blob: 3351c4c452da3347c58fdef3a21f4a609370b029 [file] [log] [blame]
/*
* Copyright (C) 2017 The Android Open Source Project
*
* Licensed under the Apache License, Version 2.0 (the "License");
* you may not use this file except in compliance with the License.
* You may obtain a copy of the License at
*
* http://www.apache.org/licenses/LICENSE-2.0
*
* Unless required by applicable law or agreed to in writing, software
* distributed under the License is distributed on an "AS IS" BASIS,
* WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
* See the License for the specific language governing permissions and
* limitations under the License.
*/
#include "reboot.h"
#include <dirent.h>
#include <fcntl.h>
#include <linux/f2fs.h>
#include <linux/fs.h>
#include <linux/loop.h>
#include <mntent.h>
#include <semaphore.h>
#include <stdlib.h>
#include <sys/cdefs.h>
#include <sys/ioctl.h>
#include <sys/mount.h>
#include <sys/stat.h>
#include <sys/swap.h>
#include <sys/syscall.h>
#include <sys/types.h>
#include <sys/wait.h>
#include <chrono>
#include <memory>
#include <set>
#include <thread>
#include <vector>
#include <InitProperties.sysprop.h>
#include <android-base/chrono_utils.h>
#include <android-base/file.h>
#include <android-base/logging.h>
#include <android-base/macros.h>
#include <android-base/properties.h>
#include <android-base/scopeguard.h>
#include <android-base/strings.h>
#include <android-base/unique_fd.h>
#include <bootloader_message/bootloader_message.h>
#include <cutils/android_reboot.h>
#include <fs_mgr.h>
#include <libsnapshot/snapshot.h>
#include <logwrap/logwrap.h>
#include <private/android_filesystem_config.h>
#include <selinux/selinux.h>
#include "action.h"
#include "action_manager.h"
#include "builtin_arguments.h"
#include "init.h"
#include "mount_namespace.h"
#include "property_service.h"
#include "reboot_utils.h"
#include "service.h"
#include "service_list.h"
#include "sigchld_handler.h"
#include "util.h"
using namespace std::literals;
using android::base::boot_clock;
using android::base::GetBoolProperty;
using android::base::GetUintProperty;
using android::base::SetProperty;
using android::base::Split;
using android::base::Timer;
using android::base::unique_fd;
using android::base::WaitForProperty;
using android::base::WriteStringToFile;
namespace android {
namespace init {
static bool shutting_down = false;
static const std::set<std::string> kDebuggingServices{"tombstoned", "logd", "adbd", "console"};
static std::set<std::string> GetPostDataDebuggingServices() {
std::set<std::string> ret;
for (const auto& s : ServiceList::GetInstance()) {
if (kDebuggingServices.count(s->name()) && s->is_post_data()) {
ret.insert(s->name());
}
}
return ret;
}
static void PersistRebootReason(const char* reason, bool write_to_property) {
if (write_to_property) {
SetProperty(LAST_REBOOT_REASON_PROPERTY, reason);
}
auto fd = unique_fd(TEMP_FAILURE_RETRY(open(
LAST_REBOOT_REASON_FILE, O_WRONLY | O_CREAT | O_TRUNC | O_CLOEXEC | O_BINARY, 0666)));
if (!fd.ok()) {
PLOG(ERROR) << "Could not open '" << LAST_REBOOT_REASON_FILE
<< "' to persist reboot reason";
return;
}
WriteStringToFd(reason, fd);
fsync(fd.get());
}
// represents umount status during reboot / shutdown.
enum UmountStat {
/* umount succeeded. */
UMOUNT_STAT_SUCCESS = 0,
/* umount was not run. */
UMOUNT_STAT_SKIPPED = 1,
/* umount failed with timeout. */
UMOUNT_STAT_TIMEOUT = 2,
/* could not run due to error */
UMOUNT_STAT_ERROR = 3,
/* not used by init but reserved for other part to use this to represent the
the state where umount status before reboot is not found / available. */
UMOUNT_STAT_NOT_AVAILABLE = 4,
};
// Utility for struct mntent
class MountEntry {
public:
explicit MountEntry(const mntent& entry)
: mnt_fsname_(entry.mnt_fsname),
mnt_dir_(entry.mnt_dir),
mnt_type_(entry.mnt_type),
mnt_opts_(entry.mnt_opts) {}
bool Umount(bool force) {
LOG(INFO) << "Unmounting " << mnt_fsname_ << ":" << mnt_dir_ << " opts " << mnt_opts_;
int r = umount2(mnt_dir_.c_str(), force ? MNT_FORCE : 0);
if (r == 0) {
LOG(INFO) << "Umounted " << mnt_fsname_ << ":" << mnt_dir_ << " opts " << mnt_opts_;
return true;
} else {
PLOG(WARNING) << "Cannot umount " << mnt_fsname_ << ":" << mnt_dir_ << " opts "
<< mnt_opts_;
return false;
}
}
void DoFsck() {
int st;
if (IsF2Fs()) {
const char* f2fs_argv[] = {
"/system/bin/fsck.f2fs",
"-a",
mnt_fsname_.c_str(),
};
logwrap_fork_execvp(arraysize(f2fs_argv), f2fs_argv, &st, false, LOG_KLOG, true,
nullptr);
} else if (IsExt4()) {
const char* ext4_argv[] = {
"/system/bin/e2fsck",
"-y",
mnt_fsname_.c_str(),
};
logwrap_fork_execvp(arraysize(ext4_argv), ext4_argv, &st, false, LOG_KLOG, true,
nullptr);
}
}
static bool IsBlockDevice(const struct mntent& mntent) {
return android::base::StartsWith(mntent.mnt_fsname, "/dev/block");
}
static bool IsEmulatedDevice(const struct mntent& mntent) {
return android::base::StartsWith(mntent.mnt_fsname, "/data/");
}
private:
bool IsF2Fs() const { return mnt_type_ == "f2fs"; }
bool IsExt4() const { return mnt_type_ == "ext4"; }
std::string mnt_fsname_;
std::string mnt_dir_;
std::string mnt_type_;
std::string mnt_opts_;
};
// Turn off backlight while we are performing power down cleanup activities.
static void TurnOffBacklight() {
Service* service = ServiceList::GetInstance().FindService("blank_screen");
if (service == nullptr) {
LOG(WARNING) << "cannot find blank_screen in TurnOffBacklight";
return;
}
if (auto result = service->Start(); !result.ok()) {
LOG(WARNING) << "Could not start blank_screen service: " << result.error();
}
}
static Result<void> CallVdc(const std::string& system, const std::string& cmd) {
LOG(INFO) << "Calling /system/bin/vdc " << system << " " << cmd;
const char* vdc_argv[] = {"/system/bin/vdc", system.c_str(), cmd.c_str()};
int status;
if (logwrap_fork_execvp(arraysize(vdc_argv), vdc_argv, &status, false, LOG_KLOG, true,
nullptr) != 0) {
return ErrnoError() << "Failed to call '/system/bin/vdc " << system << " " << cmd << "'";
}
if (WIFEXITED(status) && WEXITSTATUS(status) == 0) {
return {};
}
return Error() << "'/system/bin/vdc " << system << " " << cmd << "' failed : " << status;
}
static void LogShutdownTime(UmountStat stat, Timer* t) {
LOG(WARNING) << "powerctl_shutdown_time_ms:" << std::to_string(t->duration().count()) << ":"
<< stat;
}
static bool IsDataMounted(const std::string& fstype) {
std::unique_ptr<std::FILE, int (*)(std::FILE*)> fp(setmntent("/proc/mounts", "re"), endmntent);
if (fp == nullptr) {
PLOG(ERROR) << "Failed to open /proc/mounts";
return false;
}
mntent* mentry;
while ((mentry = getmntent(fp.get())) != nullptr) {
if (mentry->mnt_dir == "/data"s) {
return fstype == "*" || mentry->mnt_type == fstype;
}
}
return false;
}
// Find all read+write block devices and emulated devices in /proc/mounts and add them to
// the correpsponding list.
static bool FindPartitionsToUmount(std::vector<MountEntry>* block_dev_partitions,
std::vector<MountEntry>* emulated_partitions, bool dump) {
std::unique_ptr<std::FILE, int (*)(std::FILE*)> fp(setmntent("/proc/mounts", "re"), endmntent);
if (fp == nullptr) {
PLOG(ERROR) << "Failed to open /proc/mounts";
return false;
}
mntent* mentry;
while ((mentry = getmntent(fp.get())) != nullptr) {
if (dump) {
LOG(INFO) << "mount entry " << mentry->mnt_fsname << ":" << mentry->mnt_dir << " opts "
<< mentry->mnt_opts << " type " << mentry->mnt_type;
} else if (MountEntry::IsBlockDevice(*mentry) && hasmntopt(mentry, "rw")) {
std::string mount_dir(mentry->mnt_dir);
// These are R/O partitions changed to R/W after adb remount.
// Do not umount them as shutdown critical services may rely on them.
if (mount_dir != "/" && mount_dir != "/system" && mount_dir != "/vendor" &&
mount_dir != "/oem") {
block_dev_partitions->emplace(block_dev_partitions->begin(), *mentry);
}
} else if (MountEntry::IsEmulatedDevice(*mentry)) {
emulated_partitions->emplace(emulated_partitions->begin(), *mentry);
}
}
return true;
}
static void DumpUmountDebuggingInfo() {
int status;
if (!security_getenforce()) {
LOG(INFO) << "Run lsof";
const char* lsof_argv[] = {"/system/bin/lsof"};
logwrap_fork_execvp(arraysize(lsof_argv), lsof_argv, &status, false, LOG_KLOG, true,
nullptr);
}
FindPartitionsToUmount(nullptr, nullptr, true);
// dump current CPU stack traces and uninterruptible tasks
WriteStringToFile("l", PROC_SYSRQ);
WriteStringToFile("w", PROC_SYSRQ);
}
static UmountStat UmountPartitions(std::chrono::milliseconds timeout) {
Timer t;
/* data partition needs all pending writes to be completed and all emulated partitions
* umounted.If the current waiting is not good enough, give
* up and leave it to e2fsck after reboot to fix it.
*/
while (true) {
std::vector<MountEntry> block_devices;
std::vector<MountEntry> emulated_devices;
if (!FindPartitionsToUmount(&block_devices, &emulated_devices, false)) {
return UMOUNT_STAT_ERROR;
}
if (block_devices.size() == 0) {
return UMOUNT_STAT_SUCCESS;
}
bool unmount_done = true;
if (emulated_devices.size() > 0) {
for (auto& entry : emulated_devices) {
if (!entry.Umount(false)) unmount_done = false;
}
if (unmount_done) {
sync();
}
}
for (auto& entry : block_devices) {
if (!entry.Umount(timeout == 0ms)) unmount_done = false;
}
if (unmount_done) {
return UMOUNT_STAT_SUCCESS;
}
if ((timeout < t.duration())) { // try umount at least once
return UMOUNT_STAT_TIMEOUT;
}
std::this_thread::sleep_for(100ms);
}
}
static void KillAllProcesses() {
WriteStringToFile("i", PROC_SYSRQ);
}
// Create reboot/shutdwon monitor thread
void RebootMonitorThread(unsigned int cmd, const std::string& reboot_target,
sem_t* reboot_semaphore, std::chrono::milliseconds shutdown_timeout,
bool* reboot_monitor_run) {
unsigned int remaining_shutdown_time = 0;
// 300 seconds more than the timeout passed to the thread as there is a final Umount pass
// after the timeout is reached.
