| /* ----------------------------------------------------------------------------- |
| Software License for The Fraunhofer FDK AAC Codec Library for Android |
| |
| © Copyright 1995 - 2018 Fraunhofer-Gesellschaft zur Förderung der angewandten |
| Forschung e.V. All rights reserved. |
| |
| 1. INTRODUCTION |
| The Fraunhofer FDK AAC Codec Library for Android ("FDK AAC Codec") is software |
| that implements the MPEG Advanced Audio Coding ("AAC") encoding and decoding |
| scheme for digital audio. This FDK AAC Codec software is intended to be used on |
| a wide variety of Android devices. |
| |
| AAC's HE-AAC and HE-AAC v2 versions are regarded as today's most efficient |
| general perceptual audio codecs. AAC-ELD is considered the best-performing |
| full-bandwidth communications codec by independent studies and is widely |
| deployed. AAC has been standardized by ISO and IEC as part of the MPEG |
| specifications. |
| |
| Patent licenses for necessary patent claims for the FDK AAC Codec (including |
| those of Fraunhofer) may be obtained through Via Licensing |
| (www.vialicensing.com) or through the respective patent owners individually for |
| the purpose of encoding or decoding bit streams in products that are compliant |
| with the ISO/IEC MPEG audio standards. Please note that most manufacturers of |
| Android devices already license these patent claims through Via Licensing or |
| directly from the patent owners, and therefore FDK AAC Codec software may |
| already be covered under those patent licenses when it is used for those |
| licensed purposes only. |
| |
| Commercially-licensed AAC software libraries, including floating-point versions |
| with enhanced sound quality, are also available from Fraunhofer. Users are |
| encouraged to check the Fraunhofer website for additional applications |
| information and documentation. |
| |
| 2. COPYRIGHT LICENSE |
| |
| Redistribution and use in source and binary forms, with or without modification, |
| are permitted without payment of copyright license fees provided that you |
| satisfy the following conditions: |
| |
| You must retain the complete text of this software license in redistributions of |
| the FDK AAC Codec or your modifications thereto in source code form. |
| |
| You must retain the complete text of this software license in the documentation |
| and/or other materials provided with redistributions of the FDK AAC Codec or |
| your modifications thereto in binary form. You must make available free of |
| charge copies of the complete source code of the FDK AAC Codec and your |
| modifications thereto to recipients of copies in binary form. |
| |
| The name of Fraunhofer may not be used to endorse or promote products derived |
| from this library without prior written permission. |
| |
| You may not charge copyright license fees for anyone to use, copy or distribute |
| the FDK AAC Codec software or your modifications thereto. |
| |
| Your modified versions of the FDK AAC Codec must carry prominent notices stating |
| that you changed the software and the date of any change. For modified versions |
