
| } |
| |
| /* avoid holes */ |
| if (((sfbThrReducedLdData - sfbEnLdData) > |
| qcOutChan->sfbMinSnrLdData[sfbGrp + sfb]) && |
| (ahFlag[ch][sfbGrp + sfb] != NO_AH)) { |
| if (qcOutChan->sfbMinSnrLdData[sfbGrp + sfb] > |
| (FL2FXCONST_DBL(-1.0f) - sfbEnLdData)) { |
| sfbThrReducedLdData = fixMax( |
| (qcOutChan->sfbMinSnrLdData[sfbGrp + sfb] + sfbEnLdData), |
| sfbThrLdData); |
| } else |
| sfbThrReducedLdData = sfbThrLdData; |
| ahFlag[ch][sfbGrp + sfb] = AH_ACTIVE; |
| } |
| |
| if (sfbThrReducedLdData < FL2FXCONST_DBL(-0.5f)) |
| sfbThrReducedLdData = FL2FXCONST_DBL(-1.f); |
| |
| /* minimum of 29 dB Ratio for Thresholds */ |
| if ((sfbEnLdData + FL2FXCONST_DBL(1.0f)) > |
| FL2FXCONST_DBL(9.6336206 / LD_DATA_SCALING)) { |
| sfbThrReducedLdData = fixMax( |
| sfbThrReducedLdData, |
| sfbEnLdData - FL2FXCONST_DBL(9.6336206 / LD_DATA_SCALING)); |
| } |
| |
| sfbThrReducedLdData = fixMax(MIN_LDTHRESH, sfbThrReducedLdData); |
| |
| qcOutChan->sfbThresholdLdData[sfbGrp + sfb] = sfbThrReducedLdData; |
| } |
| } |
| } |
| } |
| } |
| |
| /***************************************************************************** |
| functionname: FDKaacEnc_correctThresh |
| description: if pe difference deltaPe between desired pe and real pe is small |
| enough, the difference can be distributed among the scale factor bands. New |
| thresholds can be derived from this pe-difference |
| *****************************************************************************/ |
| static void FDKaacEnc_correctThresh( |
| const CHANNEL_MAPPING *const cm, QC_OUT_ELEMENT *const qcElement[((8))], |
| const PSY_OUT_ELEMENT *const psyOutElement[((8))], |
| UCHAR ahFlag[((8))][(2)][MAX_GROUPED_SFB], |
| const FIXP_DBL thrExp[((8))][(2)][MAX_GROUPED_SFB], const FIXP_DBL redVal_m, |
| const SCHAR redVal_e, const INT deltaPe, const INT processElements, |
| const INT elementOffset) { |
| INT ch, sfb, sfbGrp; |
| QC_OUT_CHANNEL *qcOutChan; |
| PSY_OUT_CHANNEL *psyOutChan; |
| PE_CHANNEL_DATA *peChanData; |
| FIXP_DBL thrFactorLdData; |
| FIXP_DBL sfbEnLdData, sfbThrLdData, sfbThrReducedLdData; |
| FIXP_DBL *sfbPeFactorsLdData[((8))][(2)]; |
| FIXP_DBL(*sfbNActiveLinesLdData)[(2)][MAX_GROUPED_SFB]; |
| |
| INT normFactorInt; |
| FIXP_DBL normFactorLdData; |
| |
| INT nElements = elementOffset + processElements; |
| INT elementId; |
| |
| /* scratch is empty; use temporal memory from quantSpec in QC_OUT_CHANNEL */ |
| for (elementId = elementOffset; elementId < nElements; elementId++) { |
| for (ch = 0; ch < cm->elInfo[elementId].nChannelsInEl; ch++) { |
| /* The reinterpret_cast is used to suppress a compiler warning. We know |
| * that qcElement[elementId]->qcOutChannel[ch]->quantSpec is sufficiently |
| * aligned, so the cast is safe */ |
| sfbPeFactorsLdData[elementId][ch] = |
| reinterpret_cast<FIXP_DBL *>(reinterpret_cast<void *>( |
| qcElement[elementId]->qcOutChannel[ch]->quantSpec)); |
| } |
| } |
| /* The reinterpret_cast is used to suppress a compiler warning. We know that |
| * qcElement[0]->dynMem_SfbNActiveLinesLdData is sufficiently aligned, so the |
| * cast is safe */ |
| sfbNActiveLinesLdData = reinterpret_cast<FIXP_DBL(*)[(2)][MAX_GROUPED_SFB]>( |
| reinterpret_cast<void *>(qcElement[0]->dynMem_SfbNActiveLinesLdData)); |
| |
| /* for each sfb calc relative factors for pe changes */ |
| normFactorInt = 0; |
| |
| for (elementId = elementOffset; elementId < nElements; elementId++) { |
| if (cm->elInfo[elementId].elType != ID_DSE) { |
| for (ch = 0; ch < cm->elInfo[elementId].nChannelsInEl; ch++) { |
| psyOutChan = psyOutElement[elementId]->psyOutChannel[ch]; |
| peChanData = &qcElement[elementId]->peData.peChannelData[ch]; |
| |
| for (sfbGrp = 0; sfbGrp < psyOutChan->sfbCnt; |
| sfbGrp += psyOutChan->sfbPerGroup) { |
| for (sfb = 0; sfb < psyOutChan->maxSfbPerGroup; sfb++) { |
| if (peChanData->sfbNActiveLines[sfbGrp + sfb] == 0) { |
| sfbNActiveLinesLdData[elementId][ch][sfbGrp + sfb] = |
| FL2FXCONST_DBL(-1.0f); |
| } else { |
| /* Both CalcLdInt and CalcLdData can be used! |
| * No offset has to be subtracted, because sfbNActiveLinesLdData |
| * is shorted while thrFactor calculation */ |
| sfbNActiveLinesLdData[elementId][ch][sfbGrp + sfb] = |
| CalcLdInt(peChanData->sfbNActiveLines[sfbGrp + sfb]); |
| } |
| if (((ahFlag[elementId][ch][sfbGrp + sfb] < AH_ACTIVE) || |
| (deltaPe > 0)) && |
| peChanData->sfbNActiveLines[sfbGrp + sfb] != 0) { |
| if (thrExp[elementId][ch][sfbGrp + sfb] > -redVal_m) { |
| /* sfbPeFactors[ch][sfbGrp+sfb] = |
| peChanData->sfbNActiveLines[sfbGrp+sfb] / |
| (thrExp[elementId][ch][sfbGrp+sfb] + |
| redVal[elementId]); */ |
| |
| int minScale = |
| fixMin( |
| CountLeadingBits(thrExp[elementId][ch][sfbGrp + sfb]), |
| CountLeadingBits(redVal_m) - redVal_e) - |
| 1; |
| |
| /* sumld = ld64( sfbThrExp + redVal ) */ |
| FIXP_DBL sumLd = |
| CalcLdData(scaleValue(thrExp[elementId][ch][sfbGrp + sfb], |
| minScale) + |
| scaleValue(redVal_m, redVal_e + minScale)) - |
| (FIXP_DBL)(minScale << (DFRACT_BITS - 1 - LD_DATA_SHIFT)); |
| |
| if (sumLd < FL2FXCONST_DBL(0.f)) { |
| sfbPeFactorsLdData[elementId][ch][sfbGrp + sfb] = |
| sfbNActiveLinesLdData[elementId][ch][sfbGrp + sfb] - |
| sumLd; |
| } else { |
| if (sfbNActiveLinesLdData[elementId][ch][sfbGrp + sfb] > |
| (FL2FXCONST_DBL(-1.f) + sumLd)) { |
| sfbPeFactorsLdData[elementId][ch][sfbGrp + sfb] = |
| sfbNActiveLinesLdData[elementId][ch][sfbGrp + sfb] - |
| sumLd; |
| } else { |
| sfbPeFactorsLdData[elementId][ch][sfbGrp + sfb] = |
| sfbNActiveLinesLdData[elementId][ch][sfbGrp + sfb]; |
| } |
| } |
| |
| normFactorInt += (INT)CalcInvLdData( |
| sfbPeFactorsLdData[elementId][ch][sfbGrp + sfb]); |
| } else |
| sfbPeFactorsLdData[elementId][ch][sfbGrp + sfb] = |
| FL2FXCONST_DBL(1.0f); |
| } else |
| sfbPeFactorsLdData[elementId][ch][sfbGrp + sfb] = |
| FL2FXCONST_DBL(-1.0f); |
| } |
| } |
| } |
| } |
| } |
| |
| /* normFactorLdData = ld64(deltaPe/normFactorInt) */ |
| normFactorLdData = |
| CalcLdData((FIXP_DBL)((deltaPe < 0) ? (-deltaPe) : (deltaPe))) - |
| CalcLdData((FIXP_DBL)normFactorInt); |
| |
| /* distribute the pe difference to the scalefactors |
| and calculate the according thresholds */ |
| for (elementId = elementOffset; elementId < nElements; elementId++) { |
| if (cm->elInfo[elementId].elType != ID_DSE) { |
| for (ch = 0; ch < cm->elInfo[elementId].nChannelsInEl; ch++) { |
| qcOutChan = qcElement[elementId]->qcOutChannel[ch]; |
| psyOutChan = psyOutElement[elementId]->psyOutChannel[ch]; |
| peChanData = &qcElement[elementId]->peData.peChannelData[ch]; |
| |
