blob: c3802783e49296fbe9efaa974270ed1ce7870128 [file] [log] [blame]
/* Copyright (c) 2015-2022 The Khronos Group Inc.
* Copyright (c) 2015-2022 Valve Corporation
* Copyright (c) 2015-2022 LunarG, Inc.
* Copyright (C) 2015-2022 Google Inc.
* Modifications Copyright (C) 2020 Advanced Micro Devices, Inc. All rights reserved.
*
* Licensed under the Apache License, Version 2.0 (the "License");
* you may not use this file except in compliance with the License.
* You may obtain a copy of the License at
*
* http://www.apache.org/licenses/LICENSE-2.0
*
* Unless required by applicable law or agreed to in writing, software
* distributed under the License is distributed on an "AS IS" BASIS,
* WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
* See the License for the specific language governing permissions and
* limitations under the License.
*
* Author: Chris Forbes <chrisf@ijw.co.nz>
* Author: Dave Houlton <daveh@lunarg.com>
* Author: Tobias Hector <tobias.hector@amd.com>
*/
#include "shader_validation.h"
#include <cassert>
#include <cinttypes>
#include <cmath>
#include <sstream>
#include <string>
#include <vector>
#include <spirv/unified1/spirv.hpp>
#include "vk_enum_string_helper.h"
#include "vk_layer_data.h"
#include "vk_layer_utils.h"
#include "chassis.h"
#include "core_validation.h"
#include "spirv_grammar_helper.h"
#include "xxhash.h"
static shader_stage_attributes shader_stage_attribs[] = {
{"vertex shader", false, false, VK_SHADER_STAGE_VERTEX_BIT},
{"tessellation control shader", true, true, VK_SHADER_STAGE_TESSELLATION_CONTROL_BIT},
{"tessellation evaluation shader", true, false, VK_SHADER_STAGE_TESSELLATION_EVALUATION_BIT},
{"geometry shader", true, false, VK_SHADER_STAGE_GEOMETRY_BIT},
{"fragment shader", false, false, VK_SHADER_STAGE_FRAGMENT_BIT},
};
static const Instruction *GetBaseTypeInstruction(const SHADER_MODULE_STATE &module_state, uint32_t type) {
const Instruction *insn = module_state.FindDef(type);
const uint32_t base_insn_id = module_state.GetBaseType(insn);
// Will return end() if an invalid/unknown base_insn_id is returned
return module_state.FindDef(base_insn_id);
}
static bool BaseTypesMatch(const SHADER_MODULE_STATE &a, const SHADER_MODULE_STATE &b, const Instruction *a_base_insn,
const Instruction *b_base_insn) {
if (!a_base_insn || !b_base_insn) {
return false;
}
const uint32_t a_opcode = a_base_insn->Opcode();
const uint32_t b_opcode = b_base_insn->Opcode();
if (a_opcode == b_opcode) {
if (a_opcode == spv::OpTypeInt) {
// Match width and signedness
return a_base_insn->Word(2) == b_base_insn->Word(2) && a_base_insn->Word(3) == b_base_insn->Word(3);
} else if (a_opcode == spv::OpTypeFloat) {
// Match width
return a_base_insn->Word(2) == b_base_insn->Word(2);
} else if (a_opcode == spv::OpTypeBool) {
return true;
} else if (a_opcode == spv::OpTypeStruct) {
// Match on all element types
if (a_base_insn->Length() != b_base_insn->Length()) {
return false; // Structs cannot match if member counts differ
}
for (uint32_t i = 2; i < a_base_insn->Length(); i++) {
const Instruction *c_base_insn = GetBaseTypeInstruction(a, a_base_insn->Word(i));
const Instruction *d_base_insn = GetBaseTypeInstruction(b, b_base_insn->Word(i));
if (!BaseTypesMatch(a, b, c_base_insn, d_base_insn)) {
return false;
}
}
return true;
}
}
return false;
}
static bool TypesMatch(const SHADER_MODULE_STATE &a, const SHADER_MODULE_STATE &b, uint32_t a_type, uint32_t b_type) {
const Instruction *a_base_insn = GetBaseTypeInstruction(a, a_type);
const Instruction *b_base_insn = GetBaseTypeInstruction(b, b_type);
return BaseTypesMatch(a, b, a_base_insn, b_base_insn);
}
static uint32_t GetLocationsConsumedByFormat(VkFormat format) {
switch (format) {
case VK_FORMAT_R64G64B64A64_SFLOAT:
case VK_FORMAT_R64G64B64A64_SINT:
case VK_FORMAT_R64G64B64A64_UINT:
case VK_FORMAT_R64G64B64_SFLOAT:
case VK_FORMAT_R64G64B64_SINT:
case VK_FORMAT_R64G64B64_UINT:
return 2;
default:
return 1;
}
}
static uint32_t GetFormatType(VkFormat fmt) {
if (FormatIsSINT(fmt)) return FORMAT_TYPE_SINT;
if (FormatIsUINT(fmt)) return FORMAT_TYPE_UINT;
// Formats such as VK_FORMAT_D16_UNORM_S8_UINT are both
if (FormatIsDepthAndStencil(fmt)) return FORMAT_TYPE_FLOAT | FORMAT_TYPE_UINT;
if (fmt == VK_FORMAT_UNDEFINED) return 0;
// everything else -- UNORM/SNORM/FLOAT/USCALED/SSCALED is all float in the shader.
return FORMAT_TYPE_FLOAT;
}
static uint32_t GetShaderStageId(VkShaderStageFlagBits stage) {
uint32_t bit_pos = uint32_t(u_ffs(stage));
return bit_pos - 1;
}
bool CoreChecks::ValidateViConsistency(safe_VkPipelineVertexInputStateCreateInfo const *vi) const {
// Walk the binding descriptions, which describe the step rate and stride of each vertex buffer. Each binding should
// be specified only once.
layer_data::unordered_map<uint32_t, VkVertexInputBindingDescription const *> bindings;
bool skip = false;
for (uint32_t i = 0; i < vi->vertexBindingDescriptionCount; i++) {
auto desc = &vi->pVertexBindingDescriptions[i];
auto &binding = bindings[desc->binding];
if (binding) {
// TODO: "VUID-VkGraphicsPipelineCreateInfo-pStages-00742" perhaps?
skip |= LogError(device, kVUID_Core_Shader_InconsistentVi, "Duplicate vertex input binding descriptions for binding %d",
desc->binding);
} else {
binding = desc;
}
}
return skip;
}
bool CoreChecks::ValidateViAgainstVsInputs(safe_VkPipelineVertexInputStateCreateInfo const *vi,
const SHADER_MODULE_STATE &module_state, const Instruction &entrypoint) const {
bool skip = false;
const auto inputs = module_state.CollectInterfaceByLocation(entrypoint, spv::StorageClassInput, false);
// Build index by location
std::map<uint32_t, const VkVertexInputAttributeDescription *> attribs;
if (vi) {
for (uint32_t i = 0; i < vi->vertexAttributeDescriptionCount; ++i) {
const auto num_locations = GetLocationsConsumedByFormat(vi->pVertexAttributeDescriptions[i].format);
for (uint32_t j = 0; j < num_locations; ++j) {
attribs[vi->pVertexAttributeDescriptions[i].location + j] = &vi->pVertexAttributeDescriptions[i];
}
}
}
struct AttribInputPair {
const VkVertexInputAttributeDescription *attrib = nullptr;
const interface_var *input = nullptr;
};
std::map<uint32_t, AttribInputPair> location_map;
for (const auto &attrib_it : attribs) location_map[attrib_it.first].attrib = attrib_it.second;
for (const auto &input_it : inputs) location_map[input_it.first.first].input = &input_it.second;
for (const auto &location_it : location_map) {
const auto location = location_it.first;
const auto attrib = location_it.second.attrib;
const auto input = location_it.second.input;
if (attrib && !input) {
skip |= LogPerformanceWarning(module_state.vk_shader_module(), kVUID_Core_Shader_OutputNotConsumed,
"Vertex attribute at location %" PRIu32 " not consumed by vertex shader", location);
} else if (!attrib && input) {
skip |= LogError(module_state.vk_shader_module(), kVUID_Core_Shader_InputNotProduced,
"Vertex shader consumes input at location %" PRIu32 " but not provided", location);
} else if (attrib && input) {
const auto attrib_type = GetFormatType(attrib->format);
const auto input_type = module_state.GetFundamentalType(input->type_id);
// Type checking
if (!(attrib_type & input_type)) {
skip |= LogError(module_state.vk_shader_module(), kVUID_Core_Shader_InterfaceTypeMismatch,
"Attribute type of `%s` at location %" PRIu32 " does not match vertex shader input type of `%s`",
string_VkFormat(attrib->format), location, module_state.DescribeType(input->type_id).c_str());
}
} else { // !attrib && !input
assert(false); // at least one exists in the map
}
}
return skip;
}
bool CoreChecks::ValidateFsOutputsAgainstDynamicRenderingRenderPass(const SHADER_MODULE_STATE &module_state,
const Instruction &entrypoint,
PIPELINE_STATE const *pipeline) const {
bool skip = false;
struct Attachment {
const interface_var* output = nullptr;
};
std::map<uint32_t, Attachment> location_map;