| of the FDK AAC Codec, the term "Fraunhofer FDK AAC Codec Library for Android" |
| must be replaced by the term "Third-Party Modified Version of the Fraunhofer FDK |
| AAC Codec Library for Android." |
| |
| 3. NO PATENT LICENSE |
| |
| NO EXPRESS OR IMPLIED LICENSES TO ANY PATENT CLAIMS, including without |
| limitation the patents of Fraunhofer, ARE GRANTED BY THIS SOFTWARE LICENSE. |
| Fraunhofer provides no warranty of patent non-infringement with respect to this |
| software. |
| |
| You may use this FDK AAC Codec software or modifications thereto only for |
| purposes that are authorized by appropriate patent licenses. |
| |
| 4. DISCLAIMER |
| |
| This FDK AAC Codec software is provided by Fraunhofer on behalf of the copyright |
| holders and contributors "AS IS" and WITHOUT ANY EXPRESS OR IMPLIED WARRANTIES, |
| including but not limited to the implied warranties of merchantability and |
| fitness for a particular purpose. IN NO EVENT SHALL THE COPYRIGHT HOLDER OR |
| CONTRIBUTORS BE LIABLE for any direct, indirect, incidental, special, exemplary, |
| or consequential damages, including but not limited to procurement of substitute |
| goods or services; loss of use, data, or profits, or business interruption, |
| however caused and on any theory of liability, whether in contract, strict |
| liability, or tort (including negligence), arising in any way out of the use of |
| this software, even if advised of the possibility of such damage. |
| |
| 5. CONTACT INFORMATION |
| |
| Fraunhofer Institute for Integrated Circuits IIS |
| Attention: Audio and Multimedia Departments - FDK AAC LL |
| Am Wolfsmantel 33 |
| 91058 Erlangen, Germany |
| |
| www.iis.fraunhofer.de/amm |
| amm-info@iis.fraunhofer.de |
| ----------------------------------------------------------------------------- */ |
| |
| /*********************** MPEG surround encoder library ************************* |
| |
| Author(s): Josef Hoepfl |
| |
| Description: Encoder Library Interface |
| vector functions |
| |
| *******************************************************************************/ |
| |
| /***************************************************************************** |
| \file |
| This file contains vector functions |
| ******************************************************************************/ |
| |
| /* Includes ******************************************************************/ |
| #include "sacenc_vectorfunctions.h" |
| |
| /* Defines *******************************************************************/ |
| |
| /* Data Types ****************************************************************/ |
| |
| /* Constants *****************************************************************/ |
| |
| /* Function / Class Declarations *********************************************/ |
| |
| /* Function / Class Definition ***********************************************/ |
| |
| FIXP_DBL sumUpCplxPow2(const FIXP_DPK *const x, const INT scaleMode, |
| const INT inScaleFactor, INT *const outScaleFactor, |
| const INT n) { |
| int i, cs; |
| |
| if (scaleMode == SUM_UP_DYNAMIC_SCALE) { |
