blob: 2f9ccdc5c558d2f27a88cf5577b8b1c396bfe795 [file] [log] [blame]
/*
* Copyright (C) 2019 The Android Open Source Project
*
* Licensed under the Apache License, Version 2.0 (the "License");
* you may not use this file except in compliance with the License.
* You may obtain a copy of the License at
*
* http://www.apache.org/licenses/LICENSE-2.0
*
* Unless required by applicable law or agreed to in writing, software
* distributed under the License is distributed on an "AS IS" BASIS,
* WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
* See the License for the specific language governing permissions and
* limitations under the License.
*/
#include "stats_event.h"
#include <gtest/gtest.h>
#include <utils/SystemClock.h>
// Keep in sync with stats_event.c. Consider moving to separate header file to avoid duplication.
/* ERRORS */
#define ERROR_NO_TIMESTAMP 0x1
#define ERROR_NO_ATOM_ID 0x2
#define ERROR_OVERFLOW 0x4
#define ERROR_ATTRIBUTION_CHAIN_TOO_LONG 0x8
#define ERROR_TOO_MANY_KEY_VALUE_PAIRS 0x10
#define ERROR_ANNOTATION_DOES_NOT_FOLLOW_FIELD 0x20
#define ERROR_INVALID_ANNOTATION_ID 0x40
#define ERROR_ANNOTATION_ID_TOO_LARGE 0x80
#define ERROR_TOO_MANY_ANNOTATIONS 0x100
#define ERROR_TOO_MANY_FIELDS 0x200
#define ERROR_INVALID_VALUE_TYPE 0x400
#define ERROR_STRING_NOT_NULL_TERMINATED 0x800
#define ERROR_ATOM_ID_INVALID_POSITION 0x2000
/* TYPE IDS */
#define INT32_TYPE 0x00
#define INT64_TYPE 0x01
#define STRING_TYPE 0x02
#define LIST_TYPE 0x03
#define FLOAT_TYPE 0x04
#define BOOL_TYPE 0x05
#define BYTE_ARRAY_TYPE 0x06
#define OBJECT_TYPE 0x07
#define KEY_VALUE_PAIRS_TYPE 0x08
#define ATTRIBUTION_CHAIN_TYPE 0x09
#define ERROR_TYPE 0x0F
using std::string;
using std::vector;
// Side-effect: this function moves the start of the buffer past the read value
template <class T>
T readNext(uint8_t** buffer) {
T value;
if ((reinterpret_cast<uintptr_t>(*buffer) % alignof(T)) == 0) {
value = *(T*)(*buffer);
} else {
memcpy(&value, *buffer, sizeof(T));
}
*buffer += sizeof(T);
return value;
}
void checkTypeHeader(uint8_t** buffer, uint8_t typeId, uint8_t numAnnotations = 0) {
uint8_t typeHeader = (numAnnotations << 4) | typeId;
EXPECT_EQ(readNext<uint8_t>(buffer), typeHeader);
}
template <class T>
void checkScalar(uint8_t** buffer, T expectedValue) {
EXPECT_EQ(readNext<T>(buffer), expectedValue);
}
void checkString(uint8_t** buffer, const string& expectedString) {
uint32_t size = readNext<uint32_t>(buffer);
string parsedString((char*)(*buffer), size);
EXPECT_EQ(parsedString, expectedString);
*buffer += size; // move buffer past string we just read
}
void checkByteArray(uint8_t** buffer, const vector<uint8_t>& expectedByteArray) {
uint32_t size = readNext<uint32_t>(buffer);
vector<uint8_t> parsedByteArray(*buffer, *buffer + size);
EXPECT_EQ(parsedByteArray, expectedByteArray);
*buffer += size; // move buffer past byte array we just read
}
template <class T>
void checkAnnotation(uint8_t** buffer, uint8_t annotationId, uint8_t typeId, T annotationValue) {
EXPECT_EQ(readNext<uint8_t>(buffer), annotationId);
EXPECT_EQ(readNext<uint8_t>(buffer), typeId);
checkScalar<T>(buffer, annotationValue);
}
void checkMetadata(uint8_t** buffer, uint8_t numElements, int64_t startTime, int64_t endTime,
uint32_t atomId, uint8_t numAtomLevelAnnotations = 0) {
// All events start with OBJECT_TYPE id.
checkTypeHeader(buffer, OBJECT_TYPE);
// We increment by 2 because the number of elements listed in the
// serialization accounts for the timestamp and atom id as well.
checkScalar(buffer, static_cast<uint8_t>(numElements + 2));
// Check timestamp
checkTypeHeader(buffer, INT64_TYPE);
int64_t timestamp = readNext<int64_t>(buffer);
EXPECT_GE(timestamp, startTime);
EXPECT_LE(timestamp, endTime);
// Check atom id
checkTypeHeader(buffer, INT32_TYPE, numAtomLevelAnnotations);
checkScalar(buffer, atomId);
}
TEST(StatsEventTest, TestScalars) {
uint32_t atomId = 100;
int32_t int32Value = -5;
int64_t int64Value = -2 * android::elapsedRealtimeNano();
float floatValue = 2.0;
bool boolValue = false;
int64_t startTime = android::elapsedRealtimeNano();
AStatsEvent* event = AStatsEvent_obtain();
AStatsEvent_setAtomId(event, atomId);
AStatsEvent_writeInt32(event, int32Value);
AStatsEvent_writeInt64(event, int64Value);
AStatsEvent_writeFloat(event, floatValue);
AStatsEvent_writeBool(event, boolValue);
AStatsEvent_build(event);
int64_t endTime = android::elapsedRealtimeNano();
size_t bufferSize;
uint8_t* buffer = AStatsEvent_getBuffer(event, &bufferSize);
uint8_t* bufferEnd = buffer + bufferSize;
checkMetadata(&buffer, /*numElements=*/4, startTime, endTime, atomId);
// check int32 element
checkTypeHeader(&buffer, INT32_TYPE);
checkScalar(&buffer, int32Value);
// check int64 element
checkTypeHeader(&buffer, INT64_TYPE);
checkScalar(&buffer, int64Value);
// check float element
checkTypeHeader(&buffer, FLOAT_TYPE);
checkScalar(&buffer, floatValue);
// check bool element
checkTypeHeader(&buffer, BOOL_TYPE);
checkScalar(&buffer, boolValue);
EXPECT_EQ(buffer, bufferEnd); // ensure that we have read the entire buffer
EXPECT_EQ(AStatsEvent_getErrors(event), 0);
AStatsEvent_release(event);
}
TEST(StatsEventTest, TestStrings) {
uint32_t atomId = 100;
string str = "test_string";
int64_t startTime = android::elapsedRealtimeNano();
AStatsEvent* event = AStatsEvent_obtain();
AStatsEvent_setAtomId(event, atomId);
AStatsEvent_writeString(event, str.c_str());
AStatsEvent_build(event);
int64_t endTime = android::elapsedRealtimeNano();
size_t bufferSize;
uint8_t* buffer = AStatsEvent_getBuffer(event, &bufferSize);
uint8_t* bufferEnd = buffer + bufferSize;
checkMetadata(&buffer, /*numElements=*/1, startTime, endTime, atomId);
checkTypeHeader(&buffer, STRING_TYPE);
checkString(&buffer, str);
EXPECT_EQ(buffer, bufferEnd); // ensure that we have read the entire buffer
EXPECT_EQ(AStatsEvent_getErrors(event), 0);
AStatsEvent_release(event);
}
TEST(StatsEventTest, TestNullString) {
uint32_t atomId = 100;
char* str = nullptr;
int64_t startTime = android::elapsedRealtimeNano();
AStatsEvent* event = AStatsEvent_obtain();
AStatsEvent_setAtomId(event, atomId);
AStatsEvent_writeString(event, str);
AStatsEvent_build(event);
int64_t endTime = android::elapsedRealtimeNano();
size_t bufferSize;
uint8_t* buffer = AStatsEvent_getBuffer(event, &bufferSize);
uint8_t* bufferEnd = buffer + bufferSize;
checkMetadata(&buffer, /*numElements=*/1, startTime, endTime, atomId);
checkTypeHeader(&buffer, STRING_TYPE);
checkString(&buffer, "");
EXPECT_EQ(buffer, bufferEnd); // ensure that we have read the entire buffer
EXPECT_EQ(AStatsEvent_getErrors(event), 0);
AStatsEvent_release(event);
}