constexpr unsigned int shutdown_watchdog_timeout_default = 300;
auto shutdown_watchdog_timeout = android::base::GetUintProperty(
"ro.build.shutdown.watchdog.timeout", shutdown_watchdog_timeout_default);
remaining_shutdown_time = shutdown_watchdog_timeout + shutdown_timeout.count() / 1000;
while (*reboot_monitor_run == true) {
if (TEMP_FAILURE_RETRY(sem_wait(reboot_semaphore)) == -1) {
LOG(ERROR) << "sem_wait failed and exit RebootMonitorThread()";
return;
}
timespec shutdown_timeout_timespec;
if (clock_gettime(CLOCK_MONOTONIC, &shutdown_timeout_timespec) == -1) {
LOG(ERROR) << "clock_gettime() fail! exit RebootMonitorThread()";
return;
}
// If there are some remaining shutdown time left from previous round, we use
// remaining time here.
shutdown_timeout_timespec.tv_sec += remaining_shutdown_time;
LOG(INFO) << "shutdown_timeout_timespec.tv_sec: " << shutdown_timeout_timespec.tv_sec;
int sem_return = 0;
while ((sem_return = sem_timedwait_monotonic_np(reboot_semaphore,
&shutdown_timeout_timespec)) == -1 &&
errno == EINTR) {
}
if (sem_return == -1) {
LOG(ERROR) << "Reboot thread timed out";
if (android::base::GetBoolProperty("ro.debuggable", false) == true) {
if (false) {
// SEPolicy will block debuggerd from running and this is intentional.
// But these lines are left to be enabled during debugging.
LOG(INFO) << "Try to dump init process call trace:";
const char* vdc_argv[] = {"/system/bin/debuggerd", "-b", "1"};
int status;
logwrap_fork_execvp(arraysize(vdc_argv), vdc_argv, &status, false, LOG_KLOG,
true, nullptr);
}
LOG(INFO) << "Show stack for all active CPU:";
WriteStringToFile("l", PROC_SYSRQ);
LOG(INFO) << "Show tasks that are in disk sleep(uninterruptable sleep), which are "
"like "
"blocked in mutex or hardware register access:";
WriteStringToFile("w", PROC_SYSRQ);
}
// In shutdown case,notify kernel to sync and umount fs to read-only before shutdown.
if (cmd == ANDROID_RB_POWEROFF || cmd == ANDROID_RB_THERMOFF) {
WriteStringToFile("s", PROC_SYSRQ);
WriteStringToFile("u", PROC_SYSRQ);
RebootSystem(cmd, reboot_target);
}
LOG(ERROR) << "Trigger crash at last!";
WriteStringToFile("c", PROC_SYSRQ);
} else {
timespec current_time_timespec;
if (clock_gettime(CLOCK_MONOTONIC, &current_time_timespec) == -1) {
LOG(ERROR) << "clock_gettime() fail! exit RebootMonitorThread()";
return;
}
remaining_shutdown_time =
shutdown_timeout_timespec.tv_sec - current_time_timespec.tv_sec;
LOG(INFO) << "remaining_shutdown_time: " << remaining_shutdown_time;
}
}
}
/* Try umounting all emulated file systems R/W block device cfile systems.
* This will just try umount and give it up if it fails.
* For fs like ext4, this is ok as file system will be marked as unclean shutdown
* and necessary check can be done at the next reboot.
* For safer shutdown, caller needs to make sure that
* all processes / emulated partition for the target fs are all cleaned-up.
*
* return true when umount was successful. false when timed out.
*/
static UmountStat TryUmountAndFsck(unsigned int cmd, bool run_fsck,
std::chrono::milliseconds timeout, sem_t* reboot_semaphore) {
Timer t;
std::vector<MountEntry> block_devices;
std::vector<MountEntry> emulated_devices;
if (run_fsck && !FindPartitionsToUmount(&block_devices, &emulated_devices, false)) {
return UMOUNT_STAT_ERROR;
}
auto sm = snapshot::SnapshotManager::New();
bool ota_update_in_progress = false;
if (sm->IsUserspaceSnapshotUpdateInProgress()) {
LOG(INFO) << "OTA update in progress";
ota_update_in_progress = true;
}
UmountStat stat = UmountPartitions(timeout - t.duration());
if (stat != UMOUNT_STAT_SUCCESS) {
LOG(INFO) << "umount timeout, last resort, kill all and try";
if (DUMP_ON_UMOUNT_FAILURE) DumpUmountDebuggingInfo();
// Since umount timedout, we will try to kill all processes
// and do one more attempt to umount the partitions.
//
// However, if OTA update is in progress, we don't want
// to kill the snapuserd daemon as the daemon will
// be serving I/O requests. Killing the daemon will
// end up with I/O failures. If the update is in progress,
// we will just return the umount failure status immediately.
// This is ok, given the fact that killing the processes
// and doing an umount is just a last effort. We are
// still not doing fsck when all processes are killed.
