blob: ba7f9ea4a64882d0f4293c7e35340018deee890b [file] [log] [blame]
/*
* Copyright © 2017 Intel Corporation
*
* Permission is hereby granted, free of charge, to any person obtaining a
* copy of this software and associated documentation files (the "Software"),
* to deal in the Software without restriction, including without limitation
* the rights to use, copy, modify, merge, publish, distribute, sublicense,
* and/or sell copies of the Software, and to permit persons to whom the
* Software is furnished to do so, subject to the following conditions:
*
* The above copyright notice and this permission notice (including the next
* paragraph) shall be included in all copies or substantial portions of the
* Software.
*
* THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
* IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
* FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL
* THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
* LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING
* FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS
* IN THE SOFTWARE.
*/
#ifndef VK_UTIL_H
#define VK_UTIL_H
/* common inlines and macros for vulkan drivers */
#include <inttypes.h>
#include <stdio.h>
#include <stdlib.h>
#include <vulkan/vulkan.h>
#include <chrono>
#include <functional>
#include <memory>
#include <optional>
#include <string>
#include <thread>
#include <tuple>
#include <type_traits>
#include <vector>
#include "VkDecoderContext.h"
#include "VulkanDispatch.h"
#include "aemu/base/synchronization/Lock.h"
#include "host-common/GfxstreamFatalError.h"
#include "host-common/logging.h"
#include "vk_fn_info.h"
#include "vulkan/cereal/common/vk_struct_id.h"
namespace gfxstream {
namespace vk {
struct vk_struct_common {
VkStructureType sType;
struct vk_struct_common* pNext;
};
struct vk_struct_chain_iterator {
vk_struct_common* value;
};
#define vk_foreach_struct(__iter, __start) \
for (struct vk_struct_common* __iter = (struct vk_struct_common*)(__start); __iter; \
__iter = __iter->pNext)
#define vk_foreach_struct_const(__iter, __start) \
for (const struct vk_struct_common* __iter = (const struct vk_struct_common*)(__start); \
__iter; __iter = __iter->pNext)
/**
* A wrapper for a Vulkan output array. A Vulkan output array is one that
* follows the convention of the parameters to
* vkGetPhysicalDeviceQueueFamilyProperties().
*
* Example Usage:
*
* VkResult
* vkGetPhysicalDeviceQueueFamilyProperties(
* VkPhysicalDevice physicalDevice,
* uint32_t* pQueueFamilyPropertyCount,
* VkQueueFamilyProperties* pQueueFamilyProperties)
* {
* VK_OUTARRAY_MAKE(props, pQueueFamilyProperties,
* pQueueFamilyPropertyCount);
*
* vk_outarray_append(&props, p) {
* p->queueFlags = ...;
* p->queueCount = ...;
* }
*
* vk_outarray_append(&props, p) {
* p->queueFlags = ...;
* p->queueCount = ...;
* }
*
* return vk_outarray_status(&props);
* }
*/
struct __vk_outarray {
/** May be null. */
void* data;
/**
* Capacity, in number of elements. Capacity is unlimited (UINT32_MAX) if
* data is null.
*/
uint32_t cap;
/**
* Count of elements successfully written to the array. Every write is
* considered successful if data is null.
*/
uint32_t* filled_len;
/**
* Count of elements that would have been written to the array if its
* capacity were sufficient. Vulkan functions often return VK_INCOMPLETE
* when `*filled_len < wanted_len`.