// TODO: dual source blend index (spv::DecIndex, zero if not provided)
const auto outputs = module_state.CollectInterfaceByLocation(entrypoint, spv::StorageClassOutput, false);
for (const auto& output_it : outputs) {
auto const location = output_it.first.first;
location_map[location].output = &output_it.second;
}
const auto ms_state = pipeline->MultisampleState();
const bool alpha_to_coverage_enabled = ms_state && (ms_state->alphaToCoverageEnable == VK_TRUE);
for (uint32_t location = 0; location < location_map.size(); ++location) {
const auto output = location_map[location].output;
const auto &rp_state = pipeline->RenderPassState();
const auto &attachments = pipeline->Attachments();
if (!output && location < attachments.size() && attachments[location].colorWriteMask != 0) {
skip |= LogWarning(
module_state.vk_shader_module(), kVUID_Core_Shader_InputNotProduced,
"Attachment %" PRIu32 " not written by fragment shader; undefined values will be written to attachment", location);
} else if (output && (location < rp_state->dynamic_rendering_pipeline_create_info.colorAttachmentCount)) {
auto format = rp_state->dynamic_rendering_pipeline_create_info.pColorAttachmentFormats[location];
const auto attachment_type = GetFormatType(format);
const auto output_type = module_state.GetFundamentalType(output->type_id);
// Type checking
if (!(output_type & attachment_type)) {
skip |=
LogWarning(module_state.vk_shader_module(), kVUID_Core_Shader_InterfaceTypeMismatch,
"Attachment %" PRIu32
" of type `%s` does not match fragment shader output type of `%s`; resulting values are undefined",
location, string_VkFormat(format), module_state.DescribeType(output->type_id).c_str());
}
}
}
const auto output_zero = location_map.count(0) ? location_map[0].output : nullptr;
bool location_zero_has_alpha = output_zero && module_state.FindDef(output_zero->type_id) &&
module_state.GetComponentsConsumedByType(output_zero->type_id, false) == 4;
if (alpha_to_coverage_enabled && !location_zero_has_alpha) {
skip |= LogError(module_state.vk_shader_module(), kVUID_Core_Shader_NoAlphaAtLocation0WithAlphaToCoverage,
"fragment shader doesn't declare alpha output at location 0 even though alpha to coverage is enabled.");
}
return skip;
}
bool CoreChecks::ValidateFsOutputsAgainstRenderPass(const SHADER_MODULE_STATE &module_state, const Instruction &entrypoint,
PIPELINE_STATE const *pipeline, uint32_t subpass_index) const {
bool skip = false;
struct Attachment {
const VkAttachmentReference2 *reference = nullptr;
const VkAttachmentDescription2 *attachment = nullptr;
const interface_var *output = nullptr;
};
std::map<uint32_t, Attachment> location_map;
const auto &rp_state = pipeline->RenderPassState();
if (rp_state && !rp_state->UsesDynamicRendering()) {
const auto rpci = rp_state->createInfo.ptr();
const auto subpass = rpci->pSubpasses[subpass_index];
for (uint32_t i = 0; i < subpass.colorAttachmentCount; ++i) {
auto const &reference = subpass.pColorAttachments[i];
location_map[i].reference = &reference;
if (reference.attachment != VK_ATTACHMENT_UNUSED &&
rpci->pAttachments[reference.attachment].format != VK_FORMAT_UNDEFINED) {
location_map[i].attachment = &rpci->pAttachments[reference.attachment];
}
}
}
// TODO: dual source blend index (spv::DecIndex, zero if not provided)
const auto outputs = module_state.CollectInterfaceByLocation(entrypoint, spv::StorageClassOutput, false);
for (const auto &output_it : outputs) {
auto const location = output_it.first.first;
location_map[location].output = &output_it.second;
}
const auto *ms_state = pipeline->MultisampleState();
const bool alpha_to_coverage_enabled = ms_state && (ms_state->alphaToCoverageEnable == VK_TRUE);
// Don't check any color attachments if rasterization is disabled
const auto raster_state = pipeline->RasterizationState();
if (raster_state && !raster_state->rasterizerDiscardEnable) {
for (const auto &location_it : location_map) {
const auto reference = location_it.second.reference;
if (reference != nullptr && reference->attachment == VK_ATTACHMENT_UNUSED) {
continue;
}
const auto location = location_it.first;
const auto attachment = location_it.second.attachment;
const auto output = location_it.second.output;
if (attachment && !output) {
const auto &attachments = pipeline->Attachments();
if (location < attachments.size() && attachments[location].colorWriteMask != 0) {
skip |= LogWarning(module_state.vk_shader_module(), kVUID_Core_Shader_InputNotProduced,
"Attachment %" PRIu32
" not written by fragment shader; undefined values will be written to attachment",
location);
}
} else if (!attachment && output) {
if (!(alpha_to_coverage_enabled && location == 0)) {
skip |=
LogWarning(module_state.vk_shader_module(), kVUID_Core_Shader_OutputNotConsumed,
"fragment shader writes to output location %" PRIu32 " with no matching attachment", location);
}
} else if (attachment && output) {
const auto attachment_type = GetFormatType(attachment->format);
const auto output_type = module_state.GetFundamentalType(output->type_id);
// Type checking
if (!(output_type & attachment_type)) {
skip |= LogWarning(
module_state.vk_shader_module(), kVUID_Core_Shader_InterfaceTypeMismatch,
"Attachment %" PRIu32
" of type `%s` does not match fragment shader output type of `%s`; resulting values are undefined",
location, string_VkFormat(attachment->format), module_state.DescribeType(output->type_id).c_str());
}
} else { // !attachment && !output
assert(false); // at least one exists in the map
}
}
}
const auto output_zero = location_map.count(0) ? location_map[0].output : nullptr;
bool location_zero_has_alpha = output_zero && module_state.FindDef(output_zero->type_id) &&
module_state.GetComponentsConsumedByType(output_zero->type_id, false) == 4;
if (alpha_to_coverage_enabled && !location_zero_has_alpha) {
skip |= LogError(module_state.vk_shader_module(), kVUID_Core_Shader_NoAlphaAtLocation0WithAlphaToCoverage,
"fragment shader doesn't declare alpha output at location 0 even though alpha to coverage is enabled.");
}
return skip;
}
PushConstantByteState CoreChecks::ValidatePushConstantSetUpdate(const std::vector<uint8_t> &push_constant_data_update,
const shader_struct_member &push_constant_used_in_shader,
uint32_t &out_issue_index) const {
const auto *used_bytes = push_constant_used_in_shader.GetUsedbytes();
const auto used_bytes_size = used_bytes->size();
if (used_bytes_size == 0) return PC_Byte_Updated;
const auto push_constant_data_update_size = push_constant_data_update.size();
const auto *data = push_constant_data_update.data();
if ((*data == PC_Byte_Updated) && std::memcmp(data, data + 1, push_constant_data_update_size - 1) == 0) {
if (used_bytes_size <= push_constant_data_update_size) {
return PC_Byte_Updated;
}
const auto used_bytes_size1 = used_bytes_size - push_constant_data_update_size;
const auto *used_bytes_data1 = used_bytes->data() + push_constant_data_update_size;
if ((*used_bytes_data1 == 0) && std::memcmp(used_bytes_data1, used_bytes_data1 + 1, used_bytes_size1 - 1) == 0) {
return PC_Byte_Updated;
}
}
uint32_t i = 0;
for (const auto used : *used_bytes) {
if (used) {
if (i >= push_constant_data_update.size() || push_constant_data_update[i] == PC_Byte_Not_Set) {
out_issue_index = i;
return PC_Byte_Not_Set;
} else if (push_constant_data_update[i] == PC_Byte_Not_Updated) {
out_issue_index = i;
return PC_Byte_Not_Updated;
}
}
++i;
}
return PC_Byte_Updated;
}
bool CoreChecks::ValidatePushConstantUsage(const PIPELINE_STATE &pipeline, const SHADER_MODULE_STATE &module_state,
safe_VkPipelineShaderStageCreateInfo const *pStage, const std::string &vuid) const {
bool skip = false;
// Temp workaround to prevent false positive errors
// https://github.com/KhronosGroup/Vulkan-ValidationLayers/issues/2450
if (module_state.HasMultipleEntryPoints()) {
return skip;
}
// Validate directly off the offsets. this isn't quite correct for arrays and matrices, but is a good first step.
