Export of internal Abseil changes

--
5ed5dc9e17c66c298ee31cefc941a46348d8ad34 by Abseil Team <absl-team@google.com>:

Fix typo.

PiperOrigin-RevId: 362040582

--
ac704b53a49becc42f77e4529d3952f8e7d18ce4 by Abseil Team <absl-team@google.com>:

Fix a typo in a comment.

PiperOrigin-RevId: 361576641

--
d20ccb27b7e9b53481e9192c1aae5202c06bfcb1 by Derek Mauro <dmauro@google.com>:

Remove the inline keyword from functions that aren't defined
in the header.

This may fix #910.

PiperOrigin-RevId: 361551300

--
aed9ae1dffa7b228dcb6ffbeb2fe06a13970c72b by Laramie Leavitt <lar@google.com>:

Propagate nice/strict/naggy state on absl::MockingBitGen.

Allowing NiceMocks reduces the log spam for un-mocked calls, and it enables nicer setup with ON_CALL, so it is desirable to support it in absl::MockingBitGen.  Internally, gmock tracks object "strictness" levels using an internal API; in order to achieve the same results we detect when the MockingBitGen is wrapped in a Nice/Naggy/Strict and wrap the internal implementation MockFunction in the same type.

This is achieved by providing overloads to the Call() function, and passing the mock object type down into it's own RegisterMock call, where a compile-time check verifies the state and creates the appropriate mock function.

PiperOrigin-RevId: 361233484

--
96186023fabd13d01d32d60d9c7ac4ead1aeb989 by Abseil Team <absl-team@google.com>:

Ensure that trivial types are passed by value rather than reference

PiperOrigin-RevId: 361217450

--
e1135944835d27f77e8119b8166d8fb6aa25f906 by Evan Brown <ezb@google.com>:

Internal change.

PiperOrigin-RevId: 361215882

--
583fe6c94c1c2ef757ef6e78292a15fbe4030e35 by Evan Brown <ezb@google.com>:

Increase the minimum number of slots per node from 3 to 4. We also rename kNodeValues (and related names) to kNodeSlots to make it clear that they are about the number of slots per node rather than the number of values per node - kMinNodeValues keeps the same name because it's actually about the number of values rather than the number of slots.

Motivation: I think the expected number of values per node, assuming random insertion order, is the average of the maximum and minimum numbers of values per node (kNodeSlots and kMinNodeValues). For large and/or even kNodeSlots, this is ~75% of kNodeSlots, but for kNodeSlots=3, this is ~67% of kNodeSlots. kMinNodeValues (which corresponds to worst-case occupancy) is ~33% of kNodeSlots, when kNodeSlots=3, compared to 50% for even kNodeSlots. This results in higher memory overhead per value, and since this case (kNodeSlots=3) is used when values are large, it seems worth fixing.
PiperOrigin-RevId: 361171495
GitOrigin-RevId: 5ed5dc9e17c66c298ee31cefc941a46348d8ad34
Change-Id: I8e33b5df1f987a77112093821085c410185ab51a
12 files changed
tree: 0e21cbaee13fc2af63971d541224a6a6df5fe20a
  1. .github/
  2. absl/
  3. ci/
  4. CMake/
  5. .clang-format
  6. .gitignore
  7. ABSEIL_ISSUE_TEMPLATE.md
  8. AUTHORS
  9. BUILD.bazel
  10. CMakeLists.txt
  11. conanfile.py
  12. CONTRIBUTING.md
  13. FAQ.md
  14. LICENSE
  15. README.md
  16. UPGRADES.md
  17. WORKSPACE
README.md

Abseil - C++ Common Libraries

The repository contains the Abseil C++ library code. Abseil is an open-source collection of C++ code (compliant to C++11) designed to augment the C++ standard library.

Table of Contents

About Abseil

Abseil is an open-source collection of C++ library code designed to augment the C++ standard library. The Abseil library code is collected from Google's own C++ code base, has been extensively tested and used in production, and is the same code we depend on in our daily coding lives.

In some cases, Abseil provides pieces missing from the C++ standard; in others, Abseil provides alternatives to the standard for special needs we've found through usage in the Google code base. We denote those cases clearly within the library code we provide you.

Abseil is not meant to be a competitor to the standard library; we've just found that many of these utilities serve a purpose within our code base, and we now want to provide those resources to the C++ community as a whole.

Quickstart

If you want to just get started, make sure you at least run through the Abseil Quickstart. The Quickstart contains information about setting up your development environment, downloading the Abseil code, running tests, and getting a simple binary working.

Building Abseil

Bazel and CMake are the official build systems for Abseil.

See the quickstart for more information on building Abseil using the Bazel build system.

If you require CMake support, please check the CMake build instructions and CMake Quickstart.

Support

Abseil is officially supported on many platforms. See the Abseil platform support guide for details on supported operating systems, compilers, CPUs, etc.

Codemap

Abseil contains the following C++ library components:

  • base Abseil Fundamentals
    The base library contains initialization code and other code which all other Abseil code depends on. Code within base may not depend on any other code (other than the C++ standard library).
  • algorithm
    The algorithm library contains additions to the C++ <algorithm> library and container-based versions of such algorithms.
  • cleanup
    The cleanup library contains the control-flow-construct-like type absl::Cleanup which is used for executing a callback on scope exit.
  • container
    The container library contains additional STL-style containers, including Abseil's unordered “Swiss table” containers.
  • debugging
    The debugging library contains code useful for enabling leak checks, and stacktrace and symbolization utilities.
  • hash
    The hash library contains the hashing framework and default hash functor implementations for hashable types in Abseil.
  • memory
    The memory library contains C++11-compatible versions of std::make_unique() and related memory management facilities.
  • meta
    The meta library contains C++11-compatible versions of type checks available within C++14 and C++17 versions of the C++ <type_traits> library.
  • numeric
    The numeric library contains C++11-compatible 128-bit integers.
  • status
    The status contains abstractions for error handling, specifically absl::Status and absl::StatusOr<T>.
  • strings
    The strings library contains a variety of strings routines and utilities, including a C++11-compatible version of the C++17 std::string_view type.
  • synchronization
    The synchronization library contains concurrency primitives (Abseil's absl::Mutex class, an alternative to std::mutex) and a variety of synchronization abstractions.
  • time
    The time library contains abstractions for computing with absolute points in time, durations of time, and formatting and parsing time within time zones.
  • types
    The types library contains non-container utility types, like a C++11-compatible version of the C++17 std::optional type.
  • utility
    The utility library contains utility and helper code.

Releases

Abseil recommends users “live-at-head” (update to the latest commit from the master branch as often as possible). However, we realize this philosophy doesn't work for every project, so we also provide Long Term Support Releases to which we backport fixes for severe bugs. See our release management document for more details.

License

The Abseil C++ library is licensed under the terms of the Apache license. See LICENSE for more information.

Links

For more information about Abseil: