blob: 86ee4fd3e1fb87cae0767b88fe9bf6da2f156e6b [file] [log] [blame]
// SPDX-License-Identifier: Apache-2.0
// ----------------------------------------------------------------------------
// Copyright 2020-2021 Arm Limited
//
// Licensed under the Apache License, Version 2.0 (the "License"); you may not
// use this file except in compliance with the License. You may obtain a copy
// of the License at:
//
// http://www.apache.org/licenses/LICENSE-2.0
//
// Unless required by applicable law or agreed to in writing, software
// distributed under the License is distributed on an "AS IS" BASIS, WITHOUT
// WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. See the
// License for the specific language governing permissions and limitations
// under the License.
// ----------------------------------------------------------------------------
/**
* @brief Generic 4x32-bit vector functions.
*
* This module implements generic 4-wide vector functions that are valid for
* all instruction sets, typically implemented using lower level 4-wide
* operations that are ISA-specific.
*/
#ifndef ASTC_VECMATHLIB_COMMON_4_H_INCLUDED
#define ASTC_VECMATHLIB_COMMON_4_H_INCLUDED
#ifndef ASTCENC_SIMD_INLINE
#error "Include astcenc_vecmathlib.h, do not include directly"
#endif
#include <cstdio>
// ============================================================================
// vmask4 operators and functions
// ============================================================================
/**
* @brief True if any lanes are enabled, false otherwise.
*/
ASTCENC_SIMD_INLINE bool any(vmask4 a)
{
return mask(a) != 0;
}
/**
* @brief True if all lanes are enabled, false otherwise.
*/
ASTCENC_SIMD_INLINE bool all(vmask4 a)
{
return mask(a) == 0xF;
}
// ============================================================================
// vint4 operators and functions
// ============================================================================
/**
* @brief Overload: vector by scalar addition.
*/
ASTCENC_SIMD_INLINE vint4 operator+(vint4 a, int b)
{
return a + vint4(b);
}
/**
* @brief Overload: vector by vector incremental addition.
*/
ASTCENC_SIMD_INLINE vint4& operator+=(vint4& a, const vint4& b)
{
a = a + b;
return a;
}
/**
* @brief Overload: vector by scalar subtraction.
*/
ASTCENC_SIMD_INLINE vint4 operator-(vint4 a, int b)
{
return a - vint4(b);
}
/**
* @brief Overload: vector by scalar multiplication.
*/
ASTCENC_SIMD_INLINE vint4 operator*(vint4 a, int b)
{
return a * vint4(b);
}
/**
* @brief Overload: vector by scalar bitwise or.
*/
ASTCENC_SIMD_INLINE vint4 operator|(vint4 a, int b)
{
return a | vint4(b);
}
/**
* @brief Overload: vector by scalar bitwise and.
*/
ASTCENC_SIMD_INLINE vint4 operator&(vint4 a, int b)
{
return a & vint4(b);
}
/**
* @brief Overload: vector by scalar bitwise xor.
*/
ASTCENC_SIMD_INLINE vint4 operator^(vint4 a, int b)
{
return a ^ vint4(b);
}
/**
* @brief Return the clamped value between min and max.
*/
ASTCENC_SIMD_INLINE vint4 clamp(int minv, int maxv, vint4 a)
{
return min(max(a, vint4(minv)), vint4(maxv));
}
/**
* @brief Return the horizontal sum of RGB vector lanes as a scalar.
*/
ASTCENC_SIMD_INLINE int hadd_rgb_s(vint4 a)
{
return a.lane<0>() + a.lane<1>() + a.lane<2>();
}
// ============================================================================
// vfloat4 operators and functions
// ============================================================================
/**
* @brief Overload: vector by vector incremental addition.
*/
ASTCENC_SIMD_INLINE vfloat4& operator+=(vfloat4& a, const vfloat4& b)
{
a = a + b;
return a;
}
/**
* @brief Overload: vector by scalar addition.
