blob: e3e3af853de6f7e4f9278ddb54b1586e913fd02c [file] [log] [blame] [edit]
// Copyright (C) 2019 The Android Open Source Project
//
// Licensed under the Apache License, Version 2.0 (the "License");
// you may not use this file except in compliance with the License.
// You may obtain a copy of the License at
//
// http://www.apache.org/licenses/LICENSE-2.0
//
// Unless required by applicable law or agreed to in writing, software
// distributed under the License is distributed on an "AS IS" BASIS,
// WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
// See the License for the specific language governing permissions and
// limitations under the License.
#include <libsnapshot/test_helpers.h>
#include <sys/statvfs.h>
#include <android-base/file.h>
#include <android-base/logging.h>
#include <android-base/properties.h>
#include <android-base/strings.h>
#include <android-base/unique_fd.h>
#include <gtest/gtest.h>
#include <openssl/sha.h>
#include <payload_consumer/file_descriptor.h>
namespace android {
namespace snapshot {
using android::base::ReadFully;
using android::base::unique_fd;
using android::base::WriteFully;
using android::fiemap::IImageManager;
using testing::AssertionFailure;
using testing::AssertionSuccess;
void DeleteBackingImage(IImageManager* manager, const std::string& name) {
if (manager->IsImageMapped(name)) {
ASSERT_TRUE(manager->UnmapImageDevice(name));
}
if (manager->BackingImageExists(name)) {
ASSERT_TRUE(manager->DeleteBackingImage(name));
}
}
android::base::unique_fd TestPartitionOpener::Open(const std::string& partition_name,
int flags) const {
if (partition_name == "super") {
return PartitionOpener::Open(fake_super_path_, flags);
}
return PartitionOpener::Open(partition_name, flags);
}
bool TestPartitionOpener::GetInfo(const std::string& partition_name,
android::fs_mgr::BlockDeviceInfo* info) const {
if (partition_name != "super") {
return PartitionOpener::GetInfo(partition_name, info);
}
if (PartitionOpener::GetInfo(fake_super_path_, info)) {
// SnapshotUpdateTest uses a relatively small super partition, which requires a small
// alignment and 0 offset to work. For the purpose of this test, hardcode the alignment
// and offset. This test isn't about testing liblp or libdm.
info->alignment_offset = 0;
info->alignment = std::min<uint32_t>(info->alignment, static_cast<uint32_t>(128_KiB));
return true;
}
return false;
}
std::string TestPartitionOpener::GetDeviceString(const std::string& partition_name) const {
if (partition_name == "super") {
return fake_super_path_;
}
return PartitionOpener::GetDeviceString(partition_name);
}
std::string ToHexString(const uint8_t* buf, size_t len) {
char lookup[] = "0123456789abcdef";
std::string out(len * 2 + 1, '\0');
char* outp = out.data();
for (; len > 0; len--, buf++) {
*outp++ = (char)lookup[*buf >> 4];
*outp++ = (char)lookup[*buf & 0xf];
}
return out;
}
bool WriteRandomData(const std::string& path, std::optional<size_t> expect_size,
std::string* hash) {
unique_fd rand(open("/dev/urandom", O_RDONLY));
unique_fd fd(open(path.c_str(), O_WRONLY));
SHA256_CTX ctx;
if (hash) {
SHA256_Init(&ctx);
}
char buf[4096];
size_t total_written = 0;
while (!expect_size || total_written < *expect_size) {
ssize_t n = TEMP_FAILURE_RETRY(read(rand.get(), buf, sizeof(buf)));
if (n <= 0) return false;
if (!WriteFully(fd.get(), buf, n)) {
if (errno == ENOSPC) {
break;
}
PLOG(ERROR) << "Cannot write " << path;
return false;
}
total_written += n;
if (hash) {
SHA256_Update(&ctx, buf, n);
}
}
if (expect_size && total_written != *expect_size) {
PLOG(ERROR) << "Written " << total_written << " bytes, expected " << *expect_size;
return false;
}
if (hash) {
uint8_t out[32];
SHA256_Final(out, &ctx);
*hash = ToHexString(out, sizeof(out));
}
return true;
}
bool WriteRandomData(ICowWriter* writer, std::string* hash) {
unique_fd rand(open("/dev/urandom", O_RDONLY));
if (rand < 0) {
PLOG(ERROR) << "open /dev/urandom";
return false;
}
SHA256_CTX ctx;
if (hash) {
SHA256_Init(&ctx);
}
if (!writer->options().max_blocks) {
LOG(ERROR) << "CowWriter must specify maximum number of blocks";
return false;
}
uint64_t num_blocks = writer->options().max_blocks.value();
size_t block_size = writer->options().block_size;
std::string block(block_size, '\0');
for (uint64_t i = 0; i < num_blocks; i++) {
if (!ReadFully(rand, block.data(), block.size())) {
PLOG(ERROR) << "read /dev/urandom";
return false;
}
if (!writer->AddRawBlocks(i, block.data(), block.size())) {
LOG(ERROR) << "Failed to add raw block " << i;
