blob: be66c83809cf1ec7f25ded08ecd2cf2051f6e4a6 [file] [log] [blame]
/* -----------------------------------------------------------------------------
Software License for The Fraunhofer FDK AAC Codec Library for Android
© Copyright 1995 - 2018 Fraunhofer-Gesellschaft zur Förderung der angewandten
Forschung e.V. All rights reserved.
1. INTRODUCTION
The Fraunhofer FDK AAC Codec Library for Android ("FDK AAC Codec") is software
that implements the MPEG Advanced Audio Coding ("AAC") encoding and decoding
scheme for digital audio. This FDK AAC Codec software is intended to be used on
a wide variety of Android devices.
AAC's HE-AAC and HE-AAC v2 versions are regarded as today's most efficient
general perceptual audio codecs. AAC-ELD is considered the best-performing
full-bandwidth communications codec by independent studies and is widely
deployed. AAC has been standardized by ISO and IEC as part of the MPEG
specifications.
Patent licenses for necessary patent claims for the FDK AAC Codec (including
those of Fraunhofer) may be obtained through Via Licensing
(www.vialicensing.com) or through the respective patent owners individually for
the purpose of encoding or decoding bit streams in products that are compliant
with the ISO/IEC MPEG audio standards. Please note that most manufacturers of
Android devices already license these patent claims through Via Licensing or
directly from the patent owners, and therefore FDK AAC Codec software may
already be covered under those patent licenses when it is used for those
licensed purposes only.
Commercially-licensed AAC software libraries, including floating-point versions
with enhanced sound quality, are also available from Fraunhofer. Users are
encouraged to check the Fraunhofer website for additional applications
information and documentation.
2. COPYRIGHT LICENSE
Redistribution and use in source and binary forms, with or without modification,
are permitted without payment of copyright license fees provided that you
satisfy the following conditions:
You must retain the complete text of this software license in redistributions of
the FDK AAC Codec or your modifications thereto in source code form.
You must retain the complete text of this software license in the documentation
and/or other materials provided with redistributions of the FDK AAC Codec or
your modifications thereto in binary form. You must make available free of
charge copies of the complete source code of the FDK AAC Codec and your
modifications thereto to recipients of copies in binary form.
The name of Fraunhofer may not be used to endorse or promote products derived
from this library without prior written permission.
You may not charge copyright license fees for anyone to use, copy or distribute
the FDK AAC Codec software or your modifications thereto.
Your modified versions of the FDK AAC Codec must carry prominent notices stating
that you changed the software and the date of any change. For modified versions
of the FDK AAC Codec, the term "Fraunhofer FDK AAC Codec Library for Android"
must be replaced by the term "Third-Party Modified Version of the Fraunhofer FDK
AAC Codec Library for Android."
3. NO PATENT LICENSE
NO EXPRESS OR IMPLIED LICENSES TO ANY PATENT CLAIMS, including without
limitation the patents of Fraunhofer, ARE GRANTED BY THIS SOFTWARE LICENSE.
Fraunhofer provides no warranty of patent non-infringement with respect to this
software.
You may use this FDK AAC Codec software or modifications thereto only for
purposes that are authorized by appropriate patent licenses.
4. DISCLAIMER
This FDK AAC Codec software is provided by Fraunhofer on behalf of the copyright
holders and contributors "AS IS" and WITHOUT ANY EXPRESS OR IMPLIED WARRANTIES,
including but not limited to the implied warranties of merchantability and
fitness for a particular purpose. IN NO EVENT SHALL THE COPYRIGHT HOLDER OR
CONTRIBUTORS BE LIABLE for any direct, indirect, incidental, special, exemplary,
or consequential damages, including but not limited to procurement of substitute
goods or services; loss of use, data, or profits, or business interruption,
however caused and on any theory of liability, whether in contract, strict
liability, or tort (including negligence), arising in any way out of the use of
this software, even if advised of the possibility of such damage.