*/
ASTCENC_SIMD_INLINE vfloat4 operator+(vfloat4 a, float b)
{
return a + vfloat4(b);
}
/**
* @brief Overload: vector by scalar subtraction.
*/
ASTCENC_SIMD_INLINE vfloat4 operator-(vfloat4 a, float b)
{
return a - vfloat4(b);
}
/**
* @brief Overload: vector by scalar multiplication.
*/
ASTCENC_SIMD_INLINE vfloat4 operator*(vfloat4 a, float b)
{
return a * vfloat4(b);
}
/**
* @brief Overload: scalar by vector multiplication.
*/
ASTCENC_SIMD_INLINE vfloat4 operator*(float a, vfloat4 b)
{
return vfloat4(a) * b;
}
/**
* @brief Overload: vector by scalar division.
*/
ASTCENC_SIMD_INLINE vfloat4 operator/(vfloat4 a, float b)
{
return a / vfloat4(b);
}
/**
* @brief Overload: scalar by vector division.
*/
ASTCENC_SIMD_INLINE vfloat4 operator/(float a, vfloat4 b)
{
return vfloat4(a) / b;
}
/**
* @brief Return the min vector of a vector and a scalar.
*
* If either lane value is NaN, @c b will be returned for that lane.
*/
ASTCENC_SIMD_INLINE vfloat4 min(vfloat4 a, float b)
{
return min(a, vfloat4(b));
}
/**
* @brief Return the max vector of a vector and a scalar.
*
* If either lane value is NaN, @c b will be returned for that lane.
*/
ASTCENC_SIMD_INLINE vfloat4 max(vfloat4 a, float b)
{
return max(a, vfloat4(b));
}
/**
* @brief Return the clamped value between min and max.
*
* It is assumed that neither @c min nor @c max are NaN values. If @c a is NaN
* then @c min will be returned for that lane.
*/
ASTCENC_SIMD_INLINE vfloat4 clamp(float minv, float maxv, vfloat4 a)
{
// Do not reorder - second operand will return if either is NaN
return min(max(a, minv), maxv);
}
/**
* @brief Return the clamped value between 0.0f and max.
*
* It is assumed that @c max is not a NaN value. If @c a is NaN then zero will
* be returned for that lane.
*/
ASTCENC_SIMD_INLINE vfloat4 clampz(float maxv, vfloat4 a)
{
// Do not reorder - second operand will return if either is NaN
return min(max(a, vfloat4::zero()), maxv);
}
/**
* @brief Return the clamped value between 0.0f and 1.0f.
*
* If @c a is NaN then zero will be returned for that lane.
*/
ASTCENC_SIMD_INLINE vfloat4 clampzo(vfloat4 a)
{
// Do not reorder - second operand will return if either is NaN
return min(max(a, vfloat4::zero()), 1.0f);
}
/**
* @brief Return the horizontal minimum of a vector.
*/
ASTCENC_SIMD_INLINE float hmin_s(vfloat4 a)
{
return hmin(a).lane<0>();
}
/**
* @brief Return the horizontal min of RGB vector lanes as a scalar.
*/
ASTCENC_SIMD_INLINE float hmin_rgb_s(vfloat4 a)
{
a.set_lane<3>(a.lane<0>());
return hmin_s(a);
}
/**
* @brief Return the horizontal maximum of a vector.
*/
ASTCENC_SIMD_INLINE float hmax_s(vfloat4 a)
{
return hmax(a).lane<0>();
}
/**
* @brief Accumulate lane-wise sums for a vector.
*/
ASTCENC_SIMD_INLINE void haccumulate(vfloat4& accum, vfloat4 a)
{
accum = accum + a;
}
/**
* @brief Accumulate lane-wise sums for a masked vector.
*/
ASTCENC_SIMD_INLINE void haccumulate(vfloat4& accum, vfloat4 a, vmask4 m)
{
a = select(vfloat4::zero(), a, m);
haccumulate(accum, a);
}
/**
* @brief Return the horizontal sum of RGB vector lanes as a scalar.
