| /* ----------------------------------------------------------------------------- |
| Software License for The Fraunhofer FDK AAC Codec Library for Android |
| |
| © Copyright 1995 - 2018 Fraunhofer-Gesellschaft zur Förderung der angewandten |
| Forschung e.V. All rights reserved. |
| |
| 1. INTRODUCTION |
| The Fraunhofer FDK AAC Codec Library for Android ("FDK AAC Codec") is software |
| that implements the MPEG Advanced Audio Coding ("AAC") encoding and decoding |
| scheme for digital audio. This FDK AAC Codec software is intended to be used on |
| a wide variety of Android devices. |
| |
| AAC's HE-AAC and HE-AAC v2 versions are regarded as today's most efficient |
| general perceptual audio codecs. AAC-ELD is considered the best-performing |
| full-bandwidth communications codec by independent studies and is widely |
| deployed. AAC has been standardized by ISO and IEC as part of the MPEG |
| specifications. |
| |
| Patent licenses for necessary patent claims for the FDK AAC Codec (including |
| those of Fraunhofer) may be obtained through Via Licensing |
| (www.vialicensing.com) or through the respective patent owners individually for |
| the purpose of encoding or decoding bit streams in products that are compliant |
| with the ISO/IEC MPEG audio standards. Please note that most manufacturers of |
| Android devices already license these patent claims through Via Licensing or |
| directly from the patent owners, and therefore FDK AAC Codec software may |
| already be covered under those patent licenses when it is used for those |
| licensed purposes only. |
| |
| Commercially-licensed AAC software libraries, including floating-point versions |
| with enhanced sound quality, are also available from Fraunhofer. Users are |
| encouraged to check the Fraunhofer website for additional applications |
| information and documentation. |
| |
| 2. COPYRIGHT LICENSE |
| |
| Redistribution and use in source and binary forms, with or without modification, |
| are permitted without payment of copyright license fees provided that you |
| satisfy the following conditions: |
| |
| You must retain the complete text of this software license in redistributions of |
| the FDK AAC Codec or your modifications thereto in source code form. |
| |
| You must retain the complete text of this software license in the documentation |
| and/or other materials provided with redistributions of the FDK AAC Codec or |
| your modifications thereto in binary form. You must make available free of |
| charge copies of the complete source code of the FDK AAC Codec and your |
| modifications thereto to recipients of copies in binary form. |
| |
| The name of Fraunhofer may not be used to endorse or promote products derived |
| from this library without prior written permission. |
| |
| You may not charge copyright license fees for anyone to use, copy or distribute |
| the FDK AAC Codec software or your modifications thereto. |
| |
| Your modified versions of the FDK AAC Codec must carry prominent notices stating |
| that you changed the software and the date of any change. For modified versions |
| of the FDK AAC Codec, the term "Fraunhofer FDK AAC Codec Library for Android" |
| must be replaced by the term "Third-Party Modified Version of the Fraunhofer FDK |
| AAC Codec Library for Android." |
| |
| 3. NO PATENT LICENSE |
| |
| NO EXPRESS OR IMPLIED LICENSES TO ANY PATENT CLAIMS, including without |
| limitation the patents of Fraunhofer, ARE GRANTED BY THIS SOFTWARE LICENSE. |