5. CONTACT INFORMATION
Fraunhofer Institute for Integrated Circuits IIS
Attention: Audio and Multimedia Departments - FDK AAC LL
Am Wolfsmantel 33
91058 Erlangen, Germany
www.iis.fraunhofer.de/amm
amm-info@iis.fraunhofer.de
----------------------------------------------------------------------------- */
/*********************** MPEG surround encoder library *************************
Author(s): M. Luis Valero
Description: Enhanced Time Domain Downmix
*******************************************************************************/
/* Includes ******************************************************************/
#include "sacenc_dmx_tdom_enh.h"
#include "FDK_matrixCalloc.h"
#include "FDK_trigFcts.h"
#include "fixpoint_math.h"
/* Defines *******************************************************************/
#define PI_FLT 3.1415926535897931f
#define ALPHA_FLT 0.0001f
#define PI_E (2)
#define PI_M (FL2FXCONST_DBL(PI_FLT / (1 << PI_E)))
#define ALPHA_E (13)
#define ALPHA_M (FL2FXCONST_DBL(ALPHA_FLT * (1 << ALPHA_E)))
enum { L = 0, R = 1 };
/* Data Types ****************************************************************/
typedef struct T_ENHANCED_TIME_DOMAIN_DMX {
int maxFramelength;
int framelength;
FIXP_DBL prev_gain_m[2];
INT prev_gain_e;
FIXP_DBL prev_H1_m[2];
INT prev_H1_e;
FIXP_DBL *sinusWindow_m;
SCHAR sinusWindow_e;
FIXP_DBL prev_Left_m;
INT prev_Left_e;
FIXP_DBL prev_Right_m;
INT prev_Right_e;
FIXP_DBL prev_XNrg_m;
INT prev_XNrg_e;
FIXP_DBL lin_bbCld_weight_m;
INT lin_bbCld_weight_e;
FIXP_DBL gain_weight_m[2];
INT gain_weight_e;
} ENHANCED_TIME_DOMAIN_DMX;
/* Constants *****************************************************************/
/* Function / Class Declarations *********************************************/
static void calculateRatio(const FIXP_DBL sqrt_linCld_m,
const INT sqrt_linCld_e, const FIXP_DBL lin_Cld_m,
const INT lin_Cld_e, const FIXP_DBL Icc_m,
const INT Icc_e, FIXP_DBL G_m[2], INT *G_e);
static void calculateDmxGains(const FIXP_DBL lin_Cld_m, const INT lin_Cld_e,
const FIXP_DBL lin_Cld2_m, const INT lin_Cld2_e,
const FIXP_DBL Icc_m, const INT Icc_e,
const FIXP_DBL G_m[2], const INT G_e,
FIXP_DBL H1_m[2], INT *pH1_e);
/* Function / Class Definition ***********************************************/
static FIXP_DBL invSqrtNorm2(const FIXP_DBL op_m, const INT op_e,
INT *const result_e) {
FIXP_DBL src_m = op_m;
int src_e = op_e;
if (src_e & 1) {
src_m >>= 1;
src_e += 1;
}
src_m = invSqrtNorm2(src_m, result_e);
*result_e = (*result_e) - (src_e >> 1);
return src_m;
}
static FIXP_DBL sqrtFixp(const FIXP_DBL op_m, const INT op_e,
INT *const result_e) {
FIXP_DBL src_m = op_m;
int src_e = op_e;
if (src_e & 1) {
src_m >>= 1;
src_e += 1;
}
*result_e = (src_e >> 1);
return sqrtFixp(src_m);
}
static FIXP_DBL fixpAdd(const FIXP_DBL src1_m, const INT src1_e,
const FIXP_DBL src2_m, const INT src2_e,
INT *const dst_e) {
FIXP_DBL dst_m;
if (src1_m == FL2FXCONST_DBL(0.f)) {
*dst_e = src2_e;
dst_m = src2_m;
} else if (src2_m == FL2FXCONST_DBL(0.f)) {
*dst_e = src1_e;
dst_m = src1_m;
} else {
*dst_e = fixMax(src1_e, src2_e) + 1;
dst_m =
scaleValue(src1_m, fixMax((src1_e - (*dst_e)), -(DFRACT_BITS - 1))) +
scaleValue(src2_m, fixMax((src2_e - (*dst_e)), -(DFRACT_BITS - 1)));
}
return dst_m;
}
/**
* \brief Sum up fixpoint values with best possible accuracy.
*
* \param value1 First input value.
* \param q1 Scaling factor of first input value.
* \param pValue2 Pointer to second input value, will be modified on
* return.
* \param pQ2 Pointer to second scaling factor, will be modified on
* return.
*
* \return void
*/
static void fixpAddNorm(const FIXP_DBL value1, const INT q1,
FIXP_DBL *const pValue2, INT *const pQ2) {
const int headroom1 = fNormz(fixp_abs(value1)) - 1;
const int headroom2 = fNormz(fixp_abs(*pValue2)) - 1;
int resultScale = fixMax(q1 - headroom1, (*pQ2) - headroom2);
if ((value1 != FL2FXCONST_DBL(0.f)) && (*pValue2 != FL2FXCONST_DBL(0.f))) {
resultScale++;
}
*pValue2 =
scaleValue(value1, q1 - resultScale) +
scaleValue(*pValue2, fixMax(-(DFRACT_BITS - 1), ((*pQ2) - resultScale)));
*pQ2 = (*pValue2 != (FIXP_DBL)0) ? resultScale : DFRACT_BITS - 1;
}
FDK_SACENC_ERROR fdk_sacenc_open_enhancedTimeDomainDmx(
HANDLE_ENHANCED_TIME_DOMAIN_DMX *phEnhancedTimeDmx, const INT framelength) {
FDK_SACENC_ERROR error = SACENC_OK;
HANDLE_ENHANCED_TIME_DOMAIN_DMX hEnhancedTimeDmx = NULL;
if (NULL == phEnhancedTimeDmx) {
error = SACENC_INVALID_HANDLE;
} else {
FDK_ALLOCATE_MEMORY_1D(hEnhancedTimeDmx, 1, ENHANCED_TIME_DOMAIN_DMX);
FDK_ALLOCATE_MEMORY_1D(hEnhancedTimeDmx->sinusWindow_m, 1 + framelength,
FIXP_DBL);
hEnhancedTimeDmx->maxFramelength = framelength;
*phEnhancedTimeDmx = hEnhancedTimeDmx;
}
return error;
bail:
fdk_sacenc_close_enhancedTimeDomainDmx(&hEnhancedTimeDmx);
return ((SACENC_OK == error) ? SACENC_MEMORY_ERROR : error);
}
FDK_SACENC_ERROR fdk_sacenc_init_enhancedTimeDomainDmx(
HANDLE_ENHANCED_TIME_DOMAIN_DMX hEnhancedTimeDmx,
const FIXP_DBL *const pInputGain_m, const INT inputGain_e,
const FIXP_DBL outputGain_m, const INT outputGain_e,
const INT framelength) {
FDK_SACENC_ERROR error = SACENC_OK;
if (hEnhancedTimeDmx == NULL) {
error = SACENC_INVALID_HANDLE;
} else {
int smp;
if (framelength > hEnhancedTimeDmx->maxFramelength) {
error = SACENC_INIT_ERROR;
goto bail;
}
hEnhancedTimeDmx->framelength = framelength;
INT deltax_e;
FIXP_DBL deltax_m;
deltax_m = fDivNormHighPrec(
PI_M, (FIXP_DBL)(2 * hEnhancedTimeDmx->framelength), &deltax_e);
deltax_m = scaleValue(deltax_m, PI_E + deltax_e - (DFRACT_BITS - 1) - 1);
deltax_e = 1;
for (smp = 0; smp < hEnhancedTimeDmx->framelength + 1; smp++) {
hEnhancedTimeDmx->sinusWindow_m[smp] =
fMult(ALPHA_M, fPow2(fixp_sin(smp * deltax_m, deltax_e)));
}
hEnhancedTimeDmx->sinusWindow_e = -ALPHA_E;
hEnhancedTimeDmx->prev_Left_m = hEnhancedTimeDmx->prev_Right_m =
hEnhancedTimeDmx->prev_XNrg_m = FL2FXCONST_DBL(0.f);
hEnhancedTimeDmx->prev_Left_e = hEnhancedTimeDmx->prev_Right_e =
hEnhancedTimeDmx->prev_XNrg_e = DFRACT_BITS - 1;
hEnhancedTimeDmx->lin_bbCld_weight_m =
fDivNormHighPrec(fPow2(pInputGain_m[L]), fPow2(pInputGain_m[R]),
&hEnhancedTimeDmx->lin_bbCld_weight_e);
hEnhancedTimeDmx->gain_weight_m[L] = fMult(pInputGain_m[L], outputGain_m);
hEnhancedTimeDmx->gain_weight_m[R] = fMult(pInputGain_m[R], outputGain_m);
hEnhancedTimeDmx->gain_weight_e =
-fNorm(fixMax(hEnhancedTimeDmx->gain_weight_m[L],
hEnhancedTimeDmx->gain_weight_m[R]));
hEnhancedTimeDmx->gain_weight_m[L] = scaleValue(
hEnhancedTimeDmx->gain_weight_m[L], -hEnhancedTimeDmx->gain_weight_e);
hEnhancedTimeDmx->gain_weight_m[R] = scaleValue(
hEnhancedTimeDmx->gain_weight_m[R], -hEnhancedTimeDmx->gain_weight_e);
hEnhancedTimeDmx->gain_weight_e += inputGain_e + outputGain_e;
hEnhancedTimeDmx->prev_gain_m[L] = hEnhancedTimeDmx->gain_weight_m[L] >> 1;
hEnhancedTimeDmx->prev_gain_m[R] = hEnhancedTimeDmx->gain_weight_m[R] >> 1;
hEnhancedTimeDmx->prev_gain_e = hEnhancedTimeDmx->gain_weight_e + 1;
hEnhancedTimeDmx->prev_H1_m[L] =
scaleValue(hEnhancedTimeDmx->gain_weight_m[L], -4);
hEnhancedTimeDmx->prev_H1_m[R] =
scaleValue(hEnhancedTimeDmx->gain_weight_m[R], -4);
hEnhancedTimeDmx->prev_H1_e = 2 + 2 + hEnhancedTimeDmx->gain_weight_e;
}
bail:
return error;
}
FDK_SACENC_ERROR fdk_sacenc_apply_enhancedTimeDomainDmx(
HANDLE_ENHANCED_TIME_DOMAIN_DMX hEnhancedTimeDmx,
const INT_PCM *const *const inputTime, INT_PCM *const outputTimeDmx,
const INT InputDelay) {
FDK_SACENC_ERROR error = SACENC_OK;
if ((NULL == hEnhancedTimeDmx) || (NULL == inputTime) ||
(NULL == inputTime[L]) || (NULL == inputTime[R]) ||
(NULL == outputTimeDmx)) {
error = SACENC_INVALID_HANDLE;
} else {
int smp;
FIXP_DBL lin_bbCld_m, lin_Cld_m, bbCorr_m, sqrt_linCld_m, G_m[2], H1_m[2],
gainLeft_m, gainRight_m;
FIXP_DBL bbNrgLeft_m, bbNrgRight_m, bbXNrg_m, nrgLeft_m, nrgRight_m, nrgX_m;
INT lin_bbCld_e, lin_Cld_e, bbCorr_e, sqrt_linCld_e, G_e, H1_e;
INT bbNrgLeft_e, bbNrgRight_e, bbXNrg_e, nrgLeft_e, nrgRight_e, nrgX_e;
/* Increase energy time resolution with shorter processing blocks. 128 is an
* empiric value. */
const int granuleLength = fixMin(128, hEnhancedTimeDmx->framelength);
int granuleShift =
(granuleLength > 1)
? ((DFRACT_BITS - 1) - fNorm((FIXP_DBL)(granuleLength - 1)))
: 0;
granuleShift = fixMax(
3, granuleShift +
1); /* one bit more headroom for worst case accumulation */
smp = 0;
/* Prevent division by zero. */
bbNrgLeft_m = bbNrgRight_m = bbXNrg_m = (FIXP_DBL)(1);
bbNrgLeft_e = bbNrgRight_e = bbXNrg_e = 0;
do {
const int offset = smp;
FIXP_DBL partialL, partialR, partialX;
partialL = partialR = partialX = FL2FXCONST_DBL(0.f);
int in_margin = FDKmin(
getScalefactorPCM(
&inputTime[L][offset],
fixMin(offset + granuleLength, hEnhancedTimeDmx->framelength) -
offset,
1),
getScalefactorPCM(
&inputTime[R][offset],
fixMin(offset + granuleLength, hEnhancedTimeDmx->framelength) -
offset,
1));
/* partial energy */
for (smp = offset;
smp < fixMin(offset + granuleLength, hEnhancedTimeDmx->framelength);
smp++) {
FIXP_PCM inputL =
scaleValue((FIXP_PCM)inputTime[L][smp], in_margin - 1);
FIXP_PCM inputR =
scaleValue((FIXP_PCM)inputTime[R][smp], in_margin - 1);
partialL += fPow2Div2(inputL) >> (granuleShift - 3);
partialR += fPow2Div2(inputR) >> (granuleShift - 3);
partialX += fMultDiv2(inputL, inputR) >> (granuleShift - 3);
}
fixpAddNorm(partialL, granuleShift - 2 * in_margin, &bbNrgLeft_m,
&bbNrgLeft_e);
fixpAddNorm(partialR, granuleShift - 2 * in_margin, &bbNrgRight_m,
&bbNrgRight_e);
fixpAddNorm(partialX, granuleShift - 2 * in_margin, &bbXNrg_m, &bbXNrg_e);
} while (smp < hEnhancedTimeDmx->framelength);
nrgLeft_m =
fixpAdd(hEnhancedTimeDmx->prev_Left_m, hEnhancedTimeDmx->prev_Left_e,
bbNrgLeft_m, bbNrgLeft_e, &nrgLeft_e);
nrgRight_m =
fixpAdd(hEnhancedTimeDmx->prev_Right_m, hEnhancedTimeDmx->prev_Right_e,
bbNrgRight_m, bbNrgRight_e, &nrgRight_e);
nrgX_m =
fixpAdd(hEnhancedTimeDmx->prev_XNrg_m, hEnhancedTimeDmx->prev_XNrg_e,
bbXNrg_m, bbXNrg_e, &nrgX_e);
lin_bbCld_m = fMult(hEnhancedTimeDmx->lin_bbCld_weight_m,
fDivNorm(nrgLeft_m, nrgRight_m, &lin_bbCld_e));
lin_bbCld_e +=
hEnhancedTimeDmx->lin_bbCld_weight_e + nrgLeft_e - nrgRight_e;
bbCorr_m = fMult(nrgX_m, invSqrtNorm2(fMult(nrgLeft_m, nrgRight_m),
nrgLeft_e + nrgRight_e, &bbCorr_e));
bbCorr_e += nrgX_e;
hEnhancedTimeDmx->prev_Left_m = bbNrgLeft_m;
hEnhancedTimeDmx->prev_Left_e = bbNrgLeft_e;
hEnhancedTimeDmx->prev_Right_m = bbNrgRight_m;
hEnhancedTimeDmx->prev_Right_e = bbNrgRight_e;
hEnhancedTimeDmx->prev_XNrg_m = bbXNrg_m;
hEnhancedTimeDmx->prev_XNrg_e = bbXNrg_e;
/*
bbCld = 10.f*log10(lin_bbCld)
lin_Cld = pow(10,bbCld/20)
= pow(10,10.f*log10(lin_bbCld)/20.f)
= sqrt(lin_bbCld)
lin_Cld2 = lin_Cld*lin_Cld
= sqrt(lin_bbCld)*sqrt(lin_bbCld)
= lin_bbCld
*/
lin_Cld_m = sqrtFixp(lin_bbCld_m, lin_bbCld_e, &lin_Cld_e);
sqrt_linCld_m = sqrtFixp(lin_Cld_m, lin_Cld_e, &sqrt_linCld_e);
/*calculate how much right and how much left signal, to avoid signal
* cancellations*/
calculateRatio(sqrt_linCld_m, sqrt_linCld_e, lin_Cld_m, lin_Cld_e, bbCorr_m,
bbCorr_e, G_m, &G_e);
/*calculate downmix gains*/
calculateDmxGains(lin_Cld_m, lin_Cld_e, lin_bbCld_m, lin_bbCld_e, bbCorr_m,
bbCorr_e, G_m, G_e, H1_m, &H1_e);
/*adapt output gains*/
H1_m[L] = fMult(H1_m[L], hEnhancedTimeDmx->gain_weight_m[L]);
H1_m[R] = fMult(H1_m[R], hEnhancedTimeDmx->gain_weight_m[R]);
H1_e += hEnhancedTimeDmx->gain_weight_e;
gainLeft_m = hEnhancedTimeDmx->prev_gain_m[L];
gainRight_m = hEnhancedTimeDmx->prev_gain_m[R];
INT intermediate_gain_e =
+hEnhancedTimeDmx->sinusWindow_e + H1_e - hEnhancedTimeDmx->prev_gain_e;
for (smp = 0; smp < hEnhancedTimeDmx->framelength; smp++) {
const INT N = hEnhancedTimeDmx->framelength;
FIXP_DBL intermediate_gainLeft_m, intermediate_gainRight_m, tmp;
