blob: 6a5754de14faffadaf24f3cc49589ac45e5e6abe [file] [log] [blame] [edit]
//
// Copyright (C) 2020 The Android Open Source Project
//
// Licensed under the Apache License, Version 2.0 (the "License");
// you may not use this file except in compliance with the License.
// You may obtain a copy of the License at
//
// http://www.apache.org/licenses/LICENSE-2.0
//
// Unless required by applicable law or agreed to in writing, software
// distributed under the License is distributed on an "AS IS" BASIS,
// WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
// See the License for the specific language governing permissions and
// limitations under the License.
//
#include <arpa/inet.h>
#include <errno.h>
#include <string.h>
#include <sys/stat.h>
#include <sys/types.h>
#include <unistd.h>
#include <iostream>
#include <limits>
#include <string>
#include <unordered_set>
#include <android-base/file.h>
#include <android-base/logging.h>
#include <android-base/unique_fd.h>
#include <bsdiff/bspatch.h>
#include <bzlib.h>
#include <gflags/gflags.h>
#include <libsnapshot/cow_writer.h>
#include <puffin/puffpatch.h>
#include <sparse/sparse.h>
#include <update_engine/update_metadata.pb.h>
#include <xz.h>
#include <ziparchive/zip_archive.h>
namespace android {
namespace snapshot {
using android::base::borrowed_fd;
using android::base::unique_fd;
using chromeos_update_engine::DeltaArchiveManifest;
using chromeos_update_engine::Extent;
using chromeos_update_engine::InstallOperation;
using chromeos_update_engine::PartitionUpdate;
static constexpr uint64_t kBlockSize = 4096;
DEFINE_string(source_tf, "", "Source target files (dir or zip file) for incremental payloads");
DEFINE_string(compression, "gz", "Compression type to use (none or gz)");
DEFINE_uint32(cluster_ops, 0, "Number of Cow Ops per cluster (0 or >1)");
void MyLogger(android::base::LogId, android::base::LogSeverity severity, const char*, const char*,
unsigned int, const char* message) {
if (severity == android::base::ERROR) {
fprintf(stderr, "%s\n", message);
} else {
fprintf(stdout, "%s\n", message);
}
}
uint64_t ToLittleEndian(uint64_t value) {
union {
uint64_t u64;
char bytes[8];
} packed;
packed.u64 = value;
std::swap(packed.bytes[0], packed.bytes[7]);
std::swap(packed.bytes[1], packed.bytes[6]);
std::swap(packed.bytes[2], packed.bytes[5]);
std::swap(packed.bytes[3], packed.bytes[4]);
return packed.u64;
}
class PayloadConverter final {
public:
PayloadConverter(const std::string& in_file, const std::string& out_dir)
: in_file_(in_file), out_dir_(out_dir), source_tf_zip_(nullptr, &CloseArchive) {}
bool Run();
private:
bool OpenPayload();
bool OpenSourceTargetFiles();
bool ProcessPartition(const PartitionUpdate& update);
bool ProcessOperation(const InstallOperation& op);
bool ProcessZero(const InstallOperation& op);
bool ProcessCopy(const InstallOperation& op);
bool ProcessReplace(const InstallOperation& op);
bool ProcessDiff(const InstallOperation& op);
borrowed_fd OpenSourceImage();
std::string in_file_;
std::string out_dir_;
unique_fd in_fd_;
uint64_t payload_offset_ = 0;
DeltaArchiveManifest manifest_;
std::unordered_set<std::string> dap_;
unique_fd source_tf_fd_;
std::unique_ptr<ZipArchive, decltype(&CloseArchive)> source_tf_zip_;
// Updated during ProcessPartition().
