blob: e9c4abd7bd7d6b1ce3af0d1b86ce1472f1d9bd7f [file] [log] [blame]
/* -----------------------------------------------------------------------------
Software License for The Fraunhofer FDK AAC Codec Library for Android
© Copyright 1995 - 2018 Fraunhofer-Gesellschaft zur Förderung der angewandten
Forschung e.V. All rights reserved.
1. INTRODUCTION
The Fraunhofer FDK AAC Codec Library for Android ("FDK AAC Codec") is software
that implements the MPEG Advanced Audio Coding ("AAC") encoding and decoding
scheme for digital audio. This FDK AAC Codec software is intended to be used on
a wide variety of Android devices.
AAC's HE-AAC and HE-AAC v2 versions are regarded as today's most efficient
general perceptual audio codecs. AAC-ELD is considered the best-performing
full-bandwidth communications codec by independent studies and is widely
deployed. AAC has been standardized by ISO and IEC as part of the MPEG
specifications.
Patent licenses for necessary patent claims for the FDK AAC Codec (including
those of Fraunhofer) may be obtained through Via Licensing
(www.vialicensing.com) or through the respective patent owners individually for
the purpose of encoding or decoding bit streams in products that are compliant
with the ISO/IEC MPEG audio standards. Please note that most manufacturers of
Android devices already license these patent claims through Via Licensing or
directly from the patent owners, and therefore FDK AAC Codec software may
already be covered under those patent licenses when it is used for those
licensed purposes only.
Commercially-licensed AAC software libraries, including floating-point versions
with enhanced sound quality, are also available from Fraunhofer. Users are
encouraged to check the Fraunhofer website for additional applications
information and documentation.
2. COPYRIGHT LICENSE
Redistribution and use in source and binary forms, with or without modification,
are permitted without payment of copyright license fees provided that you
satisfy the following conditions:
You must retain the complete text of this software license in redistributions of
the FDK AAC Codec or your modifications thereto in source code form.
You must retain the complete text of this software license in the documentation
and/or other materials provided with redistributions of the FDK AAC Codec or
your modifications thereto in binary form. You must make available free of
charge copies of the complete source code of the FDK AAC Codec and your
modifications thereto to recipients of copies in binary form.
The name of Fraunhofer may not be used to endorse or promote products derived
from this library without prior written permission.
You may not charge copyright license fees for anyone to use, copy or distribute
the FDK AAC Codec software or your modifications thereto.
Your modified versions of the FDK AAC Codec must carry prominent notices stating
that you changed the software and the date of any change. For modified versions
of the FDK AAC Codec, the term "Fraunhofer FDK AAC Codec Library for Android"
must be replaced by the term "Third-Party Modified Version of the Fraunhofer FDK
AAC Codec Library for Android."
3. NO PATENT LICENSE
NO EXPRESS OR IMPLIED LICENSES TO ANY PATENT CLAIMS, including without
limitation the patents of Fraunhofer, ARE GRANTED BY THIS SOFTWARE LICENSE.
Fraunhofer provides no warranty of patent non-infringement with respect to this
software.
You may use this FDK AAC Codec software or modifications thereto only for
purposes that are authorized by appropriate patent licenses.
4. DISCLAIMER
This FDK AAC Codec software is provided by Fraunhofer on behalf of the copyright
holders and contributors "AS IS" and WITHOUT ANY EXPRESS OR IMPLIED WARRANTIES,
including but not limited to the implied warranties of merchantability and
fitness for a particular purpose. IN NO EVENT SHALL THE COPYRIGHT HOLDER OR
CONTRIBUTORS BE LIABLE for any direct, indirect, incidental, special, exemplary,
or consequential damages, including but not limited to procurement of substitute
goods or services; loss of use, data, or profits, or business interruption,
however caused and on any theory of liability, whether in contract, strict
liability, or tort (including negligence), arising in any way out of the use of
this software, even if advised of the possibility of such damage.