//
if (ota_update_in_progress) {
return stat;
}
KillAllProcesses();
// even if it succeeds, still it is timeout and do not run fsck with all processes killed
UmountStat st = UmountPartitions(0ms);
if ((st != UMOUNT_STAT_SUCCESS) && DUMP_ON_UMOUNT_FAILURE) DumpUmountDebuggingInfo();
}
if (stat == UMOUNT_STAT_SUCCESS && run_fsck) {
LOG(INFO) << "Pause reboot monitor thread before fsck";
sem_post(reboot_semaphore);
// fsck part is excluded from timeout check. It only runs for user initiated shutdown
// and should not affect reboot time.
for (auto& entry : block_devices) {
entry.DoFsck();
}
LOG(INFO) << "Resume reboot monitor thread after fsck";
sem_post(reboot_semaphore);
}
return stat;
}
// zram is able to use backing device on top of a loopback device.
// In order to unmount /data successfully, we have to kill the loopback device first
#define ZRAM_DEVICE "/dev/block/zram0"
#define ZRAM_RESET "/sys/block/zram0/reset"
#define ZRAM_BACK_DEV "/sys/block/zram0/backing_dev"
#define ZRAM_INITSTATE "/sys/block/zram0/initstate"
static Result<void> KillZramBackingDevice() {
std::string zram_initstate;
if (!android::base::ReadFileToString(ZRAM_INITSTATE, &zram_initstate)) {
return ErrnoError() << "Failed to read " << ZRAM_INITSTATE;
}
zram_initstate.erase(zram_initstate.length() - 1);
if (zram_initstate == "0") {
LOG(INFO) << "Zram has not been swapped on";
return {};
}
if (access(ZRAM_BACK_DEV, F_OK) != 0 && errno == ENOENT) {
LOG(INFO) << "No zram backing device configured";
return {};
}
std::string backing_dev;
if (!android::base::ReadFileToString(ZRAM_BACK_DEV, &backing_dev)) {
return ErrnoError() << "Failed to read " << ZRAM_BACK_DEV;
}
// cut the last "\n"
backing_dev.erase(backing_dev.length() - 1);
if (android::base::StartsWith(backing_dev, "none")) {
LOG(INFO) << "No zram backing device configured";
return {};
}
// shutdown zram handle
Timer swap_timer;
LOG(INFO) << "swapoff() start...";
if (swapoff(ZRAM_DEVICE) == -1) {
return ErrnoError() << "zram_backing_dev: swapoff (" << backing_dev << ")"
<< " failed";
}
LOG(INFO) << "swapoff() took " << swap_timer;
if (!WriteStringToFile("1", ZRAM_RESET)) {
return Error() << "zram_backing_dev: reset (" << backing_dev << ")"
<< " failed";
}
if (!android::base::StartsWith(backing_dev, "/dev/block/loop")) {
LOG(INFO) << backing_dev << " is not a loop device. Exiting early";
return {};
}
// clear loopback device
unique_fd loop(TEMP_FAILURE_RETRY(open(backing_dev.c_str(), O_RDWR | O_CLOEXEC)));
if (loop.get() < 0) {
return ErrnoError() << "zram_backing_dev: open(" << backing_dev << ")"
<< " failed";
}
if (ioctl(loop.get(), LOOP_CLR_FD, 0) < 0) {
return ErrnoError() << "zram_backing_dev: loop_clear (" << backing_dev << ")"
<< " failed";
}
LOG(INFO) << "zram_backing_dev: `" << backing_dev << "` is cleared successfully.";
return {};
}
// Stops given services, waits for them to be stopped for |timeout| ms.
// If terminate is true, then SIGTERM is sent to services, otherwise SIGKILL is sent.
// Note that services are stopped in order given by |ServiceList::services_in_shutdown_order|
// function.
static void StopServices(const std::set<std::string>& services, std::chrono::milliseconds timeout,
bool terminate) {
LOG(INFO) << "Stopping " << services.size() << " services by sending "
<< (terminate ? "SIGTERM" : "SIGKILL");
std::vector<pid_t> pids;
pids.reserve(services.size());
for (const auto& s : ServiceList::GetInstance().services_in_shutdown_order()) {
if (services.count(s->name()) == 0) {
continue;
}
if (s->pid() > 0) {
pids.push_back(s->pid());
}
if (terminate) {
s->Terminate();
} else {
s->Stop();
}
}
if (timeout > 0ms) {
WaitToBeReaped(pids, timeout);
} else {
// Even if we don't to wait for services to stop, we still optimistically reap zombies.
ReapAnyOutstandingChildren();
}
}
// Like StopServices, but also logs all the services that failed to stop after the provided timeout.
// Returns number of violators.
int StopServicesAndLogViolations(const std::set<std::string>& services,
std::chrono::milliseconds timeout, bool terminate) {
StopServices(services, timeout, terminate);
int still_running = 0;
for (const auto& s : ServiceList::GetInstance()) {
if (s->IsRunning() && services.count(s->name())) {
LOG(ERROR) << "[service-misbehaving] : service '" << s->name() << "' is still running "
<< timeout.count() << "ms after receiving "
<< (terminate ? "SIGTERM" : "SIGKILL");
still_running++;
}
}
return still_running;
}
static Result<void> UnmountAllApexes() {
// don't need to unmount because apexd doesn't use /data in Microdroid
if (IsMicrodroid()) {
return {};
}
const char* args[] = {"/system/bin/apexd", "--unmount-all"};
int status;
if (logwrap_fork_execvp(arraysize(args), args, &status, false, LOG_KLOG, true, nullptr) != 0) {
return ErrnoError() << "Failed to call '/system/bin/apexd --unmount-all'";
}
if (WIFEXITED(status) && WEXITSTATUS(status) == 0) {
return {};
}
return Error() << "'/system/bin/apexd --unmount-all' failed : " << status;
}
//* Reboot / shutdown the system.