*/
uint32_t wanted_len;
};
static inline void __vk_outarray_init(struct __vk_outarray* a, void* data, uint32_t* len) {
a->data = data;
a->cap = *len;
a->filled_len = len;
*a->filled_len = 0;
a->wanted_len = 0;
if (a->data == NULL) a->cap = UINT32_MAX;
}
static inline VkResult __vk_outarray_status(const struct __vk_outarray* a) {
if (*a->filled_len < a->wanted_len)
return VK_INCOMPLETE;
else
return VK_SUCCESS;
}
static inline void* __vk_outarray_next(struct __vk_outarray* a, size_t elem_size) {
void* p = NULL;
a->wanted_len += 1;
if (*a->filled_len >= a->cap) return NULL;
if (a->data != NULL) p = ((uint8_t*)a->data) + (*a->filled_len) * elem_size;
*a->filled_len += 1;
return p;
}
#define vk_outarray(elem_t) \
struct { \
struct __vk_outarray base; \
elem_t meta[]; \
}
#define vk_outarray_typeof_elem(a) __typeof__((a)->meta[0])
#define vk_outarray_sizeof_elem(a) sizeof((a)->meta[0])
#define vk_outarray_init(a, data, len) __vk_outarray_init(&(a)->base, (data), (len))
#define VK_OUTARRAY_MAKE(name, data, len) \
vk_outarray(__typeof__((data)[0])) name; \
vk_outarray_init(&name, (data), (len))
#define vk_outarray_status(a) __vk_outarray_status(&(a)->base)
#define vk_outarray_next(a) \
((vk_outarray_typeof_elem(a)*)__vk_outarray_next(&(a)->base, vk_outarray_sizeof_elem(a)))
/**
* Append to a Vulkan output array.
*
* This is a block-based macro. For example:
*
* vk_outarray_append(&a, elem) {
* elem->foo = ...;
* elem->bar = ...;
* }
*
* The array `a` has type `vk_outarray(elem_t) *`. It is usually declared with
* VK_OUTARRAY_MAKE(). The variable `elem` is block-scoped and has type
* `elem_t *`.
*
* The macro unconditionally increments the array's `wanted_len`. If the array
* is not full, then the macro also increment its `filled_len` and then
* executes the block. When the block is executed, `elem` is non-null and
* points to the newly appended element.
*/
#define vk_outarray_append(a, elem) \
for (vk_outarray_typeof_elem(a)* elem = vk_outarray_next(a); elem != NULL; elem = NULL)
static inline void* __vk_find_struct(void* start, VkStructureType sType) {
vk_foreach_struct(s, start) {
if (s->sType == sType) return s;
}
return NULL;
}
template <class T, class H>
T* vk_find_struct(H* head) {
(void)vk_get_vk_struct_id<H>::id;
return static_cast<T*>(__vk_find_struct(static_cast<void*>(head), vk_get_vk_struct_id<T>::id));
}
template <class T, class H>
const T* vk_find_struct(const H* head) {
(void)vk_get_vk_struct_id<H>::id;
return static_cast<const T*>(__vk_find_struct(const_cast<void*>(static_cast<const void*>(head)),
vk_get_vk_struct_id<T>::id));
}
uint32_t vk_get_driver_version(void);
uint32_t vk_get_version_override(void);
#define VK_EXT_OFFSET (1000000000UL)
#define VK_ENUM_EXTENSION(__enum) \
((__enum) >= VK_EXT_OFFSET ? ((((__enum)-VK_EXT_OFFSET) / 1000UL) + 1) : 0)
#define VK_ENUM_OFFSET(__enum) ((__enum) >= VK_EXT_OFFSET ? ((__enum) % 1000) : (__enum))
template <class T>
T vk_make_orphan_copy(const T& vk_struct) {
T copy = vk_struct;
copy.pNext = NULL;
return copy;
}
template <class T>
vk_struct_chain_iterator vk_make_chain_iterator(T* vk_struct) {
(void)vk_get_vk_struct_id<T>::id;
vk_struct_chain_iterator result = {reinterpret_cast<vk_struct_common*>(vk_struct)};
return result;
}
template <class T>
void vk_append_struct(vk_struct_chain_iterator* i, T* vk_struct) {
(void)vk_get_vk_struct_id<T>::id;
vk_struct_common* p = i->value;
if (p->pNext) {
::abort();
}
p->pNext = reinterpret_cast<vk_struct_common*>(vk_struct);
vk_struct->pNext = NULL;
*i = vk_make_chain_iterator(vk_struct);
}
// The caller should guarantee that all the pNext structs in the chain starting at nextChain is not
// a const object to avoid unexpected undefined behavior.
template <class T, class U, typename = std::enable_if_t<!std::is_const_v<T> && !std::is_const_v<U>>>
void vk_insert_struct(T& pos, U& nextChain) {
vk_struct_common* nextChainTail = reinterpret_cast<vk_struct_common*>(&nextChain);
for (; nextChainTail->pNext; nextChainTail = nextChainTail->pNext) {}
nextChainTail->pNext = reinterpret_cast<vk_struct_common*>(const_cast<void*>(pos.pNext));
pos.pNext = &nextChain;
}
template <class S, class T>
void vk_struct_chain_remove(S* unwanted, T* vk_struct) {
if (!unwanted) return;
vk_foreach_struct(current, vk_struct) {
if ((void*)unwanted == current->pNext) {
const vk_struct_common* unwanted_as_common =
reinterpret_cast<const vk_struct_common*>(unwanted);
current->pNext = unwanted_as_common->pNext;
}
}
}
#define VK_CHECK(x) \
do { \
VkResult err = x; \
if (err != VK_SUCCESS) { \
if (err == VK_ERROR_DEVICE_LOST) { \
vk_util::getVkCheckCallbacks().callIfExists( \
&vk_util::VkCheckCallbacks::onVkErrorDeviceLost); \
} \
if (err == VK_ERROR_OUT_OF_HOST_MEMORY || err == VK_ERROR_OUT_OF_DEVICE_MEMORY || \
err == VK_ERROR_OUT_OF_POOL_MEMORY) { \
vk_util::getVkCheckCallbacks().callIfExists( \
&vk_util::VkCheckCallbacks::onVkErrorOutOfMemory, err, __func__, __LINE__); \
} \
GFXSTREAM_ABORT(::emugl::FatalError(err)); \
} \
} while (0)
#define VK_CHECK_MEMALLOC(x, allocateInfo) \
do { \
VkResult err = x; \
if (err != VK_SUCCESS) { \
if (err == VK_ERROR_OUT_OF_HOST_MEMORY || err == VK_ERROR_OUT_OF_DEVICE_MEMORY) { \
vk_util::getVkCheckCallbacks().callIfExists( \
&vk_util::VkCheckCallbacks::onVkErrorOutOfMemoryOnAllocation, err, __func__, \
__LINE__, allocateInfo.allocationSize); \
} \
GFXSTREAM_ABORT(::emugl::FatalError(err)); \
} \
} while (0)
typedef void* MTLTextureRef;
typedef void* MTLBufferRef;
namespace vk_util {
inline VkResult waitForVkQueueIdleWithRetry(const VulkanDispatch& vk, VkQueue queue) {
using namespace std::chrono_literals;
constexpr uint32_t retryLimit = 5;
constexpr std::chrono::duration waitInterval = 4ms;
VkResult res = vk.vkQueueWaitIdle(queue);
for (uint32_t retryTimes = 1; retryTimes < retryLimit && res == VK_TIMEOUT; retryTimes++) {
INFO("VK_TIMEOUT returned from vkQueueWaitIdle with %" PRIu32 " attempt. Wait for %" PRIu32
"ms before another attempt.",
retryTimes,
static_cast<uint32_t>(
std::chrono::duration_cast<std::chrono::milliseconds>(waitInterval).count()));
std::this_thread::sleep_for(waitInterval);
res = vk.vkQueueWaitIdle(queue);
}
return res;
}
typedef struct {
std::function<void()> onVkErrorDeviceLost;
std::function<void(VkResult, const char*, int)> onVkErrorOutOfMemory;
std::function<void(VkResult, const char*, int, uint64_t)> onVkErrorOutOfMemoryOnAllocation;
} VkCheckCallbacks;
template <class T>
class CallbacksWrapper {
public:
CallbacksWrapper(std::unique_ptr<T> callbacks) : mCallbacks(std::move(callbacks)) {}
// function should be a member function pointer to T.
