blob: b9221e392b2a45a98950f3105c6bb17445c530d8 [file] [log] [blame]
// Copyright 2022 The Android Open Source Project
//
// Licensed under the Apache License, Version 2.0 (the "License");
// you may not use this file except in compliance with the License.
// You may obtain a copy of the License at
//
// http://www.apache.org/licenses/LICENSE-2.0
//
// Unless required by applicable law or agreed to in writing, software
// distributed under the License is distributed on an "AS IS" BASIS,
// WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
// See the License for the specific language governing permissions and
// limitations under the License.
#include "CompressedImageInfo.h"
#include "aemu/base/ArraySize.h"
#include "host/vulkan/VkFormatUtils.h"
#include "host/vulkan/emulated_textures/shaders/DecompressionShaders.h"
namespace gfxstream {
namespace vk {
namespace {
#define _RETURN_ON_FAILURE(cmd) \
{ \
VkResult result = cmd; \
if (result != VK_SUCCESS) { \
WARN("Warning: %s %s:%d vulkan failure %d", __func__, __FILE__, __LINE__, result); \
return result; \
} \
}
using android::base::arraySize;
struct Etc2PushConstant {
uint32_t compFormat;
uint32_t baseLayer;
};
struct AstcPushConstant {
uint32_t blockSize[2];
uint32_t baseLayer;
uint32_t smallBlock;
};
struct ShaderData {
const uint32_t* code; // Pointer to shader's compiled spir-v code
const size_t size; // size of the code in bytes
};
struct ShaderGroup {
ShaderData shader1D;
ShaderData shader2D;
ShaderData shader3D;
};
// Helper macro to declare the shader goups
#define DECLARE_SHADER_GROUP(Format) \
constexpr ShaderGroup kShader##Format { \
.shader1D = {.code = decompression_shaders::Format##_1D, \
.size = sizeof(decompression_shaders::Format##_1D)}, \
.shader2D = {.code = decompression_shaders::Format##_2D, \
.size = sizeof(decompression_shaders::Format##_2D)}, \
.shader3D = {.code = decompression_shaders::Format##_3D, \
.size = sizeof(decompression_shaders::Format##_3D)}, \
}
DECLARE_SHADER_GROUP(Astc);
DECLARE_SHADER_GROUP(EacR11Snorm);
DECLARE_SHADER_GROUP(EacR11Unorm);
DECLARE_SHADER_GROUP(EacRG11Snorm);
DECLARE_SHADER_GROUP(EacRG11Unorm);
DECLARE_SHADER_GROUP(Etc2RGB8);
DECLARE_SHADER_GROUP(Etc2RGBA8);
#undef DECLARE_SHADER_GROUP
// Returns the group of shaders that can decompress a given format, or null if none is found.
const ShaderGroup* getShaderGroup(VkFormat format) {
switch (format) {
case VK_FORMAT_ASTC_4x4_UNORM_BLOCK:
case VK_FORMAT_ASTC_5x4_UNORM_BLOCK:
case VK_FORMAT_ASTC_5x5_UNORM_BLOCK:
case VK_FORMAT_ASTC_6x5_UNORM_BLOCK:
case VK_FORMAT_ASTC_6x6_UNORM_BLOCK:
case VK_FORMAT_ASTC_8x5_UNORM_BLOCK:
case VK_FORMAT_ASTC_8x6_UNORM_BLOCK:
case VK_FORMAT_ASTC_8x8_UNORM_BLOCK:
case VK_FORMAT_ASTC_10x5_UNORM_BLOCK:
case VK_FORMAT_ASTC_10x6_UNORM_BLOCK:
case VK_FORMAT_ASTC_10x8_UNORM_BLOCK:
case VK_FORMAT_ASTC_10x10_UNORM_BLOCK:
case VK_FORMAT_ASTC_12x10_UNORM_BLOCK:
case VK_FORMAT_ASTC_12x12_UNORM_BLOCK:
case VK_FORMAT_ASTC_4x4_SRGB_BLOCK:
case VK_FORMAT_ASTC_5x4_SRGB_BLOCK:
case VK_FORMAT_ASTC_5x5_SRGB_BLOCK:
case VK_FORMAT_ASTC_6x5_SRGB_BLOCK:
case VK_FORMAT_ASTC_6x6_SRGB_BLOCK:
case VK_FORMAT_ASTC_8x5_SRGB_BLOCK:
case VK_FORMAT_ASTC_8x6_SRGB_BLOCK:
case VK_FORMAT_ASTC_8x8_SRGB_BLOCK:
case VK_FORMAT_ASTC_10x5_SRGB_BLOCK:
case VK_FORMAT_ASTC_10x6_SRGB_BLOCK:
case VK_FORMAT_ASTC_10x8_SRGB_BLOCK:
case VK_FORMAT_ASTC_10x10_SRGB_BLOCK:
case VK_FORMAT_ASTC_12x10_SRGB_BLOCK:
case VK_FORMAT_ASTC_12x12_SRGB_BLOCK:
return &kShaderAstc;
case VK_FORMAT_EAC_R11_SNORM_BLOCK:
return &kShaderEacR11Snorm;
case VK_FORMAT_EAC_R11_UNORM_BLOCK:
return &kShaderEacR11Unorm;
case VK_FORMAT_EAC_R11G11_SNORM_BLOCK:
return &kShaderEacRG11Snorm;
case VK_FORMAT_EAC_R11G11_UNORM_BLOCK:
return &kShaderEacRG11Unorm;
case VK_FORMAT_ETC2_R8G8B8_UNORM_BLOCK:
case VK_FORMAT_ETC2_R8G8B8A1_UNORM_BLOCK:
case VK_FORMAT_ETC2_R8G8B8_SRGB_BLOCK:
case VK_FORMAT_ETC2_R8G8B8A1_SRGB_BLOCK:
return &kShaderEtc2RGB8;
case VK_FORMAT_ETC2_R8G8B8A8_UNORM_BLOCK:
case VK_FORMAT_ETC2_R8G8B8A8_SRGB_BLOCK:
return &kShaderEtc2RGBA8;
default:
return nullptr;
}
}
// Returns the shader that can decompress a given image format and type
const ShaderData* getDecompressionShader(VkFormat format, VkImageType imageType) {
const ShaderGroup* group = getShaderGroup(format);
if (!group) return nullptr;
switch (imageType) {
case VK_IMAGE_TYPE_1D:
return &group->shader1D;
case VK_IMAGE_TYPE_2D:
return &group->shader2D;
case VK_IMAGE_TYPE_3D:
return &group->shader3D;
default:
return nullptr;
}
}
// Returns x / y, rounded up. E.g. ceil_div(7, 2) == 4
// Note the potential integer overflow for large numbers.