// cmd ANDROID_RB_* as defined in android_reboot.h
// reason Reason string like "reboot", "shutdown,userrequested"
// reboot_target Reboot target string like "bootloader". Otherwise, it should be an empty string.
// run_fsck Whether to run fsck after umount is done.
//
static void DoReboot(unsigned int cmd, const std::string& reason, const std::string& reboot_target,
bool run_fsck) {
Timer t;
LOG(INFO) << "Reboot start, reason: " << reason << ", reboot_target: " << reboot_target;
bool is_thermal_shutdown = cmd == ANDROID_RB_THERMOFF;
auto shutdown_timeout = 0ms;
if (!SHUTDOWN_ZERO_TIMEOUT) {
constexpr unsigned int shutdown_timeout_default = 6;
constexpr unsigned int max_thermal_shutdown_timeout = 3;
auto shutdown_timeout_final = android::base::GetUintProperty("ro.build.shutdown_timeout",
shutdown_timeout_default);
if (is_thermal_shutdown && shutdown_timeout_final > max_thermal_shutdown_timeout) {
shutdown_timeout_final = max_thermal_shutdown_timeout;
}
shutdown_timeout = std::chrono::seconds(shutdown_timeout_final);
}
LOG(INFO) << "Shutdown timeout: " << shutdown_timeout.count() << " ms";
sem_t reboot_semaphore;
if (sem_init(&reboot_semaphore, false, 0) == -1) {
// These should never fail, but if they do, skip the graceful reboot and reboot immediately.
LOG(ERROR) << "sem_init() fail and RebootSystem() return!";
RebootSystem(cmd, reboot_target, reason);
}
// Start a thread to monitor init shutdown process
LOG(INFO) << "Create reboot monitor thread.";
bool reboot_monitor_run = true;
std::thread reboot_monitor_thread(&RebootMonitorThread, cmd, reboot_target, &reboot_semaphore,
shutdown_timeout, &reboot_monitor_run);
reboot_monitor_thread.detach();
// Start reboot monitor thread
sem_post(&reboot_semaphore);
// Ensure last reboot reason is reduced to canonical
// alias reported in bootloader or system boot reason.
size_t skip = 0;
std::vector<std::string> reasons = Split(reason, ",");
if (reasons.size() >= 2 && reasons[0] == "reboot" &&
(reasons[1] == "recovery" || reasons[1] == "bootloader" || reasons[1] == "cold" ||
reasons[1] == "hard" || reasons[1] == "warm")) {
skip = strlen("reboot,");
}
PersistRebootReason(reason.c_str() + skip, true);
// If /data isn't mounted then we can skip the extra reboot steps below, since we don't need to
// worry about unmounting it.
if (!IsDataMounted("*")) {
sync();
RebootSystem(cmd, reboot_target, reason);
abort();
}
bool do_shutdown_animation = GetBoolProperty("ro.init.shutdown_animation", false);
// watchdogd is a vendor specific component but should be alive to complete shutdown safely.
const std::set<std::string> to_starts{"watchdogd"};
std::set<std::string> stop_first;
for (const auto& s : ServiceList::GetInstance()) {
if (kDebuggingServices.count(s->name())) {
// keep debugging tools until non critical ones are all gone.
s->SetShutdownCritical();
} else if (to_starts.count(s->name())) {
if (auto result = s->Start(); !result.ok()) {
LOG(ERROR) << "Could not start shutdown 'to_start' service '" << s->name()
<< "': " << result.error();
}
s->SetShutdownCritical();
} else if (do_shutdown_animation && s->classnames().count("animation") > 0) {
// Need these for shutdown animations.
} else if (s->IsShutdownCritical()) {
// Start shutdown critical service if not started.
if (auto result = s->Start(); !result.ok()) {
LOG(ERROR) << "Could not start shutdown critical service '" << s->name()
<< "': " << result.error();
}
} else {
stop_first.insert(s->name());
}
}
// remaining operations (specifically fsck) may take a substantial duration
if (!do_shutdown_animation && (cmd == ANDROID_RB_POWEROFF || is_thermal_shutdown)) {
TurnOffBacklight();
}
Service* boot_anim = ServiceList::GetInstance().FindService("bootanim");
Service* surface_flinger = ServiceList::GetInstance().FindService("surfaceflinger");
if (boot_anim != nullptr && surface_flinger != nullptr && surface_flinger->IsRunning()) {
if (do_shutdown_animation) {
SetProperty("service.bootanim.exit", "0");
SetProperty("service.bootanim.progress", "0");
// Could be in the middle of animation. Stop and start so that it can pick
// up the right mode.
boot_anim->Stop();
}
for (const auto& service : ServiceList::GetInstance()) {
if (service->classnames().count("animation") == 0) {
continue;
}
// start all animation classes if stopped.
if (do_shutdown_animation) {
service->Start();
}
service->SetShutdownCritical(); // will not check animation class separately
}
if (do_shutdown_animation) {
boot_anim->Start();
surface_flinger->SetShutdownCritical();
boot_anim->SetShutdownCritical();
}
}
// optional shutdown step
// 1. terminate all services except shutdown critical ones. wait for delay to finish
if (shutdown_timeout > 0ms) {
StopServicesAndLogViolations(stop_first, shutdown_timeout / 2, true /* SIGTERM */);
}
// Send SIGKILL to ones that didn't terminate cleanly.
