blob: 290ec354ed321284e83fc0e84e0d35600aad15a5 [file] [log] [blame]
/* -----------------------------------------------------------------------------
Software License for The Fraunhofer FDK AAC Codec Library for Android
© Copyright 1995 - 2018 Fraunhofer-Gesellschaft zur Förderung der angewandten
Forschung e.V. All rights reserved.
1. INTRODUCTION
The Fraunhofer FDK AAC Codec Library for Android ("FDK AAC Codec") is software
that implements the MPEG Advanced Audio Coding ("AAC") encoding and decoding
scheme for digital audio. This FDK AAC Codec software is intended to be used on
a wide variety of Android devices.
AAC's HE-AAC and HE-AAC v2 versions are regarded as today's most efficient
general perceptual audio codecs. AAC-ELD is considered the best-performing
full-bandwidth communications codec by independent studies and is widely
deployed. AAC has been standardized by ISO and IEC as part of the MPEG
specifications.
Patent licenses for necessary patent claims for the FDK AAC Codec (including
those of Fraunhofer) may be obtained through Via Licensing
(www.vialicensing.com) or through the respective patent owners individually for
the purpose of encoding or decoding bit streams in products that are compliant
with the ISO/IEC MPEG audio standards. Please note that most manufacturers of
Android devices already license these patent claims through Via Licensing or
directly from the patent owners, and therefore FDK AAC Codec software may
already be covered under those patent licenses when it is used for those
licensed purposes only.
Commercially-licensed AAC software libraries, including floating-point versions
with enhanced sound quality, are also available from Fraunhofer. Users are
encouraged to check the Fraunhofer website for additional applications
information and documentation.
2. COPYRIGHT LICENSE
Redistribution and use in source and binary forms, with or without modification,
are permitted without payment of copyright license fees provided that you
satisfy the following conditions:
You must retain the complete text of this software license in redistributions of
the FDK AAC Codec or your modifications thereto in source code form.
You must retain the complete text of this software license in the documentation
and/or other materials provided with redistributions of the FDK AAC Codec or
your modifications thereto in binary form. You must make available free of
charge copies of the complete source code of the FDK AAC Codec and your
modifications thereto to recipients of copies in binary form.
The name of Fraunhofer may not be used to endorse or promote products derived
from this library without prior written permission.
You may not charge copyright license fees for anyone to use, copy or distribute
the FDK AAC Codec software or your modifications thereto.
Your modified versions of the FDK AAC Codec must carry prominent notices stating
that you changed the software and the date of any change. For modified versions
of the FDK AAC Codec, the term "Fraunhofer FDK AAC Codec Library for Android"
must be replaced by the term "Third-Party Modified Version of the Fraunhofer FDK
AAC Codec Library for Android."
3. NO PATENT LICENSE
NO EXPRESS OR IMPLIED LICENSES TO ANY PATENT CLAIMS, including without
limitation the patents of Fraunhofer, ARE GRANTED BY THIS SOFTWARE LICENSE.
Fraunhofer provides no warranty of patent non-infringement with respect to this
software.
You may use this FDK AAC Codec software or modifications thereto only for
purposes that are authorized by appropriate patent licenses.
4. DISCLAIMER
This FDK AAC Codec software is provided by Fraunhofer on behalf of the copyright
holders and contributors "AS IS" and WITHOUT ANY EXPRESS OR IMPLIED WARRANTIES,
including but not limited to the implied warranties of merchantability and
fitness for a particular purpose. IN NO EVENT SHALL THE COPYRIGHT HOLDER OR
CONTRIBUTORS BE LIABLE for any direct, indirect, incidental, special, exemplary,
or consequential damages, including but not limited to procurement of substitute
goods or services; loss of use, data, or profits, or business interruption,
however caused and on any theory of liability, whether in contract, strict
liability, or tort (including negligence), arising in any way out of the use of
this software, even if advised of the possibility of such damage.