inline constexpr uint32_t ceil_div(uint32_t x, uint32_t y) { return (x + y - 1) / y; }
VkImageView createDefaultImageView(VulkanDispatch* vk, VkDevice device, VkImage image,
VkFormat format, VkImageType imageType, uint32_t mipLevel,
uint32_t layerCount) {
VkImageViewCreateInfo imageViewInfo = {};
imageViewInfo.sType = VK_STRUCTURE_TYPE_IMAGE_VIEW_CREATE_INFO;
imageViewInfo.image = image;
switch (imageType) {
case VK_IMAGE_TYPE_1D:
imageViewInfo.viewType = VK_IMAGE_VIEW_TYPE_1D_ARRAY;
break;
case VK_IMAGE_TYPE_2D:
imageViewInfo.viewType = VK_IMAGE_VIEW_TYPE_2D_ARRAY;
break;
case VK_IMAGE_TYPE_3D:
imageViewInfo.viewType = VK_IMAGE_VIEW_TYPE_3D;
break;
default:
imageViewInfo.viewType = VK_IMAGE_VIEW_TYPE_2D_ARRAY;
break;
}
imageViewInfo.format = format;
imageViewInfo.components.r = VK_COMPONENT_SWIZZLE_R;
imageViewInfo.components.g = VK_COMPONENT_SWIZZLE_G;
imageViewInfo.components.b = VK_COMPONENT_SWIZZLE_B;
imageViewInfo.components.a = VK_COMPONENT_SWIZZLE_A;
imageViewInfo.subresourceRange.aspectMask = VK_IMAGE_ASPECT_COLOR_BIT;
imageViewInfo.subresourceRange.baseMipLevel = mipLevel;
imageViewInfo.subresourceRange.levelCount = 1;
imageViewInfo.subresourceRange.baseArrayLayer = 0;
imageViewInfo.subresourceRange.layerCount = layerCount;
VkImageView imageView;
if (vk->vkCreateImageView(device, &imageViewInfo, nullptr, &imageView) != VK_SUCCESS) {
WARN("Warning: %s %s:%d failure", __func__, __FILE__, __LINE__);
return VK_NULL_HANDLE;
}
return imageView;
}
VkExtent2D getBlockSize(VkFormat format) {
switch (format) {
case VK_FORMAT_ETC2_R8G8B8_UNORM_BLOCK:
case VK_FORMAT_ETC2_R8G8B8_SRGB_BLOCK:
case VK_FORMAT_ETC2_R8G8B8A1_UNORM_BLOCK:
case VK_FORMAT_ETC2_R8G8B8A1_SRGB_BLOCK:
case VK_FORMAT_ETC2_R8G8B8A8_UNORM_BLOCK:
case VK_FORMAT_ETC2_R8G8B8A8_SRGB_BLOCK:
case VK_FORMAT_EAC_R11_UNORM_BLOCK:
case VK_FORMAT_EAC_R11_SNORM_BLOCK:
case VK_FORMAT_EAC_R11G11_UNORM_BLOCK:
case VK_FORMAT_EAC_R11G11_SNORM_BLOCK:
return {4, 4};
case VK_FORMAT_ASTC_4x4_UNORM_BLOCK:
case VK_FORMAT_ASTC_4x4_SRGB_BLOCK:
return {4, 4};
case VK_FORMAT_ASTC_5x4_UNORM_BLOCK:
case VK_FORMAT_ASTC_5x4_SRGB_BLOCK:
return {5, 4};
case VK_FORMAT_ASTC_5x5_UNORM_BLOCK:
case VK_FORMAT_ASTC_5x5_SRGB_BLOCK:
return {5, 5};
case VK_FORMAT_ASTC_6x5_UNORM_BLOCK:
case VK_FORMAT_ASTC_6x5_SRGB_BLOCK:
return {6, 5};
case VK_FORMAT_ASTC_6x6_UNORM_BLOCK:
case VK_FORMAT_ASTC_6x6_SRGB_BLOCK:
return {6, 6};
case VK_FORMAT_ASTC_8x5_UNORM_BLOCK:
case VK_FORMAT_ASTC_8x5_SRGB_BLOCK:
return {8, 5};
case VK_FORMAT_ASTC_8x6_UNORM_BLOCK:
case VK_FORMAT_ASTC_8x6_SRGB_BLOCK:
return {8, 6};
case VK_FORMAT_ASTC_8x8_UNORM_BLOCK:
case VK_FORMAT_ASTC_8x8_SRGB_BLOCK:
return {8, 8};
case VK_FORMAT_ASTC_10x5_UNORM_BLOCK:
case VK_FORMAT_ASTC_10x5_SRGB_BLOCK:
return {10, 5};
case VK_FORMAT_ASTC_10x6_UNORM_BLOCK:
case VK_FORMAT_ASTC_10x6_SRGB_BLOCK:
return {10, 6};
case VK_FORMAT_ASTC_10x8_UNORM_BLOCK:
case VK_FORMAT_ASTC_10x8_SRGB_BLOCK:
return {10, 8};
case VK_FORMAT_ASTC_10x10_UNORM_BLOCK:
case VK_FORMAT_ASTC_10x10_SRGB_BLOCK:
return {10, 10};
case VK_FORMAT_ASTC_12x10_UNORM_BLOCK:
case VK_FORMAT_ASTC_12x10_SRGB_BLOCK:
return {12, 10};
case VK_FORMAT_ASTC_12x12_UNORM_BLOCK:
case VK_FORMAT_ASTC_12x12_SRGB_BLOCK:
return {12, 12};
default:
return {1, 1};
}
}
// Returns whether a given memory barrier puts the image in a layout where it can be read from.