| Fraunhofer provides no warranty of patent non-infringement with respect to this |
| software. |
| |
| You may use this FDK AAC Codec software or modifications thereto only for |
| purposes that are authorized by appropriate patent licenses. |
| |
| 4. DISCLAIMER |
| |
| This FDK AAC Codec software is provided by Fraunhofer on behalf of the copyright |
| holders and contributors "AS IS" and WITHOUT ANY EXPRESS OR IMPLIED WARRANTIES, |
| including but not limited to the implied warranties of merchantability and |
| fitness for a particular purpose. IN NO EVENT SHALL THE COPYRIGHT HOLDER OR |
| CONTRIBUTORS BE LIABLE for any direct, indirect, incidental, special, exemplary, |
| or consequential damages, including but not limited to procurement of substitute |
| goods or services; loss of use, data, or profits, or business interruption, |
| however caused and on any theory of liability, whether in contract, strict |
| liability, or tort (including negligence), arising in any way out of the use of |
| this software, even if advised of the possibility of such damage. |
| |
| 5. CONTACT INFORMATION |
| |
| Fraunhofer Institute for Integrated Circuits IIS |
| Attention: Audio and Multimedia Departments - FDK AAC LL |
| Am Wolfsmantel 33 |
| 91058 Erlangen, Germany |
| |
| www.iis.fraunhofer.de/amm |
| amm-info@iis.fraunhofer.de |
| ----------------------------------------------------------------------------- */ |
| |
| /**************************** SBR decoder library ****************************** |
| |
| Author(s): Christian Griebel |
| |
| Description: Dynamic range control (DRC) decoder tool for SBR |
| |
| *******************************************************************************/ |
| |
| #include "sbrdec_drc.h" |
| |
| /* DRC - Offset table for QMF interpolation. Shifted by one index position. |
| The table defines the (short) window borders rounded to the nearest QMF |
| timeslot. It has the size 16 because it is accessed with the |
| drcInterpolationScheme that is read from the bitstream with 4 bit. */ |
| static const UCHAR winBorderToColMappingTab[2][16] = { |
| /*-1, 0, 1, 2, 3, 4, 5, 6, 7, 8 */ |
| {0, 0, 4, 8, 12, 16, 20, 24, 28, 32, 32, 32, 32, 32, 32, |
| 32}, /* 1024 framing */ |
| {0, 0, 4, 8, 11, 15, 19, 23, 26, 30, 30, 30, 30, 30, 30, |
| 30} /* 960 framing */ |
| }; |
| |
| /*! |
| \brief Initialize DRC QMF factors |
| |
| \hDrcData Handle to DRC channel data. |
| |
| \return none |
| */ |
| void sbrDecoder_drcInitChannel(HANDLE_SBR_DRC_CHANNEL hDrcData) { |
| int band; |
| |
| if (hDrcData == NULL) { |
| return; |
| } |
| |
| for (band = 0; band < (64); band++) { |
| hDrcData->prevFact_mag[band] = FL2FXCONST_DBL(0.5f); |
| } |
| |
| for (band = 0; band < SBRDEC_MAX_DRC_BANDS; band++) { |
| hDrcData->currFact_mag[band] = FL2FXCONST_DBL(0.5f); |
| hDrcData->nextFact_mag[band] = FL2FXCONST_DBL(0.5f); |
| } |
| |
| hDrcData->prevFact_exp = 1; |
| hDrcData->currFact_exp = 1; |
| hDrcData->nextFact_exp = 1; |
| |
| hDrcData->numBandsCurr = 1; |
| hDrcData->numBandsNext = 1; |
| |
| hDrcData->winSequenceCurr = 0; |
| hDrcData->winSequenceNext = 0; |
| |
| hDrcData->drcInterpolationSchemeCurr = 0; |
| hDrcData->drcInterpolationSchemeNext = 0; |
| |
| hDrcData->enable = 0; |
| } |
| |
| /*! |
| \brief Swap DRC QMF scaling factors after they have been applied. |
| |
| \hDrcData Handle to DRC channel data. |
| |
| \return none |
| */ |
| void sbrDecoder_drcUpdateChannel(HANDLE_SBR_DRC_CHANNEL hDrcData) { |
| if (hDrcData == NULL) { |
| return; |
| } |
| if (hDrcData->enable != 1) { |
| return; |