5. CONTACT INFORMATION
Fraunhofer Institute for Integrated Circuits IIS
Attention: Audio and Multimedia Departments - FDK AAC LL
Am Wolfsmantel 33
91058 Erlangen, Germany
www.iis.fraunhofer.de/amm
amm-info@iis.fraunhofer.de
----------------------------------------------------------------------------- */
/**************************** SBR encoder library ******************************
Author(s):
Description:
*******************************************************************************/
#include "nf_est.h"
#include "sbr_misc.h"
#include "genericStds.h"
/* smoothFilter[4] = {0.05857864376269f, 0.2f, 0.34142135623731f, 0.4f}; */
static const FIXP_DBL smoothFilter[4] = {0x077f813d, 0x19999995, 0x2bb3b1f5,
0x33333335};
/* static const INT smoothFilterLength = 4; */
static const FIXP_DBL QuantOffset = (INT)0xfc000000; /* ld64(0.25) */
#ifndef min
#define min(a, b) (a < b ? a : b)
#endif
#ifndef max
#define max(a, b) (a > b ? a : b)
#endif
#define NOISE_FLOOR_OFFSET_SCALING (4)
/**************************************************************************/
/*!
\brief The function applies smoothing to the noise levels.
\return none
*/
/**************************************************************************/
static void smoothingOfNoiseLevels(
FIXP_DBL *NoiseLevels, /*!< pointer to noise-floor levels.*/
INT nEnvelopes, /*!< Number of noise floor envelopes.*/
INT noNoiseBands, /*!< Number of noise bands for every noise floor envelope.
*/
FIXP_DBL prevNoiseLevels[NF_SMOOTHING_LENGTH]
[MAX_NUM_NOISE_VALUES], /*!< Previous noise floor
envelopes. */
const FIXP_DBL *
pSmoothFilter, /*!< filter used for smoothing the noise floor levels. */
INT transientFlag) /*!< flag indicating if a transient is present*/
{
INT i, band, env;
FIXP_DBL accu;
for (env = 0; env < nEnvelopes; env++) {
if (transientFlag) {
for (i = 0; i < NF_SMOOTHING_LENGTH; i++) {
FDKmemcpy(prevNoiseLevels[i], NoiseLevels + env * noNoiseBands,
noNoiseBands * sizeof(FIXP_DBL));
}
} else {
for (i = 1; i < NF_SMOOTHING_LENGTH; i++) {
FDKmemcpy(prevNoiseLevels[i - 1], prevNoiseLevels[i],
noNoiseBands * sizeof(FIXP_DBL));
}
FDKmemcpy(prevNoiseLevels[NF_SMOOTHING_LENGTH - 1],
NoiseLevels + env * noNoiseBands,
noNoiseBands * sizeof(FIXP_DBL));
}
for (band = 0; band < noNoiseBands; band++) {
accu = FL2FXCONST_DBL(0.0f);
for (i = 0; i < NF_SMOOTHING_LENGTH; i++) {
accu += fMultDiv2(pSmoothFilter[i], prevNoiseLevels[i][band]);
}
FDK_ASSERT((band + env * noNoiseBands) < MAX_NUM_NOISE_VALUES);
NoiseLevels[band + env * noNoiseBands] = accu << 1;
}
}
}
/**************************************************************************/
/*!
\brief Does the noise floor level estiamtion.
The noiseLevel samples are scaled by the factor 0.25
\return none
*/
/**************************************************************************/
static void qmfBasedNoiseFloorDetection(
FIXP_DBL *noiseLevel, /*!< Pointer to vector to
store the noise levels
in.*/
FIXP_DBL **quotaMatrixOrig, /*!< Matrix holding the quota
values of the original. */
SCHAR *indexVector, /*!< Index vector to obtain the
patched data. */
INT startIndex, /*!< Start index. */
INT stopIndex, /*!< Stop index. */
INT startChannel, /*!< Start channel of the current
noise floor band.*/
INT stopChannel, /*!< Stop channel of the current
noise floor band. */
FIXP_DBL ana_max_level, /*!< Maximum level of the
adaptive noise.*/
FIXP_DBL noiseFloorOffset, /*!< Noise floor offset. */
INT missingHarmonicFlag, /*!< Flag indicating if a
strong tonal component
is missing.*/
FIXP_DBL weightFac, /*!< Weightening factor for the
difference between orig and sbr.