bool imageWillBecomeReadable(const VkImageMemoryBarrier& barrier) {
return barrier.oldLayout != VK_IMAGE_LAYOUT_UNDEFINED &&
(barrier.newLayout == VK_IMAGE_LAYOUT_GENERAL ||
barrier.newLayout == VK_IMAGE_LAYOUT_SHADER_READ_ONLY_OPTIMAL ||
barrier.newLayout == VK_IMAGE_LAYOUT_TRANSFER_SRC_OPTIMAL);
}
} // namespace
CompressedImageInfo::CompressedImageInfo(VkDevice device) : mDevice(device) {}
CompressedImageInfo::CompressedImageInfo(VkDevice device, const VkImageCreateInfo& createInfo)
: mDevice(device),
mCompressedFormat(createInfo.format),
mDecompressedFormat(getDecompressedFormat(mCompressedFormat)),
mCompressedMipmapsFormat(getCompressedMipmapsFormat(mCompressedFormat)),
mImageType(createInfo.imageType),
mExtent(createInfo.extent),
mBlock(getBlockSize(mCompressedFormat)),
mLayerCount(createInfo.arrayLayers),
mMipLevels(createInfo.mipLevels) {}
// static
VkFormat CompressedImageInfo::getDecompressedFormat(VkFormat compFmt) {
switch (compFmt) {
case VK_FORMAT_ETC2_R8G8B8_UNORM_BLOCK:
case VK_FORMAT_ETC2_R8G8B8A1_UNORM_BLOCK:
case VK_FORMAT_ETC2_R8G8B8A8_UNORM_BLOCK:
return VK_FORMAT_R8G8B8A8_UNORM;
case VK_FORMAT_ETC2_R8G8B8_SRGB_BLOCK:
case VK_FORMAT_ETC2_R8G8B8A1_SRGB_BLOCK:
case VK_FORMAT_ETC2_R8G8B8A8_SRGB_BLOCK:
return VK_FORMAT_R8G8B8A8_SRGB;
case VK_FORMAT_EAC_R11_UNORM_BLOCK:
return VK_FORMAT_R16_UNORM;
case VK_FORMAT_EAC_R11_SNORM_BLOCK:
return VK_FORMAT_R16_SNORM;
case VK_FORMAT_EAC_R11G11_UNORM_BLOCK:
return VK_FORMAT_R16G16_UNORM;
case VK_FORMAT_EAC_R11G11_SNORM_BLOCK:
return VK_FORMAT_R16G16_SNORM;
case VK_FORMAT_ASTC_4x4_UNORM_BLOCK:
case VK_FORMAT_ASTC_5x4_UNORM_BLOCK:
case VK_FORMAT_ASTC_5x5_UNORM_BLOCK:
case VK_FORMAT_ASTC_6x5_UNORM_BLOCK:
case VK_FORMAT_ASTC_6x6_UNORM_BLOCK:
case VK_FORMAT_ASTC_8x5_UNORM_BLOCK:
case VK_FORMAT_ASTC_8x6_UNORM_BLOCK:
case VK_FORMAT_ASTC_8x8_UNORM_BLOCK:
case VK_FORMAT_ASTC_10x5_UNORM_BLOCK:
case VK_FORMAT_ASTC_10x6_UNORM_BLOCK:
case VK_FORMAT_ASTC_10x8_UNORM_BLOCK:
case VK_FORMAT_ASTC_10x10_UNORM_BLOCK:
case VK_FORMAT_ASTC_12x10_UNORM_BLOCK:
case VK_FORMAT_ASTC_12x12_UNORM_BLOCK:
return VK_FORMAT_R8G8B8A8_UNORM;
case VK_FORMAT_ASTC_4x4_SRGB_BLOCK:
case VK_FORMAT_ASTC_5x4_SRGB_BLOCK:
case VK_FORMAT_ASTC_5x5_SRGB_BLOCK:
case VK_FORMAT_ASTC_6x5_SRGB_BLOCK:
case VK_FORMAT_ASTC_6x6_SRGB_BLOCK:
case VK_FORMAT_ASTC_8x5_SRGB_BLOCK:
case VK_FORMAT_ASTC_8x6_SRGB_BLOCK:
case VK_FORMAT_ASTC_8x8_SRGB_BLOCK:
case VK_FORMAT_ASTC_10x5_SRGB_BLOCK:
case VK_FORMAT_ASTC_10x6_SRGB_BLOCK:
case VK_FORMAT_ASTC_10x8_SRGB_BLOCK:
case VK_FORMAT_ASTC_10x10_SRGB_BLOCK:
case VK_FORMAT_ASTC_12x10_SRGB_BLOCK:
case VK_FORMAT_ASTC_12x12_SRGB_BLOCK:
return VK_FORMAT_R8G8B8A8_SRGB;
default:
return compFmt;
}
}
// static
VkFormat CompressedImageInfo::getCompressedMipmapsFormat(VkFormat compFmt) {
switch (compFmt) {
case VK_FORMAT_ETC2_R8G8B8_UNORM_BLOCK:
case VK_FORMAT_ETC2_R8G8B8_SRGB_BLOCK:
case VK_FORMAT_ETC2_R8G8B8A1_UNORM_BLOCK:
case VK_FORMAT_ETC2_R8G8B8A1_SRGB_BLOCK:
return VK_FORMAT_R16G16B16A16_UINT;
case VK_FORMAT_EAC_R11_UNORM_BLOCK:
case VK_FORMAT_EAC_R11_SNORM_BLOCK:
return VK_FORMAT_R32G32_UINT;
case VK_FORMAT_ETC2_R8G8B8A8_UNORM_BLOCK:
case VK_FORMAT_ETC2_R8G8B8A8_SRGB_BLOCK:
case VK_FORMAT_EAC_R11G11_UNORM_BLOCK:
case VK_FORMAT_EAC_R11G11_SNORM_BLOCK:
case VK_FORMAT_ASTC_4x4_UNORM_BLOCK:
case VK_FORMAT_ASTC_5x4_UNORM_BLOCK:
case VK_FORMAT_ASTC_5x5_UNORM_BLOCK:
case VK_FORMAT_ASTC_6x5_UNORM_BLOCK:
case VK_FORMAT_ASTC_6x6_UNORM_BLOCK:
case VK_FORMAT_ASTC_8x5_UNORM_BLOCK:
case VK_FORMAT_ASTC_8x6_UNORM_BLOCK:
case VK_FORMAT_ASTC_8x8_UNORM_BLOCK:
case VK_FORMAT_ASTC_10x5_UNORM_BLOCK:
case VK_FORMAT_ASTC_10x6_UNORM_BLOCK:
case VK_FORMAT_ASTC_10x8_UNORM_BLOCK:
case VK_FORMAT_ASTC_10x10_UNORM_BLOCK:
case VK_FORMAT_ASTC_12x10_UNORM_BLOCK:
case VK_FORMAT_ASTC_12x12_UNORM_BLOCK:
case VK_FORMAT_ASTC_4x4_SRGB_BLOCK:
case VK_FORMAT_ASTC_5x4_SRGB_BLOCK:
case VK_FORMAT_ASTC_5x5_SRGB_BLOCK:
case VK_FORMAT_ASTC_6x5_SRGB_BLOCK:
case VK_FORMAT_ASTC_6x6_SRGB_BLOCK:
case VK_FORMAT_ASTC_8x5_SRGB_BLOCK:
case VK_FORMAT_ASTC_8x6_SRGB_BLOCK:
case VK_FORMAT_ASTC_8x8_SRGB_BLOCK:
case VK_FORMAT_ASTC_10x5_SRGB_BLOCK:
case VK_FORMAT_ASTC_10x6_SRGB_BLOCK:
case VK_FORMAT_ASTC_10x8_SRGB_BLOCK:
case VK_FORMAT_ASTC_10x10_SRGB_BLOCK:
case VK_FORMAT_ASTC_12x10_SRGB_BLOCK:
case VK_FORMAT_ASTC_12x12_SRGB_BLOCK:
return VK_FORMAT_R32G32B32A32_UINT;
default:
return compFmt;
}
}
// static
bool CompressedImageInfo::isEtc2(VkFormat format) {
switch (format) {
case VK_FORMAT_ETC2_R8G8B8_UNORM_BLOCK:
case VK_FORMAT_ETC2_R8G8B8_SRGB_BLOCK:
case VK_FORMAT_ETC2_R8G8B8A1_UNORM_BLOCK:
case VK_FORMAT_ETC2_R8G8B8A1_SRGB_BLOCK:
case VK_FORMAT_ETC2_R8G8B8A8_UNORM_BLOCK:
case VK_FORMAT_ETC2_R8G8B8A8_SRGB_BLOCK:
case VK_FORMAT_EAC_R11_UNORM_BLOCK:
case VK_FORMAT_EAC_R11_SNORM_BLOCK:
case VK_FORMAT_EAC_R11G11_UNORM_BLOCK:
case VK_FORMAT_EAC_R11G11_SNORM_BLOCK:
return true;
default:
return false;
}
}
// static
bool CompressedImageInfo::isAstc(VkFormat format) {
switch (format) {
case VK_FORMAT_ASTC_4x4_UNORM_BLOCK:
case VK_FORMAT_ASTC_4x4_SRGB_BLOCK:
case VK_FORMAT_ASTC_5x4_UNORM_BLOCK:
case VK_FORMAT_ASTC_5x4_SRGB_BLOCK:
case VK_FORMAT_ASTC_5x5_UNORM_BLOCK:
case VK_FORMAT_ASTC_5x5_SRGB_BLOCK:
case VK_FORMAT_ASTC_6x5_UNORM_BLOCK:
case VK_FORMAT_ASTC_6x5_SRGB_BLOCK:
case VK_FORMAT_ASTC_6x6_UNORM_BLOCK:
case VK_FORMAT_ASTC_6x6_SRGB_BLOCK:
case VK_FORMAT_ASTC_8x5_UNORM_BLOCK:
case VK_FORMAT_ASTC_8x5_SRGB_BLOCK:
case VK_FORMAT_ASTC_8x6_UNORM_BLOCK:
case VK_FORMAT_ASTC_8x6_SRGB_BLOCK:
case VK_FORMAT_ASTC_8x8_UNORM_BLOCK:
case VK_FORMAT_ASTC_8x8_SRGB_BLOCK:
case VK_FORMAT_ASTC_10x5_UNORM_BLOCK:
case VK_FORMAT_ASTC_10x5_SRGB_BLOCK:
case VK_FORMAT_ASTC_10x6_UNORM_BLOCK:
case VK_FORMAT_ASTC_10x6_SRGB_BLOCK:
case VK_FORMAT_ASTC_10x8_UNORM_BLOCK:
case VK_FORMAT_ASTC_10x8_SRGB_BLOCK:
case VK_FORMAT_ASTC_10x10_UNORM_BLOCK:
case VK_FORMAT_ASTC_10x10_SRGB_BLOCK:
case VK_FORMAT_ASTC_12x10_UNORM_BLOCK:
case VK_FORMAT_ASTC_12x10_SRGB_BLOCK:
case VK_FORMAT_ASTC_12x12_UNORM_BLOCK:
case VK_FORMAT_ASTC_12x12_SRGB_BLOCK:
return true;
default:
return false;
}
}
// static
bool CompressedImageInfo::needEmulatedAlpha(VkFormat format) {
switch (format) {
case VK_FORMAT_ETC2_R8G8B8_UNORM_BLOCK:
case VK_FORMAT_ETC2_R8G8B8_SRGB_BLOCK:
return true;
default:
return false;
}
}
bool CompressedImageInfo::isEtc2() const { return isEtc2(mCompressedFormat); }
bool CompressedImageInfo::isAstc() const { return isAstc(mCompressedFormat); }
VkImageCreateInfo CompressedImageInfo::getDecompressedCreateInfo(
const VkImageCreateInfo& createInfo) const {
VkImageCreateInfo result = createInfo;
result.format = mDecompressedFormat;
result.flags &= ~VK_IMAGE_CREATE_BLOCK_TEXEL_VIEW_COMPATIBLE_BIT_KHR;
result.flags |= VK_IMAGE_CREATE_MUTABLE_FORMAT_BIT;