TEST(StatsEventTest, TestByteArrays) {
uint32_t atomId = 100;
vector<uint8_t> message = {'b', 'y', 't', '\0', 'e', 's'};
int64_t startTime = android::elapsedRealtimeNano();
AStatsEvent* event = AStatsEvent_obtain();
AStatsEvent_setAtomId(event, atomId);
AStatsEvent_writeByteArray(event, message.data(), message.size());
AStatsEvent_build(event);
int64_t endTime = android::elapsedRealtimeNano();
size_t bufferSize;
uint8_t* buffer = AStatsEvent_getBuffer(event, &bufferSize);
uint8_t* bufferEnd = buffer + bufferSize;
checkMetadata(&buffer, /*numElements=*/1, startTime, endTime, atomId);
checkTypeHeader(&buffer, BYTE_ARRAY_TYPE);
checkByteArray(&buffer, message);
EXPECT_EQ(buffer, bufferEnd); // ensure that we have read the entire buffer
EXPECT_EQ(AStatsEvent_getErrors(event), 0);
AStatsEvent_release(event);
}
TEST(StatsEventTest, TestNullByteArrays) {
uint32_t atomId = 100;
uint8_t* buf = nullptr;
vector<uint8_t> message;
int64_t startTime = android::elapsedRealtimeNano();
AStatsEvent* event = AStatsEvent_obtain();
AStatsEvent_setAtomId(event, atomId);
AStatsEvent_writeByteArray(event, buf, 2);
AStatsEvent_build(event);
int64_t endTime = android::elapsedRealtimeNano();
size_t bufferSize;
uint8_t* buffer = AStatsEvent_getBuffer(event, &bufferSize);
uint8_t* bufferEnd = buffer + bufferSize;
checkMetadata(&buffer, /*numElements=*/1, startTime, endTime, atomId);
checkTypeHeader(&buffer, BYTE_ARRAY_TYPE);
checkByteArray(&buffer, message);
EXPECT_EQ(buffer, bufferEnd); // ensure that we have read the entire buffer
EXPECT_EQ(AStatsEvent_getErrors(event), 0);
AStatsEvent_release(event);
}
TEST(StatsEventTest, TestAttributionChains) {
uint32_t atomId = 100;
uint8_t numNodes = 50;
uint32_t uids[numNodes];
vector<string> tags(numNodes); // storage that cTag elements point to
const char* cTags[numNodes];
for (int i = 0; i < (int)numNodes; i++) {
uids[i] = i;
if (0 == i) {
tags.push_back("");
cTags[i] = nullptr;
} else {
tags.push_back("test" + std::to_string(i));
cTags[i] = tags[i].c_str();
}
}
int64_t startTime = android::elapsedRealtimeNano();
AStatsEvent* event = AStatsEvent_obtain();
AStatsEvent_setAtomId(event, atomId);
AStatsEvent_writeAttributionChain(event, uids, cTags, numNodes);
AStatsEvent_build(event);
int64_t endTime = android::elapsedRealtimeNano();
size_t bufferSize;
uint8_t* buffer = AStatsEvent_getBuffer(event, &bufferSize);
uint8_t* bufferEnd = buffer + bufferSize;
checkMetadata(&buffer, /*numElements=*/1, startTime, endTime, atomId);
checkTypeHeader(&buffer, ATTRIBUTION_CHAIN_TYPE);
checkScalar(&buffer, numNodes);
for (int i = 0; i < numNodes; i++) {
checkScalar(&buffer, uids[i]);
checkString(&buffer, tags[i]);
}
EXPECT_EQ(buffer, bufferEnd); // ensure that we have read the entire buffer
EXPECT_EQ(AStatsEvent_getErrors(event), 0);
AStatsEvent_release(event);
}
TEST(StatsEventTest, TestFieldAnnotations) {
uint32_t atomId = 100;
// first element information
bool boolValue = false;
uint8_t boolAnnotation1Id = 1;
uint8_t boolAnnotation2Id = 2;
bool boolAnnotation1Value = true;
int32_t boolAnnotation2Value = 3;
// second element information
float floatValue = -5.0;
uint8_t floatAnnotation1Id = 3;
uint8_t floatAnnotation2Id = 4;
int32_t floatAnnotation1Value = 8;
bool floatAnnotation2Value = false;
int64_t startTime = android::elapsedRealtimeNano();