*/
INVF_MODE diffThres, /*!< Threshold value to control the
inverse filtering decision.*/
INVF_MODE inverseFilteringLevel) /*!< Inverse filtering
level of the current
band.*/
{
INT scale, l, k;
FIXP_DBL meanOrig = FL2FXCONST_DBL(0.0f), meanSbr = FL2FXCONST_DBL(0.0f),
diff;
FIXP_DBL invIndex = GetInvInt(stopIndex - startIndex);
FIXP_DBL invChannel = GetInvInt(stopChannel - startChannel);
FIXP_DBL accu;
/*
Calculate the mean value, over the current time segment, for the original, the
HFR and the difference, over all channels in the current frequency range.
*/
if (missingHarmonicFlag == 1) {
for (l = startChannel; l < stopChannel; l++) {
/* tonalityOrig */
accu = FL2FXCONST_DBL(0.0f);
for (k = startIndex; k < stopIndex; k++) {
accu += fMultDiv2(quotaMatrixOrig[k][l], invIndex);
}
meanOrig = fixMax(meanOrig, (accu << 1));
/* tonalitySbr */
accu = FL2FXCONST_DBL(0.0f);
for (k = startIndex; k < stopIndex; k++) {
accu += fMultDiv2(quotaMatrixOrig[k][indexVector[l]], invIndex);
}
meanSbr = fixMax(meanSbr, (accu << 1));
}
} else {
for (l = startChannel; l < stopChannel; l++) {
/* tonalityOrig */
accu = FL2FXCONST_DBL(0.0f);
for (k = startIndex; k < stopIndex; k++) {
accu += fMultDiv2(quotaMatrixOrig[k][l], invIndex);
}
meanOrig += fMult((accu << 1), invChannel);
/* tonalitySbr */
accu = FL2FXCONST_DBL(0.0f);
for (k = startIndex; k < stopIndex; k++) {
accu += fMultDiv2(quotaMatrixOrig[k][indexVector[l]], invIndex);
}
meanSbr += fMult((accu << 1), invChannel);
}
}
/* Small fix to avoid noise during silent passages.*/
if (meanOrig <= FL2FXCONST_DBL(0.000976562f * RELAXATION_FLOAT) &&
meanSbr <= FL2FXCONST_DBL(0.000976562f * RELAXATION_FLOAT)) {
meanOrig = FL2FXCONST_DBL(101.5936673f * RELAXATION_FLOAT);
meanSbr = FL2FXCONST_DBL(101.5936673f * RELAXATION_FLOAT);
}
meanOrig = fixMax(meanOrig, RELAXATION);
meanSbr = fixMax(meanSbr, RELAXATION);
if (missingHarmonicFlag == 1 || inverseFilteringLevel == INVF_MID_LEVEL ||
inverseFilteringLevel == INVF_LOW_LEVEL ||
inverseFilteringLevel == INVF_OFF || inverseFilteringLevel <= diffThres) {
diff = RELAXATION;
} else {
accu = fDivNorm(meanSbr, meanOrig, &scale);
diff = fixMax(RELAXATION, fMult(RELAXATION_FRACT, fMult(weightFac, accu)) >>
(RELAXATION_SHIFT - scale));
}
/*
* noise Level is now a positive value, i.e.
* the more harmonic the signal is the higher noise level,
* this makes no sense so we change the sign.