const auto *entrypoint = module_state.FindEntrypointStruct(pStage->pName, pStage->stage);
if (!entrypoint || !entrypoint->push_constant_used_in_shader.IsUsed()) {
return skip;
}
const auto &pipeline_layout = pipeline.PipelineLayoutState();
std::vector<VkPushConstantRange> const *push_constant_ranges = pipeline_layout->push_constant_ranges.get();
bool found_stage = false;
for (auto const &range : *push_constant_ranges) {
if (range.stageFlags & pStage->stage) {
found_stage = true;
std::string location_desc;
std::vector<uint8_t> push_constant_bytes_set;
if (range.offset > 0) {
push_constant_bytes_set.resize(range.offset, PC_Byte_Not_Set);
}
push_constant_bytes_set.resize(range.offset + range.size, PC_Byte_Updated);
uint32_t issue_index = 0;
const auto ret =
ValidatePushConstantSetUpdate(push_constant_bytes_set, entrypoint->push_constant_used_in_shader, issue_index);
if (ret == PC_Byte_Not_Set) {
const auto loc_descr = entrypoint->push_constant_used_in_shader.GetLocationDesc(issue_index);
LogObjectList objlist(module_state.vk_shader_module());
objlist.add(pipeline_layout->layout());
skip |= LogError(objlist, vuid, "Push constant buffer:%s in %s is out of range in %s.", loc_descr.c_str(),
string_VkShaderStageFlags(pStage->stage).c_str(),
report_data->FormatHandle(pipeline_layout->layout()).c_str());
break;
}
}
}
if (!found_stage) {
LogObjectList objlist(module_state.vk_shader_module());
objlist.add(pipeline_layout->layout());
skip |= LogError(
objlist, vuid, "Push constant is used in %s of %s. But %s doesn't set %s.",
string_VkShaderStageFlags(pStage->stage).c_str(), report_data->FormatHandle(module_state.vk_shader_module()).c_str(),
report_data->FormatHandle(pipeline_layout->layout()).c_str(), string_VkShaderStageFlags(pStage->stage).c_str());
}
return skip;
}
bool CoreChecks::ValidateBuiltinLimits(const SHADER_MODULE_STATE &module_state, const Instruction &entrypoint) const {
bool skip = false;
// Currently all builtin tested are only found in fragment shaders
if (entrypoint.Word(1) != spv::ExecutionModelFragment) {
return skip;
}
// Find all builtin from just the interface variables
for (uint32_t id : FindEntrypointInterfaces(entrypoint)) {
const Instruction *insn = module_state.FindDef(id);
assert(insn->Opcode() == spv::OpVariable);
const decoration_set decorations = module_state.get_decorations(insn->Word(2));
// Currently don't need to search in structs
if (((decorations.flags & decoration_set::builtin_bit) != 0) && (decorations.builtin == spv::BuiltInSampleMask)) {
const Instruction *type_pointer = module_state.FindDef(insn->Word(1));
assert(type_pointer->Opcode() == spv::OpTypePointer);
const Instruction *type = module_state.FindDef(type_pointer->Word(3));
if (type->Opcode() == spv::OpTypeArray) {
uint32_t length = static_cast<uint32_t>(module_state.GetConstantValueById(type->Word(3)));
// Handles both the input and output sampleMask
if (length > phys_dev_props.limits.maxSampleMaskWords) {
skip |=
LogError(module_state.vk_shader_module(), "VUID-VkPipelineShaderStageCreateInfo-maxSampleMaskWords-00711",
"vkCreateGraphicsPipelines(): The BuiltIns SampleMask array sizes is %u which exceeds "
"maxSampleMaskWords of %u in %s.",
length, phys_dev_props.limits.maxSampleMaskWords,
report_data->FormatHandle(module_state.vk_shader_module()).c_str());
}
break;
}
}
}
return skip;
}
// Validate that data for each specialization entry is fully contained within the buffer.
bool CoreChecks::ValidateSpecializations(const SHADER_MODULE_STATE &module_state,
safe_VkPipelineShaderStageCreateInfo const *info) const {
bool skip = false;
const auto *spec = info->pSpecializationInfo;
if (spec) {
for (auto i = 0u; i < spec->mapEntryCount; i++) {
if (spec->pMapEntries[i].offset >= spec->dataSize) {
skip |= LogError(module_state.vk_shader_module(), "VUID-VkSpecializationInfo-offset-00773",
"Specialization entry %u (for constant id %u) references memory outside provided specialization "
"data (bytes %u..%zu; %zu bytes provided).",
i, spec->pMapEntries[i].constantID, spec->pMapEntries[i].offset,
spec->pMapEntries[i].offset + spec->dataSize - 1, spec->dataSize);
continue;
}
if (spec->pMapEntries[i].offset + spec->pMapEntries[i].size > spec->dataSize) {
skip |= LogError(module_state.vk_shader_module(), "VUID-VkSpecializationInfo-pMapEntries-00774",
"Specialization entry %u (for constant id %u) references memory outside provided specialization "
"data (bytes %u..%zu; %zu bytes provided).",
i, spec->pMapEntries[i].constantID, spec->pMapEntries[i].offset,
spec->pMapEntries[i].offset + spec->pMapEntries[i].size - 1, spec->dataSize);
}
for (uint32_t j = i + 1; j < spec->mapEntryCount; ++j) {
if (spec->pMapEntries[i].constantID == spec->pMapEntries[j].constantID) {
skip |= LogError(module_state.vk_shader_module(), "VUID-VkSpecializationInfo-constantID-04911",
"Specialization entry %" PRIu32 " and %" PRIu32 " have the same constantID (%" PRIu32 ").", i,
j, spec->pMapEntries[i].constantID);
}
}
}
}
return skip;
}
// TODO (jbolz): Can this return a const reference?
static std::set<uint32_t> TypeToDescriptorTypeSet(const SHADER_MODULE_STATE &module_state, uint32_t type_id,
uint32_t &descriptor_count, bool is_khr) {
const Instruction *type = module_state.FindDef(type_id);
bool is_storage_buffer = false;
descriptor_count = 1;
std::set<uint32_t> ret;
// Strip off any array or ptrs. Where we remove array levels, adjust the descriptor count for each dimension.
while (type->Opcode() == spv::OpTypeArray || type->Opcode() == spv::OpTypePointer ||
type->Opcode() == spv::OpTypeRuntimeArray) {
if (type->Opcode() == spv::OpTypeRuntimeArray) {
descriptor_count = 0;
type = module_state.FindDef(type->Word(2));
} else if (type->Opcode() == spv::OpTypeArray) {
descriptor_count *= module_state.GetConstantValueById(type->Word(3));
type = module_state.FindDef(type->Word(2));
} else {
if (type->Word(2) == spv::StorageClassStorageBuffer) {
is_storage_buffer = true;
}
type = module_state.FindDef(type->Word(3));
}
}
switch (type->Opcode()) {
case spv::OpTypeStruct: {
for (const Instruction *insn : module_state.GetDecorationInstructions()) {
if (insn->Word(1) == type->Word(1)) {
if (insn->Word(2) == spv::DecorationBlock) {
if (is_storage_buffer) {
ret.insert(VK_DESCRIPTOR_TYPE_STORAGE_BUFFER);
ret.insert(VK_DESCRIPTOR_TYPE_STORAGE_BUFFER_DYNAMIC);
return ret;
} else {
ret.insert(VK_DESCRIPTOR_TYPE_UNIFORM_BUFFER);
ret.insert(VK_DESCRIPTOR_TYPE_UNIFORM_BUFFER_DYNAMIC);
ret.insert(VK_DESCRIPTOR_TYPE_INLINE_UNIFORM_BLOCK_EXT);
return ret;
}
} else if (insn->Word(2) == spv::DecorationBufferBlock) {
ret.insert(VK_DESCRIPTOR_TYPE_STORAGE_BUFFER);
ret.insert(VK_DESCRIPTOR_TYPE_STORAGE_BUFFER_DYNAMIC);
return ret;
}
}
}
// Invalid
return ret;
}
case spv::OpTypeSampler:
ret.insert(VK_DESCRIPTOR_TYPE_SAMPLER);
ret.insert(VK_DESCRIPTOR_TYPE_COMBINED_IMAGE_SAMPLER);
return ret;
case spv::OpTypeSampledImage: {
// Slight relaxation for some GLSL historical madness: samplerBuffer doesn't really have a sampler, and a texel
// buffer descriptor doesn't really provide one. Allow this slight mismatch.
const Instruction *image_type = module_state.FindDef(type->Word(2));
auto dim = image_type->Word(3);
auto sampled = image_type->Word(7);
if (dim == spv::DimBuffer && sampled == 1) {
ret.insert(VK_DESCRIPTOR_TYPE_UNIFORM_TEXEL_BUFFER);
return ret;
}
}
ret.insert(VK_DESCRIPTOR_TYPE_COMBINED_IMAGE_SAMPLER);
return ret;
case spv::OpTypeImage: {
// Many descriptor types backing image types-- depends on dimension and whether the image will be used with a sampler.
// SPIRV for Vulkan requires that sampled be 1 or 2 -- leaving the decision to runtime is unacceptable.
auto dim = type->Word(3);
auto sampled = type->Word(7);
if (dim == spv::DimSubpassData) {
ret.insert(VK_DESCRIPTOR_TYPE_INPUT_ATTACHMENT);
return ret;
} else if (dim == spv::DimBuffer) {
if (sampled == 1) {
ret.insert(VK_DESCRIPTOR_TYPE_UNIFORM_TEXEL_BUFFER);
return ret;
} else {
ret.insert(VK_DESCRIPTOR_TYPE_STORAGE_TEXEL_BUFFER);
return ret;
}
} else if (sampled == 1) {
ret.insert(VK_DESCRIPTOR_TYPE_SAMPLED_IMAGE);
ret.insert(VK_DESCRIPTOR_TYPE_COMBINED_IMAGE_SAMPLER);
return ret;
} else {
ret.insert(VK_DESCRIPTOR_TYPE_STORAGE_IMAGE);
return ret;
}
}
case spv::OpTypeAccelerationStructureNV:
is_khr ? ret.insert(VK_DESCRIPTOR_TYPE_ACCELERATION_STRUCTURE_KHR)
: ret.insert(VK_DESCRIPTOR_TYPE_ACCELERATION_STRUCTURE_NV);
return ret;
// We shouldn't really see any other junk types -- but if we do, they're a mismatch.