return false;
}
if (hash) {
SHA256_Update(&ctx, block.data(), block.size());
}
}
if (hash) {
uint8_t out[32];
SHA256_Final(out, &ctx);
*hash = ToHexString(out, sizeof(out));
}
return true;
}
std::string HashSnapshot(ISnapshotWriter* writer) {
auto reader = writer->OpenReader();
if (!reader) {
return {};
}
SHA256_CTX ctx;
SHA256_Init(&ctx);
uint64_t remaining = reader->BlockDevSize();
char buffer[4096];
while (remaining) {
size_t to_read =
static_cast<size_t>(std::min(remaining, static_cast<uint64_t>(sizeof(buffer))));
ssize_t read = reader->Read(&buffer, to_read);
if (read <= 0) {
if (read < 0) {
LOG(ERROR) << "Failed to read from snapshot writer";
return {};
}
break;
}
SHA256_Update(&ctx, buffer, to_read);
remaining -= static_cast<size_t>(read);
}
uint8_t out[32];
SHA256_Final(out, &ctx);
return ToHexString(out, sizeof(out));
}
std::optional<std::string> GetHash(const std::string& path) {
std::string content;
if (!android::base::ReadFileToString(path, &content, true)) {
PLOG(ERROR) << "Cannot access " << path;
return std::nullopt;
}
SHA256_CTX ctx;
SHA256_Init(&ctx);
SHA256_Update(&ctx, content.c_str(), content.size());
uint8_t out[32];
SHA256_Final(out, &ctx);
return ToHexString(out, sizeof(out));
}
AssertionResult FillFakeMetadata(MetadataBuilder* builder, const DeltaArchiveManifest& manifest,
const std::string& suffix) {
for (const auto& group : manifest.dynamic_partition_metadata().groups()) {
if (!builder->AddGroup(group.name() + suffix, group.size())) {
return AssertionFailure()
<< "Cannot add group " << group.name() << " with size " << group.size();
}
for (const auto& partition_name : group.partition_names()) {
auto p = builder->AddPartition(partition_name + suffix, group.name() + suffix,
0 /* attr */);
if (!p) {
return AssertionFailure() << "Cannot add partition " << partition_name + suffix
<< " to group " << group.name() << suffix;
}
}
}
for (const auto& partition : manifest.partitions()) {
auto p = builder->FindPartition(partition.partition_name() + suffix);
if (!p) {
return AssertionFailure() << "Cannot resize partition " << partition.partition_name()
<< suffix << "; it is not found.";
}
if (!builder->ResizePartition(p, partition.new_partition_info().size())) {
return AssertionFailure()
<< "Cannot resize partition " << partition.partition_name() << suffix
<< " to size " << partition.new_partition_info().size();
}
}
return AssertionSuccess();
}
void SetSize(PartitionUpdate* partition_update, uint64_t size) {
partition_update->mutable_new_partition_info()->set_size(size);
}
uint64_t GetSize(PartitionUpdate* partition_update) {
return partition_update->mutable_new_partition_info()->size();
}
AssertionResult LowSpaceUserdata::Init(uint64_t max_free_space) {
auto res = ReadUserdataStats();
if (!res) return res;
// Try to fill up the disk as much as possible until free_space_ <= max_free_space.
big_file_ = std::make_unique<TemporaryFile>();
if (big_file_->fd == -1) {
return AssertionFailure() << strerror(errno);
}
if (!android::base::StartsWith(big_file_->path, kUserDataDevice)) {
return AssertionFailure() << "Temp file allocated to " << big_file_->path << ", not in "
<< kUserDataDevice;
}
uint64_t next_consume =
std::min(free_space_ - max_free_space, (uint64_t)std::numeric_limits<off_t>::max());
off_t allocated = 0;
while (next_consume > 0 && free_space_ > max_free_space) {
int status = fallocate(big_file_->fd, 0, allocated, next_consume);
if (status == -1 && errno == ENOSPC) {
next_consume /= 2;
continue;
}
if (status == -1) {
return AssertionFailure() << strerror(errno);
}
allocated += next_consume;
res = ReadUserdataStats();
if (!res) return res;
}
LOG(INFO) << allocated << " bytes allocated to " << big_file_->path;
initialized_ = true;
return AssertionSuccess();
}
AssertionResult LowSpaceUserdata::ReadUserdataStats() {
struct statvfs buf;
if (statvfs(kUserDataDevice, &buf) == -1) {
return AssertionFailure() << strerror(errno);
}
bsize_ = buf.f_bsize;
free_space_ = bsize_ * buf.f_bfree;
available_space_ = bsize_ * buf.f_bavail;
return AssertionSuccess();
}
uint64_t LowSpaceUserdata::free_space() const {
CHECK(initialized_);
return free_space_;
}
uint64_t LowSpaceUserdata::available_space() const {
CHECK(initialized_);
return available_space_;
}
uint64_t LowSpaceUserdata::bsize() const {
CHECK(initialized_);
return bsize_;
}
bool IsVirtualAbEnabled() {
return android::base::GetBoolProperty("ro.virtual_ab.enabled", false);
}
} // namespace snapshot
} // namespace android