std::string partition_name_;
std::unique_ptr<CowWriter> writer_;
unique_fd source_image_;
};
bool PayloadConverter::Run() {
if (!OpenPayload()) {
return false;
}
if (manifest_.has_dynamic_partition_metadata()) {
const auto& dpm = manifest_.dynamic_partition_metadata();
for (const auto& group : dpm.groups()) {
for (const auto& partition : group.partition_names()) {
dap_.emplace(partition);
}
}
}
if (dap_.empty()) {
LOG(ERROR) << "No dynamic partitions found.";
return false;
}
if (!OpenSourceTargetFiles()) {
return false;
}
for (const auto& update : manifest_.partitions()) {
if (!ProcessPartition(update)) {
return false;
}
writer_ = nullptr;
source_image_.reset();
}
return true;
}
bool PayloadConverter::OpenSourceTargetFiles() {
if (FLAGS_source_tf.empty()) {
return true;
}
source_tf_fd_.reset(open(FLAGS_source_tf.c_str(), O_RDONLY));
if (source_tf_fd_ < 0) {
LOG(ERROR) << "open failed: " << FLAGS_source_tf;
return false;
}
struct stat s;
if (fstat(source_tf_fd_.get(), &s) < 0) {
LOG(ERROR) << "fstat failed: " << FLAGS_source_tf;
return false;
}
if (S_ISDIR(s.st_mode)) {
return true;
}
// Otherwise, assume it's a zip file.
ZipArchiveHandle handle;
if (OpenArchiveFd(source_tf_fd_.get(), FLAGS_source_tf.c_str(), &handle, false)) {
LOG(ERROR) << "Could not open " << FLAGS_source_tf << " as a zip archive.";
return false;
}
source_tf_zip_.reset(handle);
return true;
}
bool PayloadConverter::ProcessPartition(const PartitionUpdate& update) {
auto partition_name = update.partition_name();
if (dap_.find(partition_name) == dap_.end()) {
// Skip non-DAP partitions.
return true;
}
auto path = out_dir_ + "/" + partition_name + ".cow";
unique_fd fd(open(path.c_str(), O_RDWR | O_CREAT | O_TRUNC | O_CLOEXEC, 0644));
if (fd < 0) {
PLOG(ERROR) << "open failed: " << path;
return false;
}
CowOptions options;
options.block_size = kBlockSize;
options.compression = FLAGS_compression;
options.cluster_ops = FLAGS_cluster_ops;
writer_ = std::make_unique<CowWriter>(options);
if (!writer_->Initialize(std::move(fd))) {
LOG(ERROR) << "Unable to initialize COW writer";
return false;
}
partition_name_ = partition_name;
for (const auto& op : update.operations()) {
if (!ProcessOperation(op)) {
return false;
}
}
if (!writer_->Finalize()) {
LOG(ERROR) << "Unable to finalize COW for " << partition_name;
return false;
}
return true;
}
bool PayloadConverter::ProcessOperation(const InstallOperation& op) {
switch (op.type()) {
case InstallOperation::SOURCE_COPY:
return ProcessCopy(op);
case InstallOperation::BROTLI_BSDIFF:
case InstallOperation::PUFFDIFF:
return ProcessDiff(op);
case InstallOperation::REPLACE:
case InstallOperation::REPLACE_XZ:
case InstallOperation::REPLACE_BZ:
return ProcessReplace(op);
case InstallOperation::ZERO:
return ProcessZero(op);
default:
LOG(ERROR) << "Unsupported op: " << (int)op.type();
return false;
}
return true;
}
bool PayloadConverter::ProcessZero(const InstallOperation& op) {
for (const auto& extent : op.dst_extents()) {
if (!writer_->AddZeroBlocks(extent.start_block(), extent.num_blocks())) {
LOG(ERROR) << "Could not add zero operation";
return false;
}
}
return true;
}
template <typename T>
static uint64_t SizeOfAllExtents(const T& extents) {
uint64_t total = 0;
for (const auto& extent : extents) {
total += extent.num_blocks() * kBlockSize;
}
return total;
}
class PuffInputStream final : public puffin::StreamInterface {
public:
PuffInputStream(uint8_t* buffer, size_t length) : buffer_(buffer), length_(length), pos_(0) {}
bool GetSize(uint64_t* size) const override {
*size = length_;
return true;
}
bool GetOffset(uint64_t* offset) const override {
*offset = pos_;
return true;
}
bool Seek(uint64_t offset) override {
if (offset > length_) return false;
pos_ = offset;
return true;
}
bool Read(void* buffer, size_t length) override {
if (length_ - pos_ < length) return false;
memcpy(buffer, buffer_ + pos_, length);
pos_ += length;
return true;
}
bool Write(const void*, size_t) override { return false; }
bool Close() override { return true; }
private:
uint8_t* buffer_;
size_t length_;
size_t pos_;
};
class PuffOutputStream final : public puffin::StreamInterface {
public:
PuffOutputStream(std::vector<uint8_t>& stream) : stream_(stream), pos_(0) {}
bool GetSize(uint64_t* size) const override {
*size = stream_.size();
return true;
}
bool GetOffset(uint64_t* offset) const override {
*offset = pos_;
return true;
}
bool Seek(uint64_t offset) override {
if (offset > stream_.size()) {
return false;
}
pos_ = offset;
return true;
}
bool Read(void* buffer, size_t length) override {
if (stream_.size() - pos_ < length) {
return false;
}
memcpy(buffer, &stream_[0] + pos_, length);
pos_ += length;
return true;
}
bool Write(const void* buffer, size_t length) override {
auto remaining = stream_.size() - pos_;
if (remaining < length) {
stream_.resize(stream_.size() + (length - remaining));
}
memcpy(&stream_[0] + pos_, buffer, length);
pos_ += length;
return true;
}
bool Close() override { return true; }
private:
std::vector<uint8_t>& stream_;
size_t pos_;
};
bool PayloadConverter::ProcessDiff(const InstallOperation& op) {
auto source_image = OpenSourceImage();
if (source_image < 0) {
return false;
}
uint64_t src_length = SizeOfAllExtents(op.src_extents());
auto src = std::make_unique<uint8_t[]>(src_length);
size_t src_pos = 0;
// Read source bytes.