StopServicesAndLogViolations(stop_first, 0ms, false /* SIGKILL */);
SubcontextTerminate();
// Reap subcontext pids.
ReapAnyOutstandingChildren();
// 3. send volume abort_fuse and volume shutdown to vold
Service* vold_service = ServiceList::GetInstance().FindService("vold");
if (vold_service != nullptr && vold_service->IsRunning()) {
// Manually abort FUSE connections, since the FUSE daemon is already dead
// at this point, and unmounting it might hang.
CallVdc("volume", "abort_fuse");
CallVdc("volume", "shutdown");
vold_service->Stop();
} else {
LOG(INFO) << "vold not running, skipping vold shutdown";
}
// logcat stopped here
StopServices(kDebuggingServices, 0ms, false /* SIGKILL */);
// 4. sync, try umount, and optionally run fsck for user shutdown
{
Timer sync_timer;
LOG(INFO) << "sync() before umount...";
sync();
LOG(INFO) << "sync() before umount took" << sync_timer;
}
// 5. drop caches and disable zram backing device, if exist
KillZramBackingDevice();
LOG(INFO) << "Ready to unmount apexes. So far shutdown sequence took " << t;
// 6. unmount active apexes, otherwise they might prevent clean unmount of /data.
if (auto ret = UnmountAllApexes(); !ret.ok()) {
LOG(ERROR) << ret.error();
}
UmountStat stat =
TryUmountAndFsck(cmd, run_fsck, shutdown_timeout - t.duration(), &reboot_semaphore);
// Follow what linux shutdown is doing: one more sync with little bit delay
{
Timer sync_timer;
LOG(INFO) << "sync() after umount...";
sync();
LOG(INFO) << "sync() after umount took" << sync_timer;
}
if (!is_thermal_shutdown) std::this_thread::sleep_for(100ms);
LogShutdownTime(stat, &t);
// Send signal to terminate reboot monitor thread.
reboot_monitor_run = false;
sem_post(&reboot_semaphore);
// Reboot regardless of umount status. If umount fails, fsck after reboot will fix it.
if (IsDataMounted("f2fs")) {
uint32_t flag = F2FS_GOING_DOWN_FULLSYNC;
unique_fd fd(TEMP_FAILURE_RETRY(open("/data", O_RDONLY)));
int ret = ioctl(fd.get(), F2FS_IOC_SHUTDOWN, &flag);
if (ret) {
PLOG(ERROR) << "Shutdown /data: ";
} else {
LOG(INFO) << "Shutdown /data";
}
}
RebootSystem(cmd, reboot_target, reason);
abort();
}
static void EnterShutdown() {
LOG(INFO) << "Entering shutdown mode";
shutting_down = true;
// Skip wait for prop if it is in progress
ResetWaitForProp();
// Clear EXEC flag if there is one pending
for (const auto& s : ServiceList::GetInstance()) {
s->UnSetExec();
}
}
static void LeaveShutdown() {
LOG(INFO) << "Leaving shutdown mode";
shutting_down = false;
StartSendingMessages();
}
static std::chrono::milliseconds GetMillisProperty(const std::string& name,
std::chrono::milliseconds default_value) {
auto value = GetUintProperty(name, static_cast<uint64_t>(default_value.count()));
return std::chrono::milliseconds(std::move(value));
}
static Result<void> DoUserspaceReboot() {
LOG(INFO) << "Userspace reboot initiated";
// An ugly way to pass a more precise reason on why fallback to hard reboot was triggered.
std::string sub_reason = "";
auto guard = android::base::make_scope_guard([&sub_reason] {
// Leave shutdown so that we can handle a full reboot.
LeaveShutdown();
trigger_shutdown("reboot,userspace_failed,shutdown_aborted," + sub_reason);
});
// Triggering userspace-reboot-requested will result in a bunch of setprop
// actions. We should make sure, that all of them are propagated before
// proceeding with userspace reboot. Synchronously setting sys.init.userspace_reboot.in_progress
// property is not perfect, but it should do the trick.
if (!android::sysprop::InitProperties::userspace_reboot_in_progress(true)) {
sub_reason = "setprop";
return Error() << "Failed to set sys.init.userspace_reboot.in_progress property";
}
EnterShutdown();
if (!SetProperty("sys.powerctl", "")) {
sub_reason = "resetprop";
return Error() << "Failed to reset sys.powerctl property";
}
std::set<std::string> stop_first;
// Remember the services that were enabled. We will need to manually enable them again otherwise
// triggers like class_start won't restart them.
std::set<std::string> were_enabled;
for (const auto& s : ServiceList::GetInstance().services_in_shutdown_order()) {
if (s->is_post_data() && !kDebuggingServices.count(s->name())) {
stop_first.insert(s->name());
}
// TODO(ioffe): we should also filter out temporary services here.