default:
return ret; // Matches nothing
}
}
static std::string string_descriptorTypes(const std::set<uint32_t> &descriptor_types) {
std::stringstream ss;
for (auto it = descriptor_types.begin(); it != descriptor_types.end(); ++it) {
if (ss.tellp()) ss << ", ";
ss << string_VkDescriptorType(VkDescriptorType(*it));
}
return ss.str();
}
bool CoreChecks::RequirePropertyFlag(const SHADER_MODULE_STATE &module_state, VkBool32 check, char const *flag,
char const *structure, const char *vuid) const {
if (!check) {
if (LogError(module_state.vk_shader_module(), vuid, "Shader requires flag %s set in %s but it is not set on the device",
flag, structure)) {
return true;
}
}
return false;
}
bool CoreChecks::RequireFeature(const SHADER_MODULE_STATE &module_state, VkBool32 feature, char const *feature_name,
const char *vuid) const {
if (!feature) {
if (LogError(module_state.vk_shader_module(), vuid, "Shader requires %s but is not enabled on the device", feature_name)) {
return true;
}
}
return false;
}
bool CoreChecks::ValidateShaderStageWritableOrAtomicDescriptor(const SHADER_MODULE_STATE &module_state, VkShaderStageFlagBits stage,
bool has_writable_descriptor, bool has_atomic_descriptor) const {
bool skip = false;
if (has_writable_descriptor || has_atomic_descriptor) {
switch (stage) {
case VK_SHADER_STAGE_FRAGMENT_BIT:
skip |= RequireFeature(module_state, enabled_features.core.fragmentStoresAndAtomics, "fragmentStoresAndAtomics",
"VUID-RuntimeSpirv-NonWritable-06340");
break;
case VK_SHADER_STAGE_VERTEX_BIT:
case VK_SHADER_STAGE_TESSELLATION_CONTROL_BIT:
case VK_SHADER_STAGE_TESSELLATION_EVALUATION_BIT:
case VK_SHADER_STAGE_GEOMETRY_BIT:
skip |= RequireFeature(module_state, enabled_features.core.vertexPipelineStoresAndAtomics,
"vertexPipelineStoresAndAtomics", "VUID-RuntimeSpirv-NonWritable-06341");
break;
default:
// No feature requirements for writes and atomics for other stages
break;
}
}
return skip;
}
bool CoreChecks::ValidateShaderStageGroupNonUniform(const SHADER_MODULE_STATE &module_state, VkShaderStageFlagBits stage,
const Instruction &insn) const {
bool skip = false;
// Check anything using a group operation (which currently is only OpGroupNonUnifrom* operations)
if (GroupOperation(insn.Opcode()) == true) {
// Check the quad operations.
if ((insn.Opcode() == spv::OpGroupNonUniformQuadBroadcast) || (insn.Opcode() == spv::OpGroupNonUniformQuadSwap)) {
if ((stage != VK_SHADER_STAGE_FRAGMENT_BIT) && (stage != VK_SHADER_STAGE_COMPUTE_BIT)) {
skip |=
RequireFeature(module_state, phys_dev_props_core11.subgroupQuadOperationsInAllStages,
"VkPhysicalDeviceSubgroupProperties::quadOperationsInAllStages", "VUID-RuntimeSpirv-None-06342");
}
}
uint32_t scope_type = spv::ScopeMax;
if (insn.Opcode() == spv::OpGroupNonUniformPartitionNV) {
// OpGroupNonUniformPartitionNV always assumed subgroup as missing operand
scope_type = spv::ScopeSubgroup;
} else {
// "All <id> used for Scope <id> must be of an OpConstant"
const Instruction *scope_id = module_state.FindDef(insn.Word(3));
scope_type = scope_id->Word(3);
}
if (scope_type == spv::ScopeSubgroup) {
// "Group operations with subgroup scope" must have stage support
const VkSubgroupFeatureFlags supported_stages = phys_dev_props_core11.subgroupSupportedStages;
skip |= RequirePropertyFlag(module_state, supported_stages & stage, string_VkShaderStageFlagBits(stage),
"VkPhysicalDeviceSubgroupProperties::supportedStages", "VUID-RuntimeSpirv-None-06343");
}
if (!enabled_features.core12.shaderSubgroupExtendedTypes) {
const Instruction *type = module_state.FindDef(insn.Word(1));
if (type->Opcode() == spv::OpTypeVector) {
// Get the element type
type = module_state.FindDef(type->Word(2));
}
if (type->Opcode() != spv::OpTypeBool) {
// Both OpTypeInt and OpTypeFloat the width is in the 2nd word.
const uint32_t width = type->Word(2);
if ((type->Opcode() == spv::OpTypeFloat && width == 16) ||
(type->Opcode() == spv::OpTypeInt && (width == 8 || width == 16 || width == 64))) {
skip |= RequireFeature(module_state, enabled_features.core12.shaderSubgroupExtendedTypes,
"VkPhysicalDeviceShaderSubgroupExtendedTypesFeatures::shaderSubgroupExtendedTypes",
"VUID-RuntimeSpirv-None-06275");
}
}
}
}
return skip;
}
bool CoreChecks::ValidateMemoryScope(const SHADER_MODULE_STATE &module_state, const Instruction &insn) const {
bool skip = false;
const auto &entry = OpcodeMemoryScopePosition(insn.Opcode());
if (entry > 0) {
const uint32_t scope_id = insn.Word(entry);
const Instruction *scope_def = module_state.GetConstantDef(scope_id);
if (scope_def) {
const auto scope_type = module_state.GetConstantValue(scope_def);
if (enabled_features.core12.vulkanMemoryModel && !enabled_features.core12.vulkanMemoryModelDeviceScope &&
scope_type == spv::Scope::ScopeDevice) {
skip |= LogError(module_state.vk_shader_module(), "VUID-RuntimeSpirv-vulkanMemoryModel-06265",
"VkPhysicalDeviceVulkan12Features::vulkanMemoryModel is enabled and "
"VkPhysicalDeviceVulkan12Features::vulkanMemoryModelDeviceScope is disabled, but\n%s\nuses "
"Device memory scope.",
module_state.DescribeInstruction(&insn).c_str());
} else if (!enabled_features.core12.vulkanMemoryModel && scope_type == spv::Scope::ScopeQueueFamily) {
skip |= LogError(module_state.vk_shader_module(), "VUID-RuntimeSpirv-vulkanMemoryModel-06266",
"VkPhysicalDeviceVulkan12Features::vulkanMemoryModel is not enabled, but\n%s\nuses "
"QueueFamily memory scope.",
module_state.DescribeInstruction(&insn).c_str());
}
}
}
return skip;
}
bool CoreChecks::ValidateShaderStageInputOutputLimits(const SHADER_MODULE_STATE &module_state,
safe_VkPipelineShaderStageCreateInfo const *pStage,
const PIPELINE_STATE *pipeline, const Instruction &entrypoint) const {
if (pStage->stage == VK_SHADER_STAGE_COMPUTE_BIT || pStage->stage == VK_SHADER_STAGE_ALL_GRAPHICS ||
pStage->stage == VK_SHADER_STAGE_ALL) {
return false;
}
bool skip = false;
auto const &limits = phys_dev_props.limits;
std::set<uint32_t> patch_i_ds;
struct Variable {
uint32_t baseTypePtrID;
uint32_t ID;
uint32_t storageClass;
};
std::vector<Variable> variables;
uint32_t num_vertices = 0;
bool is_iso_lines = false;
bool is_point_mode = false;
auto entrypoint_variables = FindEntrypointInterfaces(entrypoint);
for (const Instruction &insn : module_state.GetInstructions()) {
switch (insn.Opcode()) {
// Find all Patch decorations
case spv::OpDecorate:
switch (insn.Word(2)) {
case spv::DecorationPatch: {
patch_i_ds.insert(insn.Word(1));
break;
}
default:
break;
}
break;
// Find all input and output variables
case spv::OpVariable: {
Variable var = {};
var.storageClass = insn.Word(3);
if ((var.storageClass == spv::StorageClassInput || var.storageClass == spv::StorageClassOutput) &&
// Only include variables in the entrypoint's interface
find(entrypoint_variables.begin(), entrypoint_variables.end(), insn.Word(2)) != entrypoint_variables.end()) {
var.baseTypePtrID = insn.Word(1);
var.ID = insn.Word(2);
variables.push_back(var);
}
break;
}
case spv::OpExecutionMode:
case spv::OpExecutionModeId:
if (insn.Word(1) == entrypoint.Word(2)) {
switch (insn.Word(2)) {
default:
break;
case spv::ExecutionModeOutputVertices:
num_vertices = insn.Word(3);
break;
case spv::ExecutionModeIsolines:
is_iso_lines = true;
break;
case spv::ExecutionModePointMode:
is_point_mode = true;
break;
}
}
break;
default:
break;
}
}
bool strip_output_array_level =
(pStage->stage == VK_SHADER_STAGE_TESSELLATION_CONTROL_BIT || pStage->stage == VK_SHADER_STAGE_MESH_BIT_NV);
bool strip_input_array_level =
(pStage->stage == VK_SHADER_STAGE_TESSELLATION_CONTROL_BIT ||
pStage->stage == VK_SHADER_STAGE_TESSELLATION_EVALUATION_BIT || pStage->stage == VK_SHADER_STAGE_GEOMETRY_BIT);
uint32_t num_comp_in = 0, num_comp_out = 0;
int max_comp_in = 0, max_comp_out = 0;
auto inputs = module_state.CollectInterfaceByLocation(entrypoint, spv::StorageClassInput, strip_input_array_level);
auto outputs = module_state.CollectInterfaceByLocation(entrypoint, spv::StorageClassOutput, strip_output_array_level);
// Find max component location used for input variables.
for (auto &var : inputs) {
int location = var.first.first;
int component = var.first.second;
interface_var &iv = var.second;
// Only need to look at the first location, since we use the type's whole size
if (iv.offset != 0) {
continue;
}
if (iv.is_patch) {
continue;
}
int num_components = module_state.GetComponentsConsumedByType(iv.type_id, strip_input_array_level);
max_comp_in = std::max(max_comp_in, location * 4 + component + num_components);
}
// Find max component location used for output variables.
for (auto &var : outputs) {
int location = var.first.first;
int component = var.first.second;
interface_var &iv = var.second;
// Only need to look at the first location, since we use the type's whole size
if (iv.offset != 0) {
continue;
}
if (iv.is_patch) {
continue;
}
int num_components = module_state.GetComponentsConsumedByType(iv.type_id, strip_output_array_level);
max_comp_out = std::max(max_comp_out, location * 4 + component + num_components);
}
// XXX TODO: Would be nice to rewrite this to use CollectInterfaceByLocation (or something similar),
// but that doesn't include builtins.