for (const auto& extent : op.src_extents()) {
uint64_t offset = extent.start_block() * kBlockSize;
if (lseek(source_image.get(), offset, SEEK_SET) < 0) {
PLOG(ERROR) << "lseek source image failed";
return false;
}
uint64_t size = extent.num_blocks() * kBlockSize;
CHECK(src_length - src_pos >= size);
if (!android::base::ReadFully(source_image, src.get() + src_pos, size)) {
PLOG(ERROR) << "read source image failed";
return false;
}
src_pos += size;
}
CHECK(src_pos == src_length);
// Read patch bytes.
auto patch = std::make_unique<uint8_t[]>(op.data_length());
if (lseek(in_fd_.get(), payload_offset_ + op.data_offset(), SEEK_SET) < 0) {
PLOG(ERROR) << "lseek payload failed";
return false;
}
if (!android::base::ReadFully(in_fd_, patch.get(), op.data_length())) {
PLOG(ERROR) << "read payload failed";
return false;
}
std::vector<uint8_t> dest(SizeOfAllExtents(op.dst_extents()));
// Apply the diff.
if (op.type() == InstallOperation::BROTLI_BSDIFF) {
size_t dest_pos = 0;
auto sink = [&](const uint8_t* data, size_t length) -> size_t {
CHECK(dest.size() - dest_pos >= length);
memcpy(&dest[dest_pos], data, length);
dest_pos += length;
return length;
};
if (int rv = bsdiff::bspatch(src.get(), src_pos, patch.get(), op.data_length(), sink)) {
LOG(ERROR) << "bspatch failed, error code " << rv;
return false;
}
} else if (op.type() == InstallOperation::PUFFDIFF) {
auto src_stream = std::make_unique<PuffInputStream>(src.get(), src_length);
auto dest_stream = std::make_unique<PuffOutputStream>(dest);
bool ok = PuffPatch(std::move(src_stream), std::move(dest_stream), patch.get(),
op.data_length());
if (!ok) {
LOG(ERROR) << "puffdiff operation failed to apply";
return false;
}
} else {
LOG(ERROR) << "unsupported diff operation: " << op.type();
return false;
}
// Write the final blocks to the COW.