| /* calculate headroom */ |
| FIXP_DBL maxVal = FL2FXCONST_DBL(0.0f); |
| for (i = 0; i < n; i++) { |
| maxVal |= fAbs(x[i].v.re); |
| maxVal |= fAbs(x[i].v.im); |
| } |
| cs = inScaleFactor - fixMax(0, CntLeadingZeros(maxVal) - 1); |
| } else { |
| cs = inScaleFactor; |
| } |
| |
| /* consider scaling of energy and scaling in fPow2Div2 and addition */ |
| *outScaleFactor = 2 * cs + 2; |
| |
| /* make sure that the scalefactor is in the range of -(DFRACT_BITS-1), ... , |
| * (DFRACT_BITS-1) */ |
| cs = fixMax(fixMin(cs, DFRACT_BITS - 1), -(DFRACT_BITS - 1)); |
| |
| /* sum up complex energy samples */ |
| FIXP_DBL re, im, sum; |
| |
| re = im = sum = FL2FXCONST_DBL(0.0); |
| if (cs < 0) { |
| cs = -cs; |
| for (i = 0; i < n; i++) { |
| re += fPow2Div2(x[i].v.re << cs); |
| im += fPow2Div2(x[i].v.im << cs); |
| } |
| } else { |
| cs = 2 * cs; |
| for (i = 0; i < n; i++) { |
| re += fPow2Div2(x[i].v.re) >> cs; |
| im += fPow2Div2(x[i].v.im) >> cs; |
| } |
| } |
| |
| sum = (re >> 1) + (im >> 1); |
| |
| return (sum); |
| } |
| |
| FIXP_DBL sumUpCplxPow2Dim2(const FIXP_DPK *const *const x, const INT scaleMode, |
| const INT inScaleFactor, INT *const outScaleFactor, |
| const INT sDim1, const INT nDim1, const INT sDim2, |
| const INT nDim2) { |
| int i, j, cs; |
| |
| if (scaleMode == SUM_UP_DYNAMIC_SCALE) { |
| /* calculate headroom */ |
| FIXP_DBL maxVal = FL2FXCONST_DBL(0.0f); |
| for (i = sDim1; i < nDim1; i++) { |
| for (j = sDim2; j < nDim2; j++) { |
| maxVal |= fAbs(x[i][j].v.re); |
| maxVal |= fAbs(x[i][j].v.im); |
| } |
| } |
| cs = inScaleFactor - fixMax(0, CntLeadingZeros(maxVal) - 1); |
| } else { |
| cs = inScaleFactor; |
| } |
| |
| /* consider scaling of energy and scaling in fPow2Div2 and addition */ |
| *outScaleFactor = 2 * cs + 2; |
| |
| /* make sure that the scalefactor is in the range of -(DFRACT_BITS-1), ... , |
| * (DFRACT_BITS-1) */ |
| cs = fixMax(fixMin(cs, DFRACT_BITS - 1), -(DFRACT_BITS - 1)); |
| |
| /* sum up complex energy samples */ |
| FIXP_DBL re, im, sum; |
| |
| re = im = sum = FL2FXCONST_DBL(0.0); |
| if (cs < 0) { |
| cs = -cs; |
| for (i = sDim1; i < nDim1; i++) { |
| for (j = sDim2; j < nDim2; j++) { |
| re += fPow2Div2(x[i][j].v.re << cs); |
| im += fPow2Div2(x[i][j].v.im << cs); |
| } |
| } |
| } else { |
| cs = 2 * cs; |
| for (i = sDim1; i < nDim1; i++) { |
| for (j = sDim2; j < nDim2; j++) { |
| re += fPow2Div2(x[i][j].v.re) >> cs; |
| im += fPow2Div2(x[i][j].v.im) >> cs; |
| } |
| } |
| } |
| |
| sum = (re >> 1) + (im >> 1); |
| |
| return (sum); |
| } |
| |
| void copyCplxVec(FIXP_DPK *const Z, const FIXP_DPK *const X, const INT n) { |
| FDKmemmove(Z, X, sizeof(FIXP_DPK) * n); |
| } |
| |
| void setCplxVec(FIXP_DPK *const Z, const FIXP_DBL a, const INT n) { |
| int i; |
| |
| for (i = 0; i < n; i++) { |
| Z[i].v.re = a; |
| Z[i].v.im = a; |
| } |
| } |
| |
| void cplx_cplxScalarProduct(FIXP_DPK *const Z, const FIXP_DPK *const *const X, |
| const FIXP_DPK *const *const Y, const INT scaleX, |
| const INT scaleY, INT *const scaleZ, |
| const INT sDim1, const INT nDim1, const INT sDim2, |
| const INT nDim2) { |