// When rewritten, using the CreatePipelineExceedVertexMaxComponentsWithBuiltins test it would be nice to also let the user know
// how many components were from builtins as it might not be obvious
for (auto &var : variables) {
// Check if the variable is a patch. Patches can also be members of blocks,
// but if they are then the top-level arrayness has already been stripped
// by the time GetComponentsConsumedByType gets to it.
bool is_patch = patch_i_ds.find(var.ID) != patch_i_ds.end();
if (var.storageClass == spv::StorageClassInput) {
num_comp_in += module_state.GetComponentsConsumedByType(var.baseTypePtrID, strip_input_array_level && !is_patch);
} else { // var.storageClass == spv::StorageClassOutput
num_comp_out += module_state.GetComponentsConsumedByType(var.baseTypePtrID, strip_output_array_level && !is_patch);
}
}
switch (pStage->stage) {
case VK_SHADER_STAGE_VERTEX_BIT:
if (num_comp_out > limits.maxVertexOutputComponents) {
skip |= LogError(module_state.vk_shader_module(), "VUID-RuntimeSpirv-Location-06272",
"Invalid Pipeline CreateInfo State: Vertex shader exceeds "
"VkPhysicalDeviceLimits::maxVertexOutputComponents of %u "
"components by %u components",
limits.maxVertexOutputComponents, num_comp_out - limits.maxVertexOutputComponents);
}
if (max_comp_out > static_cast<int>(limits.maxVertexOutputComponents)) {
skip |= LogError(module_state.vk_shader_module(), "VUID-RuntimeSpirv-Location-06272",
"Invalid Pipeline CreateInfo State: Vertex shader output variable uses location that "
"exceeds component limit VkPhysicalDeviceLimits::maxVertexOutputComponents (%u)",
limits.maxVertexOutputComponents);
}
break;
case VK_SHADER_STAGE_TESSELLATION_CONTROL_BIT:
if (num_comp_in > limits.maxTessellationControlPerVertexInputComponents) {
skip |= LogError(module_state.vk_shader_module(), "VUID-RuntimeSpirv-Location-06272",
"Invalid Pipeline CreateInfo State: Tessellation control shader exceeds "
"VkPhysicalDeviceLimits::maxTessellationControlPerVertexInputComponents of %u "
"components by %u components",
limits.maxTessellationControlPerVertexInputComponents,
num_comp_in - limits.maxTessellationControlPerVertexInputComponents);
}
if (max_comp_in > static_cast<int>(limits.maxTessellationControlPerVertexInputComponents)) {
skip |=
LogError(module_state.vk_shader_module(), "VUID-RuntimeSpirv-Location-06272",
"Invalid Pipeline CreateInfo State: Tessellation control shader input variable uses location that "
"exceeds component limit VkPhysicalDeviceLimits::maxTessellationControlPerVertexInputComponents (%u)",
limits.maxTessellationControlPerVertexInputComponents);
}
if (num_comp_out > limits.maxTessellationControlPerVertexOutputComponents) {
skip |= LogError(module_state.vk_shader_module(), "VUID-RuntimeSpirv-Location-06272",
"Invalid Pipeline CreateInfo State: Tessellation control shader exceeds "
"VkPhysicalDeviceLimits::maxTessellationControlPerVertexOutputComponents of %u "
"components by %u components",
limits.maxTessellationControlPerVertexOutputComponents,
num_comp_out - limits.maxTessellationControlPerVertexOutputComponents);
}
if (max_comp_out > static_cast<int>(limits.maxTessellationControlPerVertexOutputComponents)) {
skip |=
LogError(module_state.vk_shader_module(), "VUID-RuntimeSpirv-Location-06272",
"Invalid Pipeline CreateInfo State: Tessellation control shader output variable uses location that "
"exceeds component limit VkPhysicalDeviceLimits::maxTessellationControlPerVertexOutputComponents (%u)",
limits.maxTessellationControlPerVertexOutputComponents);
}
break;
case VK_SHADER_STAGE_TESSELLATION_EVALUATION_BIT:
if (num_comp_in > limits.maxTessellationEvaluationInputComponents) {
skip |= LogError(module_state.vk_shader_module(), "VUID-RuntimeSpirv-Location-06272",
"Invalid Pipeline CreateInfo State: Tessellation evaluation shader exceeds "
"VkPhysicalDeviceLimits::maxTessellationEvaluationInputComponents of %u "
"components by %u components",
limits.maxTessellationEvaluationInputComponents,
num_comp_in - limits.maxTessellationEvaluationInputComponents);
}
if (max_comp_in > static_cast<int>(limits.maxTessellationEvaluationInputComponents)) {
skip |=
LogError(module_state.vk_shader_module(), "VUID-RuntimeSpirv-Location-06272",
"Invalid Pipeline CreateInfo State: Tessellation evaluation shader input variable uses location that "
"exceeds component limit VkPhysicalDeviceLimits::maxTessellationEvaluationInputComponents (%u)",
limits.maxTessellationEvaluationInputComponents);
}
if (num_comp_out > limits.maxTessellationEvaluationOutputComponents) {
skip |= LogError(module_state.vk_shader_module(), "VUID-RuntimeSpirv-Location-06272",
"Invalid Pipeline CreateInfo State: Tessellation evaluation shader exceeds "
"VkPhysicalDeviceLimits::maxTessellationEvaluationOutputComponents of %u "
"components by %u components",
limits.maxTessellationEvaluationOutputComponents,
num_comp_out - limits.maxTessellationEvaluationOutputComponents);
}
if (max_comp_out > static_cast<int>(limits.maxTessellationEvaluationOutputComponents)) {
skip |=
LogError(module_state.vk_shader_module(), "VUID-RuntimeSpirv-Location-06272",
"Invalid Pipeline CreateInfo State: Tessellation evaluation shader output variable uses location that "
"exceeds component limit VkPhysicalDeviceLimits::maxTessellationEvaluationOutputComponents (%u)",
limits.maxTessellationEvaluationOutputComponents);
}
// Portability validation
if (IsExtEnabled(device_extensions.vk_khr_portability_subset)) {
if (is_iso_lines && (VK_FALSE == enabled_features.portability_subset_features.tessellationIsolines)) {
skip |= LogError(module_state.vk_shader_module(), "VUID-RuntimeSpirv-tessellationShader-06326",
"Invalid Pipeline CreateInfo state (portability error): Tessellation evaluation shader"
" is using abstract patch type IsoLines, but this is not supported on this platform");
}
if (is_point_mode && (VK_FALSE == enabled_features.portability_subset_features.tessellationPointMode)) {
skip |= LogError(module_state.vk_shader_module(), "VUID-RuntimeSpirv-tessellationShader-06327",
"Invalid Pipeline CreateInfo state (portability error): Tessellation evaluation shader"
" is using abstract patch type PointMode, but this is not supported on this platform");
}
}
break;
case VK_SHADER_STAGE_GEOMETRY_BIT:
if (num_comp_in > limits.maxGeometryInputComponents) {
skip |= LogError(module_state.vk_shader_module(), "VUID-RuntimeSpirv-Location-06272",
"Invalid Pipeline CreateInfo State: Geometry shader exceeds "
"VkPhysicalDeviceLimits::maxGeometryInputComponents of %u "
"components by %u components",
limits.maxGeometryInputComponents, num_comp_in - limits.maxGeometryInputComponents);
}
if (max_comp_in > static_cast<int>(limits.maxGeometryInputComponents)) {
skip |= LogError(module_state.vk_shader_module(), "VUID-RuntimeSpirv-Location-06272",
"Invalid Pipeline CreateInfo State: Geometry shader input variable uses location that "
"exceeds component limit VkPhysicalDeviceLimits::maxGeometryInputComponents (%u)",
limits.maxGeometryInputComponents);
}
if (num_comp_out > limits.maxGeometryOutputComponents) {
skip |= LogError(module_state.vk_shader_module(), "VUID-RuntimeSpirv-Location-06272",
"Invalid Pipeline CreateInfo State: Geometry shader exceeds "
"VkPhysicalDeviceLimits::maxGeometryOutputComponents of %u "
"components by %u components",
limits.maxGeometryOutputComponents, num_comp_out - limits.maxGeometryOutputComponents);
}
if (max_comp_out > static_cast<int>(limits.maxGeometryOutputComponents)) {