AStatsEvent* event = AStatsEvent_obtain();
AStatsEvent_setAtomId(event, atomId);
AStatsEvent_writeBool(event, boolValue);
AStatsEvent_addBoolAnnotation(event, boolAnnotation1Id, boolAnnotation1Value);
AStatsEvent_addInt32Annotation(event, boolAnnotation2Id, boolAnnotation2Value);
AStatsEvent_writeFloat(event, floatValue);
AStatsEvent_addInt32Annotation(event, floatAnnotation1Id, floatAnnotation1Value);
AStatsEvent_addBoolAnnotation(event, floatAnnotation2Id, floatAnnotation2Value);
AStatsEvent_build(event);
int64_t endTime = android::elapsedRealtimeNano();
size_t bufferSize;
uint8_t* buffer = AStatsEvent_getBuffer(event, &bufferSize);
uint8_t* bufferEnd = buffer + bufferSize;
checkMetadata(&buffer, /*numElements=*/2, startTime, endTime, atomId);
// check first element
checkTypeHeader(&buffer, BOOL_TYPE, /*numAnnotations=*/2);
checkScalar(&buffer, boolValue);
checkAnnotation(&buffer, boolAnnotation1Id, BOOL_TYPE, boolAnnotation1Value);
checkAnnotation(&buffer, boolAnnotation2Id, INT32_TYPE, boolAnnotation2Value);
// check second element
checkTypeHeader(&buffer, FLOAT_TYPE, /*numAnnotations=*/2);
checkScalar(&buffer, floatValue);
checkAnnotation(&buffer, floatAnnotation1Id, INT32_TYPE, floatAnnotation1Value);
checkAnnotation(&buffer, floatAnnotation2Id, BOOL_TYPE, floatAnnotation2Value);
EXPECT_EQ(buffer, bufferEnd); // ensure that we have read the entire buffer
EXPECT_EQ(AStatsEvent_getErrors(event), 0);
AStatsEvent_release(event);
}
TEST(StatsEventTest, TestAtomLevelAnnotations) {
uint32_t atomId = 100;
// atom-level annotation information
uint8_t boolAnnotationId = 1;
uint8_t int32AnnotationId = 2;
bool boolAnnotationValue = false;
int32_t int32AnnotationValue = 5;
float fieldValue = -3.5;
int64_t startTime = android::elapsedRealtimeNano();
AStatsEvent* event = AStatsEvent_obtain();
AStatsEvent_setAtomId(event, atomId);
AStatsEvent_addBoolAnnotation(event, boolAnnotationId, boolAnnotationValue);
AStatsEvent_addInt32Annotation(event, int32AnnotationId, int32AnnotationValue);
AStatsEvent_writeFloat(event, fieldValue);
AStatsEvent_build(event);
int64_t endTime = android::elapsedRealtimeNano();
size_t bufferSize;
uint8_t* buffer = AStatsEvent_getBuffer(event, &bufferSize);
uint8_t* bufferEnd = buffer + bufferSize;
checkMetadata(&buffer, /*numElements=*/1, startTime, endTime, atomId,
/*numAtomLevelAnnotations=*/2);
// check atom-level annotations
checkAnnotation(&buffer, boolAnnotationId, BOOL_TYPE, boolAnnotationValue);
checkAnnotation(&buffer, int32AnnotationId, INT32_TYPE, int32AnnotationValue);
// check first element
checkTypeHeader(&buffer, FLOAT_TYPE);
checkScalar(&buffer, fieldValue);
EXPECT_EQ(buffer, bufferEnd); // ensure that we have read the entire buffer
EXPECT_EQ(AStatsEvent_getErrors(event), 0);
AStatsEvent_release(event);
}
TEST(StatsEventTest, TestNoAtomIdError) {
AStatsEvent* event = AStatsEvent_obtain();
// Don't set the atom id in order to trigger the error.
AStatsEvent_build(event);
uint32_t errors = AStatsEvent_getErrors(event);
EXPECT_EQ(errors & ERROR_NO_ATOM_ID, ERROR_NO_ATOM_ID);
AStatsEvent_release(event);
}
TEST(StatsEventTest, TestPushOverflowError) {
const char* str = "ABCDEFGHIJKLMNOPQRSTUVWXYZ0123456789";
const int writeCount = 120; // Number of times to write str in the event.