if (s->is_post_data() && s->IsEnabled()) {
were_enabled.insert(s->name());
}
}
{
Timer sync_timer;
LOG(INFO) << "sync() before terminating services...";
sync();
LOG(INFO) << "sync() took " << sync_timer;
}
auto sigterm_timeout = GetMillisProperty("init.userspace_reboot.sigterm.timeoutmillis", 5s);
auto sigkill_timeout = GetMillisProperty("init.userspace_reboot.sigkill.timeoutmillis", 10s);
LOG(INFO) << "Timeout to terminate services: " << sigterm_timeout.count() << "ms "
<< "Timeout to kill services: " << sigkill_timeout.count() << "ms";
std::string services_file_name = "/metadata/userspacereboot/services.txt";
const int flags = O_RDWR | O_CREAT | O_SYNC | O_APPEND | O_CLOEXEC;
StopServicesAndLogViolations(stop_first, sigterm_timeout, true /* SIGTERM */);
if (int r = StopServicesAndLogViolations(stop_first, sigkill_timeout, false /* SIGKILL */);
r > 0) {
auto fd = unique_fd(TEMP_FAILURE_RETRY(open(services_file_name.c_str(), flags, 0666)));
android::base::WriteStringToFd("Post-data services still running: \n", fd);
for (const auto& s : ServiceList::GetInstance()) {
if (s->IsRunning() && stop_first.count(s->name())) {
android::base::WriteStringToFd(s->name() + "\n", fd);
}
}
sub_reason = "sigkill";
return Error() << r << " post-data services are still running";
}
if (auto result = KillZramBackingDevice(); !result.ok()) {
sub_reason = "zram";
return result;
}
if (auto result = CallVdc("volume", "reset"); !result.ok()) {
sub_reason = "vold_reset";
return result;
}
const auto& debugging_services = GetPostDataDebuggingServices();
if (int r = StopServicesAndLogViolations(debugging_services, sigkill_timeout,
false /* SIGKILL */);
r > 0) {
auto fd = unique_fd(TEMP_FAILURE_RETRY(open(services_file_name.c_str(), flags, 0666)));
android::base::WriteStringToFd("Debugging services still running: \n", fd);
for (const auto& s : ServiceList::GetInstance()) {
if (s->IsRunning() && debugging_services.count(s->name())) {
android::base::WriteStringToFd(s->name() + "\n", fd);
}
}
sub_reason = "sigkill_debug";
return Error() << r << " debugging services are still running";
}
{
Timer sync_timer;
LOG(INFO) << "sync() after stopping services...";
sync();
LOG(INFO) << "sync() took " << sync_timer;
}
if (auto result = UnmountAllApexes(); !result.ok()) {
sub_reason = "apex";
return result;
}
if (!SwitchToMountNamespaceIfNeeded(NS_BOOTSTRAP).ok()) {
sub_reason = "ns_switch";
return Error() << "Failed to switch to bootstrap namespace";
}
ActionManager::GetInstance().RemoveActionIf([](const auto& action) -> bool {
if (action->IsFromApex()) {
std::string trigger_name = action->BuildTriggersString();
LOG(INFO) << "Removing action (" << trigger_name << ") from (" << action->filename()
<< ":" << action->line() << ")";
return true;
}
return false;
});
// Remove services that were defined in an APEX
ServiceList::GetInstance().RemoveServiceIf([](const std::unique_ptr<Service>& s) -> bool {
if (s->is_from_apex()) {
LOG(INFO) << "Removing service '" << s->name() << "' because it's defined in an APEX";
return true;
}
return false;
});
// Re-enable services
for (const auto& s : ServiceList::GetInstance()) {
if (were_enabled.count(s->name())) {
LOG(INFO) << "Re-enabling service '" << s->name() << "'";
s->Enable();
}
}
ServiceList::GetInstance().ResetState();
LeaveShutdown();
ActionManager::GetInstance().QueueEventTrigger("userspace-reboot-resume");
guard.Disable(); // Go on with userspace reboot.
return {};
}
static void UserspaceRebootWatchdogThread() {
auto started_timeout = GetMillisProperty("init.userspace_reboot.started.timeoutmillis", 10s);
if (!WaitForProperty("sys.init.userspace_reboot.in_progress", "1", started_timeout)) {
LOG(ERROR) << "Userspace reboot didn't start in " << started_timeout.count()
<< "ms. Switching to full reboot";
// Init might be wedged, don't try to write reboot reason into a persistent property and do
// a dirty reboot.
PersistRebootReason("userspace_failed,watchdog_triggered,failed_to_start", false);
RebootSystem(ANDROID_RB_RESTART2, "userspace_failed,watchdog_triggered,failed_to_start");
}
LOG(INFO) << "Starting userspace reboot watchdog";
auto watchdog_timeout = GetMillisProperty("init.userspace_reboot.watchdog.timeoutmillis", 5min);
LOG(INFO) << "UserspaceRebootWatchdog timeout: " << watchdog_timeout.count() << "ms";
if (!WaitForProperty("sys.boot_completed", "1", watchdog_timeout)) {
LOG(ERROR) << "Failed to boot in " << watchdog_timeout.count()
<< "ms. Switching to full reboot";
// In this case device is in a boot loop. Only way to recover is to do dirty reboot.
// Since init might be wedged, don't try to write reboot reason into a persistent property.
PersistRebootReason("userspace_failed,watchdog_triggered,failed_to_boot", false);
RebootSystem(ANDROID_RB_RESTART2, "userspace_failed,watchdog_triggered,failed_to_boot");
}
LOG(INFO) << "Device booted, stopping userspace reboot watchdog";
}
static void HandleUserspaceReboot() {
if (!android::sysprop::InitProperties::is_userspace_reboot_supported().value_or(false)) {
LOG(ERROR) << "Attempted a userspace reboot on a device that doesn't support it";
return;
}
// Spinnig up a separate thread will fail the setns call later in the boot sequence.