| } |
| |
| /* swap previous data */ |
| FDKmemcpy(hDrcData->currFact_mag, hDrcData->nextFact_mag, |
| SBRDEC_MAX_DRC_BANDS * sizeof(FIXP_DBL)); |
| |
| hDrcData->currFact_exp = hDrcData->nextFact_exp; |
| |
| hDrcData->numBandsCurr = hDrcData->numBandsNext; |
| |
| FDKmemcpy(hDrcData->bandTopCurr, hDrcData->bandTopNext, |
| SBRDEC_MAX_DRC_BANDS * sizeof(USHORT)); |
| |
| hDrcData->drcInterpolationSchemeCurr = hDrcData->drcInterpolationSchemeNext; |
| |
| hDrcData->winSequenceCurr = hDrcData->winSequenceNext; |
| } |
| |
| /*! |
| \brief Apply DRC factors slot based. |
| |
| \hDrcData Handle to DRC channel data. |
| \qmfRealSlot Pointer to real valued QMF data of one time slot. |
| \qmfImagSlot Pointer to the imaginary QMF data of one time slot. |
| \col Number of the time slot. |
| \numQmfSubSamples Total number of time slots for one frame. |
| \scaleFactor Pointer to the out scale factor of the time slot. |
| |
| \return None. |
| */ |
| void sbrDecoder_drcApplySlot(HANDLE_SBR_DRC_CHANNEL hDrcData, |
| FIXP_DBL *qmfRealSlot, FIXP_DBL *qmfImagSlot, |
| int col, int numQmfSubSamples, int maxShift) { |
| const UCHAR *winBorderToColMap; |
| |
| int band, bottomMdct, topMdct, bin, useLP; |
| int indx = numQmfSubSamples - (numQmfSubSamples >> 1) - 10; /* l_border */ |
| int frameLenFlag = (numQmfSubSamples == 30) ? 1 : 0; |
| int frameSize = (frameLenFlag == 1) ? 960 : 1024; |
| |
| const FIXP_DBL *fact_mag = NULL; |
| INT fact_exp = 0; |
| UINT numBands = 0; |
| USHORT *bandTop = NULL; |
| int shortDrc = 0; |
| |
| FIXP_DBL alphaValue = FL2FXCONST_DBL(0.0f); |
| |
| if (hDrcData == NULL) { |
| return; |
| } |
| if (hDrcData->enable != 1) { |
| return; |
| } |
| |
| winBorderToColMap = winBorderToColMappingTab[frameLenFlag]; |
| |
| useLP = (qmfImagSlot == NULL) ? 1 : 0; |
| |
| col += indx; |
| bottomMdct = 0; |
| |
| /* get respective data and calc interpolation factor */ |
| if (col < (numQmfSubSamples >> 1)) { /* first half of current frame */ |
| if (hDrcData->winSequenceCurr != 2) { /* long window */ |
| int j = col + (numQmfSubSamples >> 1); |
| |
| if (hDrcData->drcInterpolationSchemeCurr == 0) { |
| INT k = (frameLenFlag) ? 0x4444445 : 0x4000000; |
| |
| alphaValue = (FIXP_DBL)(j * k); |
| } else { |
| if (j >= (int)winBorderToColMap[hDrcData->drcInterpolationSchemeCurr]) { |
| alphaValue = (FIXP_DBL)MAXVAL_DBL; |
| } |
| } |
| } else { /* short windows */ |
| shortDrc = 1; |
| } |
| |
| fact_mag = hDrcData->currFact_mag; |
| fact_exp = hDrcData->currFact_exp; |
| numBands = hDrcData->numBandsCurr; |
| bandTop = hDrcData->bandTopCurr; |
| } else if (col < numQmfSubSamples) { /* second half of current frame */ |
| if (hDrcData->winSequenceNext != 2) { /* next: long window */ |
| int j = col - (numQmfSubSamples >> 1); |
| |
| if (hDrcData->drcInterpolationSchemeNext == 0) { |
| INT k = (frameLenFlag) ? 0x4444445 : 0x4000000; |
| |
| alphaValue = (FIXP_DBL)(j * k); |
| } else { |
| if (j >= (int)winBorderToColMap[hDrcData->drcInterpolationSchemeNext]) { |
| alphaValue = (FIXP_DBL)MAXVAL_DBL; |
| } |
| } |
| |
| fact_mag = hDrcData->nextFact_mag; |
| fact_exp = hDrcData->nextFact_exp; |
| numBands = hDrcData->numBandsNext; |
| bandTop = hDrcData->bandTopNext; |
| } else { /* next: short windows */ |
| if (hDrcData->winSequenceCurr != 2) { /* current: long window */ |
| alphaValue = (FIXP_DBL)0; |
| |
| fact_mag = hDrcData->nextFact_mag; |
| fact_exp = hDrcData->nextFact_exp; |
| numBands = hDrcData->numBandsNext; |
| bandTop = hDrcData->bandTopNext; |