*********************************************************/
accu = fDivNorm(diff, meanOrig, &scale);
scale -= 2;
if ((scale > 0) && (accu > ((FIXP_DBL)MAXVAL_DBL) >> scale)) {
*noiseLevel = (FIXP_DBL)MAXVAL_DBL;
} else {
*noiseLevel = scaleValue(accu, scale);
}
/*
* Add a noise floor offset to compensate for bias in the detector
*****************************************************************/
if (!missingHarmonicFlag) {
*noiseLevel = fixMin(fMult(*noiseLevel, noiseFloorOffset),
(FIXP_DBL)MAXVAL_DBL >> NOISE_FLOOR_OFFSET_SCALING)
<< NOISE_FLOOR_OFFSET_SCALING;
}
/*
* check to see that we don't exceed the maximum allowed level
**************************************************************/
*noiseLevel =
fixMin(*noiseLevel,
ana_max_level); /* ana_max_level is scaled with factor 0.25 */
}
/**************************************************************************/
/*!
\brief Does the noise floor level estiamtion.
The function calls the Noisefloor estimation function
for the time segments decided based upon the transient
information. The block is always divided into one or two segments.
\return none
*/
/**************************************************************************/
void FDKsbrEnc_sbrNoiseFloorEstimateQmf(
HANDLE_SBR_NOISE_FLOOR_ESTIMATE
h_sbrNoiseFloorEstimate, /*!< Handle to SBR_NOISE_FLOOR_ESTIMATE struct
*/
const SBR_FRAME_INFO
*frame_info, /*!< Time frequency grid of the current frame. */
FIXP_DBL
*noiseLevels, /*!< Pointer to vector to store the noise levels in.*/
FIXP_DBL **quotaMatrixOrig, /*!< Matrix holding the quota values of the
original. */
SCHAR *indexVector, /*!< Index vector to obtain the patched data. */
INT missingHarmonicsFlag, /*!< Flag indicating if a strong tonal component
will be missing. */
INT startIndex, /*!< Start index. */
UINT numberOfEstimatesPerFrame, /*!< The number of tonality estimates per
frame. */
int transientFrame, /*!< A flag indicating if a transient is present. */
INVF_MODE *pInvFiltLevels, /*!< Pointer to the vector holding the inverse
filtering levels. */
UINT sbrSyntaxFlags)
{
INT nNoiseEnvelopes, startPos[2], stopPos[2], env, band;
INT noNoiseBands = h_sbrNoiseFloorEstimate->noNoiseBands;
INT *freqBandTable = h_sbrNoiseFloorEstimate->freqBandTableQmf;
nNoiseEnvelopes = frame_info->nNoiseEnvelopes;
startPos[0] = startIndex;
if (nNoiseEnvelopes == 1) {
stopPos[0] = startIndex + min(numberOfEstimatesPerFrame, 2);
} else {
stopPos[0] = startIndex + 1;
startPos[1] = startIndex + 1;
stopPos[1] = startIndex + min(numberOfEstimatesPerFrame, 2);
}
/*
* Estimate the noise floor.
**************************************/
for (env = 0; env < nNoiseEnvelopes; env++) {
for (band = 0; band < noNoiseBands; band++) {
FDK_ASSERT((band + env * noNoiseBands) < MAX_NUM_NOISE_VALUES);
qmfBasedNoiseFloorDetection(
&noiseLevels[band + env * noNoiseBands], quotaMatrixOrig, indexVector,
startPos[env], stopPos[env], freqBandTable[band],
freqBandTable[band + 1], h_sbrNoiseFloorEstimate->ana_max_level,
h_sbrNoiseFloorEstimate->noiseFloorOffset[band], missingHarmonicsFlag,
h_sbrNoiseFloorEstimate->weightFac,
h_sbrNoiseFloorEstimate->diffThres, pInvFiltLevels[band]);
}
}
/*
* Smoothing of the values.
**************************/
smoothingOfNoiseLevels(noiseLevels, nNoiseEnvelopes,
h_sbrNoiseFloorEstimate->noNoiseBands,
h_sbrNoiseFloorEstimate->prevNoiseLevels,
h_sbrNoiseFloorEstimate->smoothFilter, transientFrame);
/* quantisation*/
for (env = 0; env < nNoiseEnvelopes; env++) {
for (band = 0; band < noNoiseBands; band++) {
FDK_ASSERT((band + env * noNoiseBands) < MAX_NUM_NOISE_VALUES);
noiseLevels[band + env * noNoiseBands] =
(FIXP_DBL)NOISE_FLOOR_OFFSET_64 -
(FIXP_DBL)CalcLdData(noiseLevels[band + env * noNoiseBands] +
(FIXP_DBL)1) +
QuantOffset;
}
}
}
/**************************************************************************/
/*!
\brief
\return errorCode, noError if successful
*/
/**************************************************************************/
static INT downSampleLoRes(INT *v_result, /*!< */
INT num_result, /*!< */
const UCHAR *freqBandTableRef, /*!< */
INT num_Ref) /*!< */
{
INT step;
INT i, j;
INT org_length, result_length;
INT v_index[MAX_FREQ_COEFFS / 2];
/* init */
org_length = num_Ref;
result_length = num_result;
v_index[0] = 0; /* Always use left border */
i = 0;
while (org_length > 0) /* Create downsample vector */
{
i++;
step = org_length / result_length; /* floor; */
org_length = org_length - step;
result_length--;
v_index[i] = v_index[i - 1] + step;
}
if (i != num_result) /* Should never happen */
return (1); /* error downsampling */
for (j = 0; j <= i;
j++) /* Use downsample vector to index LoResolution vector. */
{
v_result[j] = freqBandTableRef[v_index[j]];
}
return (0);
}
/**************************************************************************/
/*!
\brief Initialize an instance of the noise floor level estimation module.
\return errorCode, noError if successful
*/
/**************************************************************************/
INT FDKsbrEnc_InitSbrNoiseFloorEstimate(
HANDLE_SBR_NOISE_FLOOR_ESTIMATE
h_sbrNoiseFloorEstimate, /*!< Handle to SBR_NOISE_FLOOR_ESTIMATE struct
*/
INT ana_max_level, /*!< Maximum level of the adaptive noise. */
const UCHAR *freqBandTable, /*!< Frequency band table. */
INT nSfb, /*!< Number of frequency bands. */
INT noiseBands, /*!< Number of noise bands per octave. */
INT noiseFloorOffset, /*!< Noise floor offset. */
INT timeSlots, /*!< Number of time slots in a frame. */
UINT useSpeechConfig /*!< Flag: adapt tuning parameters according to speech
*/
) {
INT i, qexp, qtmp;
FIXP_DBL tmp, exp;
FDKmemclear(h_sbrNoiseFloorEstimate, sizeof(SBR_NOISE_FLOOR_ESTIMATE));
h_sbrNoiseFloorEstimate->smoothFilter = smoothFilter;
if (useSpeechConfig) {
h_sbrNoiseFloorEstimate->weightFac = (FIXP_DBL)MAXVAL_DBL;
h_sbrNoiseFloorEstimate->diffThres = INVF_LOW_LEVEL;
} else {
h_sbrNoiseFloorEstimate->weightFac = FL2FXCONST_DBL(0.25f);
h_sbrNoiseFloorEstimate->diffThres = INVF_MID_LEVEL;
}
h_sbrNoiseFloorEstimate->timeSlots = timeSlots;
h_sbrNoiseFloorEstimate->noiseBands = noiseBands;
/* h_sbrNoiseFloorEstimate->ana_max_level is scaled by 0.25 */
switch (ana_max_level) {
case 6:
h_sbrNoiseFloorEstimate->ana_max_level = (FIXP_DBL)MAXVAL_DBL;
break;
case 3:
h_sbrNoiseFloorEstimate->ana_max_level = FL2FXCONST_DBL(0.5);
break;
case -3:
h_sbrNoiseFloorEstimate->ana_max_level = FL2FXCONST_DBL(0.125);
break;
default:
/* Should not enter here */
h_sbrNoiseFloorEstimate->ana_max_level = (FIXP_DBL)MAXVAL_DBL;
break;
}
/*
calculate number of noise bands and allocate
*/
if (FDKsbrEnc_resetSbrNoiseFloorEstimate(h_sbrNoiseFloorEstimate,
freqBandTable, nSfb))
return (1);
if (noiseFloorOffset == 0) {
tmp = ((FIXP_DBL)MAXVAL_DBL) >> NOISE_FLOOR_OFFSET_SCALING;
} else {
/* noiseFloorOffset has to be smaller than 12, because
the result of the calculation below must be smaller than 1:
(2^(noiseFloorOffset/3))*2^4<1 */
FDK_ASSERT(noiseFloorOffset < 12);
/* Assumes the noise floor offset in tuning table are in q31 */
/* Change the qformat here when non-zero values would be filled */
exp = fDivNorm((FIXP_DBL)noiseFloorOffset, 3, &qexp);
tmp = fPow(2, DFRACT_BITS - 1, exp, qexp, &qtmp);
tmp = scaleValue(tmp, qtmp - NOISE_FLOOR_OFFSET_SCALING);
}
for (i = 0; i < h_sbrNoiseFloorEstimate->noNoiseBands; i++) {
h_sbrNoiseFloorEstimate->noiseFloorOffset[i] = tmp;
}
return (0);
}
/**************************************************************************/
/*!
\brief Resets the current instance of the noise floor estiamtion
module.
\return errorCode, noError if successful
*/
/**************************************************************************/
INT FDKsbrEnc_resetSbrNoiseFloorEstimate(
HANDLE_SBR_NOISE_FLOOR_ESTIMATE
h_sbrNoiseFloorEstimate, /*!< Handle to SBR_NOISE_FLOOR_ESTIMATE struct
*/
const UCHAR *freqBandTable, /*!< Frequency band table. */
INT nSfb /*!< Number of bands in the frequency band table. */
) {
INT k2, kx;
/*
* Calculate number of noise bands
***********************************/
k2 = freqBandTable[nSfb];
kx = freqBandTable[0];
if (h_sbrNoiseFloorEstimate->noiseBands == 0) {
h_sbrNoiseFloorEstimate->noNoiseBands = 1;
} else {
/*
* Calculate number of noise bands 1,2 or 3 bands/octave
********************************************************/
FIXP_DBL tmp, ratio, lg2;
INT ratio_e, qlg2, nNoiseBands;
ratio = fDivNorm(k2, kx, &ratio_e);
lg2 = fLog2(ratio, ratio_e, &qlg2);
tmp = fMult((FIXP_DBL)(h_sbrNoiseFloorEstimate->noiseBands << 24), lg2);
tmp = scaleValue(tmp, qlg2 - 23);
nNoiseBands = (INT)((tmp + (FIXP_DBL)1) >> 1);
if (nNoiseBands > MAX_NUM_NOISE_COEFFS) {
nNoiseBands = MAX_NUM_NOISE_COEFFS;
}
if (nNoiseBands == 0) {
nNoiseBands = 1;
}
h_sbrNoiseFloorEstimate->noNoiseBands = nNoiseBands;
}
return (downSampleLoRes(h_sbrNoiseFloorEstimate->freqBandTableQmf,
h_sbrNoiseFloorEstimate->noNoiseBands, freqBandTable,
nSfb));
}
/**************************************************************************/
/*!
\brief Deletes the current instancce of the noise floor level
estimation module.
\return none
*/
/**************************************************************************/
void FDKsbrEnc_deleteSbrNoiseFloorEstimate(
HANDLE_SBR_NOISE_FLOOR_ESTIMATE
h_sbrNoiseFloorEstimate) /*!< Handle to SBR_NOISE_FLOOR_ESTIMATE struct
*/
{
if (h_sbrNoiseFloorEstimate) {
/*
nothing to do
*/
}
}