intermediate_gainLeft_m =
scaleValue((fMult(hEnhancedTimeDmx->sinusWindow_m[smp], H1_m[L]) +
fMult(hEnhancedTimeDmx->sinusWindow_m[N - smp],
hEnhancedTimeDmx->prev_H1_m[L])),
intermediate_gain_e);
intermediate_gainRight_m =
scaleValue((fMult(hEnhancedTimeDmx->sinusWindow_m[smp], H1_m[R]) +
fMult(hEnhancedTimeDmx->sinusWindow_m[N - smp],
hEnhancedTimeDmx->prev_H1_m[R])),
intermediate_gain_e);
gainLeft_m = intermediate_gainLeft_m +
fMult(FL2FXCONST_DBL(1.f - ALPHA_FLT), gainLeft_m);
gainRight_m = intermediate_gainRight_m +
fMult(FL2FXCONST_DBL(1.f - ALPHA_FLT), gainRight_m);
tmp = fMultDiv2(gainLeft_m, (FIXP_PCM)inputTime[L][smp + InputDelay]) +
fMultDiv2(gainRight_m, (FIXP_PCM)inputTime[R][smp + InputDelay]);
outputTimeDmx[smp] = (INT_PCM)SATURATE_SHIFT(
tmp,
-(hEnhancedTimeDmx->prev_gain_e + 1 - (DFRACT_BITS - SAMPLE_BITS)),
SAMPLE_BITS);
}
hEnhancedTimeDmx->prev_gain_m[L] = gainLeft_m;
hEnhancedTimeDmx->prev_gain_m[R] = gainRight_m;
hEnhancedTimeDmx->prev_H1_m[L] = H1_m[L];
hEnhancedTimeDmx->prev_H1_m[R] = H1_m[R];
hEnhancedTimeDmx->prev_H1_e = H1_e;
}
return error;
}
static void calculateRatio(const FIXP_DBL sqrt_linCld_m,
const INT sqrt_linCld_e, const FIXP_DBL lin_Cld_m,
const INT lin_Cld_e, const FIXP_DBL Icc_m,
const INT Icc_e, FIXP_DBL G_m[2], INT *G_e) {
#define G_SCALE_FACTOR (2)
if (Icc_m >= FL2FXCONST_DBL(0.f)) {
G_m[0] = G_m[1] = FL2FXCONST_DBL(1.f / (float)(1 << G_SCALE_FACTOR));
G_e[0] = G_SCALE_FACTOR;
} else {
const FIXP_DBL max_gain_factor =
FL2FXCONST_DBL(2.f / (float)(1 << G_SCALE_FACTOR));
FIXP_DBL tmp1_m, tmp2_m, numerator_m, denominator_m, r_m, r4_m, q;
INT tmp1_e, tmp2_e, numerator_e, denominator_e, r_e, r4_e;
/* r = (lin_Cld + 1 + 2*Icc*sqrt_linCld) / (lin_Cld + 1 -
* 2*Icc*sqrt_linCld) = (tmp1 + tmp2) / (tmp1 - tmp2)
*/
tmp1_m =
fixpAdd(lin_Cld_m, lin_Cld_e, FL2FXCONST_DBL(1.f / 2.f), 1, &tmp1_e);
tmp2_m = fMult(Icc_m, sqrt_linCld_m);
tmp2_e = 1 + Icc_e + sqrt_linCld_e;
numerator_m = fixpAdd(tmp1_m, tmp1_e, tmp2_m, tmp2_e, &numerator_e);
denominator_m = fixpAdd(tmp1_m, tmp1_e, -tmp2_m, tmp2_e, &denominator_e);
if ((numerator_m > FL2FXCONST_DBL(0.f)) &&
(denominator_m > FL2FXCONST_DBL(0.f))) {
r_m = fDivNorm(numerator_m, denominator_m, &r_e);
r_e += numerator_e - denominator_e;
/* r_4 = sqrt( sqrt( r ) ) */
r4_m = sqrtFixp(r_m, r_e, &r4_e);
r4_m = sqrtFixp(r4_m, r4_e, &r4_e);
r4_e -= G_SCALE_FACTOR;
/* q = min(r4_m, max_gain_factor) */
q = ((r4_e >= 0) && (r4_m >= (max_gain_factor >> r4_e)))
? max_gain_factor
: scaleValue(r4_m, r4_e);
} else {
q = FL2FXCONST_DBL(0.f);
}
G_m[0] = max_gain_factor - q;
G_m[1] = q;
*G_e = G_SCALE_FACTOR;
}
}
static void calculateDmxGains(const FIXP_DBL lin_Cld_m, const INT lin_Cld_e,