| } else { /* current: short windows */ |
| shortDrc = 1; |
| |
| fact_mag = hDrcData->currFact_mag; |
| fact_exp = hDrcData->currFact_exp; |
| numBands = hDrcData->numBandsCurr; |
| bandTop = hDrcData->bandTopCurr; |
| } |
| } |
| } else { /* first half of next frame */ |
| if (hDrcData->winSequenceNext != 2) { /* long window */ |
| int j = col - (numQmfSubSamples >> 1); |
| |
| if (hDrcData->drcInterpolationSchemeNext == 0) { |
| INT k = (frameLenFlag) ? 0x4444445 : 0x4000000; |
| |
| alphaValue = (FIXP_DBL)(j * k); |
| } else { |
| if (j >= (int)winBorderToColMap[hDrcData->drcInterpolationSchemeNext]) { |
| alphaValue = (FIXP_DBL)MAXVAL_DBL; |
| } |
| } |
| } else { /* short windows */ |
| shortDrc = 1; |
| } |
| |
| fact_mag = hDrcData->nextFact_mag; |
| fact_exp = hDrcData->nextFact_exp; |
| numBands = hDrcData->numBandsNext; |
| bandTop = hDrcData->bandTopNext; |
| |
| col -= numQmfSubSamples; |
| } |
| |
| /* process bands */ |
| for (band = 0; band < (int)numBands; band++) { |
| int bottomQmf, topQmf; |
| |
| FIXP_DBL drcFact_mag = (FIXP_DBL)MAXVAL_DBL; |
| |
| topMdct = (bandTop[band] + 1) << 2; |
| |
| if (!shortDrc) { /* long window */ |
| if (frameLenFlag) { |
| /* 960 framing */ |
| bottomQmf = fMultIfloor((FIXP_DBL)0x4444445, bottomMdct); |
| topQmf = fMultIfloor((FIXP_DBL)0x4444445, topMdct); |
| |
| topMdct = 30 * topQmf; |
| } else { |
| /* 1024 framing */ |
| topMdct &= ~0x1f; |
| |
| bottomQmf = bottomMdct >> 5; |
| topQmf = topMdct >> 5; |
| } |
| |
| if (band == ((int)numBands - 1)) { |
| topQmf = (64); |
| } |
| |
| for (bin = bottomQmf; bin < topQmf; bin++) { |
| FIXP_DBL drcFact1_mag = hDrcData->prevFact_mag[bin]; |
| FIXP_DBL drcFact2_mag = fact_mag[band]; |
| |
| /* normalize scale factors */ |
| if (hDrcData->prevFact_exp < maxShift) { |
| drcFact1_mag >>= maxShift - hDrcData->prevFact_exp; |
| } |
| if (fact_exp < maxShift) { |
| drcFact2_mag >>= maxShift - fact_exp; |
| } |
| |
| /* interpolate */ |
| if (alphaValue == (FIXP_DBL)0) { |
| drcFact_mag = drcFact1_mag; |
| } else if (alphaValue == (FIXP_DBL)MAXVAL_DBL) { |
| drcFact_mag = drcFact2_mag; |
| } else { |
| drcFact_mag = |
| fMult(alphaValue, drcFact2_mag) + |
| fMult(((FIXP_DBL)MAXVAL_DBL - alphaValue), drcFact1_mag); |
| } |
| |
| /* apply scaling */ |
| qmfRealSlot[bin] = fMult(qmfRealSlot[bin], drcFact_mag); |
| if (!useLP) { |
| qmfImagSlot[bin] = fMult(qmfImagSlot[bin], drcFact_mag); |
| } |
| |
| /* save previous factors */ |
| if (col == (numQmfSubSamples >> 1) - 1) { |
| hDrcData->prevFact_mag[bin] = fact_mag[band]; |
| } |
| } |
| } else { /* short windows */ |
| unsigned startWinIdx, stopWinIdx; |
| int startCol, stopCol; |
| FIXP_DBL invFrameSizeDiv8 = |
| (frameLenFlag) ? (FIXP_DBL)0x1111112 : (FIXP_DBL)0x1000000; |
| |
| /* limit top at the frame borders */ |
| if (topMdct < 0) { |
| topMdct = 0; |
| } |
| if (topMdct >= frameSize) { |
| topMdct = frameSize - 1; |
| } |
| |
| if (frameLenFlag) { |
| /* 960 framing */ |
| topMdct = fMultIfloor((FIXP_DBL)0x78000000, |
| fMultIfloor((FIXP_DBL)0x22222223, topMdct) << 2); |
| |
| startWinIdx = fMultIfloor(invFrameSizeDiv8, bottomMdct) + |
| 1; /* winBorderToColMap table has offset of 1 */ |
| stopWinIdx = fMultIceil(invFrameSizeDiv8 - (FIXP_DBL)1, topMdct) + 1; |
| } else { |
| /* 1024 framing */ |
| topMdct &= ~0x03; |
| |
| startWinIdx = fMultIfloor(invFrameSizeDiv8, bottomMdct) + 1; |
| stopWinIdx = fMultIceil(invFrameSizeDiv8, topMdct) + 1; |
| } |
| |
| /* startCol is truncated to the nearest corresponding start subsample in |