| for (sfbGrp = 0; sfbGrp < psyOutChan->sfbCnt; |
| sfbGrp += psyOutChan->sfbPerGroup) { |
| for (sfb = 0; sfb < psyOutChan->maxSfbPerGroup; sfb++) { |
| if (peChanData->sfbNActiveLines[sfbGrp + sfb] > 0) { |
| /* pe difference for this sfb */ |
| if ((sfbPeFactorsLdData[elementId][ch][sfbGrp + sfb] == |
| FL2FXCONST_DBL(-1.0f)) || |
| (deltaPe == 0)) { |
| thrFactorLdData = FL2FXCONST_DBL(0.f); |
| } else { |
| /* new threshold */ |
| FIXP_DBL tmp = CalcInvLdData( |
| sfbPeFactorsLdData[elementId][ch][sfbGrp + sfb] + |
| normFactorLdData - |
| sfbNActiveLinesLdData[elementId][ch][sfbGrp + sfb] - |
| FL2FXCONST_DBL((float)LD_DATA_SHIFT / LD_DATA_SCALING)); |
| |
| /* limit thrFactor to 60dB */ |
| tmp = (deltaPe < 0) ? tmp : (-tmp); |
| thrFactorLdData = |
| fMin(tmp, FL2FXCONST_DBL(20.f / LD_DATA_SCALING)); |
| } |
| |
| /* new threshold */ |
| sfbThrLdData = qcOutChan->sfbThresholdLdData[sfbGrp + sfb]; |
| sfbEnLdData = qcOutChan->sfbWeightedEnergyLdData[sfbGrp + sfb]; |
| |
| if (thrFactorLdData < FL2FXCONST_DBL(0.f)) { |
| if (sfbThrLdData > (FL2FXCONST_DBL(-1.f) - thrFactorLdData)) { |
| sfbThrReducedLdData = sfbThrLdData + thrFactorLdData; |
| } else { |
| sfbThrReducedLdData = FL2FXCONST_DBL(-1.f); |
| } |
| } else { |
| sfbThrReducedLdData = sfbThrLdData + thrFactorLdData; |
| } |
| |
| /* avoid hole */ |
| if ((sfbThrReducedLdData - sfbEnLdData > |
| qcOutChan->sfbMinSnrLdData[sfbGrp + sfb]) && |
| (ahFlag[elementId][ch][sfbGrp + sfb] == AH_INACTIVE)) { |
| /* sfbThrReduced = max(psyOutChan[ch]->sfbMinSnr[i] * sfbEn, |
| * sfbThr); */ |
| if (sfbEnLdData > |
| (sfbThrLdData - qcOutChan->sfbMinSnrLdData[sfbGrp + sfb])) { |
| sfbThrReducedLdData = |
| qcOutChan->sfbMinSnrLdData[sfbGrp + sfb] + sfbEnLdData; |
| } else { |
| sfbThrReducedLdData = sfbThrLdData; |
| } |
| ahFlag[elementId][ch][sfbGrp + sfb] = AH_ACTIVE; |
| } |
| |
| qcOutChan->sfbThresholdLdData[sfbGrp + sfb] = sfbThrReducedLdData; |
| } |
| } |
| } |
| } |
| } |
| } |
| } |
| |
| /***************************************************************************** |
| functionname: FDKaacEnc_reduceMinSnr |
| description: if the desired pe can not be reached, reduce pe by |
| reducing minSnr |
| *****************************************************************************/ |
| static void FDKaacEnc_reduceMinSnr( |
| const CHANNEL_MAPPING *const cm, QC_OUT_ELEMENT *const qcElement[((8))], |
| const PSY_OUT_ELEMENT *const psyOutElement[((8))], |
| const UCHAR ahFlag[((8))][(2)][MAX_GROUPED_SFB], const INT desiredPe, |
| INT *const redPeGlobal, const INT processElements, const INT elementOffset) |
| |
| { |
| INT ch, elementId, globalMaxSfb = 0; |
| const INT nElements = elementOffset + processElements; |
| INT newGlobalPe = *redPeGlobal; |
| |
| if (newGlobalPe <= desiredPe) { |
| goto bail; |
| } |
| |
| /* global maximum of maxSfbPerGroup */ |
| for (elementId = elementOffset; elementId < nElements; elementId++) { |
| if (cm->elInfo[elementId].elType != ID_DSE) { |
| for (ch = 0; ch < cm->elInfo[elementId].nChannelsInEl; ch++) { |
| globalMaxSfb = |
| fMax(globalMaxSfb, |
| psyOutElement[elementId]->psyOutChannel[ch]->maxSfbPerGroup); |
| } |
| } |
| } |
| |
| /* as long as globalPE is above desirePE reduce SNR to 1.0 dB, starting at |
| * highest SFB */ |
| while ((newGlobalPe > desiredPe) && (--globalMaxSfb >= 0)) { |
| for (elementId = elementOffset; elementId < nElements; elementId++) { |
| if (cm->elInfo[elementId].elType != ID_DSE) { |
| PE_DATA *peData = &qcElement[elementId]->peData; |
| |
| for (ch = 0; ch < cm->elInfo[elementId].nChannelsInEl; ch++) { |
| QC_OUT_CHANNEL *qcOutChan = qcElement[elementId]->qcOutChannel[ch]; |
| PSY_OUT_CHANNEL *psyOutChan = |
| psyOutElement[elementId]->psyOutChannel[ch]; |
| |
| /* try to reduce SNR of channel's uppermost SFB(s) */ |
| if (globalMaxSfb < psyOutChan->maxSfbPerGroup) { |
| INT sfb, deltaPe = 0; |
| |
| for (sfb = globalMaxSfb; sfb < psyOutChan->sfbCnt; |
| sfb += psyOutChan->sfbPerGroup) { |
| if (ahFlag[elementId][ch][sfb] != NO_AH && |
| qcOutChan->sfbMinSnrLdData[sfb] < SnrLdFac && |
| (qcOutChan->sfbWeightedEnergyLdData[sfb] > |
| qcOutChan->sfbThresholdLdData[sfb] - SnrLdFac)) { |
| /* increase threshold to new minSnr of 1dB */ |
| qcOutChan->sfbMinSnrLdData[sfb] = SnrLdFac; |
| qcOutChan->sfbThresholdLdData[sfb] = |
| qcOutChan->sfbWeightedEnergyLdData[sfb] + SnrLdFac; |
| |
| /* calc new pe */ |
| /* C2 + C3*ld(1/0.8) = 1.5 */ |
| deltaPe -= peData->peChannelData[ch].sfbPe[sfb]; |
| |
| /* sfbPe = 1.5 * sfbNLines */ |
| peData->peChannelData[ch].sfbPe[sfb] = |
| (3 * peData->peChannelData[ch].sfbNLines[sfb]) |
| << (PE_CONSTPART_SHIFT - 1); |
| deltaPe += peData->peChannelData[ch].sfbPe[sfb]; |
| } |
| |
| } /* sfb loop */ |
| |
| deltaPe >>= PE_CONSTPART_SHIFT; |
| peData->pe += deltaPe; |
| peData->peChannelData[ch].pe += deltaPe; |
| newGlobalPe += deltaPe; |
| |
| } /* if globalMaxSfb < maxSfbPerGroup */ |
| |
| /* stop if enough has been saved */ |
| if (newGlobalPe <= desiredPe) { |
| goto bail; |
| } |
| |
| } /* ch loop */ |
| } /* != ID_DSE */ |
| } /* elementId loop */ |
| } /* while ( newGlobalPe > desiredPe) && (--globalMaxSfb >= 0) ) */ |
| |
| bail: |
| /* update global PE */ |
| *redPeGlobal = newGlobalPe; |
| } |
| |
| /***************************************************************************** |
| functionname: FDKaacEnc_allowMoreHoles |
| description: if the desired pe can not be reached, some more scalefactor |
| bands have to be quantized to zero |
| *****************************************************************************/ |
| static void FDKaacEnc_allowMoreHoles( |
| const CHANNEL_MAPPING *const cm, QC_OUT_ELEMENT *const qcElement[((8))], |
| const PSY_OUT_ELEMENT *const psyOutElement[((8))], |
| const ATS_ELEMENT *const AdjThrStateElement[((8))], |
| UCHAR ahFlag[((8))][(2)][MAX_GROUPED_SFB], const INT desiredPe, |
| const INT currentPe, const int processElements, const int elementOffset) { |
| INT elementId; |
| INT nElements = elementOffset + processElements; |
| INT actPe = currentPe; |
| |
| if (actPe <= desiredPe) { |
| return; /* nothing to do */ |
| } |
| |
| for (elementId = elementOffset; elementId < nElements; elementId++) { |
| if (cm->elInfo[elementId].elType != ID_DSE) { |
| INT ch, sfb, sfbGrp; |
| |
| PE_DATA *peData = &qcElement[elementId]->peData; |
| const INT nChannels = cm->elInfo[elementId].nChannelsInEl; |
| |
| QC_OUT_CHANNEL *qcOutChannel[(2)] = {NULL}; |
| PSY_OUT_CHANNEL *psyOutChannel[(2)] = {NULL}; |
| |
| for (ch = 0; ch < nChannels; ch++) { |
| /* init pointers */ |