5. CONTACT INFORMATION
Fraunhofer Institute for Integrated Circuits IIS
Attention: Audio and Multimedia Departments - FDK AAC LL
Am Wolfsmantel 33
91058 Erlangen, Germany
www.iis.fraunhofer.de/amm
amm-info@iis.fraunhofer.de
----------------------------------------------------------------------------- */
/*********************** MPEG surround encoder library *************************
Author(s): Josef Hoepfl
Description: Encoder Library Interface
vector functions
*******************************************************************************/
/*****************************************************************************
\file
This file contains vector functions
******************************************************************************/
#ifndef SACENC_VECTORFUNCTIONS_H
#define SACENC_VECTORFUNCTIONS_H
/* Includes ******************************************************************/
#include "common_fix.h"
/* Defines *******************************************************************/
#define SUM_UP_STATIC_SCALE 0
#define SUM_UP_DYNAMIC_SCALE 1
/* Data Types ****************************************************************/
/* Constants *****************************************************************/
/* Function / Class Declarations *********************************************/
/**
* \brief Vector function : Sum up complex power
*
* Description : ret = sum( re{X[i]} * re{X[i]} + im{X[i]} *
* im{X[i]} ), i=0,...,n-1 ret is scaled by outScaleFactor
*
* \param const FIXP_DPK x[]
* Input: complex vector of the length n
*
* \param int scaleMode
* Input: choose static or dynamic scaling
* (SUM_UP_DYNAMIC_SCALE/SUM_UP_STATIC_SCALE)
*
* \param int inScaleFactor
* Input: determine headroom bits for the complex input vector
*
* \param int outScaleFactor
* Output: complete scaling in energy calculation
*
* \return FIXP_DBL ret
*/
FIXP_DBL sumUpCplxPow2(const FIXP_DPK *const x, const INT scaleMode,
const INT inScaleFactor, INT *const outScaleFactor,
const INT n);
/**
* \brief Vector function : Sum up complex power
*
* Description : ret = sum( re{X[i][j]} * re{X[i][]} +
* im{X[i][]} * im{X[i][]} ), i=sDim1,...,nDim1-1 i=sDim2,...,nDim2-1 ret is
* scaled by outScaleFactor
*
* \param const FIXP_DPK x[]
* Input: complex vector of the length n
*
* \param int scaleMode
* Input: choose static or dynamic scaling
* (SUM_UP_DYNAMIC_SCALE/SUM_UP_STATIC_SCALE)
*
* \param int inScaleFactor
* Input: determine headroom bits for the complex input vector
*
* \param int outScaleFactor
* Output: complete scaling in energy calculation
*
* \param int sDim1
* Input: start index for loop counter in dimension 1
*
* \param int nDim1
* Input: loop counter in dimension 1
*
* \param int sDim2
* Input: start index for loop counter in dimension 2
*
* \param int nDim2
* Input: loop counter in dimension 2
*
* \return FIXP_DBL ret
*/
FIXP_DBL sumUpCplxPow2Dim2(const FIXP_DPK *const *const x, const INT scaleMode,
const INT inScaleFactor, INT *const outScaleFactor,
const INT sDim1, const INT nDim1, const INT sDim2,
const INT nDim2);
/**
* \brief Vector function : Z[i] = X[i], i=0,...,n-1
*
* Description : re{Z[i]} = re{X[i]}, i=0,...,n-1
* im{Z[i]} = im{X[i]}, i=0,...,n-1
*
* Copy complex vector X[] to complex vector Z[].
* It is allowed to overlay X[] with Z[].
*
* \param FIXP_DPK Z[]
* Output: vector of the length n
*
* \param const FIXP_DPK X[]
* Input: vector of the length n
*
* \param int n
* Input: length of vector Z[] and X[]
*
* \return void
*/
void copyCplxVec(FIXP_DPK *const Z, const FIXP_DPK *const X, const INT n);
/**
* \brief Vector function : Z[i] = a, i=0,...,n-1
*
* Description : re{Z[i]} = a, i=0,...,n-1
* im{Z[i]} = a, i=0,...,n-1
*
* Set real and imaginary part of the complex value Z to a.