skip |= LogError(module_state.vk_shader_module(), "VUID-RuntimeSpirv-Location-06272",
"Invalid Pipeline CreateInfo State: Geometry shader output variable uses location that "
"exceeds component limit VkPhysicalDeviceLimits::maxGeometryOutputComponents (%u)",
limits.maxGeometryOutputComponents);
}
if (num_comp_out * num_vertices > limits.maxGeometryTotalOutputComponents) {
skip |= LogError(module_state.vk_shader_module(), "VUID-RuntimeSpirv-Location-06272",
"Invalid Pipeline CreateInfo State: Geometry shader exceeds "
"VkPhysicalDeviceLimits::maxGeometryTotalOutputComponents of %u "
"components by %u components",
limits.maxGeometryTotalOutputComponents,
num_comp_out * num_vertices - limits.maxGeometryTotalOutputComponents);
}
break;
case VK_SHADER_STAGE_FRAGMENT_BIT:
if (num_comp_in > limits.maxFragmentInputComponents) {
skip |= LogError(module_state.vk_shader_module(), "VUID-RuntimeSpirv-Location-06272",
"Invalid Pipeline CreateInfo State: Fragment shader exceeds "
"VkPhysicalDeviceLimits::maxFragmentInputComponents of %u "
"components by %u components",
limits.maxFragmentInputComponents, num_comp_in - limits.maxFragmentInputComponents);
}
if (max_comp_in > static_cast<int>(limits.maxFragmentInputComponents)) {
skip |= LogError(module_state.vk_shader_module(), "VUID-RuntimeSpirv-Location-06272",
"Invalid Pipeline CreateInfo State: Fragment shader input variable uses location that "
"exceeds component limit VkPhysicalDeviceLimits::maxFragmentInputComponents (%u)",
limits.maxFragmentInputComponents);
}
break;
case VK_SHADER_STAGE_RAYGEN_BIT_KHR:
case VK_SHADER_STAGE_ANY_HIT_BIT_KHR:
case VK_SHADER_STAGE_CLOSEST_HIT_BIT_KHR:
case VK_SHADER_STAGE_MISS_BIT_KHR:
case VK_SHADER_STAGE_INTERSECTION_BIT_KHR:
case VK_SHADER_STAGE_CALLABLE_BIT_KHR:
case VK_SHADER_STAGE_TASK_BIT_NV:
case VK_SHADER_STAGE_MESH_BIT_NV:
break;
default:
assert(false); // This should never happen
}
return skip;
}
bool CoreChecks::ValidateShaderStorageImageFormatsVariables(const SHADER_MODULE_STATE &module_state,
const Instruction *insn) const {
bool skip = false;
// Go through all variables for images and check decorations
assert(insn->Opcode() == spv::OpVariable);
// spirv-val validates this is an OpTypePointer
const Instruction *pointer_def = module_state.FindDef(insn->Word(1));
if (pointer_def->Word(2) != spv::StorageClassUniformConstant) {
return skip; // Vulkan Spec says storage image must be UniformConstant
}
const Instruction *type_def = module_state.FindDef(pointer_def->Word(3));
// Unpack an optional level of arraying
if (type_def && (type_def->Opcode() == spv::OpTypeArray || type_def->Opcode() == spv::OpTypeRuntimeArray)) {
type_def = module_state.FindDef(type_def->Word(2));
}
if (type_def && type_def->Opcode() == spv::OpTypeImage) {
// Only check if the Image Dim operand is not SubpassData
const uint32_t dim = type_def->Word(3);
// Only check storage images
const uint32_t sampled = type_def->Word(7);
const uint32_t image_format = type_def->Word(8);
if ((dim == spv::DimSubpassData) || (sampled != 2) || (image_format != spv::ImageFormatUnknown)) {
return skip;
}
const uint32_t var_id = insn->Word(2);
decoration_set img_decorations = module_state.get_decorations(var_id);
if (!enabled_features.core.shaderStorageImageReadWithoutFormat &&
!(img_decorations.flags & decoration_set::nonreadable_bit)) {
skip |= LogError(module_state.vk_shader_module(), "VUID-RuntimeSpirv-OpTypeImage-06270",
"shaderStorageImageReadWithoutFormat is not supported but\n%s\nhas an Image\n%s\nwith Unknown "
"format and is not decorated with NonReadable",
module_state.DescribeInstruction(module_state.FindDef(var_id)).c_str(),
module_state.DescribeInstruction(type_def).c_str());
}
if (!enabled_features.core.shaderStorageImageWriteWithoutFormat &&
!(img_decorations.flags & decoration_set::nonwritable_bit)) {
skip |= LogError(module_state.vk_shader_module(), "VUID-RuntimeSpirv-OpTypeImage-06269",
"shaderStorageImageWriteWithoutFormat is not supported but\n%s\nhas an Image\n%s\nwith "
"Unknown format and is not decorated with NonWritable",
module_state.DescribeInstruction(module_state.FindDef(var_id)).c_str(),
module_state.DescribeInstruction(type_def).c_str());
}
}
return skip;
}
bool CoreChecks::ValidateShaderStageMaxResources(const SHADER_MODULE_STATE &module_state, VkShaderStageFlagBits stage,
const PIPELINE_STATE *pipeline) const {
bool skip = false;
uint32_t total_resources = 0;
const auto &rp_state = pipeline->RenderPassState();
if ((stage == VK_SHADER_STAGE_FRAGMENT_BIT) && rp_state) {
if (rp_state->UsesDynamicRendering()) {
total_resources += rp_state->dynamic_rendering_pipeline_create_info.colorAttachmentCount;
} else {
// "For the fragment shader stage the framebuffer color attachments also count against this limit"
total_resources += rp_state->createInfo.pSubpasses[pipeline->Subpass()].colorAttachmentCount;
}
}
// TODO: This reuses a lot of GetDescriptorCountMaxPerStage but currently would need to make it agnostic in a way to handle
// input from CreatePipeline and CreatePipelineLayout level
const auto &layout_state = pipeline->PipelineLayoutState();
if (layout_state) {
for (auto set_layout : layout_state->set_layouts) {
if ((set_layout->GetCreateFlags() & VK_DESCRIPTOR_SET_LAYOUT_CREATE_UPDATE_AFTER_BIND_POOL_BIT) != 0) {
continue;
}
for (uint32_t binding_idx = 0; binding_idx < set_layout->GetBindingCount(); binding_idx++) {
const VkDescriptorSetLayoutBinding *binding = set_layout->GetDescriptorSetLayoutBindingPtrFromIndex(binding_idx);
// Bindings with a descriptorCount of 0 are "reserved" and should be skipped
if (((stage & binding->stageFlags) != 0) && (binding->descriptorCount > 0)) {
// Check only descriptor types listed in maxPerStageResources description in spec
switch (binding->descriptorType) {
case VK_DESCRIPTOR_TYPE_COMBINED_IMAGE_SAMPLER:
case VK_DESCRIPTOR_TYPE_SAMPLED_IMAGE:
case VK_DESCRIPTOR_TYPE_STORAGE_IMAGE:
case VK_DESCRIPTOR_TYPE_UNIFORM_TEXEL_BUFFER:
case VK_DESCRIPTOR_TYPE_STORAGE_TEXEL_BUFFER:
case VK_DESCRIPTOR_TYPE_UNIFORM_BUFFER:
case VK_DESCRIPTOR_TYPE_STORAGE_BUFFER:
case VK_DESCRIPTOR_TYPE_UNIFORM_BUFFER_DYNAMIC:
case VK_DESCRIPTOR_TYPE_STORAGE_BUFFER_DYNAMIC:
case VK_DESCRIPTOR_TYPE_INPUT_ATTACHMENT:
total_resources += binding->descriptorCount;
break;
default:
break;
}
}
}
}
}
if (total_resources > phys_dev_props.limits.maxPerStageResources) {
const char *vuid = nullptr;
if (stage == VK_SHADER_STAGE_COMPUTE_BIT) {
vuid = "VUID-VkComputePipelineCreateInfo-layout-01687";
} else if ((stage & VK_SHADER_STAGE_ALL_GRAPHICS) == 0) {
vuid = "VUID-VkRayTracingPipelineCreateInfoKHR-layout-03428";
} else {
vuid = "VUID-VkGraphicsPipelineCreateInfo-layout-01688";
}
skip |= LogError(module_state.vk_shader_module(), vuid,
"Invalid Pipeline CreateInfo State: Shader Stage %s exceeds component limit "
"VkPhysicalDeviceLimits::maxPerStageResources (%u)",
string_VkShaderStageFlagBits(stage), phys_dev_props.limits.maxPerStageResources);
}
return skip;
}
// copy the specialization constant value into buf, if it is present
template <typename StageCreateInfo>
void GetSpecConstantValue(StageCreateInfo const *pStage, uint32_t spec_id, void *buf) {
const auto *spec = pStage->pSpecializationInfo;
if (spec && spec_id < spec->mapEntryCount) {
memcpy(buf, (uint8_t *)spec->pData + spec->pMapEntries[spec_id].offset, spec->pMapEntries[spec_id].size);
}
}
// Fill in value with the constant or specialization constant value, if available.