| int i, j, sx, sy; |
| FIXP_DBL xre, yre, xim, yim, re, im; |
| |
| /* make sure that the scalefactor is in the range of -(DFRACT_BITS-1), ... , |
| * (DFRACT_BITS-1) */ |
| sx = fixMax(fixMin(scaleX, DFRACT_BITS - 1), -(DFRACT_BITS - 1)); |
| sy = fixMax(fixMin(scaleY, DFRACT_BITS - 1), -(DFRACT_BITS - 1)); |
| |
| /* consider scaling of energy and scaling in fMultDiv2 and shift of result |
| * values */ |
| *scaleZ = sx + sy + 2; |
| |
| re = (FIXP_DBL)0; |
| im = (FIXP_DBL)0; |
| if ((sx < 0) && (sy < 0)) { |
| sx = -sx; |
| sy = -sy; |
| for (i = sDim1; i < nDim1; i++) { |
| for (j = sDim2; j < nDim2; j++) { |
| xre = X[i][j].v.re << sx; |
| xim = X[i][j].v.im << sx; |
| yre = Y[i][j].v.re << sy; |
| yim = Y[i][j].v.im << sy; |
| re += fMultDiv2(xre, yre) + fMultDiv2(xim, yim); |
| im += fMultDiv2(xim, yre) - fMultDiv2(xre, yim); |
| } |
| } |
| } else if ((sx >= 0) && (sy >= 0)) { |
| for (i = sDim1; i < nDim1; i++) { |
| for (j = sDim2; j < nDim2; j++) { |
| xre = X[i][j].v.re; |
| xim = X[i][j].v.im; |
| yre = Y[i][j].v.re; |
| yim = Y[i][j].v.im; |
| re += (fMultDiv2(xre, yre) + fMultDiv2(xim, yim)) >> (sx + sy); |
| im += (fMultDiv2(xim, yre) - fMultDiv2(xre, yim)) >> (sx + sy); |
| } |
| } |
| } else if ((sx < 0) && (sy >= 0)) { |
| sx = -sx; |
| for (i = sDim1; i < nDim1; i++) { |
| for (j = sDim2; j < nDim2; j++) { |
| xre = X[i][j].v.re << sx; |
| xim = X[i][j].v.im << sx; |
| yre = Y[i][j].v.re; |
| yim = Y[i][j].v.im; |
| re += (fMultDiv2(xre, yre) + fMultDiv2(xim, yim)) >> sy; |
| im += (fMultDiv2(xim, yre) - fMultDiv2(xre, yim)) >> sy; |
| } |
| } |
| } else { |
| sy = -sy; |
| for (i = sDim1; i < nDim1; i++) { |
| for (j = sDim2; j < nDim2; j++) { |
| xre = X[i][j].v.re; |
| xim = X[i][j].v.im; |
| yre = Y[i][j].v.re << sy; |
| yim = Y[i][j].v.im << sy; |
| re += (fMultDiv2(xre, yre) + fMultDiv2(xim, yim)) >> sx; |
| im += (fMultDiv2(xim, yre) - fMultDiv2(xre, yim)) >> sx; |
| } |
| } |
| } |
| |
| Z->v.re = re >> 1; |
| Z->v.im = im >> 1; |
| } |
| |
| void FDKcalcCorrelationVec(FIXP_DBL *const z, const FIXP_DBL *const pr12, |
| const FIXP_DBL *const p1, const FIXP_DBL *const p2, |
| const INT n) { |
| int i, s; |
| FIXP_DBL p12, cor; |
| |
| /* correlation */ |
| for (i = 0; i < n; i++) { |
| p12 = fMult(p1[i], p2[i]); |
| if (p12 > FL2FXCONST_DBL(0.0f)) { |
| p12 = invSqrtNorm2(p12, &s); |
| cor = fMult(pr12[i], p12); |
| z[i] = SATURATE_LEFT_SHIFT(cor, s, DFRACT_BITS); |
| } else { |
| z[i] = (FIXP_DBL)MAXVAL_DBL; |
| } |
| } |
| } |
| |
| void calcCoherenceVec(FIXP_DBL *const z, const FIXP_DBL *const p12r, |
| const FIXP_DBL *const p12i, const FIXP_DBL *const p1, |
| const FIXP_DBL *const p2, const INT scaleP12, |
| const INT scaleP, const INT n) { |
| int i, s, s1, s2; |
| FIXP_DBL coh, p12, p12ri; |
| |
| for (i = 0; i < n; i++) { |
| s2 = fixMin(fixMax(0, CountLeadingBits(p12r[i]) - 1), |
| fixMax(0, CountLeadingBits(p12i[i]) - 1)); |
| p12ri = sqrtFixp(fPow2Div2(p12r[i] << s2) + fPow2Div2(p12i[i] << s2)); |
| s1 = fixMin(fixMax(0, CountLeadingBits(p1[i]) - 1), |
| fixMax(0, CountLeadingBits(p2[i]) - 1)); |
| p12 = fMultDiv2(p1[i] << s1, p2[i] << s1); |