result.usage |= VK_IMAGE_USAGE_STORAGE_BIT;
return result;
}
void CompressedImageInfo::createCompressedMipmapImages(VulkanDispatch* vk,
const VkImageCreateInfo& createInfo) {
if (!mCompressedMipmaps.empty()) {
return;
}
VkImageCreateInfo createInfoCopy = createInfo;
createInfoCopy.format = mCompressedMipmapsFormat;
createInfoCopy.usage |= VK_IMAGE_USAGE_STORAGE_BIT;
createInfoCopy.flags &= ~VK_IMAGE_CREATE_BLOCK_TEXEL_VIEW_COMPATIBLE_BIT_KHR;
createInfoCopy.flags |= VK_IMAGE_CREATE_MUTABLE_FORMAT_BIT;
createInfoCopy.mipLevels = 1;
mCompressedMipmaps.resize(mMipLevels);
for (uint32_t i = 0; i < mMipLevels; i++) {
createInfoCopy.extent = compressedMipmapExtent(i);
vk->vkCreateImage(mDevice, &createInfoCopy, nullptr, mCompressedMipmaps.data() + i);
}
// Get the size of all images (decompressed image and compressed mipmaps)
std::vector<VkDeviceSize> memSizes(mMipLevels + 1);
memSizes[0] = getImageSize(vk, mDecompressedImage);
for (size_t i = 0; i < mMipLevels; i++) {
memSizes[i + 1] = getImageSize(vk, mCompressedMipmaps[i]);
}
// Initialize the memory offsets
mMemoryOffsets.resize(mMipLevels + 1);
for (size_t i = 0; i < mMipLevels + 1; i++) {
VkDeviceSize alignedSize = memSizes[i];
if (mAlignment != 0) {
alignedSize = ceil_div(alignedSize, mAlignment) * mAlignment;
}
mMemoryOffsets[i] = (i == 0 ? 0 : mMemoryOffsets[i - 1]) + alignedSize;
}
}
void CompressedImageInfo::initAstcCpuDecompression(VulkanDispatch* vk,
VkPhysicalDevice physicalDevice) {
mAstcTexture = std::make_unique<AstcTexture>(vk, mDevice, physicalDevice, mExtent, mBlock.width,
mBlock.height, &AstcCpuDecompressor::get());
}
bool CompressedImageInfo::decompressIfNeeded(VulkanDispatch* vk, VkCommandBuffer commandBuffer,
VkPipelineStageFlags srcStageMask,
VkPipelineStageFlags dstStageMask,
const VkImageMemoryBarrier& targetBarrier,
std::vector<VkImageMemoryBarrier>& outputBarriers) {
std::vector<VkImageMemoryBarrier> imageBarriers = getImageBarriers(targetBarrier);
if (!imageWillBecomeReadable(targetBarrier)) {
// We're not going to read from the image, no need to decompress it.
// Apply the target barrier to the compressed mipmaps and the decompressed image.
outputBarriers.insert(outputBarriers.end(), imageBarriers.begin(), imageBarriers.end());
return false;
}
VkResult result = initializeDecompressionPipeline(vk, mDevice);
if (result != VK_SUCCESS) {
WARN("Failed to initialize pipeline for texture decompression");
return false;
}
// Transition the layout of all the compressed mipmaps so that the shader can read from them.
for (auto& barrier : imageBarriers) {
barrier.dstAccessMask = VK_ACCESS_SHADER_READ_BIT;
barrier.newLayout = VK_IMAGE_LAYOUT_GENERAL;
}
// Transition the layout of the decompressed image so that we can write to it.
imageBarriers.back().srcAccessMask = 0;
imageBarriers.back().oldLayout = VK_IMAGE_LAYOUT_UNDEFINED;
imageBarriers.back().dstAccessMask = VK_ACCESS_SHADER_WRITE_BIT;
imageBarriers.back().newLayout = VK_IMAGE_LAYOUT_GENERAL;
// Do the layout transitions
vk->vkCmdPipelineBarrier(commandBuffer, srcStageMask, VK_PIPELINE_STAGE_COMPUTE_SHADER_BIT, 0,
0, nullptr, 0, nullptr, imageBarriers.size(), imageBarriers.data());
// Run the decompression shader
decompress(vk, commandBuffer, getImageSubresourceRange(targetBarrier.subresourceRange));
// Finally, transition the layout of all images to match the target barrier.
for (auto& barrier : imageBarriers) {
barrier.srcAccessMask = VK_ACCESS_SHADER_READ_BIT;
barrier.oldLayout = VK_IMAGE_LAYOUT_GENERAL;
barrier.dstAccessMask = targetBarrier.dstAccessMask;
barrier.newLayout = targetBarrier.newLayout;
}
// (adjust the last barrier since it's for the decompressed image)
imageBarriers.back().srcAccessMask = VK_ACCESS_SHADER_WRITE_BIT;
// Do the layout transitions
vk->vkCmdPipelineBarrier(commandBuffer, VK_PIPELINE_STAGE_COMPUTE_SHADER_BIT, dstStageMask, 0,
0, nullptr, 0, nullptr, imageBarriers.size(), imageBarriers.data());
return true;
}
void CompressedImageInfo::decompressOnCpu(VkCommandBuffer commandBuffer, uint8_t* srcAstcData,
size_t astcDataSize, VkImage dstImage,
VkImageLayout dstImageLayout, uint32_t regionCount,
const VkBufferImageCopy* pRegions,
const VkDecoderContext& context) {
mAstcTexture->on_vkCmdCopyBufferToImage(commandBuffer, srcAstcData, astcDataSize, dstImage,
dstImageLayout, regionCount, pRegions, context);
}
VkMemoryRequirements CompressedImageInfo::getMemoryRequirements() const {
return {
.size = mMemoryOffsets.back(),
.alignment = mAlignment,
};
}
VkResult CompressedImageInfo::bindCompressedMipmapsMemory(VulkanDispatch* vk, VkDeviceMemory memory,
VkDeviceSize memoryOffset) {
VkResult result = VK_SUCCESS;
for (size_t i = 0; i < mCompressedMipmaps.size(); i++) {
VkResult res = vk->vkBindImageMemory(mDevice, mCompressedMipmaps[i], memory,
memoryOffset + mMemoryOffsets[i]);
if (res != VK_SUCCESS) result = res;
}
return result;
}
VkBufferImageCopy CompressedImageInfo::getBufferImageCopy(
const VkBufferImageCopy& origRegion) const {
VkBufferImageCopy region = origRegion;
uint32_t mipLevel = region.imageSubresource.mipLevel;
region.imageSubresource.mipLevel = 0;
region.bufferRowLength /= mBlock.width;
region.bufferImageHeight /= mBlock.height;
region.imageOffset.x /= mBlock.width;
region.imageOffset.y /= mBlock.height;
region.imageExtent = compressedMipmapPortion(region.imageExtent, mipLevel);
return region;
}
// static
VkImageCopy CompressedImageInfo::getCompressedMipmapsImageCopy(const VkImageCopy& origRegion,
const CompressedImageInfo& srcImg,
const CompressedImageInfo& dstImg,
bool needEmulatedSrc,
bool needEmulatedDst) {
VkImageCopy region = origRegion;
if (needEmulatedSrc) {
uint32_t mipLevel = region.srcSubresource.mipLevel;
region.srcSubresource.mipLevel = 0;
region.srcOffset.x /= srcImg.mBlock.width;
region.srcOffset.y /= srcImg.mBlock.height;
region.extent = srcImg.compressedMipmapPortion(region.extent, mipLevel);
}
if (needEmulatedDst) {
region.dstSubresource.mipLevel = 0;
region.dstOffset.x /= dstImg.mBlock.width;
region.dstOffset.y /= dstImg.mBlock.height;
}
return region;
}
void CompressedImageInfo::destroy(VulkanDispatch* vk) {
for (const auto& image : mCompressedMipmaps) {
vk->vkDestroyImage(mDevice, image, nullptr);
}
vk->vkDestroyDescriptorSetLayout(mDevice, mDecompDescriptorSetLayout, nullptr);
vk->vkDestroyDescriptorPool(mDevice, mDecompDescriptorPool, nullptr);
vk->vkDestroyShaderModule(mDevice, mDecompShader, nullptr);
vk->vkDestroyPipelineLayout(mDevice, mDecompPipelineLayout, nullptr);
vk->vkDestroyPipeline(mDevice, mDecompPipeline, nullptr);
for (const auto& imageView : mCompressedMipmapsImageViews) {
vk->vkDestroyImageView(mDevice, imageView, nullptr);
}
for (const auto& imageView : mDecompImageViews) {
vk->vkDestroyImageView(mDevice, imageView, nullptr);
}
vk->vkDestroyImage(mDevice, mDecompressedImage, nullptr);
}
VkDeviceSize CompressedImageInfo::getImageSize(VulkanDispatch* vk, VkImage image) {
VkMemoryRequirements memRequirements;
vk->vkGetImageMemoryRequirements(mDevice, image, &memRequirements);
mAlignment = std::max(mAlignment, memRequirements.alignment);
return memRequirements.size;
}
std::vector<VkImageMemoryBarrier> CompressedImageInfo::getImageBarriers(
const VkImageMemoryBarrier& srcBarrier) {
const VkImageSubresourceRange range = getImageSubresourceRange(srcBarrier.subresourceRange);
std::vector<VkImageMemoryBarrier> imageBarriers;
imageBarriers.reserve(range.levelCount + 1);
// Add the barriers for the compressed mipmaps
VkImageMemoryBarrier mipmapBarrier = srcBarrier;
mipmapBarrier.subresourceRange.baseMipLevel = 0;
mipmapBarrier.subresourceRange.levelCount = 1;
imageBarriers.insert(imageBarriers.begin(), range.levelCount, mipmapBarrier);
for (uint32_t j = 0; j < range.levelCount; j++) {
imageBarriers[j].image = mCompressedMipmaps[range.baseMipLevel + j];
}
// Add a barrier for the decompressed image
imageBarriers.push_back(srcBarrier);
imageBarriers.back().image = mDecompressedImage;
return imageBarriers;
}
VkImageSubresourceRange CompressedImageInfo::getImageSubresourceRange(
const VkImageSubresourceRange& range) const {
VkImageSubresourceRange result = range;
if (result.levelCount == VK_REMAINING_MIP_LEVELS) {
result.levelCount = mMipLevels - range.baseMipLevel;
}
if (result.layerCount == VK_REMAINING_ARRAY_LAYERS) {
result.layerCount = mLayerCount - range.baseArrayLayer;
}
return result;
}
VkResult CompressedImageInfo::initializeDecompressionPipeline(VulkanDispatch* vk, VkDevice device) {
if (mDecompPipeline != nullptr) {
return VK_SUCCESS;
}
const ShaderData* shader = getDecompressionShader(mCompressedFormat, mImageType);
if (!shader) {
WARN("No decompression shader found for format %s and img type %s",
string_VkFormat(mCompressedFormat), string_VkImageType(mImageType));
return VK_ERROR_FORMAT_NOT_SUPPORTED;
}
VkShaderModuleCreateInfo shaderInfo = {
.sType = VK_STRUCTURE_TYPE_SHADER_MODULE_CREATE_INFO,
.codeSize = shader->size,
.pCode = shader->code,
};
_RETURN_ON_FAILURE(vk->vkCreateShaderModule(device, &shaderInfo, nullptr, &mDecompShader));
VkDescriptorSetLayoutBinding dsLayoutBindings[] = {
{
.binding = 0,
.descriptorType = VK_DESCRIPTOR_TYPE_STORAGE_IMAGE,
.descriptorCount = 1,
.stageFlags = VK_SHADER_STAGE_COMPUTE_BIT,
},
{
.binding = 1,
.descriptorType = VK_DESCRIPTOR_TYPE_STORAGE_IMAGE,
.descriptorCount = 1,
.stageFlags = VK_SHADER_STAGE_COMPUTE_BIT,
},
};
VkDescriptorSetLayoutCreateInfo dsLayoutInfo = {
.sType = VK_STRUCTURE_TYPE_DESCRIPTOR_SET_LAYOUT_CREATE_INFO,
.bindingCount = 2,
.pBindings = dsLayoutBindings,
};
_RETURN_ON_FAILURE(vk->vkCreateDescriptorSetLayout(device, &dsLayoutInfo, nullptr,
&mDecompDescriptorSetLayout));
VkDescriptorPoolSize poolSize = {
.type = VK_DESCRIPTOR_TYPE_STORAGE_IMAGE,
.descriptorCount = 2 * mMipLevels,
};
VkDescriptorPoolCreateInfo dsPoolInfo = {
.sType = VK_STRUCTURE_TYPE_DESCRIPTOR_POOL_CREATE_INFO,
.flags = VK_DESCRIPTOR_POOL_CREATE_FREE_DESCRIPTOR_SET_BIT,
.maxSets = mMipLevels,
.poolSizeCount = 1,
.pPoolSizes = &poolSize,
};
_RETURN_ON_FAILURE(
vk->vkCreateDescriptorPool(device, &dsPoolInfo, nullptr, &mDecompDescriptorPool));
std::vector<VkDescriptorSetLayout> layouts(mMipLevels, mDecompDescriptorSetLayout);
VkDescriptorSetAllocateInfo dsInfo = {
.sType = VK_STRUCTURE_TYPE_DESCRIPTOR_SET_ALLOCATE_INFO,
.descriptorPool = mDecompDescriptorPool,
.descriptorSetCount = mMipLevels,
.pSetLayouts = layouts.data(),
};
mDecompDescriptorSets.resize(mMipLevels);
_RETURN_ON_FAILURE(vk->vkAllocateDescriptorSets(device, &dsInfo, mDecompDescriptorSets.data()));
VkPushConstantRange pushConstant = {.stageFlags = VK_SHADER_STAGE_COMPUTE_BIT};
if (isEtc2()) {
pushConstant.size = sizeof(Etc2PushConstant);
} else if (isAstc()) {
pushConstant.size = sizeof(AstcPushConstant);
}
VkPipelineLayoutCreateInfo pipelineLayoutInfo = {
.sType = VK_STRUCTURE_TYPE_PIPELINE_LAYOUT_CREATE_INFO,
.setLayoutCount = 1,
.pSetLayouts = &mDecompDescriptorSetLayout,
.pushConstantRangeCount = 1,
.pPushConstantRanges = &pushConstant,
};
_RETURN_ON_FAILURE(
vk->vkCreatePipelineLayout(device, &pipelineLayoutInfo, nullptr, &mDecompPipelineLayout));
VkComputePipelineCreateInfo computePipelineInfo = {
.sType = VK_STRUCTURE_TYPE_COMPUTE_PIPELINE_CREATE_INFO,
.stage = {.sType = VK_STRUCTURE_TYPE_PIPELINE_SHADER_STAGE_CREATE_INFO,
.stage = VK_SHADER_STAGE_COMPUTE_BIT,
.module = mDecompShader,
.pName = "main"},
.layout = mDecompPipelineLayout,
};
_RETURN_ON_FAILURE(vk->vkCreateComputePipelines(device, nullptr, 1, &computePipelineInfo,
nullptr, &mDecompPipeline));
VkFormat intermediateFormat = VK_FORMAT_R8G8B8A8_UINT;
switch (mCompressedFormat) {
case VK_FORMAT_EAC_R11_UNORM_BLOCK:
case VK_FORMAT_EAC_R11_SNORM_BLOCK:
case VK_FORMAT_EAC_R11G11_UNORM_BLOCK:
case VK_FORMAT_EAC_R11G11_SNORM_BLOCK:
intermediateFormat = mDecompressedFormat;
break;
default:
break;
}
mCompressedMipmapsImageViews.resize(mMipLevels);
mDecompImageViews.resize(mMipLevels);
VkDescriptorImageInfo compressedMipmapsDescriptorImageInfo = {.imageLayout =
VK_IMAGE_LAYOUT_GENERAL};
VkDescriptorImageInfo mDecompDescriptorImageInfo = {.imageLayout = VK_IMAGE_LAYOUT_GENERAL};
VkWriteDescriptorSet writeDescriptorSets[2] = {
{
.sType = VK_STRUCTURE_TYPE_WRITE_DESCRIPTOR_SET,
.dstBinding = 0,
.descriptorCount = 1,
.descriptorType = VK_DESCRIPTOR_TYPE_STORAGE_IMAGE,
.pImageInfo = &compressedMipmapsDescriptorImageInfo,
},
{
.sType = VK_STRUCTURE_TYPE_WRITE_DESCRIPTOR_SET,
.dstBinding = 1,
.descriptorCount = 1,
.descriptorType = VK_DESCRIPTOR_TYPE_STORAGE_IMAGE,
.pImageInfo = &mDecompDescriptorImageInfo,
}};
for (uint32_t i = 0; i < mMipLevels; i++) {
mCompressedMipmapsImageViews[i] =
createDefaultImageView(vk, device, mCompressedMipmaps[i], mCompressedMipmapsFormat,
mImageType, 0, mLayerCount);
mDecompImageViews[i] = createDefaultImageView(
vk, device, mDecompressedImage, intermediateFormat, mImageType, i, mLayerCount);
compressedMipmapsDescriptorImageInfo.imageView = mCompressedMipmapsImageViews[i];
mDecompDescriptorImageInfo.imageView = mDecompImageViews[i];
writeDescriptorSets[0].dstSet = mDecompDescriptorSets[i];
writeDescriptorSets[1].dstSet = mDecompDescriptorSets[i];
vk->vkUpdateDescriptorSets(device, 2, writeDescriptorSets, 0, nullptr);
}
return VK_SUCCESS;
}
void CompressedImageInfo::decompress(VulkanDispatch* vk, VkCommandBuffer commandBuffer,
const VkImageSubresourceRange& range) {
vk->vkCmdBindPipeline(commandBuffer, VK_PIPELINE_BIND_POINT_COMPUTE, mDecompPipeline);
uint32_t dispatchZ = mExtent.depth == 1 ? range.layerCount : mExtent.depth;
if (isEtc2()) {
const Etc2PushConstant pushConstant = {
.compFormat = (uint32_t)mCompressedFormat,
.baseLayer = mExtent.depth == 1 ? range.baseArrayLayer : 0};
vk->vkCmdPushConstants(commandBuffer, mDecompPipelineLayout, VK_SHADER_STAGE_COMPUTE_BIT, 0,
sizeof(pushConstant), &pushConstant);
} else if (isAstc()) {
uint32_t smallBlock = false;
switch (mCompressedFormat) {
case VK_FORMAT_ASTC_4x4_UNORM_BLOCK:
case VK_FORMAT_ASTC_5x4_UNORM_BLOCK:
case VK_FORMAT_ASTC_5x5_UNORM_BLOCK:
case VK_FORMAT_ASTC_6x5_UNORM_BLOCK:
case VK_FORMAT_ASTC_4x4_SRGB_BLOCK:
case VK_FORMAT_ASTC_5x4_SRGB_BLOCK:
case VK_FORMAT_ASTC_5x5_SRGB_BLOCK:
case VK_FORMAT_ASTC_6x5_SRGB_BLOCK:
smallBlock = true;
break;
default:
break;
}
const AstcPushConstant pushConstant = {
.blockSize = {mBlock.width, mBlock.height},
.baseLayer = mExtent.depth == 1 ? range.baseArrayLayer : 0,
.smallBlock = smallBlock};
vk->vkCmdPushConstants(commandBuffer, mDecompPipelineLayout, VK_SHADER_STAGE_COMPUTE_BIT, 0,
sizeof(pushConstant), &pushConstant);
}
for (uint32_t i = range.baseMipLevel; i < range.baseMipLevel + range.levelCount; i++) {
vk->vkCmdBindDescriptorSets(commandBuffer, VK_PIPELINE_BIND_POINT_COMPUTE,
mDecompPipelineLayout, 0, 1, mDecompDescriptorSets.data() + i,
0, nullptr);
VkExtent3D compExtent = compressedMipmapExtent(i);
vk->vkCmdDispatch(commandBuffer, compExtent.width, compExtent.height, dispatchZ);
}
}
VkExtent3D CompressedImageInfo::mipmapExtent(uint32_t level) const {
return {
.width = std::max<uint32_t>(mExtent.width >> level, 1),
.height = std::max<uint32_t>(mExtent.height >> level, 1),
.depth = std::max<uint32_t>(mExtent.depth >> level, 1),
};
}
VkExtent3D CompressedImageInfo::compressedMipmapExtent(uint32_t level) const {
VkExtent3D result = mipmapExtent(level);
result.width = ceil_div(result.width, mBlock.width);
result.height = ceil_div(result.height, mBlock.height);
return result;
}
VkExtent3D CompressedImageInfo::compressedMipmapPortion(const VkExtent3D& origExtent,
uint32_t level) const {
VkExtent3D maxExtent = compressedMipmapExtent(level);
return {
.width = std::min(ceil_div(origExtent.width, mBlock.width), maxExtent.width),
.height = std::min(ceil_div(origExtent.height, mBlock.height), maxExtent.height),
.depth = origExtent.depth,
};
}
} // namespace vk
} // namespace gfxstream