*
* \param FIPX_DPK Z[]
* Output: vector of the length n
*
* \param const FIXP_DBL a
* Input: constant value
*
* \param int n
* Input: length of vector Z[]
*
* \return void
*/
void setCplxVec(FIXP_DPK *const Z, const FIXP_DBL a, const INT n);
/**
* \brief Vector function : Calculate complex-valued result of complex
* scalar product
*
* Description : re{Z} = sum( re{X[i]} * re{Y[i]} + im{X[i]} *
* im{Y[i]}, i=0,...,n-1 ) im{Z} = sum( im{X[i]} * re{Y[i]} - re{X[i]} *
* im{Y[i]}, i=0,...,n-1 )
*
* The function returns the complex-valued result of the complex
* scalar product at the address of Z. The result is scaled by scaleZ.
*
* \param FIXP_DPK *Z
* Output: pointer to Z
*
* \param const FIXP_DPK *const *const X
* Input: vector of the length n
*
* \param const FIXP_DPK *const *const Y
* Input: vector of the length n
*
* \param int scaleX
* Input: scalefactor of vector X[]
*
* \param int scaleY
* Input: scalefactor of vector Y[]
*
* \param int scaleZ
* Output: scalefactor of vector Z[]
*
* \param int sDim1
* Input: start index for loop counter in dimension 1
*
* \param int nDim1
* Input: loop counter in dimension 1
*
* \param int sDim2
* Input: start index for loop counter in dimension 2
*
* \param int nDim2
* Input: loop counter in dimension 2
*
* \return void
*/
void cplx_cplxScalarProduct(FIXP_DPK *const Z, const FIXP_DPK *const *const X,
const FIXP_DPK *const *const Y, const INT scaleX,
const INT scaleY, INT *const scaleZ,
const INT sDim1, const INT nDim1, const INT sDim2,
const INT nDim2);
/**
* \brief Vector function : Calculate correlation
*
* Description : z[i] = pr12[i] / sqrt(p1[i]*p2[i]) ,
* i=0,...,n-1
*
* \param FIXP_DBL z[]
* Output: vector of length n
*
* \param const FIXP_DBL pr12[]
* Input: vector of the length n
*
* \param const FIXP_DBL p1[]
* Input: vector of the length n
*
* \param const FIXP_DBL p2[]
* Input: vector of the length n
*
* \param int n
* Input: length of vector pr12[], p1[] and p2[]
*
* \return void
*/
void FDKcalcCorrelationVec(FIXP_DBL *const z, const FIXP_DBL *const pr12,
const FIXP_DBL *const p1, const FIXP_DBL *const p2,
const INT n);
/**
* \brief Vector function : Calculate coherence
*
* Description : z[i] = sqrt( (p12r[i]*p12r[i] +
* p12i[i]*p12i[i]) / (p1[i]*p2[i]) ), i=0,...,n-1
*
* \param FIXP_DBL z[]
* Output: vector of length n
*
* \param const FIXP_DBL p12r[]
* Input: vector of the length n
*
* \param const FIXP_DBL p12i[]
* Input: vector of the length n
*
* \param const FIXP_DBL p1[]
* Input: vector of the length n
*
* \param const FIXP_DBL p2[]
* Input: vector of the length n
*
* \param int scaleP12[]
* Input: scalefactor of p12r and p12i
*
* \param int scaleP
* Input: scalefactor of p1 and p2
*
* \param int n
* Input: length of vector p12r[], p12i[], p1[] and p2[]
*
* \return void
*/
void calcCoherenceVec(FIXP_DBL *const z, const FIXP_DBL *const p12r,
const FIXP_DBL *const p12i, const FIXP_DBL *const p1,
const FIXP_DBL *const p2, const INT scaleP12,
const INT scaleP, const INT n);
/**
* \brief Vector function : Z[j][i] = a[pb] * X[j][i] + b[pb] *
* Y[j][i], j=0,...,nHybridBands-1; i=startTimeSlot,...,nTimeSlots-1;
* pb=0,...,nParameterBands-1
*
* Description : re{Z[j][i]} = a[pb] * re{X[j][i]} + b[pb] *
* re{Y[j][i]}, j=0,...,nHybridBands-1; i=startTimeSlot,...,nTimeSlots-1;
* pb=0,...,nParameterBands-1 im{Z[j][i]} = a[pb] * im{X[j][i]} + b[pb] *
* im{Y[j][i]}, j=0,...,nHybridBands-1;
* i=startTimeSlot,...,nTimeSlots-1; pb=0,...,nParameterBands-1
*
* It is allowed to overlay X[] or Y[] with Z[]. The scalefactor
* of channel 1 is updated with the common scalefactor of channel 1 and
* channel 2.