| qcOutChannel[ch] = qcElement[elementId]->qcOutChannel[ch]; |
| psyOutChannel[ch] = psyOutElement[elementId]->psyOutChannel[ch]; |
| |
| for (sfbGrp = 0; sfbGrp < psyOutChannel[ch]->sfbCnt; |
| sfbGrp += psyOutChannel[ch]->sfbPerGroup) { |
| for (sfb = psyOutChannel[ch]->maxSfbPerGroup; |
| sfb < psyOutChannel[ch]->sfbPerGroup; sfb++) { |
| peData->peChannelData[ch].sfbPe[sfbGrp + sfb] = 0; |
| } |
| } |
| } |
| |
| /* for MS allow hole in the channel with less energy */ |
| if (nChannels == 2 && psyOutChannel[0]->lastWindowSequence == |
| psyOutChannel[1]->lastWindowSequence) { |
| for (sfb = psyOutChannel[0]->maxSfbPerGroup - 1; sfb >= 0; sfb--) { |
| for (sfbGrp = 0; sfbGrp < psyOutChannel[0]->sfbCnt; |
| sfbGrp += psyOutChannel[0]->sfbPerGroup) { |
| if (psyOutElement[elementId]->toolsInfo.msMask[sfbGrp + sfb]) { |
| FIXP_DBL EnergyLd_L = |
| qcOutChannel[0]->sfbWeightedEnergyLdData[sfbGrp + sfb]; |
| FIXP_DBL EnergyLd_R = |
| qcOutChannel[1]->sfbWeightedEnergyLdData[sfbGrp + sfb]; |
| |
| /* allow hole in side channel ? */ |
| if ((ahFlag[elementId][1][sfbGrp + sfb] != NO_AH) && |
| (((FL2FXCONST_DBL(-0.02065512648f) >> 1) + |
| (qcOutChannel[0]->sfbMinSnrLdData[sfbGrp + sfb] >> 1)) > |
| ((EnergyLd_R >> 1) - (EnergyLd_L >> 1)))) { |
| ahFlag[elementId][1][sfbGrp + sfb] = NO_AH; |
| qcOutChannel[1]->sfbThresholdLdData[sfbGrp + sfb] = |
| FL2FXCONST_DBL(0.015625f) + EnergyLd_R; |
| actPe -= peData->peChannelData[1].sfbPe[sfbGrp + sfb] >> |
| PE_CONSTPART_SHIFT; |
| } |
| /* allow hole in mid channel ? */ |
| else if ((ahFlag[elementId][0][sfbGrp + sfb] != NO_AH) && |
| (((FL2FXCONST_DBL(-0.02065512648f) >> 1) + |
| (qcOutChannel[1]->sfbMinSnrLdData[sfbGrp + sfb] >> |
| 1)) > ((EnergyLd_L >> 1) - (EnergyLd_R >> 1)))) { |
| ahFlag[elementId][0][sfbGrp + sfb] = NO_AH; |
| qcOutChannel[0]->sfbThresholdLdData[sfbGrp + sfb] = |
| FL2FXCONST_DBL(0.015625f) + EnergyLd_L; |
| actPe -= peData->peChannelData[0].sfbPe[sfbGrp + sfb] >> |
| PE_CONSTPART_SHIFT; |
| } /* if (ahFlag) */ |
| } /* if MS */ |
| } /* sfbGrp */ |
| if (actPe <= desiredPe) { |
| return; /* stop if enough has been saved */ |
| } |
| } /* sfb */ |
| } /* MS possible ? */ |
| |
| } /* EOF DSE-suppression */ |
| } /* EOF for all elements... */ |
| |
| if (actPe > desiredPe) { |
| /* more holes necessary? subsequently erase bands starting with low energies |
| */ |
| INT ch, sfb, sfbGrp; |
| INT minSfb, maxSfb; |
| INT enIdx, ahCnt, done; |
| INT startSfb[(8)]; |
| INT sfbCnt[(8)]; |
| INT sfbPerGroup[(8)]; |
| INT maxSfbPerGroup[(8)]; |
| FIXP_DBL avgEn; |
| FIXP_DBL minEnLD64; |
| FIXP_DBL avgEnLD64; |
| FIXP_DBL enLD64[NUM_NRG_LEVS]; |
| INT avgEn_e; |
| |
| /* get the scaling factor over all audio elements and channels */ |
| maxSfb = 0; |
| for (elementId = elementOffset; elementId < nElements; elementId++) { |
| if (cm->elInfo[elementId].elType != ID_DSE) { |
| for (ch = 0; ch < cm->elInfo[elementId].nChannelsInEl; ch++) { |
| for (sfbGrp = 0; |
| sfbGrp < psyOutElement[elementId]->psyOutChannel[ch]->sfbCnt; |
| sfbGrp += |
| psyOutElement[elementId]->psyOutChannel[ch]->sfbPerGroup) { |
| maxSfb += |
| psyOutElement[elementId]->psyOutChannel[ch]->maxSfbPerGroup; |
| } |
| } |
| } |
| } |
| avgEn_e = |
| (DFRACT_BITS - fixnormz_D((LONG)fMax(0, maxSfb - 1))); /* ilog2() */ |
| |
| ahCnt = 0; |
| maxSfb = 0; |
| minSfb = MAX_SFB; |
| avgEn = FL2FXCONST_DBL(0.0f); |
| minEnLD64 = FL2FXCONST_DBL(0.0f); |
| |
| for (elementId = elementOffset; elementId < nElements; elementId++) { |
| if (cm->elInfo[elementId].elType != ID_DSE) { |
| for (ch = 0; ch < cm->elInfo[elementId].nChannelsInEl; ch++) { |
| const INT chIdx = cm->elInfo[elementId].ChannelIndex[ch]; |
| QC_OUT_CHANNEL *qcOutChannel = qcElement[elementId]->qcOutChannel[ch]; |
| PSY_OUT_CHANNEL *psyOutChannel = |
| psyOutElement[elementId]->psyOutChannel[ch]; |
| |
| maxSfbPerGroup[chIdx] = psyOutChannel->maxSfbPerGroup; |
| sfbCnt[chIdx] = psyOutChannel->sfbCnt; |
| sfbPerGroup[chIdx] = psyOutChannel->sfbPerGroup; |
| |
| maxSfb = fMax(maxSfb, psyOutChannel->maxSfbPerGroup); |
| |
| if (psyOutChannel->lastWindowSequence != SHORT_WINDOW) { |
| startSfb[chIdx] = AdjThrStateElement[elementId]->ahParam.startSfbL; |
| } else { |
| startSfb[chIdx] = AdjThrStateElement[elementId]->ahParam.startSfbS; |
| } |
| |
| minSfb = fMin(minSfb, startSfb[chIdx]); |
| |
| sfbGrp = 0; |
| sfb = startSfb[chIdx]; |
| |
| do { |
| for (; sfb < psyOutChannel->maxSfbPerGroup; sfb++) { |
| if ((ahFlag[elementId][ch][sfbGrp + sfb] != NO_AH) && |
| (qcOutChannel->sfbWeightedEnergyLdData[sfbGrp + sfb] > |
| qcOutChannel->sfbThresholdLdData[sfbGrp + sfb])) { |
| minEnLD64 = fixMin(minEnLD64, |
| qcOutChannel->sfbEnergyLdData[sfbGrp + sfb]); |
| avgEn += qcOutChannel->sfbEnergy[sfbGrp + sfb] >> avgEn_e; |
| ahCnt++; |
| } |
| } |
| |
| sfbGrp += psyOutChannel->sfbPerGroup; |
| sfb = startSfb[chIdx]; |
| |
| } while (sfbGrp < psyOutChannel->sfbCnt); |
| } |
| } /* (cm->elInfo[elementId].elType != ID_DSE) */ |
| } /* (elementId = elementOffset;elementId<nElements;elementId++) */ |
| |
| if ((avgEn == FL2FXCONST_DBL(0.0f)) || (ahCnt == 0)) { |
| avgEnLD64 = FL2FXCONST_DBL(0.0f); |
| } else { |
| avgEnLD64 = CalcLdData(avgEn) + |
| (FIXP_DBL)(avgEn_e << (DFRACT_BITS - 1 - LD_DATA_SHIFT)) - |
| CalcLdInt(ahCnt); |
| } |
| |
| /* calc some energy borders between minEn and avgEn */ |
| |
| /* for (enIdx = 0; enIdx < NUM_NRG_LEVS; enIdx++) { |
| en[enIdx] = (2.0f*enIdx+1.0f)/(2.0f*NUM_NRG_LEVS-1.0f); |
| } */ |
| enLD64[0] = |
| minEnLD64 + fMult((avgEnLD64 - minEnLD64), FL2FXCONST_DBL(0.06666667f)); |
| enLD64[1] = |
| minEnLD64 + fMult((avgEnLD64 - minEnLD64), FL2FXCONST_DBL(0.20000000f)); |
| enLD64[2] = |
| minEnLD64 + fMult((avgEnLD64 - minEnLD64), FL2FXCONST_DBL(0.33333334f)); |
| enLD64[3] = |
| minEnLD64 + fMult((avgEnLD64 - minEnLD64), FL2FXCONST_DBL(0.46666667f)); |
| enLD64[4] = |
| minEnLD64 + fMult((avgEnLD64 - minEnLD64), FL2FXCONST_DBL(0.60000002f)); |
| enLD64[5] = |
| minEnLD64 + fMult((avgEnLD64 - minEnLD64), FL2FXCONST_DBL(0.73333335f)); |
| enLD64[6] = |
| minEnLD64 + fMult((avgEnLD64 - minEnLD64), FL2FXCONST_DBL(0.86666667f)); |
| enLD64[7] = minEnLD64 + (avgEnLD64 - minEnLD64); |
| |
| done = 0; |
| enIdx = 0; |
| sfb = maxSfb - 1; |
| |
| while (!done) { |
| for (elementId = elementOffset; elementId < nElements; elementId++) { |
| if (cm->elInfo[elementId].elType != ID_DSE) { |
| PE_DATA *peData = &qcElement[elementId]->peData; |
| for (ch = 0; ch < cm->elInfo[elementId].nChannelsInEl; ch++) { |
| const INT chIdx = cm->elInfo[elementId].ChannelIndex[ch]; |