size_t dest_pos = 0;
for (const auto& extent : op.dst_extents()) {
uint64_t size = extent.num_blocks() * kBlockSize;
CHECK(dest.size() - dest_pos >= size);
if (!writer_->AddRawBlocks(extent.start_block(), &dest[dest_pos], size)) {
return false;
}
dest_pos += size;
}
return true;
}
borrowed_fd PayloadConverter::OpenSourceImage() {
if (source_image_ >= 0) {
return source_image_;
}
unique_fd unzip_fd;
auto local_path = "IMAGES/" + partition_name_ + ".img";
if (source_tf_zip_) {
{
TemporaryFile tmp;
if (tmp.fd < 0) {
PLOG(ERROR) << "mkstemp failed";
return -1;
}
unzip_fd.reset(tmp.release());
}
ZipEntry64 entry;
if (FindEntry(source_tf_zip_.get(), local_path, &entry)) {
LOG(ERROR) << "not found in archive: " << local_path;
return -1;
}
if (ExtractEntryToFile(source_tf_zip_.get(), &entry, unzip_fd.get())) {
LOG(ERROR) << "could not extract " << local_path;
return -1;
}
if (lseek(unzip_fd.get(), 0, SEEK_SET) < 0) {
PLOG(ERROR) << "lseek failed";
return -1;
}
} else if (source_tf_fd_ >= 0) {
unzip_fd.reset(openat(source_tf_fd_.get(), local_path.c_str(), O_RDONLY));
if (unzip_fd < 0) {
PLOG(ERROR) << "open failed: " << FLAGS_source_tf << "/" << local_path;
return -1;
}
} else {
LOG(ERROR) << "No source target files package was specified; need -source_tf";
return -1;
}
std::unique_ptr<struct sparse_file, decltype(&sparse_file_destroy)> s(
sparse_file_import(unzip_fd.get(), false, false), &sparse_file_destroy);
if (s) {
TemporaryFile tmp;
if (tmp.fd < 0) {
PLOG(ERROR) << "mkstemp failed";
return -1;
}
if (sparse_file_write(s.get(), tmp.fd, false, false, false) < 0) {
LOG(ERROR) << "sparse_file_write failed";
return -1;
}
source_image_.reset(tmp.release());
} else {
source_image_ = std::move(unzip_fd);
}
return source_image_;
}
template <typename ContainerType>
class ExtentIter final {
public:
ExtentIter(const ContainerType& container)
: iter_(container.cbegin()), end_(container.cend()), dst_index_(0) {}
bool GetNext(uint64_t* block) {
while (iter_ != end_) {
if (dst_index_ < iter_->num_blocks()) {
break;
}
iter_++;
dst_index_ = 0;
}
if (iter_ == end_) {
return false;
}
*block = iter_->start_block() + dst_index_;
dst_index_++;
return true;
}
private:
typename ContainerType::const_iterator iter_;
typename ContainerType::const_iterator end_;
uint64_t dst_index_;
};
bool PayloadConverter::ProcessCopy(const InstallOperation& op) {
ExtentIter dst_blocks(op.dst_extents());
for (const auto& extent : op.src_extents()) {
for (uint64_t i = 0; i < extent.num_blocks(); i++) {
uint64_t src_block = extent.start_block() + i;
uint64_t dst_block;
if (!dst_blocks.GetNext(&dst_block)) {
LOG(ERROR) << "SOURCE_COPY contained mismatching extents";
return false;
}
if (src_block == dst_block) continue;
if (!writer_->AddCopy(dst_block, src_block)) {
LOG(ERROR) << "Could not add copy operation";
return false;
}
}
}
return true;
}
bool PayloadConverter::ProcessReplace(const InstallOperation& op) {
auto buffer_size = op.data_length();
auto buffer = std::make_unique<char[]>(buffer_size);
uint64_t offs = payload_offset_ + op.data_offset();
if (lseek(in_fd_.get(), offs, SEEK_SET) < 0) {
PLOG(ERROR) << "lseek " << offs << " failed";
return false;
}
if (!android::base::ReadFully(in_fd_, buffer.get(), buffer_size)) {
PLOG(ERROR) << "read " << buffer_size << " bytes from offset " << offs << "failed";
return false;
}
uint64_t dst_size = 0;
for (const auto& extent : op.dst_extents()) {
dst_size += extent.num_blocks() * kBlockSize;
}
if (op.type() == InstallOperation::REPLACE_BZ) {
auto tmp = std::make_unique<char[]>(dst_size);
uint32_t actual_size;
if (dst_size > std::numeric_limits<typeof(actual_size)>::max()) {
LOG(ERROR) << "too many bytes to decompress: " << dst_size;
return false;
}
actual_size = static_cast<uint32_t>(dst_size);