template <class U, class... Args>
void callIfExists(U function, Args&&... args) const {
if (mCallbacks && (*mCallbacks.*function)) {
(*mCallbacks.*function)(std::forward<Args>(args)...);
}
}
T* get() const { return mCallbacks.get(); }
private:
std::unique_ptr<T> mCallbacks;
};
std::optional<uint32_t> findMemoryType(const VulkanDispatch* ivk, VkPhysicalDevice physicalDevice,
uint32_t typeFilter, VkMemoryPropertyFlags properties);
void setVkCheckCallbacks(std::unique_ptr<VkCheckCallbacks>);
const CallbacksWrapper<VkCheckCallbacks>& getVkCheckCallbacks();
class CrtpBase {};
// Utility class to make chaining inheritance of multiple CRTP classes more
// readable by allowing one to replace
//
// class MyClass
// : public vk_util::Crtp1<MyClass,
// vk_util::Crtp2<MyClass,
// vk_util::Crtp3<MyClass>>> {};
//
// with
//
// class MyClass :
// : public vk_util::MultiCrtp<MyClass,
// vk_util::Crtp1,
// vk_util::Crtp2,
// vk_util::Ctrp3> {};
namespace vk_util_internal {
// For the template "recursion", this is the base case where the list is empty
// and which just inherits from the last type.
template <typename T, //
typename U, //
template <typename, typename> class... CrtpClasses>
class MultiCrtpChainHelper : public U {};
// For the template "recursion", this is the case where the list is not empty
// and which uses the "current" CRTP class as the "U" type and passes the
// resulting type to the next step in the template "recursion".
template <typename T, //
typename U, //
template <typename, typename> class Crtp, //
template <typename, typename> class... Crtps>
class MultiCrtpChainHelper<T, U, Crtp, Crtps...>
: public MultiCrtpChainHelper<T, Crtp<T, U>, Crtps...> {};
} // namespace vk_util_internal
template <typename T, //
template <typename, typename> class... CrtpClasses>
class MultiCrtp : public vk_util_internal::MultiCrtpChainHelper<T, CrtpBase, CrtpClasses...> {};
template <class T, class U = CrtpBase>
class FindMemoryType : public U {
protected:
std::optional<uint32_t> findMemoryType(uint32_t typeFilter,
VkMemoryPropertyFlags properties) const {
const T& self = static_cast<const T&>(*this);
return vk_util::findMemoryType(&self.m_vk, self.m_vkPhysicalDevice, typeFilter, properties);
}
};
template <class T, class U = CrtpBase>
class RunSingleTimeCommand : public U {
protected:
void runSingleTimeCommands(VkQueue queue, std::shared_ptr<android::base::Lock> queueLock,
std::function<void(const VkCommandBuffer& commandBuffer)> f) const {
const T& self = static_cast<const T&>(*this);
VkCommandBuffer cmdBuff;
VkCommandBufferAllocateInfo cmdBuffAllocInfo = {
.sType = VK_STRUCTURE_TYPE_COMMAND_BUFFER_ALLOCATE_INFO,
.commandPool = self.m_vkCommandPool,
.level = VK_COMMAND_BUFFER_LEVEL_PRIMARY,
.commandBufferCount = 1};