| QC_OUT_CHANNEL *qcOutChannel = |
| qcElement[elementId]->qcOutChannel[ch]; |
| if (sfb >= startSfb[chIdx] && sfb < maxSfbPerGroup[chIdx]) { |
| for (sfbGrp = 0; sfbGrp < sfbCnt[chIdx]; |
| sfbGrp += sfbPerGroup[chIdx]) { |
| /* sfb energy below border ? */ |
| if (ahFlag[elementId][ch][sfbGrp + sfb] != NO_AH && |
| qcOutChannel->sfbEnergyLdData[sfbGrp + sfb] < |
| enLD64[enIdx]) { |
| /* allow hole */ |
| ahFlag[elementId][ch][sfbGrp + sfb] = NO_AH; |
| qcOutChannel->sfbThresholdLdData[sfbGrp + sfb] = |
| FL2FXCONST_DBL(0.015625f) + |
| qcOutChannel->sfbWeightedEnergyLdData[sfbGrp + sfb]; |
| actPe -= peData->peChannelData[ch].sfbPe[sfbGrp + sfb] >> |
| PE_CONSTPART_SHIFT; |
| } |
| if (actPe <= desiredPe) { |
| return; /* stop if enough has been saved */ |
| } |
| } /* sfbGrp */ |
| } /* sfb */ |
| } /* nChannelsInEl */ |
| } /* ID_DSE */ |
| } /* elementID */ |
| |
| sfb--; |
| if (sfb < minSfb) { |
| /* restart with next energy border */ |
| sfb = maxSfb; |
| enIdx++; |
| if (enIdx >= NUM_NRG_LEVS) { |
| done = 1; |
| } |
| } |
| } /* done */ |
| } /* (actPe <= desiredPe) */ |
| } |
| |
| /* reset avoid hole flags from AH_ACTIVE to AH_INACTIVE */ |
| static void FDKaacEnc_resetAHFlags( |
| UCHAR ahFlag[(2)][MAX_GROUPED_SFB], const INT nChannels, |
| const PSY_OUT_CHANNEL *const psyOutChannel[(2)]) { |
| int ch, sfb, sfbGrp; |
| |
| for (ch = 0; ch < nChannels; ch++) { |
| for (sfbGrp = 0; sfbGrp < psyOutChannel[ch]->sfbCnt; |
| sfbGrp += psyOutChannel[ch]->sfbPerGroup) { |
| for (sfb = 0; sfb < psyOutChannel[ch]->maxSfbPerGroup; sfb++) { |
| if (ahFlag[ch][sfbGrp + sfb] == AH_ACTIVE) { |
| ahFlag[ch][sfbGrp + sfb] = AH_INACTIVE; |
| } |
| } |
| } |
| } |
| } |
| |
| static FIXP_DBL CalcRedValPower(FIXP_DBL num, FIXP_DBL denum, INT *scaling) { |
| FIXP_DBL value = FL2FXCONST_DBL(0.f); |
| |
| if (num >= FL2FXCONST_DBL(0.f)) { |
| value = fDivNorm(num, denum, scaling); |
| } else { |
| value = -fDivNorm(-num, denum, scaling); |
| } |
| value = f2Pow(value, *scaling, scaling); |
| |
| return value; |
| } |
| |
| /***************************************************************************** |
| functionname: FDKaacEnc_adaptThresholdsToPe |
| description: two guesses for the reduction value and one final correction of |
| the thresholds |
| *****************************************************************************/ |
| static void FDKaacEnc_adaptThresholdsToPe( |
| const CHANNEL_MAPPING *const cm, |
| ATS_ELEMENT *const AdjThrStateElement[((8))], |
| QC_OUT_ELEMENT *const qcElement[((8))], |
| const PSY_OUT_ELEMENT *const psyOutElement[((8))], const INT desiredPe, |
| const INT maxIter2ndGuess, const INT processElements, |
| const INT elementOffset) { |
| FIXP_DBL reductionValue_m; |
| SCHAR reductionValue_e; |
| UCHAR(*pAhFlag)[(2)][MAX_GROUPED_SFB]; |
| FIXP_DBL(*pThrExp)[(2)][MAX_GROUPED_SFB]; |
| int iter; |
| |
| INT constPartGlobal, noRedPeGlobal, nActiveLinesGlobal, redPeGlobal; |
| constPartGlobal = noRedPeGlobal = nActiveLinesGlobal = redPeGlobal = 0; |
| |
| int elementId; |
| |
| int nElements = elementOffset + processElements; |
| if (nElements > cm->nElements) { |
| nElements = cm->nElements; |
| } |
| |
| /* The reinterpret_cast is used to suppress a compiler warning. We know that |
| * qcElement[0]->dynMem_Ah_Flag is sufficiently aligned, so the cast is safe |
| */ |
| pAhFlag = reinterpret_cast<UCHAR(*)[(2)][MAX_GROUPED_SFB]>( |
| reinterpret_cast<void *>(qcElement[0]->dynMem_Ah_Flag)); |
| /* The reinterpret_cast is used to suppress a compiler warning. We know that |
| * qcElement[0]->dynMem_Thr_Exp is sufficiently aligned, so the cast is safe |
| */ |
| pThrExp = reinterpret_cast<FIXP_DBL(*)[(2)][MAX_GROUPED_SFB]>( |
| reinterpret_cast<void *>(qcElement[0]->dynMem_Thr_Exp)); |
| |
| /* ------------------------------------------------------- */ |
| /* Part I: Initialize data structures and variables... */ |
| /* ------------------------------------------------------- */ |
| for (elementId = elementOffset; elementId < nElements; elementId++) { |
| if (cm->elInfo[elementId].elType != ID_DSE) { |
| INT nChannels = cm->elInfo[elementId].nChannelsInEl; |
| PE_DATA *peData = &qcElement[elementId]->peData; |
| |
| /* thresholds to the power of redExp */ |
| FDKaacEnc_calcThreshExp( |
| pThrExp[elementId], qcElement[elementId]->qcOutChannel, |
| psyOutElement[elementId]->psyOutChannel, nChannels); |
| |
| /* lower the minSnr requirements for low energies compared to the average |
| energy in this frame */ |
| FDKaacEnc_adaptMinSnr(qcElement[elementId]->qcOutChannel, |
| psyOutElement[elementId]->psyOutChannel, |
| &AdjThrStateElement[elementId]->minSnrAdaptParam, |
| nChannels); |
| |
| /* init ahFlag (0: no ah necessary, 1: ah possible, 2: ah active */ |
| FDKaacEnc_initAvoidHoleFlag( |
| qcElement[elementId]->qcOutChannel, |
| psyOutElement[elementId]->psyOutChannel, pAhFlag[elementId], |
| &psyOutElement[elementId]->toolsInfo, nChannels, |
| &AdjThrStateElement[elementId]->ahParam); |
| |
| /* sum up */ |
| constPartGlobal += peData->constPart; |
| noRedPeGlobal += peData->pe; |
| nActiveLinesGlobal += fixMax((INT)peData->nActiveLines, 1); |
| |
| } /* EOF DSE-suppression */ |
| } /* EOF for all elements... */ |
| |
| /* |
| First guess of reduction value: |
| avgThrExp = (float)pow(2.0f, (constPartGlobal - noRedPeGlobal)/(4.0f * |
| nActiveLinesGlobal)); redVal = (float)pow(2.0f, (constPartGlobal - |
| desiredPe)/(4.0f * nActiveLinesGlobal)) - avgThrExp; redVal = max(0.f, |
| redVal); |
| */ |
| int redVal_e, avgThrExp_e, result_e; |
| FIXP_DBL redVal_m, avgThrExp_m; |
| |
| redVal_m = CalcRedValPower(constPartGlobal - desiredPe, |
| 4 * nActiveLinesGlobal, &redVal_e); |
| avgThrExp_m = CalcRedValPower(constPartGlobal - noRedPeGlobal, |
| 4 * nActiveLinesGlobal, &avgThrExp_e); |
| result_e = fMax(redVal_e, avgThrExp_e) + 1; |
| |
| reductionValue_m = fMax(FL2FXCONST_DBL(0.f), |
| scaleValue(redVal_m, redVal_e - result_e) - |
| scaleValue(avgThrExp_m, avgThrExp_e - result_e)); |
| reductionValue_e = result_e; |
| |
| /* ----------------------------------------------------------------------- */ |
| /* Part II: Calculate bit consumption of initial bit constraints setup */ |
| /* ----------------------------------------------------------------------- */ |
| for (elementId = elementOffset; elementId < nElements; elementId++) { |
| if (cm->elInfo[elementId].elType != ID_DSE) { |
| INT nChannels = cm->elInfo[elementId].nChannelsInEl; |
| PE_DATA *peData = &qcElement[elementId]->peData; |
| |
| /* reduce thresholds */ |