AStatsEvent* event = AStatsEvent_obtain();
AStatsEvent_setAtomId(event, 100);
// Add str to the event 120 times. Each str takes >35 bytes so this will
// overflow the 4068 byte buffer.
// We want to keep writeCount less than 127 to avoid hitting
// ERROR_TOO_MANY_FIELDS.
for (int i = 0; i < writeCount; i++) {
AStatsEvent_writeString(event, str);
}
AStatsEvent_write(event);
uint32_t errors = AStatsEvent_getErrors(event);
EXPECT_EQ(errors & ERROR_OVERFLOW, ERROR_OVERFLOW);
AStatsEvent_release(event);
}
TEST(StatsEventTest, TestPullOverflowError) {
const uint32_t atomId = 10100;
const vector<uint8_t> bytes(430 /* number of elements */, 1 /* value of each element */);
const int writeCount = 120; // Number of times to write bytes in the event.
AStatsEvent* event = AStatsEvent_obtain();
AStatsEvent_setAtomId(event, atomId);
// Add bytes to the event 120 times. Size of bytes is 430 so this will
// overflow the 50 KB pulled event buffer.
// We want to keep writeCount less than 127 to avoid hitting
// ERROR_TOO_MANY_FIELDS.
for (int i = 0; i < writeCount; i++) {
AStatsEvent_writeByteArray(event, bytes.data(), bytes.size());
}
AStatsEvent_build(event);
uint32_t errors = AStatsEvent_getErrors(event);
EXPECT_EQ(errors & ERROR_OVERFLOW, ERROR_OVERFLOW);
AStatsEvent_release(event);
}
TEST(StatsEventTest, TestLargePull) {
const uint32_t atomId = 100;
const string str = "ABCDEFGHIJKLMNOPQRSTUVWXYZ0123456789";
const int writeCount = 120; // Number of times to write str in the event.
const int64_t startTime = android::elapsedRealtimeNano();
AStatsEvent* event = AStatsEvent_obtain();
AStatsEvent_setAtomId(event, atomId);
// Add str to the event 120 times.
// We want to keep writeCount less than 127 to avoid hitting
// ERROR_TOO_MANY_FIELDS.
for (int i = 0; i < writeCount; i++) {
AStatsEvent_writeString(event, str.c_str());
}
AStatsEvent_build(event);
int64_t endTime = android::elapsedRealtimeNano();
size_t bufferSize;
uint8_t* buffer = AStatsEvent_getBuffer(event, &bufferSize);
uint8_t* bufferEnd = buffer + bufferSize;
checkMetadata(&buffer, writeCount, startTime, endTime, atomId);
// Check all instances of str have been written.
for (int i = 0; i < writeCount; i++) {
checkTypeHeader(&buffer, STRING_TYPE);
checkString(&buffer, str);
}
EXPECT_EQ(buffer, bufferEnd); // Ensure that we have read the entire buffer.
EXPECT_EQ(AStatsEvent_getErrors(event), 0);
AStatsEvent_release(event);
}
TEST(StatsEventTest, TestAtomIdInvalidPositionError) {
AStatsEvent* event = AStatsEvent_obtain();
AStatsEvent_writeInt32(event, 0);
AStatsEvent_setAtomId(event, 100);
AStatsEvent_writeBool(event, true);
AStatsEvent_build(event);
uint32_t errors = AStatsEvent_getErrors(event);
EXPECT_EQ(errors & ERROR_ATOM_ID_INVALID_POSITION, ERROR_ATOM_ID_INVALID_POSITION);
AStatsEvent_release(event);
}
TEST(StatsEventTest, TestOverwriteTimestamp) {
uint32_t atomId = 100;
int64_t expectedTimestamp = 0x123456789;
AStatsEvent* event = AStatsEvent_obtain();
AStatsEvent_setAtomId(event, atomId);
AStatsEvent_overwriteTimestamp(event, expectedTimestamp);
AStatsEvent_build(event);
uint8_t* buffer = AStatsEvent_getBuffer(event, NULL);
// Make sure that the timestamp is being overwritten.
checkMetadata(&buffer, /*numElements=*/0, /*startTime=*/expectedTimestamp,
/*endTime=*/expectedTimestamp, atomId);
EXPECT_EQ(AStatsEvent_getErrors(event), 0);
AStatsEvent_release(event);
}