auto rv = BZ2_bzBuffToBuffDecompress(tmp.get(), &actual_size, buffer.get(), buffer_size, 0,
0);
if (rv) {
LOG(ERROR) << "bz2 decompress failed: " << rv;
return false;
}
if (actual_size != dst_size) {
LOG(ERROR) << "bz2 returned " << actual_size << " bytes, expected " << dst_size;
return false;
}
buffer = std::move(tmp);
buffer_size = dst_size;
} else if (op.type() == InstallOperation::REPLACE_XZ) {
constexpr uint32_t kXzMaxDictSize = 64 * 1024 * 1024;
if (dst_size > std::numeric_limits<size_t>::max()) {
LOG(ERROR) << "too many bytes to decompress: " << dst_size;
return false;
}
std::unique_ptr<struct xz_dec, decltype(&xz_dec_end)> s(
xz_dec_init(XZ_DYNALLOC, kXzMaxDictSize), xz_dec_end);
if (!s) {
LOG(ERROR) << "xz_dec_init failed";
return false;
}
auto tmp = std::make_unique<char[]>(dst_size);
struct xz_buf args;
args.in = reinterpret_cast<const uint8_t*>(buffer.get());
args.in_pos = 0;
args.in_size = buffer_size;
args.out = reinterpret_cast<uint8_t*>(tmp.get());
args.out_pos = 0;
args.out_size = dst_size;
auto rv = xz_dec_run(s.get(), &args);
if (rv != XZ_STREAM_END) {
LOG(ERROR) << "xz decompress failed: " << (int)rv;
return false;
}
buffer = std::move(tmp);
buffer_size = dst_size;
}
uint64_t buffer_pos = 0;
for (const auto& extent : op.dst_extents()) {
uint64_t extent_size = extent.num_blocks() * kBlockSize;
if (buffer_size - buffer_pos < extent_size) {
LOG(ERROR) << "replace op ran out of input buffer";
return false;
}
if (!writer_->AddRawBlocks(extent.start_block(), buffer.get() + buffer_pos, extent_size)) {
LOG(ERROR) << "failed to add raw blocks from replace op";
return false;
}
buffer_pos += extent_size;
}
return true;
}
bool PayloadConverter::OpenPayload() {
in_fd_.reset(open(in_file_.c_str(), O_RDONLY));
if (in_fd_ < 0) {
PLOG(ERROR) << "open " << in_file_;
return false;
}
char magic[4];
if (!android::base::ReadFully(in_fd_, magic, sizeof(magic))) {
PLOG(ERROR) << "read magic";
return false;
}
if (std::string(magic, sizeof(magic)) != "CrAU") {
LOG(ERROR) << "Invalid magic in " << in_file_;
return false;
}
uint64_t version;
uint64_t manifest_size;
uint32_t manifest_signature_size = 0;
if (!android::base::ReadFully(in_fd_, &version, sizeof(version))) {
PLOG(ERROR) << "read version";
return false;
}
version = ToLittleEndian(version);
if (version < 2) {
LOG(ERROR) << "Only payload version 2 or higher is supported.";
return false;
}
if (!android::base::ReadFully(in_fd_, &manifest_size, sizeof(manifest_size))) {
PLOG(ERROR) << "read manifest_size";
return false;
}
manifest_size = ToLittleEndian(manifest_size);
if (!android::base::ReadFully(in_fd_, &manifest_signature_size,
sizeof(manifest_signature_size))) {
PLOG(ERROR) << "read manifest_signature_size";
return false;
}
manifest_signature_size = ntohl(manifest_signature_size);
auto manifest = std::make_unique<uint8_t[]>(manifest_size);
if (!android::base::ReadFully(in_fd_, manifest.get(), manifest_size)) {
PLOG(ERROR) << "read manifest";
return false;
}
// Skip past manifest signature.
auto offs = lseek(in_fd_, manifest_signature_size, SEEK_CUR);
if (offs < 0) {
PLOG(ERROR) << "lseek failed";
return false;
}
payload_offset_ = offs;
if (!manifest_.ParseFromArray(manifest.get(), manifest_size)) {
LOG(ERROR) << "could not parse manifest";
return false;
}
return true;
}
} // namespace snapshot
} // namespace android
int main(int argc, char** argv) {
android::base::InitLogging(argv, android::snapshot::MyLogger);
gflags::SetUsageMessage("Convert OTA payload to a Virtual A/B COW");
int arg_start = gflags::ParseCommandLineFlags(&argc, &argv, false);
xz_crc32_init();
if (argc - arg_start != 2) {
std::cerr << "Usage: [options] <payload.bin> <out-dir>\n";
return 1;
}
android::snapshot::PayloadConverter pc(argv[arg_start], argv[arg_start + 1]);
return pc.Run() ? 0 : 1;
}