| FDKaacEnc_reduceThresholdsCBR( |
| qcElement[elementId]->qcOutChannel, |
| psyOutElement[elementId]->psyOutChannel, pAhFlag[elementId], |
| pThrExp[elementId], nChannels, reductionValue_m, reductionValue_e); |
| |
| /* pe after first guess */ |
| FDKaacEnc_calcPe(psyOutElement[elementId]->psyOutChannel, |
| qcElement[elementId]->qcOutChannel, peData, nChannels); |
| |
| redPeGlobal += peData->pe; |
| } /* EOF DSE-suppression */ |
| } /* EOF for all elements... */ |
| |
| /* -------------------------------------------------- */ |
| /* Part III: Iterate until bit constraints are met */ |
| /* -------------------------------------------------- */ |
| iter = 0; |
| while ((fixp_abs(redPeGlobal - desiredPe) > |
| fMultI(FL2FXCONST_DBL(0.05f), desiredPe)) && |
| (iter < maxIter2ndGuess)) { |
| INT desiredPeNoAHGlobal; |
| INT redPeNoAHGlobal = 0; |
| INT constPartNoAHGlobal = 0; |
| INT nActiveLinesNoAHGlobal = 0; |
| |
| for (elementId = elementOffset; elementId < nElements; elementId++) { |
| if (cm->elInfo[elementId].elType != ID_DSE) { |
| INT redPeNoAH, constPartNoAH, nActiveLinesNoAH; |
| INT nChannels = cm->elInfo[elementId].nChannelsInEl; |
| PE_DATA *peData = &qcElement[elementId]->peData; |
| |
| /* pe for bands where avoid hole is inactive */ |
| FDKaacEnc_FDKaacEnc_calcPeNoAH( |
| &redPeNoAH, &constPartNoAH, &nActiveLinesNoAH, peData, |
| pAhFlag[elementId], psyOutElement[elementId]->psyOutChannel, |
| nChannels); |
| |
| redPeNoAHGlobal += redPeNoAH; |
| constPartNoAHGlobal += constPartNoAH; |
| nActiveLinesNoAHGlobal += nActiveLinesNoAH; |
| } /* EOF DSE-suppression */ |
| } /* EOF for all elements... */ |
| |
| /* Calculate new redVal ... */ |
| if (desiredPe < redPeGlobal) { |
| /* new desired pe without bands where avoid hole is active */ |
| desiredPeNoAHGlobal = desiredPe - (redPeGlobal - redPeNoAHGlobal); |
| |
| /* limit desiredPeNoAH to positive values, as the PE can not become |
| * negative */ |
| desiredPeNoAHGlobal = fMax(0, desiredPeNoAHGlobal); |
| |
| /* second guess (only if there are bands left where avoid hole is |
| * inactive)*/ |
| if (nActiveLinesNoAHGlobal > 0) { |
| /* |
| avgThrExp = (float)pow(2.0f, (constPartNoAHGlobal - redPeNoAHGlobal) / |
| (4.0f * nActiveLinesNoAHGlobal)); redVal += (float)pow(2.0f, |
| (constPartNoAHGlobal - desiredPeNoAHGlobal) / (4.0f * |
| nActiveLinesNoAHGlobal)) - avgThrExp; redVal = max(0.0f, redVal); |
| */ |
| |
| redVal_m = CalcRedValPower(constPartNoAHGlobal - desiredPeNoAHGlobal, |
| 4 * nActiveLinesNoAHGlobal, &redVal_e); |
| avgThrExp_m = CalcRedValPower(constPartNoAHGlobal - redPeNoAHGlobal, |
| 4 * nActiveLinesNoAHGlobal, &avgThrExp_e); |
| result_e = fMax(reductionValue_e, fMax(redVal_e, avgThrExp_e) + 1) + 1; |
| |
| reductionValue_m = |
| fMax(FL2FXCONST_DBL(0.f), |
| scaleValue(reductionValue_m, reductionValue_e - result_e) + |
| scaleValue(redVal_m, redVal_e - result_e) - |
| scaleValue(avgThrExp_m, avgThrExp_e - result_e)); |
| reductionValue_e = result_e; |
| |
| } /* nActiveLinesNoAHGlobal > 0 */ |
| } else { |
| /* redVal *= redPeGlobal/desiredPe; */ |
| int sc0, sc1; |
| reductionValue_m = fMultNorm( |
| reductionValue_m, |
| fDivNorm((FIXP_DBL)redPeGlobal, (FIXP_DBL)desiredPe, &sc0), &sc1); |
| reductionValue_e += sc0 + sc1; |
| |
| for (elementId = elementOffset; elementId < nElements; elementId++) { |
| if (cm->elInfo[elementId].elType != ID_DSE) { |
| FDKaacEnc_resetAHFlags(pAhFlag[elementId], |
| cm->elInfo[elementId].nChannelsInEl, |
| psyOutElement[elementId]->psyOutChannel); |
| } /* EOF DSE-suppression */ |
| } /* EOF for all elements... */ |
| } |
| |
| redPeGlobal = 0; |
| /* Calculate new redVal's PE... */ |
| for (elementId = elementOffset; elementId < nElements; elementId++) { |
| if (cm->elInfo[elementId].elType != ID_DSE) { |
| INT nChannels = cm->elInfo[elementId].nChannelsInEl; |
| PE_DATA *peData = &qcElement[elementId]->peData; |
| |
| /* reduce thresholds */ |
| FDKaacEnc_reduceThresholdsCBR( |
| qcElement[elementId]->qcOutChannel, |
| psyOutElement[elementId]->psyOutChannel, pAhFlag[elementId], |
| pThrExp[elementId], nChannels, reductionValue_m, reductionValue_e); |
| |
| /* pe after second guess */ |
| FDKaacEnc_calcPe(psyOutElement[elementId]->psyOutChannel, |
| qcElement[elementId]->qcOutChannel, peData, nChannels); |
| redPeGlobal += peData->pe; |
| |
| } /* EOF DSE-suppression */ |
| } /* EOF for all elements... */ |
| |
| iter++; |
| } /* EOF while */ |
| |
| /* ------------------------------------------------------- */ |
| /* Part IV: if still required, further reduce constraints */ |
| /* ------------------------------------------------------- */ |
| /* 1.0* 1.15* 1.20* |
| * desiredPe desiredPe desiredPe |
| * | | | |
| * ...XXXXXXXXXXXXXXXXXXXXXXXXXXX| | |
| * | | |XXXXXXXXXXX... |
| * | |XXXXXXXXXXX| |
| * --- A --- | --- B --- | --- C --- |
| * |
| * (X): redPeGlobal |
| * (A): FDKaacEnc_correctThresh() |
| * (B): FDKaacEnc_allowMoreHoles() |
| * (C): FDKaacEnc_reduceMinSnr() |
| */ |
| |
| /* correct thresholds to get closer to the desired pe */ |
| if (redPeGlobal > desiredPe) { |
| FDKaacEnc_correctThresh(cm, qcElement, psyOutElement, pAhFlag, pThrExp, |
| reductionValue_m, reductionValue_e, |
| desiredPe - redPeGlobal, processElements, |
| elementOffset); |
| |
| /* update PE */ |
| redPeGlobal = 0; |
| for (elementId = elementOffset; elementId < nElements; elementId++) { |
| if (cm->elInfo[elementId].elType != ID_DSE) { |
| INT nChannels = cm->elInfo[elementId].nChannelsInEl; |
| PE_DATA *peData = &qcElement[elementId]->peData; |
| |
| /* pe after correctThresh */ |
| FDKaacEnc_calcPe(psyOutElement[elementId]->psyOutChannel, |
| qcElement[elementId]->qcOutChannel, peData, nChannels); |
| redPeGlobal += peData->pe; |
| |
| } /* EOF DSE-suppression */ |
| } /* EOF for all elements... */ |
| } |
| |
| if (redPeGlobal > desiredPe) { |
| /* reduce pe by reducing minSnr requirements */ |
| FDKaacEnc_reduceMinSnr( |
| cm, qcElement, psyOutElement, pAhFlag, |
| (fMultI(FL2FXCONST_DBL(0.15f), desiredPe) + desiredPe), &redPeGlobal, |
| processElements, elementOffset); |
| |
| /* reduce pe by allowing additional spectral holes */ |
| FDKaacEnc_allowMoreHoles(cm, qcElement, psyOutElement, AdjThrStateElement, |
| pAhFlag, desiredPe, redPeGlobal, processElements, |
| elementOffset); |
| } |
| } |
| |
| /* similar to FDKaacEnc_adaptThresholdsToPe(), for VBR-mode */ |
| static void FDKaacEnc_AdaptThresholdsVBR( |
| QC_OUT_CHANNEL *const qcOutChannel[(2)], |
| const PSY_OUT_CHANNEL *const psyOutChannel[(2)], |