// Fork a new process to monitor userspace reboot while we are investigating a better solution.
pid_t pid = fork();
if (pid < 0) {
PLOG(ERROR) << "Failed to fork process for userspace reboot watchdog. Switching to full "
<< "reboot";
trigger_shutdown("reboot,userspace_failed,watchdog_fork");
return;
}
if (pid == 0) {
// Child
UserspaceRebootWatchdogThread();
_exit(EXIT_SUCCESS);
}
LOG(INFO) << "Clearing queue and starting userspace-reboot-requested trigger";
auto& am = ActionManager::GetInstance();
am.ClearQueue();
am.QueueEventTrigger("userspace-reboot-requested");
auto handler = [](const BuiltinArguments&) { return DoUserspaceReboot(); };
am.QueueBuiltinAction(handler, "userspace-reboot");
}
/**
* Check if "command" field is set in bootloader message.
*
* If "command" field is broken (contains non-printable characters prior to
* terminating zero), it will be zeroed.
*
* @param[in,out] boot Bootloader message (BCB) structure
* @return true if "command" field is already set, and false if it's empty
*/
static bool CommandIsPresent(bootloader_message* boot) {
if (boot->command[0] == '\0')
return false;
for (size_t i = 0; i < arraysize(boot->command); ++i) {
if (boot->command[i] == '\0')
return true;
if (!isprint(boot->command[i]))
break;
}
memset(boot->command, 0, sizeof(boot->command));
return false;
}
void HandlePowerctlMessage(const std::string& command) {
unsigned int cmd = 0;
std::vector<std::string> cmd_params = Split(command, ",");
std::string reboot_target = "";
bool run_fsck = false;
bool command_invalid = false;
bool userspace_reboot = false;
if (cmd_params[0] == "shutdown") {
cmd = ANDROID_RB_POWEROFF;
if (cmd_params.size() >= 2) {
if (cmd_params[1] == "userrequested") {
// The shutdown reason is PowerManager.SHUTDOWN_USER_REQUESTED.
// Run fsck once the file system is remounted in read-only mode.
run_fsck = true;
} else if (cmd_params[1] == "thermal") {
// Turn off sources of heat immediately.
TurnOffBacklight();
// run_fsck is false to avoid delay
cmd = ANDROID_RB_THERMOFF;
}
}
} else if (cmd_params[0] == "reboot") {
cmd = ANDROID_RB_RESTART2;
if (cmd_params.size() >= 2) {
reboot_target = cmd_params[1];
if (reboot_target == "userspace") {
LOG(INFO) << "Userspace reboot requested";
userspace_reboot = true;
}
// adb reboot fastboot should boot into bootloader for devices not
// supporting logical partitions.
if (reboot_target == "fastboot" &&
!android::base::GetBoolProperty("ro.boot.dynamic_partitions", false)) {
reboot_target = "bootloader";
}
// When rebooting to the bootloader notify the bootloader writing
// also the BCB.
if (reboot_target == "bootloader") {
std::string err;
if (!write_reboot_bootloader(&err)) {
LOG(ERROR) << "reboot-bootloader: Error writing "
"bootloader_message: "
<< err;
}
} else if (reboot_target == "recovery") {
bootloader_message boot = {};
if (std::string err; !read_bootloader_message(&boot, &err)) {
LOG(ERROR) << "Failed to read bootloader message: " << err;
}
// Update the boot command field if it's empty, and preserve
// the other arguments in the bootloader message.
if (!CommandIsPresent(&boot)) {
strlcpy(boot.command, "boot-recovery", sizeof(boot.command));
if (std::string err; !write_bootloader_message(boot, &err)) {
LOG(ERROR) << "Failed to set bootloader message: " << err;
return;
}
}
} else if (reboot_target == "quiescent") {
bootloader_message boot = {};
if (std::string err; !read_bootloader_message(&boot, &err)) {
LOG(ERROR) << "Failed to read bootloader message: " << err;
}
// Update the boot command field if it's empty, and preserve
// the other arguments in the bootloader message.
if (!CommandIsPresent(&boot)) {
strlcpy(boot.command, "boot-quiescent", sizeof(boot.command));
if (std::string err; !write_bootloader_message(boot, &err)) {
LOG(ERROR) << "Failed to set bootloader message: " << err;
return;
}
}
} else if (reboot_target == "sideload" || reboot_target == "sideload-auto-reboot" ||
reboot_target == "fastboot") {
std::string arg = reboot_target == "sideload-auto-reboot" ? "sideload_auto_reboot"
: reboot_target;
const std::vector<std::string> options = {
"--" + arg,
};
std::string err;
if (!write_bootloader_message(options, &err)) {
LOG(ERROR) << "Failed to set bootloader message: " << err;
return;
}
reboot_target = "recovery";
}
// If there are additional parameter, pass them along
for (size_t i = 2; (cmd_params.size() > i) && cmd_params[i].size(); ++i) {
reboot_target += "," + cmd_params[i];
}
}
} else {
command_invalid = true;
}
if (command_invalid) {
LOG(ERROR) << "powerctl: unrecognized command '" << command << "'";
return;
}
// We do not want to process any messages (queue'ing triggers, shutdown messages, control
// messages, etc) from properties during reboot.
StopSendingMessages();
if (userspace_reboot) {
HandleUserspaceReboot();
return;
}
LOG(INFO) << "Clear action queue and start shutdown trigger";
ActionManager::GetInstance().ClearQueue();
// Queue shutdown trigger first
ActionManager::GetInstance().QueueEventTrigger("shutdown");
// Queue built-in shutdown_done
auto shutdown_handler = [cmd, command, reboot_target, run_fsck](const BuiltinArguments&) {
DoReboot(cmd, command, reboot_target, run_fsck);
return Result<void>{};
};
ActionManager::GetInstance().QueueBuiltinAction(shutdown_handler, "shutdown_done");
EnterShutdown();
}
bool IsShuttingDown() {
return shutting_down;
}
} // namespace init
} // namespace android