| the QMF of the short window bottom is present in:*/ |
| startCol = (int)winBorderToColMap[startWinIdx]; |
| |
| /* stopCol is rounded upwards to the nearest corresponding stop subsample |
| in the QMF of the short window top is present in. */ |
| stopCol = (int)winBorderToColMap[stopWinIdx]; |
| |
| bottomQmf = fMultIfloor(invFrameSizeDiv8, |
| ((bottomMdct % (numQmfSubSamples << 2)) << 5)); |
| topQmf = fMultIfloor(invFrameSizeDiv8, |
| ((topMdct % (numQmfSubSamples << 2)) << 5)); |
| |
| /* extend last band */ |
| if (band == ((int)numBands - 1)) { |
| topQmf = (64); |
| stopCol = numQmfSubSamples; |
| stopWinIdx = 10; |
| } |
| |
| if (topQmf == 0) { |
| if (frameLenFlag) { |
| FIXP_DBL rem = fMult(invFrameSizeDiv8, |
| (FIXP_DBL)(topMdct << (DFRACT_BITS - 12))); |
| if ((LONG)rem & (LONG)0x1F) { |
| stopWinIdx -= 1; |
| stopCol = (int)winBorderToColMap[stopWinIdx]; |
| } |
| } |
| topQmf = (64); |
| } |
| |
| /* save previous factors */ |
| if (stopCol == numQmfSubSamples) { |
| int tmpBottom = bottomQmf; |
| |
| if ((int)winBorderToColMap[8] > startCol) { |
| tmpBottom = 0; /* band starts in previous short window */ |
| } |
| |
| for (bin = tmpBottom; bin < topQmf; bin++) { |
| hDrcData->prevFact_mag[bin] = fact_mag[band]; |
| } |
| } |
| |
| /* apply */ |
| if ((col >= startCol) && (col < stopCol)) { |
| if (col >= (int)winBorderToColMap[startWinIdx + 1]) { |
| bottomQmf = 0; /* band starts in previous short window */ |
| } |
| if (col < (int)winBorderToColMap[stopWinIdx - 1]) { |
| topQmf = (64); /* band ends in next short window */ |
| } |
| |
| drcFact_mag = fact_mag[band]; |
| |
| /* normalize scale factor */ |
| if (fact_exp < maxShift) { |
| drcFact_mag >>= maxShift - fact_exp; |
| } |
| |
| /* apply scaling */ |
| for (bin = bottomQmf; bin < topQmf; bin++) { |
| qmfRealSlot[bin] = fMult(qmfRealSlot[bin], drcFact_mag); |
| if (!useLP) { |
| qmfImagSlot[bin] = fMult(qmfImagSlot[bin], drcFact_mag); |
| } |
| } |
| } |
| } |
| |
| bottomMdct = topMdct; |
| } /* end of bands loop */ |
| |
| if (col == (numQmfSubSamples >> 1) - 1) { |
| hDrcData->prevFact_exp = fact_exp; |
| } |
| } |
| |
| /*! |
| \brief Apply DRC factors frame based. |
| |
| \hDrcData Handle to DRC channel data. |
| \qmfRealSlot Pointer to real valued QMF data of the whole frame. |
| \qmfImagSlot Pointer to the imaginary QMF data of the whole frame. |
| \numQmfSubSamples Total number of time slots for one frame. |
| \scaleFactor Pointer to the out scale factor of the frame. |
| |
| \return None. |
| */ |
| void sbrDecoder_drcApply(HANDLE_SBR_DRC_CHANNEL hDrcData, |
| FIXP_DBL **QmfBufferReal, FIXP_DBL **QmfBufferImag, |
| int numQmfSubSamples, int *scaleFactor) { |
| int col; |
| int maxShift = 0; |
| |
| if (hDrcData == NULL) { |
| return; |
| } |
| if (hDrcData->enable == 0) { |
| return; /* Avoid changing the scaleFactor even though the processing is |
| disabled. */ |
| } |
| |
| /* get max scale factor */ |
| if (hDrcData->prevFact_exp > maxShift) { |
| maxShift = hDrcData->prevFact_exp; |
| } |
| if (hDrcData->currFact_exp > maxShift) { |
| maxShift = hDrcData->currFact_exp; |
| } |
| if (hDrcData->nextFact_exp > maxShift) { |
| maxShift = hDrcData->nextFact_exp; |
| } |
| |
| for (col = 0; col < numQmfSubSamples; col++) { |
| FIXP_DBL *qmfSlotReal = QmfBufferReal[col]; |
| FIXP_DBL *qmfSlotImag = (QmfBufferImag == NULL) ? NULL : QmfBufferImag[col]; |
| |
| sbrDecoder_drcApplySlot(hDrcData, qmfSlotReal, qmfSlotImag, col, |
| numQmfSubSamples, maxShift); |
| } |
| |
| *scaleFactor += maxShift; |
| } |