VK_CHECK(self.m_vk.vkAllocateCommandBuffers(self.m_vkDevice, &cmdBuffAllocInfo, &cmdBuff));
VkCommandBufferBeginInfo beginInfo = {.sType = VK_STRUCTURE_TYPE_COMMAND_BUFFER_BEGIN_INFO,
.flags = VK_COMMAND_BUFFER_USAGE_ONE_TIME_SUBMIT_BIT};
VK_CHECK(self.m_vk.vkBeginCommandBuffer(cmdBuff, &beginInfo));
f(cmdBuff);
VK_CHECK(self.m_vk.vkEndCommandBuffer(cmdBuff));
VkSubmitInfo submitInfo = {.sType = VK_STRUCTURE_TYPE_SUBMIT_INFO,
.commandBufferCount = 1,
.pCommandBuffers = &cmdBuff};
{
std::unique_ptr<android::base::AutoLock> lock = nullptr;
if (queueLock) {
lock = std::make_unique<android::base::AutoLock>(*queueLock);
}
VK_CHECK(self.m_vk.vkQueueSubmit(queue, 1, &submitInfo, VK_NULL_HANDLE));
VK_CHECK(self.m_vk.vkQueueWaitIdle(queue));
}
self.m_vk.vkFreeCommandBuffers(self.m_vkDevice, self.m_vkCommandPool, 1, &cmdBuff);
}
};
template <class T, class U = CrtpBase>
class RecordImageLayoutTransformCommands : public U {
protected:
void recordImageLayoutTransformCommands(VkCommandBuffer cmdBuff, VkImage image,
VkImageLayout oldLayout,
VkImageLayout newLayout) const {
const T& self = static_cast<const T&>(*this);
VkImageMemoryBarrier imageBarrier = {
.sType = VK_STRUCTURE_TYPE_IMAGE_MEMORY_BARRIER,
.srcAccessMask = VK_ACCESS_MEMORY_READ_BIT | VK_ACCESS_MEMORY_WRITE_BIT,
.dstAccessMask = VK_ACCESS_MEMORY_READ_BIT | VK_ACCESS_MEMORY_WRITE_BIT,
.oldLayout = oldLayout,
.newLayout = newLayout,
.srcQueueFamilyIndex = VK_QUEUE_FAMILY_IGNORED,
.dstQueueFamilyIndex = VK_QUEUE_FAMILY_IGNORED,
.image = image,
.subresourceRange = {.aspectMask = VK_IMAGE_ASPECT_COLOR_BIT,
.baseMipLevel = 0,
.levelCount = 1,
.baseArrayLayer = 0,
.layerCount = 1}};
self.m_vk.vkCmdPipelineBarrier(cmdBuff, VK_PIPELINE_STAGE_ALL_COMMANDS_BIT,
VK_PIPELINE_STAGE_ALL_COMMANDS_BIT, 0, 0, nullptr, 0,
nullptr, 1, &imageBarrier);
}
};
template <class T>
typename vk_fn_info::GetVkFnInfo<T>::type getVkInstanceProcAddrWithFallback(
const std::vector<std::function<std::remove_pointer_t<PFN_vkGetInstanceProcAddr>>>&
vkGetInstanceProcAddrs,
VkInstance instance) {
for (const auto& vkGetInstanceProcAddr : vkGetInstanceProcAddrs) {
if (!vkGetInstanceProcAddr) {
continue;
}
PFN_vkVoidFunction resWithCurrentVkGetInstanceProcAddr = std::apply(
[&vkGetInstanceProcAddr, instance](auto&&... names) -> PFN_vkVoidFunction {
for (const char* name : {names...}) {
if (PFN_vkVoidFunction resWithCurrentName =
vkGetInstanceProcAddr(instance, name)) {
return resWithCurrentName;
}
}
return nullptr;
},
vk_fn_info::GetVkFnInfo<T>::names);
if (resWithCurrentVkGetInstanceProcAddr) {
return reinterpret_cast<typename vk_fn_info::GetVkFnInfo<T>::type>(
resWithCurrentVkGetInstanceProcAddr);
}
}
return nullptr;
}
} // namespace vk_util
} // namespace vk
} // namespace gfxstream
#endif /* VK_UTIL_H */