| ATS_ELEMENT *const AdjThrStateElement, |
| const struct TOOLSINFO *const toolsInfo, const INT nChannels) { |
| UCHAR(*pAhFlag)[MAX_GROUPED_SFB]; |
| FIXP_DBL(*pThrExp)[MAX_GROUPED_SFB]; |
| |
| /* allocate scratch memory */ |
| C_ALLOC_SCRATCH_START(_pAhFlag, UCHAR, (2) * MAX_GROUPED_SFB) |
| C_ALLOC_SCRATCH_START(_pThrExp, FIXP_DBL, (2) * MAX_GROUPED_SFB) |
| pAhFlag = (UCHAR(*)[MAX_GROUPED_SFB])_pAhFlag; |
| pThrExp = (FIXP_DBL(*)[MAX_GROUPED_SFB])_pThrExp; |
| |
| /* thresholds to the power of redExp */ |
| FDKaacEnc_calcThreshExp(pThrExp, qcOutChannel, psyOutChannel, nChannels); |
| |
| /* lower the minSnr requirements for low energies compared to the average |
| energy in this frame */ |
| FDKaacEnc_adaptMinSnr(qcOutChannel, psyOutChannel, |
| &AdjThrStateElement->minSnrAdaptParam, nChannels); |
| |
| /* init ahFlag (0: no ah necessary, 1: ah possible, 2: ah active */ |
| FDKaacEnc_initAvoidHoleFlag(qcOutChannel, psyOutChannel, pAhFlag, toolsInfo, |
| nChannels, &AdjThrStateElement->ahParam); |
| |
| /* reduce thresholds */ |
| FDKaacEnc_reduceThresholdsVBR(qcOutChannel, psyOutChannel, pAhFlag, pThrExp, |
| nChannels, AdjThrStateElement->vbrQualFactor, |
| &AdjThrStateElement->chaosMeasureOld); |
| |
| /* free scratch memory */ |
| C_ALLOC_SCRATCH_END(_pThrExp, FIXP_DBL, (2) * MAX_GROUPED_SFB) |
| C_ALLOC_SCRATCH_END(_pAhFlag, UCHAR, (2) * MAX_GROUPED_SFB) |
| } |
| |
| /***************************************************************************** |
| |
| functionname: FDKaacEnc_calcBitSave |
| description: Calculates percentage of bit save, see figure below |
| returns: |
| input: parameters and bitres-fullness |
| output: percentage of bit save |
| |
| *****************************************************************************/ |
| /* |
| bitsave |
| maxBitSave(%)| clipLow |
| |---\ |
| | \ |
| | \ |
| | \ |
| | \ |
| |--------\--------------> bitres |
| | \ |
| minBitSave(%)| \------------ |
| clipHigh maxBitres |
| */ |
| static FIXP_DBL FDKaacEnc_calcBitSave(FIXP_DBL fillLevel, |
| const FIXP_DBL clipLow, |
| const FIXP_DBL clipHigh, |
| const FIXP_DBL minBitSave, |
| const FIXP_DBL maxBitSave, |
| const FIXP_DBL bitsave_slope) { |
| FIXP_DBL bitsave; |
| |
| fillLevel = fixMax(fillLevel, clipLow); |
| fillLevel = fixMin(fillLevel, clipHigh); |
| |
| bitsave = maxBitSave - fMult((fillLevel - clipLow), bitsave_slope); |
| |
| return (bitsave); |
| } |
| |
| /***************************************************************************** |
| |
| functionname: FDKaacEnc_calcBitSpend |
| description: Calculates percentage of bit spend, see figure below |
| returns: |
| input: parameters and bitres-fullness |
| output: percentage of bit spend |
| |
| *****************************************************************************/ |
| /* |
| bitspend clipHigh |
| maxBitSpend(%)| /-----------maxBitres |
| | / |
| | / |
| | / |
| | / |
| | / |
| |----/-----------------> bitres |
| | / |
| minBitSpend(%)|--/ |
| clipLow |
| */ |
| static FIXP_DBL FDKaacEnc_calcBitSpend(FIXP_DBL fillLevel, |
| const FIXP_DBL clipLow, |
| const FIXP_DBL clipHigh, |
| const FIXP_DBL minBitSpend, |
| const FIXP_DBL maxBitSpend, |
| const FIXP_DBL bitspend_slope) { |
| FIXP_DBL bitspend; |
| |
| fillLevel = fixMax(fillLevel, clipLow); |
| fillLevel = fixMin(fillLevel, clipHigh); |
| |
| bitspend = minBitSpend + fMult(fillLevel - clipLow, bitspend_slope); |
| |
| return (bitspend); |
| } |
| |
| /***************************************************************************** |
| |
| functionname: FDKaacEnc_adjustPeMinMax() |
| description: adjusts peMin and peMax parameters over time |
| returns: |
| input: current pe, peMin, peMax, bitres size |
| output: adjusted peMin/peMax |
| |
| *****************************************************************************/ |
| static void FDKaacEnc_adjustPeMinMax(const INT currPe, INT *peMin, INT *peMax) { |
| FIXP_DBL minFacHi = FL2FXCONST_DBL(0.3f), maxFacHi = (FIXP_DBL)MAXVAL_DBL, |
| minFacLo = FL2FXCONST_DBL(0.14f), maxFacLo = FL2FXCONST_DBL(0.07f); |
| INT diff; |
| |
| INT minDiff_fix = fMultI(FL2FXCONST_DBL(0.1666666667f), currPe); |
| |
| if (currPe > *peMax) { |
| diff = (currPe - *peMax); |
| *peMin += fMultI(minFacHi, diff); |
| *peMax += fMultI(maxFacHi, diff); |
| } else if (currPe < *peMin) { |
| diff = (*peMin - currPe); |
| *peMin -= fMultI(minFacLo, diff); |
| *peMax -= fMultI(maxFacLo, diff); |
| } else { |
| *peMin += fMultI(minFacHi, (currPe - *peMin)); |
| *peMax -= fMultI(maxFacLo, (*peMax - currPe)); |
| } |
| |
| if ((*peMax - *peMin) < minDiff_fix) { |
| INT peMax_fix = *peMax, peMin_fix = *peMin; |
| FIXP_DBL partLo_fix, partHi_fix; |
| |
| partLo_fix = (FIXP_DBL)fixMax(0, currPe - peMin_fix); |
| partHi_fix = (FIXP_DBL)fixMax(0, peMax_fix - currPe); |
| |
| peMax_fix = |
| (INT)(currPe + fMultI(fDivNorm(partHi_fix, (partLo_fix + partHi_fix)), |
| minDiff_fix)); |
| peMin_fix = |
| (INT)(currPe - fMultI(fDivNorm(partLo_fix, (partLo_fix + partHi_fix)), |
| minDiff_fix)); |
| peMin_fix = fixMax(0, peMin_fix); |
| |
| *peMax = peMax_fix; |
| *peMin = peMin_fix; |
| } |
| } |
| |
| /***************************************************************************** |
| |
| functionname: BitresCalcBitFac |
| description: calculates factor of spending bits for one frame |
| 1.0 : take all frame dynpart bits |
| >1.0 : take all frame dynpart bits + bitres |
| <1.0 : put bits in bitreservoir |
| returns: BitFac |
| input: bitres-fullness, pe, blockType, parameter-settings |
| output: |
| |
| *****************************************************************************/ |
| /* |
| bitfac(%) pemax |
| bitspend(%) | /-----------maxBitres |
| | / |
| | / |
| | / |
| | / |
| | / |
| |----/-----------------> pe |
| | / |
| bitsave(%) |--/ |
| pemin |
| */ |
| |
| void FDKaacEnc_bitresCalcBitFac(const INT bitresBits, const INT maxBitresBits, |
| const INT pe, const INT lastWindowSequence, |
| const INT avgBits, const FIXP_DBL maxBitFac, |
| const ADJ_THR_STATE *const AdjThr, |
| ATS_ELEMENT *const adjThrChan, |
| FIXP_DBL *const pBitresFac, |
| INT *const pBitresFac_e) { |
| const BRES_PARAM *bresParam; |
| INT pex; |
| FIXP_DBL fillLevel; |
| INT fillLevel_e = 0; |
| |
| FIXP_DBL bitresFac; |
| INT bitresFac_e; |
| |
| FIXP_DBL bitSave, bitSpend; |
| FIXP_DBL bitsave_slope, bitspend_slope; |
| FIXP_DBL fillLevel_fix = MAXVAL_DBL; |
| |
| FIXP_DBL slope = MAXVAL_DBL; |
| |
| if (lastWindowSequence != SHORT_WINDOW) { |
| bresParam = &(AdjThr->bresParamLong); |
| bitsave_slope = FL2FXCONST_DBL(0.466666666); |
| bitspend_slope = FL2FXCONST_DBL(0.666666666); |
| } else { |
| bresParam = &(AdjThr->bresParamShort); |
| bitsave_slope = (FIXP_DBL)0x2E8BA2E9; |
| bitspend_slope = (FIXP_DBL)0x7fffffff; |
| } |
| |
| // fillLevel = (float)(bitresBits+avgBits) / (float)(maxBitresBits + avgBits); |
| if (bitresBits < maxBitresBits) { |
| fillLevel_fix = fDivNorm(bitresBits, maxBitresBits); |
| } |
| |
| pex = fMax(pe, adjThrChan->peMin); |
| pex = fMin(pex, adjThrChan->peMax); |
| |
| bitSave = FDKaacEnc_calcBitSave( |
| fillLevel_fix, bresParam->clipSaveLow, bresParam->clipSaveHigh, |
| bresParam->minBitSave, bresParam->maxBitSave, bitsave_slope); |
| |
| bitSpend = FDKaacEnc_calcBitSpend( |
| fillLevel_fix, bresParam->clipSpendLow, bresParam->clipSpendHigh, |
| bresParam->minBitSpend, bresParam->maxBitSpend, bitspend_slope); |
| |
| slope = schur_div((pex - adjThrChan->peMin), |
| (adjThrChan->peMax - adjThrChan->peMin), 31); |
| |
| /* scale down by 1 bit because the result of the following addition can be |
| * bigger than 1 (though smaller than 2) */ |
| bitresFac = ((FIXP_DBL)(MAXVAL_DBL >> 1) - (bitSave >> 1)); |
| bitresFac_e = 1; /* exp=1 */ |
| bitresFac = fMultAddDiv2(bitresFac, slope, bitSpend + bitSave); /* exp=1 */ |
| |
| /*** limit bitresFac for small bitreservoir ***/ |
| fillLevel = fDivNorm(bitresBits, avgBits, &fillLevel_e); |
| if (fillLevel_e < 0) { |
| fillLevel = scaleValue(fillLevel, fillLevel_e); |
| fillLevel_e = 0; |
| } |
| /* shift down value by 1 because of summation, ... */ |
| fillLevel >>= 1; |
| fillLevel_e += 1; |
| /* ..., this summation: */ |
| fillLevel += scaleValue(FL2FXCONST_DBL(0.7f), -fillLevel_e); |
| /* set bitresfactor to same exponent as fillLevel */ |
| if (scaleValue(bitresFac, -fillLevel_e + 1) > fillLevel) { |
| bitresFac = fillLevel; |
| bitresFac_e = fillLevel_e; |
| } |
| |
| /* limit bitresFac for high bitrates */ |
| if (scaleValue(bitresFac, bitresFac_e - (DFRACT_BITS - 1 - 24)) > maxBitFac) { |
| bitresFac = maxBitFac; |
| bitresFac_e = (DFRACT_BITS - 1 - 24); |
| } |
| |
| FDKaacEnc_adjustPeMinMax(pe, &adjThrChan->peMin, &adjThrChan->peMax); |
| |
| /* output values */ |
| *pBitresFac = bitresFac; |
| *pBitresFac_e = bitresFac_e; |
| } |
| |
| /***************************************************************************** |
| functionname: FDKaacEnc_AdjThrNew |
| description: allocate ADJ_THR_STATE |
| *****************************************************************************/ |
| INT FDKaacEnc_AdjThrNew(ADJ_THR_STATE **phAdjThr, INT nElements) { |
| INT err = 0; |
| INT i; |
| ADJ_THR_STATE *hAdjThr = GetRam_aacEnc_AdjustThreshold(); |
| if (hAdjThr == NULL) { |
| err = 1; |
| goto bail; |
| } |
| |
| for (i = 0; i < nElements; i++) { |
| hAdjThr->adjThrStateElem[i] = GetRam_aacEnc_AdjThrStateElement(i); |
| if (hAdjThr->adjThrStateElem[i] == NULL) { |
| err = 1; |
| goto bail; |
| } |
| } |
| |
| bail: |
| *phAdjThr = hAdjThr; |
| return err; |
| } |
| |
| /***************************************************************************** |
| functionname: FDKaacEnc_AdjThrInit |
| description: initialize ADJ_THR_STATE |
| *****************************************************************************/ |
| void FDKaacEnc_AdjThrInit( |
| ADJ_THR_STATE *const hAdjThr, const INT meanPe, const INT invQuant, |
| const CHANNEL_MAPPING *const channelMapping, const INT sampleRate, |
| const INT totalBitrate, const INT isLowDelay, |
| const AACENC_BITRES_MODE bitResMode, const INT dZoneQuantEnable, |
| const INT bitDistributionMode, const FIXP_DBL vbrQualFactor) { |
| INT i; |
| |
| FIXP_DBL POINT8 = FL2FXCONST_DBL(0.8f); |
| FIXP_DBL POINT6 = FL2FXCONST_DBL(0.6f); |
| |
| if (bitDistributionMode == 1) { |
| hAdjThr->bitDistributionMode = AACENC_BD_MODE_INTRA_ELEMENT; |
| } else { |
| hAdjThr->bitDistributionMode = AACENC_BD_MODE_INTER_ELEMENT; |
| } |
| |
| /* Max number of iterations in second guess is 3 for lowdelay aot and for |
| configurations with multiple audio elements in general, otherwise iteration |
| value is always 1. */ |
| hAdjThr->maxIter2ndGuess = |
| (isLowDelay != 0 || channelMapping->nElements > 1) ? 3 : 1; |
| |
| /* common for all elements: */ |
| /* parameters for bitres control */ |
| hAdjThr->bresParamLong.clipSaveLow = |
| (FIXP_DBL)0x1999999a; /* FL2FXCONST_DBL(0.2f); */ |
| hAdjThr->bresParamLong.clipSaveHigh = |
| (FIXP_DBL)0x7999999a; /* FL2FXCONST_DBL(0.95f); */ |
| hAdjThr->bresParamLong.minBitSave = |
| (FIXP_DBL)0xf999999a; /* FL2FXCONST_DBL(-0.05f); */ |
| hAdjThr->bresParamLong.maxBitSave = |
| (FIXP_DBL)0x26666666; /* FL2FXCONST_DBL(0.3f); */ |
| hAdjThr->bresParamLong.clipSpendLow = |
| (FIXP_DBL)0x1999999a; /* FL2FXCONST_DBL(0.2f); */ |
| hAdjThr->bresParamLong.clipSpendHigh = |
| (FIXP_DBL)0x7999999a; /* FL2FXCONST_DBL(0.95f); */ |
| hAdjThr->bresParamLong.minBitSpend = |
| (FIXP_DBL)0xf3333333; /* FL2FXCONST_DBL(-0.10f); */ |
| hAdjThr->bresParamLong.maxBitSpend = |
| (FIXP_DBL)0x33333333; /* FL2FXCONST_DBL(0.4f); */ |
| |
| hAdjThr->bresParamShort.clipSaveLow = |
| (FIXP_DBL)0x199999a0; /* FL2FXCONST_DBL(0.2f); */ |
| hAdjThr->bresParamShort.clipSaveHigh = |
| (FIXP_DBL)0x5fffffff; /* FL2FXCONST_DBL(0.75f); */ |
| hAdjThr->bresParamShort.minBitSave = |
| (FIXP_DBL)0x00000000; /* FL2FXCONST_DBL(0.0f); */ |
| hAdjThr->bresParamShort.maxBitSave = |
| (FIXP_DBL)0x199999a0; /* FL2FXCONST_DBL(0.2f); */ |
| hAdjThr->bresParamShort.clipSpendLow = |
| (FIXP_DBL)0x199999a0; /* FL2FXCONST_DBL(0.2f); */ |
| hAdjThr->bresParamShort.clipSpendHigh = |
| (FIXP_DBL)0x5fffffff; /* FL2FXCONST_DBL(0.75f); */ |
| hAdjThr->bresParamShort.minBitSpend = |
| (FIXP_DBL)0xf9999998; /* FL2FXCONST_DBL(-0.05f); */ |
| hAdjThr->bresParamShort.maxBitSpend = |
| (FIXP_DBL)0x40000000; /* FL2FXCONST_DBL(0.5f); */ |
| |
| /* specific for each element: */ |
| for (i = 0; i < channelMapping->nElements; i++) { |
| const FIXP_DBL relativeBits = channelMapping->elInfo[i].relativeBits; |
| const INT nChannelsInElement = channelMapping->elInfo[i].nChannelsInEl; |
| const INT bitrateInElement = |
| (relativeBits != (FIXP_DBL)MAXVAL_DBL) |
| ? (INT)fMultNorm(relativeBits, (FIXP_DBL)totalBitrate) |
| : totalBitrate; |
| const INT chBitrate = bitrateInElement >> (nChannelsInElement == 1 ? 0 : 1); |
| |
| ATS_ELEMENT *atsElem = hAdjThr->adjThrStateElem[i]; |
| MINSNR_ADAPT_PARAM *msaParam = &atsElem->minSnrAdaptParam; |
| |
| /* parameters for bitres control */ |
| if (isLowDelay) { |
| atsElem->peMin = fMultI(POINT8, meanPe); |
| atsElem->peMax = fMultI(POINT6, meanPe) << 1; |
| } else { |
| atsElem->peMin = fMultI(POINT8, meanPe) >> 1; |