// Returns true if the value has been accurately filled out.
static bool GetIntConstantValue(const Instruction *insn, const SHADER_MODULE_STATE &module_state,
safe_VkPipelineShaderStageCreateInfo const *pStage,
const layer_data::unordered_map<uint32_t, uint32_t> &id_to_spec_id, uint32_t *value) {
const Instruction *type_id = module_state.FindDef(insn->Word(1));
if (type_id->Opcode() != spv::OpTypeInt || type_id->Word(2) != 32) {
return false;
}
switch (insn->Opcode()) {
case spv::OpSpecConstant:
*value = insn->Word(3);
GetSpecConstantValue(pStage, id_to_spec_id.at(insn->Word(2)), value);
return true;
case spv::OpConstant:
*value = insn->Word(3);
return true;
default:
return false;
}
}
// Map SPIR-V type to VK_COMPONENT_TYPE enum
VkComponentTypeNV GetComponentType(const Instruction *insn) {
switch (insn->Opcode()) {
case spv::OpTypeInt:
switch (insn->Word(2)) {
case 8:
return insn->Word(3) != 0 ? VK_COMPONENT_TYPE_SINT8_NV : VK_COMPONENT_TYPE_UINT8_NV;
case 16:
return insn->Word(3) != 0 ? VK_COMPONENT_TYPE_SINT16_NV : VK_COMPONENT_TYPE_UINT16_NV;
case 32:
return insn->Word(3) != 0 ? VK_COMPONENT_TYPE_SINT32_NV : VK_COMPONENT_TYPE_UINT32_NV;
case 64:
return insn->Word(3) != 0 ? VK_COMPONENT_TYPE_SINT64_NV : VK_COMPONENT_TYPE_UINT64_NV;
default:
return VK_COMPONENT_TYPE_MAX_ENUM_NV;
}
case spv::OpTypeFloat:
switch (insn->Word(2)) {
case 16:
return VK_COMPONENT_TYPE_FLOAT16_NV;
case 32:
return VK_COMPONENT_TYPE_FLOAT32_NV;
case 64:
return VK_COMPONENT_TYPE_FLOAT64_NV;
default:
return VK_COMPONENT_TYPE_MAX_ENUM_NV;
}
default:
return VK_COMPONENT_TYPE_MAX_ENUM_NV;
}
}
// Validate SPV_NV_cooperative_matrix behavior that can't be statically validated
// in SPIRV-Tools (e.g. due to specialization constant usage).
bool CoreChecks::ValidateCooperativeMatrix(const SHADER_MODULE_STATE &module_state,
safe_VkPipelineShaderStageCreateInfo const *pStage,
const PIPELINE_STATE *pipeline) const {
bool skip = false;
// Map SPIR-V result ID to specialization constant id (SpecId decoration value)
layer_data::unordered_map<uint32_t, uint32_t> id_to_spec_id;
// Map SPIR-V result ID to the ID of its type.
layer_data::unordered_map<uint32_t, uint32_t> id_to_type_id;
struct CoopMatType {
uint32_t scope, rows, cols;
VkComponentTypeNV component_type;
bool all_constant;
CoopMatType() : scope(0), rows(0), cols(0), component_type(VK_COMPONENT_TYPE_MAX_ENUM_NV), all_constant(false) {}
void Init(uint32_t id, const SHADER_MODULE_STATE &module_state, safe_VkPipelineShaderStageCreateInfo const *pStage,
const layer_data::unordered_map<uint32_t, uint32_t> &id_to_spec_id) {
const Instruction *insn = module_state.FindDef(id);
uint32_t component_type_id = insn->Word(2);
uint32_t scope_id = insn->Word(3);
uint32_t rows_id = insn->Word(4);
uint32_t cols_id = insn->Word(5);
const Instruction *component_type_insn = module_state.FindDef(component_type_id);
const Instruction *scope_insn = module_state.FindDef(scope_id);
const Instruction *rows_insn = module_state.FindDef(rows_id);
const Instruction *cols_insn = module_state.FindDef(cols_id);
all_constant = true;
if (!GetIntConstantValue(scope_insn, module_state, pStage, id_to_spec_id, &scope)) {
all_constant = false;
}
if (!GetIntConstantValue(rows_insn, module_state, pStage, id_to_spec_id, &rows)) {
all_constant = false;
}
if (!GetIntConstantValue(cols_insn, module_state, pStage, id_to_spec_id, &cols)) {
all_constant = false;
}
component_type = GetComponentType(component_type_insn);
}
};
bool seen_coopmat_capability = false;
for (const Instruction &insn : module_state.GetInstructions()) {
if (OpcodeHasType(insn.Opcode()) && OpcodeHasResult(insn.Opcode())) {
id_to_type_id[insn.Word(2)] = insn.Word(1);
}
switch (insn.Opcode()) {
case spv::OpDecorate:
if (insn.Word(2) == spv::DecorationSpecId) {
id_to_spec_id[insn.Word(1)] = insn.Word(3);
}
break;
case spv::OpCapability:
if (insn.Word(1) == spv::CapabilityCooperativeMatrixNV) {
seen_coopmat_capability = true;
if (!(pStage->stage & phys_dev_ext_props.cooperative_matrix_props.cooperativeMatrixSupportedStages)) {
skip |= LogError(
module_state.vk_shader_module(), "VUID-RuntimeSpirv-OpTypeCooperativeMatrixNV-06322",
"OpTypeCooperativeMatrixNV used in shader stage not in cooperativeMatrixSupportedStages (= %u)",
phys_dev_ext_props.cooperative_matrix_props.cooperativeMatrixSupportedStages);
}
}
break;
case spv::OpMemoryModel:
// If the capability isn't enabled, don't bother with the rest of this function.
// OpMemoryModel is the first required instruction after all OpCapability instructions.
if (!seen_coopmat_capability) {
return skip;
}
break;
case spv::OpTypeCooperativeMatrixNV: {
CoopMatType m;
m.Init(insn.Word(1), module_state, pStage, id_to_spec_id);
if (m.all_constant) {
// Validate that the type parameters are all supported for one of the
// operands of a cooperative matrix property.
bool valid = false;
for (uint32_t i = 0; i < cooperative_matrix_properties.size(); ++i) {
if (cooperative_matrix_properties[i].AType == m.component_type &&
cooperative_matrix_properties[i].MSize == m.rows && cooperative_matrix_properties[i].KSize == m.cols &&
cooperative_matrix_properties[i].scope == m.scope) {
valid = true;
break;
}
if (cooperative_matrix_properties[i].BType == m.component_type &&
cooperative_matrix_properties[i].KSize == m.rows && cooperative_matrix_properties[i].NSize == m.cols &&
cooperative_matrix_properties[i].scope == m.scope) {
valid = true;
break;
}
if (cooperative_matrix_properties[i].CType == m.component_type &&
cooperative_matrix_properties[i].MSize == m.rows && cooperative_matrix_properties[i].NSize == m.cols &&
cooperative_matrix_properties[i].scope == m.scope) {
valid = true;
break;
}
if (cooperative_matrix_properties[i].DType == m.component_type &&
cooperative_matrix_properties[i].MSize == m.rows && cooperative_matrix_properties[i].NSize == m.cols &&
cooperative_matrix_properties[i].scope == m.scope) {
valid = true;
break;
}
}
if (!valid) {
skip |= LogError(module_state.vk_shader_module(), kVUID_Core_Shader_CooperativeMatrixType,
"OpTypeCooperativeMatrixNV (result id = %u) operands don't match a supported matrix type",
insn.Word(1));
}
}
break;
}
case spv::OpCooperativeMatrixMulAddNV: {
CoopMatType a, b, c, d;
if (id_to_type_id.find(insn.Word(2)) == id_to_type_id.end() ||
id_to_type_id.find(insn.Word(3)) == id_to_type_id.end() ||
id_to_type_id.find(insn.Word(4)) == id_to_type_id.end() ||
id_to_type_id.find(insn.Word(5)) == id_to_type_id.end()) {
// Couldn't find type of matrix
assert(false);
break;
}
d.Init(id_to_type_id[insn.Word(2)], module_state, pStage, id_to_spec_id);
a.Init(id_to_type_id[insn.Word(3)], module_state, pStage, id_to_spec_id);
b.Init(id_to_type_id[insn.Word(4)], module_state, pStage, id_to_spec_id);
c.Init(id_to_type_id[insn.Word(5)], module_state, pStage, id_to_spec_id);
if (a.all_constant && b.all_constant && c.all_constant && d.all_constant) {
// Validate that the type parameters are all supported for the same
// cooperative matrix property.
bool valid = false;
for (uint32_t i = 0; i < cooperative_matrix_properties.size(); ++i) {
if (cooperative_matrix_properties[i].AType == a.component_type &&
cooperative_matrix_properties[i].MSize == a.rows && cooperative_matrix_properties[i].KSize == a.cols &&
cooperative_matrix_properties[i].scope == a.scope &&
cooperative_matrix_properties[i].BType == b.component_type &&
cooperative_matrix_properties[i].KSize == b.rows && cooperative_matrix_properties[i].NSize == b.cols &&
cooperative_matrix_properties[i].scope == b.scope &&
cooperative_matrix_properties[i].CType == c.component_type &&
cooperative_matrix_properties[i].MSize == c.rows && cooperative_matrix_properties[i].NSize == c.cols &&
cooperative_matrix_properties[i].scope == c.scope &&
cooperative_matrix_properties[i].DType == d.component_type &&
cooperative_matrix_properties[i].MSize == d.rows && cooperative_matrix_properties[i].NSize == d.cols &&
cooperative_matrix_properties[i].scope == d.scope) {
valid = true;
break;
}
}
if (!valid) {
skip |= LogError(module_state.vk_shader_module(), kVUID_Core_Shader_CooperativeMatrixMulAdd,
"OpCooperativeMatrixMulAddNV (result id = %u) operands don't match a supported matrix "
"VkCooperativeMatrixPropertiesNV",
insn.Word(2));
}
}
break;
}
default:
break;
}
}
return skip;
}
bool CoreChecks::ValidateShaderResolveQCOM(const SHADER_MODULE_STATE &module_state,
safe_VkPipelineShaderStageCreateInfo const *pStage,
const PIPELINE_STATE *pipeline) const {
bool skip = false;
// If the pipeline's subpass description contains flag VK_SUBPASS_DESCRIPTION_FRAGMENT_REGION_BIT_QCOM,
// then the fragment shader must not enable the SPIRV SampleRateShading capability.