*
* \param FIXP_DPK **Z
* Output: vector of the length nHybridBands*nTimeSlots
*
* \param const FIXP_DBL *a
* Input: vector of length nParameterBands
*
* \param const FIXP_DPK **X
* Input: vector of the length nHybridBands*nTimeSlots
*
* \param const FIXP_DBL *b
* Input: vector of length nParameterBands
*
* \param const FIXP_DPK **Y
* Input: vector of the length nHybridBands*nTimeSlots
*
* \param int scale
* Input: scale of vector a and b
*
* \param int *scaleCh1
* Input: scale of ch1
*
* \param int scaleCh2
* Input: scale of ch2
*
* \param UCHAR *pParameterBand2HybridBandOffset
* Input: vector of length nParameterBands
*
* \param int nTimeSlots
* Input: number of time slots
*
* \param int startTimeSlot
* Input: start time slot
*
* \return void
*/
void addWeightedCplxVec(FIXP_DPK *const *const Z, const FIXP_DBL *const a,
const FIXP_DPK *const *const X, const FIXP_DBL *const b,
const FIXP_DPK *const *const Y, const INT scale,
INT *const scaleCh1, const INT scaleCh2,
const UCHAR *const pParameterBand2HybridBandOffset,
const INT nParameterBands, const INT nTimeSlots,
const INT startTimeSlot);
/**
* \brief Vector function : Calculate the headroom of a complex vector
* in a parameter band grid
*
* \param FIXP_DPK **x
* Input: pointer to complex input vector
*
* \param UCHAR *pParameterBand2HybridBandOffset
* Input: pointer to hybrid band offsets
*
* \param int *outScaleFactor
* Input: pointer to ouput scalefactor
*
* \param int startTimeSlot
* Input: start time slot
*
* \param int nTimeSlots
* Input: number of time slot
*
* \param int nParamBands
* Input: number of parameter bands
*
* \return void
*/
void FDKcalcPbScaleFactor(const FIXP_DPK *const *const x,
const UCHAR *const pParameterBand2HybridBandOffset,
INT *const outScaleFactor, const INT startTimeSlot,
const INT nTimeSlots, const INT nParamBands);
/**
* \brief Vector function : Calculate the common headroom of two
* sparate vectors
*
* \param FIXP_DBL *x
* Input: pointer to first input vector
*
* \param FIXP_DBL *y
* Input: pointer to second input vector
*
* \param int n
* Input: number of samples
*
* \return int headromm in bits
*/
INT FDKcalcScaleFactor(const FIXP_DBL *const x, const FIXP_DBL *const y,
const INT n);
/**
* \brief Vector function : Calculate the headroom of a complex vector
*
* \param FIXP_DPK *x
* Input: pointer to complex input vector
*
* \param INT startBand
* Input: start band
*
* \param INT bands
* Input: number of bands
*
* \return int headromm in bits
*/
INT FDKcalcScaleFactorDPK(const FIXP_DPK *RESTRICT x, const INT startBand,
const INT bands);
/* Function / Class Definition ***********************************************/
template <class T>
inline void FDKmemcpy_flex(T *const dst, const INT dstStride,
const T *const src, const INT srcStride,
const INT nSamples) {
int i;
for (i = 0; i < nSamples; i++) {
dst[i * dstStride] = src[i * srcStride];
}
}
template <class T>
inline void FDKmemset_flex(T *const x, const T c, const INT nSamples) {
int i;
for (i = 0; i < nSamples; i++) {
x[i] = c;
}
}
#endif /* SACENC_VECTORFUNCTIONS_H */