| |
| if (p12 > FL2FXCONST_DBL(0.0f)) { |
| p12 = invSqrtNorm2(p12, &s); |
| coh = fMult(p12ri, p12); |
| s = fixMax(fixMin((scaleP12 - scaleP + s + s1 - s2), DFRACT_BITS - 1), |
| -(DFRACT_BITS - 1)); |
| if (s < 0) { |
| z[i] = coh >> (-s); |
| } else { |
| z[i] = SATURATE_LEFT_SHIFT(coh, s, DFRACT_BITS); |
| } |
| } else { |
| z[i] = (FIXP_DBL)MAXVAL_DBL; |
| } |
| } |
| } |
| |
| void addWeightedCplxVec(FIXP_DPK *const *const Z, const FIXP_DBL *const a, |
| const FIXP_DPK *const *const X, const FIXP_DBL *const b, |
| const FIXP_DPK *const *const Y, const INT scale, |
| INT *const scaleCh1, const INT scaleCh2, |
| const UCHAR *const pParameterBand2HybridBandOffset, |
| const INT nParameterBands, const INT nTimeSlots, |
| const INT startTimeSlot) { |
| int pb, j, i; |
| int cs, s1, s2; |
| |
| /* determine maximum scale of both channels */ |
| cs = fixMax(*scaleCh1, scaleCh2); |
| s1 = cs - (*scaleCh1); |
| s2 = cs - scaleCh2; |
| |
| /* scalefactor 1 is updated with common scale of channel 1 and channel2 */ |
| *scaleCh1 = cs; |
| |
| /* scale of a and b; additional scale for fMultDiv2() */ |
| for (j = 0, pb = 0; pb < nParameterBands; pb++) { |
| FIXP_DBL aPb, bPb; |
| aPb = a[pb], bPb = b[pb]; |
| for (; j < pParameterBand2HybridBandOffset[pb]; j++) { |
| for (i = startTimeSlot; i < nTimeSlots; i++) { |
| Z[j][i].v.re = ((fMultDiv2(aPb, X[j][i].v.re) >> s1) + |
| (fMultDiv2(bPb, Y[j][i].v.re) >> s2)) |
| << (scale + 1); |
| Z[j][i].v.im = ((fMultDiv2(aPb, X[j][i].v.im) >> s1) + |
| (fMultDiv2(bPb, Y[j][i].v.im) >> s2)) |
| << (scale + 1); |
| } |
| } |
| } |
| } |
| |
| void FDKcalcPbScaleFactor(const FIXP_DPK *const *const x, |
| const UCHAR *const pParameterBand2HybridBandOffset, |
| INT *const outScaleFactor, const INT startTimeSlot, |
| const INT nTimeSlots, const INT nParamBands) { |
| int i, j, pb; |
| |
| /* calculate headroom */ |
| for (j = 0, pb = 0; pb < nParamBands; pb++) { |
| FIXP_DBL maxVal = FL2FXCONST_DBL(0.0f); |
| for (; j < pParameterBand2HybridBandOffset[pb]; j++) { |
| for (i = startTimeSlot; i < nTimeSlots; i++) { |
| maxVal |= fAbs(x[i][j].v.re); |
| maxVal |= fAbs(x[i][j].v.im); |
| } |
| } |
| outScaleFactor[pb] = -fixMax(0, CntLeadingZeros(maxVal) - 1); |
| } |
| } |
| |
| INT FDKcalcScaleFactor(const FIXP_DBL *const x, const FIXP_DBL *const y, |
| const INT n) { |
| int i; |
| |
| /* calculate headroom */ |
| FIXP_DBL maxVal = FL2FXCONST_DBL(0.0f); |
| if (x != NULL) { |
| for (i = 0; i < n; i++) { |
| maxVal |= fAbs(x[i]); |
| } |
| } |
| |
| if (y != NULL) { |
| for (i = 0; i < n; i++) { |
| maxVal |= fAbs(y[i]); |
| } |
| } |
| |
| if (maxVal == (FIXP_DBL)0) |
| return (-(DFRACT_BITS - 1)); |
| else |
| return (-CountLeadingBits(maxVal)); |
| } |
| |
| INT FDKcalcScaleFactorDPK(const FIXP_DPK *RESTRICT x, const INT startBand, |
| const INT bands) { |
| INT qs, clz; |
| FIXP_DBL maxVal = FL2FXCONST_DBL(0.0f); |
| |
| for (qs = startBand; qs < bands; qs++) { |
| maxVal |= fAbs(x[qs].v.re); |
| maxVal |= fAbs(x[qs].v.im); |
| } |
| |
| clz = -fixMax(0, CntLeadingZeros(maxVal) - 1); |
| |
| return (clz); |
| } |