| atsElem->peMax = fMultI(POINT6, meanPe); |
| } |
| |
| /* for use in FDKaacEnc_reduceThresholdsVBR */ |
| atsElem->chaosMeasureOld = FL2FXCONST_DBL(0.3f); |
| |
| /* additional pe offset to correct pe2bits for low bitrates */ |
| /* ---- no longer necessary, set by table ----- */ |
| atsElem->peOffset = 0; |
| |
| /* vbr initialisation */ |
| atsElem->vbrQualFactor = vbrQualFactor; |
| if (chBitrate < 32000) { |
| atsElem->peOffset = |
| fixMax(50, 100 - fMultI((FIXP_DBL)0x666667, chBitrate)); |
| } |
| |
| /* avoid hole parameters */ |
| if (chBitrate >= 20000) { |
| atsElem->ahParam.modifyMinSnr = TRUE; |
| atsElem->ahParam.startSfbL = 15; |
| atsElem->ahParam.startSfbS = 3; |
| } else { |
| atsElem->ahParam.modifyMinSnr = FALSE; |
| atsElem->ahParam.startSfbL = 0; |
| atsElem->ahParam.startSfbS = 0; |
| } |
| |
| /* minSnr adaptation */ |
| msaParam->maxRed = FL2FXCONST_DBL(0.00390625f); /* 0.25f/64.0f */ |
| /* start adaptation of minSnr for avgEn/sfbEn > startRatio */ |
| msaParam->startRatio = FL2FXCONST_DBL(0.05190512648f); /* ld64(10.0f) */ |
| /* maximum minSnr reduction to minSnr^maxRed is reached for |
| avgEn/sfbEn >= maxRatio */ |
| /* msaParam->maxRatio = 1000.0f; */ |
| /*msaParam->redRatioFac = ((float)1.0f - msaParam->maxRed) / |
| * ((float)10.0f*log10(msaParam->startRatio/msaParam->maxRatio)/log10(2.0f)*(float)0.3010299956f);*/ |
| msaParam->redRatioFac = FL2FXCONST_DBL(-0.375f); /* -0.0375f * 10.0f */ |
| /*msaParam->redOffs = (float)1.0f - msaParam->redRatioFac * (float)10.0f * |
| * log10(msaParam->startRatio)/log10(2.0f) * (float)0.3010299956f;*/ |
| msaParam->redOffs = FL2FXCONST_DBL(0.021484375); /* 1.375f/64.0f */ |
| |
| /* init pe correction */ |
| atsElem->peCorrectionFactor_m = FL2FXCONST_DBL(0.5f); /* 1.0 */ |
| atsElem->peCorrectionFactor_e = 1; |
| |
| atsElem->dynBitsLast = -1; |
| atsElem->peLast = 0; |
| |
| /* init bits to pe factor */ |
| |
| /* init bits2PeFactor */ |
| FDKaacEnc_InitBits2PeFactor( |
| &atsElem->bits2PeFactor_m, &atsElem->bits2PeFactor_e, bitrateInElement, |
| nChannelsInElement, sampleRate, isLowDelay, dZoneQuantEnable, invQuant); |
| |
| } /* for nElements */ |
| } |
| |
| /***************************************************************************** |
| functionname: FDKaacEnc_FDKaacEnc_calcPeCorrection |
| description: calc desired pe |
| *****************************************************************************/ |
| static void FDKaacEnc_FDKaacEnc_calcPeCorrection( |
| FIXP_DBL *const correctionFac_m, INT *const correctionFac_e, |
| const INT peAct, const INT peLast, const INT bitsLast, |
| const FIXP_DBL bits2PeFactor_m, const INT bits2PeFactor_e) { |
| if ((bitsLast > 0) && (peAct < 1.5f * peLast) && (peAct > 0.7f * peLast) && |
| (FDKaacEnc_bits2pe2(bitsLast, |
| fMult(FL2FXCONST_DBL(1.2f / 2.f), bits2PeFactor_m), |
| bits2PeFactor_e + 1) > peLast) && |
| (FDKaacEnc_bits2pe2(bitsLast, |
| fMult(FL2FXCONST_DBL(0.65f), bits2PeFactor_m), |
| bits2PeFactor_e) < peLast)) { |
| FIXP_DBL corrFac = *correctionFac_m; |
| |
| int scaling = 0; |
| FIXP_DBL denum = (FIXP_DBL)FDKaacEnc_bits2pe2(bitsLast, bits2PeFactor_m, |
| bits2PeFactor_e); |
| FIXP_DBL newFac = fDivNorm((FIXP_DBL)peLast, denum, &scaling); |
| |
| /* dead zone, newFac and corrFac are scaled by 0.5 */ |
| if ((FIXP_DBL)peLast <= denum) { /* ratio <= 1.f */ |
| newFac = fixMax( |
| scaleValue(fixMin(fMult(FL2FXCONST_DBL(1.1f / 2.f), newFac), |
| scaleValue(FL2FXCONST_DBL(1.f / 2.f), -scaling)), |
| scaling), |
| FL2FXCONST_DBL(0.85f / 2.f)); |
| } else { /* ratio < 1.f */ |
| newFac = fixMax( |
| fixMin(scaleValue(fMult(FL2FXCONST_DBL(0.9f / 2.f), newFac), scaling), |
| FL2FXCONST_DBL(1.15f / 2.f)), |
| FL2FXCONST_DBL(1.f / 2.f)); |
| } |
| |
| if (((newFac > FL2FXCONST_DBL(1.f / 2.f)) && |
| (corrFac < FL2FXCONST_DBL(1.f / 2.f))) || |
| ((newFac < FL2FXCONST_DBL(1.f / 2.f)) && |
| (corrFac > FL2FXCONST_DBL(1.f / 2.f)))) { |
| corrFac = FL2FXCONST_DBL(1.f / 2.f); |
| } |
| |
| /* faster adaptation towards 1.0, slower in the other direction */ |
| if ((corrFac < FL2FXCONST_DBL(1.f / 2.f) && newFac < corrFac) || |
| (corrFac > FL2FXCONST_DBL(1.f / 2.f) && newFac > corrFac)) { |
| corrFac = fMult(FL2FXCONST_DBL(0.85f), corrFac) + |
| fMult(FL2FXCONST_DBL(0.15f), newFac); |
| } else { |
| corrFac = fMult(FL2FXCONST_DBL(0.7f), corrFac) + |
| fMult(FL2FXCONST_DBL(0.3f), newFac); |
| } |
| |
| corrFac = fixMax(fixMin(corrFac, FL2FXCONST_DBL(1.15f / 2.f)), |
| FL2FXCONST_DBL(0.85 / 2.f)); |
| |
| *correctionFac_m = corrFac; |
| *correctionFac_e = 1; |
| } else { |
| *correctionFac_m = FL2FXCONST_DBL(1.f / 2.f); |
| *correctionFac_e = 1; |
| } |
| } |
| |
| static void FDKaacEnc_calcPeCorrectionLowBitRes( |
| FIXP_DBL *const correctionFac_m, INT *const correctionFac_e, |
| const INT peLast, const INT bitsLast, const INT bitresLevel, |
| const INT nChannels, const FIXP_DBL bits2PeFactor_m, |
| const INT bits2PeFactor_e) { |
| /* tuning params */ |
| const FIXP_DBL amp = FL2FXCONST_DBL(0.005); |
| const FIXP_DBL maxDiff = FL2FXCONST_DBL(0.25f); |
| |
| if (bitsLast > 0) { |
| /* Estimate deviation of granted and used dynamic bits in previous frame, in |
| * PE units */ |
| const int bitsBalLast = |
| peLast - FDKaacEnc_bits2pe2(bitsLast, bits2PeFactor_m, bits2PeFactor_e); |
| |
| /* reserve n bits per channel */ |
| int headroom = (bitresLevel >= 50 * nChannels) ? 0 : (100 * nChannels); |
| |
| /* in PE units */ |
| headroom = FDKaacEnc_bits2pe2(headroom, bits2PeFactor_m, bits2PeFactor_e); |
| |
| /* |
| * diff = amp * ((bitsBalLast - headroom) / (bitresLevel + headroom) |
| * diff = max ( min ( diff, maxDiff, -maxDiff)) / 2 |
| */ |
| FIXP_DBL denominator = (FIXP_DBL)FDKaacEnc_bits2pe2( |
| bitresLevel, bits2PeFactor_m, bits2PeFactor_e) + |
| (FIXP_DBL)headroom; |
| |
| int scaling = 0; |
| FIXP_DBL diff = |
| (bitsBalLast >= headroom) |
| ? fMult(amp, fDivNorm((FIXP_DBL)(bitsBalLast - headroom), |
| denominator, &scaling)) |
| : -fMult(amp, fDivNorm(-(FIXP_DBL)(bitsBalLast - headroom), |
| denominator, &scaling)); |
| |
| scaling -= 1; /* divide by 2 */ |
| |
| diff = (scaling <= 0) |
| ? fMax(fMin(diff >> (-scaling), maxDiff >> 1), -maxDiff >> 1) |
| : fMax(fMin(diff, maxDiff >> (1 + scaling)), |
| -maxDiff >> (1 + scaling)) |
| << scaling; |
| |
| /* |
| * corrFac += diff |
| * corrFac = max ( min ( corrFac/2.f, 1.f/2.f, 0.75f/2.f ) ) |
| */ |
| *correctionFac_m = |
| fMax(fMin((*correctionFac_m) + diff, FL2FXCONST_DBL(1.0f / 2.f)), |
| FL2FXCONST_DBL(0.75f / 2.f)); |
| *correctionFac_e = 1; |
| } else { |
|