*/
ASTCENC_SIMD_INLINE float hadd_rgb_s(vfloat4 a)
{
return a.lane<0>() + a.lane<1>() + a.lane<2>();
}
#if !defined(ASTCENC_USE_NATIVE_DOT_PRODUCT)
/**
* @brief Return the dot product for the full 4 lanes, returning scalar.
*/
ASTCENC_SIMD_INLINE float dot_s(vfloat4 a, vfloat4 b)
{
vfloat4 m = a * b;
return hadd_s(m);
}
/**
* @brief Return the dot product for the full 4 lanes, returning vector.
*/
ASTCENC_SIMD_INLINE vfloat4 dot(vfloat4 a, vfloat4 b)
{
vfloat4 m = a * b;
return vfloat4(hadd_s(m));
}
/**
* @brief Return the dot product for the bottom 3 lanes, returning scalar.
*/
ASTCENC_SIMD_INLINE float dot3_s(vfloat4 a, vfloat4 b)
{
vfloat4 m = a * b;
return hadd_rgb_s(m);
}
/**
* @brief Return the dot product for the bottom 3 lanes, returning vector.
*/
ASTCENC_SIMD_INLINE vfloat4 dot3(vfloat4 a, vfloat4 b)
{
vfloat4 m = a * b;
float d3 = hadd_rgb_s(m);
return vfloat4(d3, d3, d3, 0.0f);
}
#endif
#if !defined(ASTCENC_USE_NATIVE_POPCOUNT)
/**
* @brief Population bit count.
*
* @param v The value to population count.
*
* @return The number of 1 bits.
*/
static inline int popcount(uint64_t v)
{
uint64_t mask1 = 0x5555555555555555ULL;
uint64_t mask2 = 0x3333333333333333ULL;
uint64_t mask3 = 0x0F0F0F0F0F0F0F0FULL;
v -= (v >> 1) & mask1;
v = (v & mask2) + ((v >> 2) & mask2);
v += v >> 4;
v &= mask3;
v *= 0x0101010101010101ULL;
v >>= 56;
return static_cast<int>(v);
}
#endif
/**
* @brief Apply signed bit transfer.
*
* @param input0 The first encoded endpoint.
* @param input1 The second encoded endpoint.
*/
static ASTCENC_SIMD_INLINE void bit_transfer_signed(
vint4& input0,
vint4& input1
) {
input1 = lsr<1>(input1) | (input0 & 0x80);
input0 = lsr<1>(input0) & 0x3F;
vmask4 mask = (input0 & 0x20) != vint4::zero();
input0 = select(input0, input0 - 0x40, mask);
}
/**
* @brief Debug function to print a vector of ints.
*/
ASTCENC_SIMD_INLINE void print(vint4 a)
{
alignas(16) int v[4];
storea(a, v);
printf("v4_i32:\n %8d %8d %8d %8d\n",
v[0], v[1], v[2], v[3]);
}
/**
* @brief Debug function to print a vector of ints.
*/
ASTCENC_SIMD_INLINE void printx(vint4 a)
{
alignas(16) int v[4];
storea(a, v);
printf("v4_i32:\n %08x %08x %08x %08x\n",
v[0], v[1], v[2], v[3]);
}
/**
* @brief Debug function to print a vector of floats.
*/
ASTCENC_SIMD_INLINE void print(vfloat4 a)
{
alignas(16) float v[4];
storea(a, v);
printf("v4_f32:\n %0.4f %0.4f %0.4f %0.4f\n",
static_cast<double>(v[0]), static_cast<double>(v[1]),
static_cast<double>(v[2]), static_cast<double>(v[3]));
}
/**
* @brief Debug function to print a vector of masks.
*/
ASTCENC_SIMD_INLINE void print(vmask4 a)
{
print(select(vint4(0), vint4(1), a));
}
#endif // #ifndef ASTC_VECMATHLIB_COMMON_4_H_INCLUDED