const FIXP_DBL lin_Cld2_m, const INT lin_Cld2_e,
const FIXP_DBL Icc_m, const INT Icc_e,
const FIXP_DBL G_m[2], const INT G_e,
FIXP_DBL H1_m[2], INT *pH1_e) {
#define H1_SCALE_FACTOR (2)
const FIXP_DBL max_gain_factor =
FL2FXCONST_DBL(2.f / (float)(1 << H1_SCALE_FACTOR));
FIXP_DBL nrgRight_m, nrgLeft_m, crossNrg_m, inv_weight_num_m,
inv_weight_denom_m, inverse_weight_m, inverse_weight_limited;
INT nrgRight_e, nrgLeft_e, crossNrg_e, inv_weight_num_e, inv_weight_denom_e,
inverse_weight_e;
/* nrgRight = sqrt(1/(lin_Cld2 + 1) */
nrgRight_m = fixpAdd(lin_Cld2_m, lin_Cld2_e, FL2FXCONST_DBL(1.f / 2.f), 1,
&nrgRight_e);
nrgRight_m = invSqrtNorm2(nrgRight_m, nrgRight_e, &nrgRight_e);
/* nrgLeft = lin_Cld * nrgRight */
nrgLeft_m = fMult(lin_Cld_m, nrgRight_m);
nrgLeft_e = lin_Cld_e + nrgRight_e;
/* crossNrg = sqrt(nrgLeft*nrgRight) */
crossNrg_m = sqrtFixp(fMult(nrgLeft_m, nrgRight_m), nrgLeft_e + nrgRight_e,
&crossNrg_e);
/* inverse_weight = sqrt((nrgLeft + nrgRight) / ( (G[0]*G[0]*nrgLeft) +
* (G[1]*G[1]*nrgRight) + 2*G[0]*G[1]*Icc*crossNrg)) = sqrt(inv_weight_num /
* inv_weight_denom)
*/
inv_weight_num_m =
fixpAdd(nrgRight_m, nrgRight_e, nrgLeft_m, nrgLeft_e, &inv_weight_num_e);
inv_weight_denom_m =
fixpAdd(fMult(fPow2(G_m[0]), nrgLeft_m), 2 * G_e + nrgLeft_e,
fMult(fPow2(G_m[1]), nrgRight_m), 2 * G_e + nrgRight_e,
&inv_weight_denom_e);
inv_weight_denom_m =
fixpAdd(fMult(fMult(fMult(G_m[0], G_m[1]), crossNrg_m), Icc_m),
1 + 2 * G_e + crossNrg_e + Icc_e, inv_weight_denom_m,
inv_weight_denom_e, &inv_weight_denom_e);
if (inv_weight_denom_m > FL2FXCONST_DBL(0.f)) {
inverse_weight_m =
fDivNorm(inv_weight_num_m, inv_weight_denom_m, &inverse_weight_e);
inverse_weight_m =
sqrtFixp(inverse_weight_m,
inverse_weight_e + inv_weight_num_e - inv_weight_denom_e,
&inverse_weight_e);
inverse_weight_e -= H1_SCALE_FACTOR;
/* inverse_weight_limited = min(max_gain_factor, inverse_weight) */
inverse_weight_limited =
((inverse_weight_e >= 0) &&
(inverse_weight_m >= (max_gain_factor >> inverse_weight_e)))
? max_gain_factor
: scaleValue(inverse_weight_m, inverse_weight_e);
} else {
inverse_weight_limited = max_gain_factor;
}
H1_m[0] = fMult(G_m[0], inverse_weight_limited);
H1_m[1] = fMult(G_m[1], inverse_weight_limited);
*pH1_e = G_e + H1_SCALE_FACTOR;
}
FDK_SACENC_ERROR fdk_sacenc_close_enhancedTimeDomainDmx(
HANDLE_ENHANCED_TIME_DOMAIN_DMX *phEnhancedTimeDmx) {
FDK_SACENC_ERROR error = SACENC_OK;
if (phEnhancedTimeDmx == NULL) {
error = SACENC_INVALID_HANDLE;
} else {
if (*phEnhancedTimeDmx != NULL) {
if ((*phEnhancedTimeDmx)->sinusWindow_m != NULL) {
FDK_FREE_MEMORY_1D((*phEnhancedTimeDmx)->sinusWindow_m);
}
FDK_FREE_MEMORY_1D(*phEnhancedTimeDmx);
}
}
return error;
}