if (pStage->stage == VK_SHADER_STAGE_FRAGMENT_BIT) {
for (const Instruction &insn : module_state.GetInstructions()) {
switch (insn.Opcode()) {
case spv::OpCapability:
if (insn.Word(1) == spv::CapabilitySampleRateShading) {
const auto &rp_state = pipeline->RenderPassState();
auto subpass_flags = (!rp_state) ? 0 : rp_state->createInfo.pSubpasses[pipeline->Subpass()].flags;
if ((subpass_flags & VK_SUBPASS_DESCRIPTION_FRAGMENT_REGION_BIT_QCOM) != 0) {
LogObjectList objlist(module_state.vk_shader_module());
objlist.add(rp_state->renderPass());
skip |=
LogError(objlist, "VUID-RuntimeSpirv-SampleRateShading-06378",
"Invalid Pipeline CreateInfo State: fragment shader enables SampleRateShading capability "
"and the subpass flags includes VK_SUBPASS_DESCRIPTION_FRAGMENT_REGION_BIT_QCOM.");
}
}
break;
default:
break;
}
}
}
return skip;
}
bool CoreChecks::ValidateShaderSubgroupSizeControl(const SHADER_MODULE_STATE &module_state,
safe_VkPipelineShaderStageCreateInfo const *pStage) const {
bool skip = false;
if ((pStage->flags & VK_PIPELINE_SHADER_STAGE_CREATE_ALLOW_VARYING_SUBGROUP_SIZE_BIT_EXT) != 0 &&
!enabled_features.core13.subgroupSizeControl) {
skip |= LogError(
module_state.vk_shader_module(), "VUID-VkPipelineShaderStageCreateInfo-flags-02784",
"VkPipelineShaderStageCreateInfo flags contain VK_PIPELINE_SHADER_STAGE_CREATE_ALLOW_VARYING_SUBGROUP_SIZE_BIT_EXT, "
"but the VkPhysicalDeviceSubgroupSizeControlFeaturesEXT::subgroupSizeControl feature is not enabled.");
}
if ((pStage->flags & VK_PIPELINE_SHADER_STAGE_CREATE_REQUIRE_FULL_SUBGROUPS_BIT_EXT) != 0 &&
!enabled_features.core13.computeFullSubgroups) {
skip |= LogError(
module_state.vk_shader_module(), "VUID-VkPipelineShaderStageCreateInfo-flags-02785",
"VkPipelineShaderStageCreateInfo flags contain VK_PIPELINE_SHADER_STAGE_CREATE_REQUIRE_FULL_SUBGROUPS_BIT_EXT, but the "
"VkPhysicalDeviceSubgroupSizeControlFeaturesEXT::computeFullSubgroups feature is not enabled");
}
return skip;
}
bool CoreChecks::ValidateAtomicsTypes(const SHADER_MODULE_STATE &module_state) const {
bool skip = false;
// "If sparseImageInt64Atomics is enabled, shaderImageInt64Atomics must be enabled"
const bool valid_image_64_int = enabled_features.shader_image_atomic_int64_features.shaderImageInt64Atomics == VK_TRUE;
const VkPhysicalDeviceShaderAtomicFloatFeaturesEXT &float_features = enabled_features.shader_atomic_float_features;
const VkPhysicalDeviceShaderAtomicFloat2FeaturesEXT &float2_features = enabled_features.shader_atomic_float2_features;
const bool valid_storage_buffer_float = (
(float_features.shaderBufferFloat32Atomics == VK_TRUE) ||
(float_features.shaderBufferFloat32AtomicAdd == VK_TRUE) ||
(float_features.shaderBufferFloat64Atomics == VK_TRUE) ||
(float_features.shaderBufferFloat64AtomicAdd == VK_TRUE) ||
(float2_features.shaderBufferFloat16Atomics == VK_TRUE) ||
(float2_features.shaderBufferFloat16AtomicAdd == VK_TRUE) ||
(float2_features.shaderBufferFloat16AtomicMinMax == VK_TRUE) ||
(float2_features.shaderBufferFloat32AtomicMinMax == VK_TRUE) ||
(float2_features.shaderBufferFloat64AtomicMinMax == VK_TRUE));
const bool valid_workgroup_float = (
(float_features.shaderSharedFloat32Atomics == VK_TRUE) ||
(float_features.shaderSharedFloat32AtomicAdd == VK_TRUE) ||
(float_features.shaderSharedFloat64Atomics == VK_TRUE) ||
(float_features.shaderSharedFloat64AtomicAdd == VK_TRUE) ||
(float2_features.shaderSharedFloat16Atomics == VK_TRUE) ||
(float2_features.shaderSharedFloat16AtomicAdd == VK_TRUE) ||
(float2_features.shaderSharedFloat16AtomicMinMax == VK_TRUE) ||
(float2_features.shaderSharedFloat32AtomicMinMax == VK_TRUE) ||
(float2_features.shaderSharedFloat64AtomicMinMax == VK_TRUE));
const bool valid_image_float = (
(float_features.shaderImageFloat32Atomics == VK_TRUE) ||
(float_features.shaderImageFloat32AtomicAdd == VK_TRUE) ||
(float2_features.shaderImageFloat32AtomicMinMax == VK_TRUE));
const bool valid_16_float = (
(float2_features.shaderBufferFloat16Atomics == VK_TRUE) ||
(float2_features.shaderBufferFloat16AtomicAdd == VK_TRUE) ||
(float2_features.shaderBufferFloat16AtomicMinMax == VK_TRUE) ||
(float2_features.shaderSharedFloat16Atomics == VK_TRUE) ||
(float2_features.shaderSharedFloat16AtomicAdd == VK_TRUE) ||
(float2_features.shaderSharedFloat16AtomicMinMax == VK_TRUE));
const bool valid_32_float = (
(float_features.shaderBufferFloat32Atomics == VK_TRUE) ||
(float_features.shaderBufferFloat32AtomicAdd == VK_TRUE) ||
(float_features.shaderSharedFloat32Atomics == VK_TRUE) ||
(float_features.shaderSharedFloat32AtomicAdd == VK_TRUE) ||
(float_features.shaderImageFloat32Atomics == VK_TRUE) ||
(float_features.shaderImageFloat32AtomicAdd == VK_TRUE) ||
(float2_features.shaderBufferFloat32AtomicMinMax == VK_TRUE) ||
(float2_features.shaderSharedFloat32AtomicMinMax == VK_TRUE) ||
(float2_features.shaderImageFloat32AtomicMinMax == VK_TRUE));
const bool valid_64_float = (
(float_features.shaderBufferFloat64Atomics == VK_TRUE) ||
(float_features.shaderBufferFloat64AtomicAdd == VK_TRUE) ||
(float_features.shaderSharedFloat64Atomics == VK_TRUE) ||
(float_features.shaderSharedFloat64AtomicAdd == VK_TRUE) ||
(float2_features.shaderBufferFloat64AtomicMinMax == VK_TRUE) ||
(float2_features.shaderSharedFloat64AtomicMinMax == VK_TRUE));
// clang-format on
for (const Instruction *atomic_def : module_state.GetAtomicInstructions()) {
const AtomicInstructionInfo &atomic = atomic_def->GetAtomicInfo(module_state);
const uint32_t opcode = atomic_def->Opcode();
if ((atomic.bit_width == 64) && (atomic.type == spv::OpTypeInt)) {
// Validate 64-bit image atomics
if (((atomic.storage_class == spv::StorageClassStorageBuffer) || (atomic.storage_class == spv::StorageClassUniform)) &&
(enabled_features.core12.shaderBufferInt64Atomics == VK_FALSE)) {
skip |=
LogError(device, "VUID-RuntimeSpirv-None-06278",
"%s: Can't use 64-bit int atomics operations\n%s\nwith %s storage class without "
"shaderBufferInt64Atomics enabled.",
report_data->FormatHandle(module_state.vk_shader_module()).c_str(),
module_state.DescribeInstruction(atomic_def).c_str(), string_SpvStorageClass(atomic.storage_class));
} else if ((atomic.storage_class == spv::StorageClassWorkgroup) &&
(enabled_features.core12.shaderSharedInt64Atomics == VK_FALSE)) {
skip |= LogError(device, "VUID-RuntimeSpirv-None-06279",
"%s: Can't use 64-bit int atomics operations\n%s\nwith Workgroup storage class without "
"shaderSharedInt64Atomics enabled.",
report_data->FormatHandle(module_state.vk_shader_module()).c_str(),
module_state.DescribeInstruction(atomic_def).c_str());
} else if ((atomic.storage_class == spv::StorageClassImage) && (valid_image_64_int == false)) {
skip |= LogError(device, "VUID-RuntimeSpirv-None-06288",
"%s: Can't use 64-bit int atomics operations\n%s\nwith Image storage class without "
"shaderImageInt64Atomics enabled.",
report_data->FormatHandle(module_state.vk_shader_module()).c_str(),
module_state.DescribeInstruction(atomic_def).c_str());
}
} else if (atomic.type == spv::OpTypeFloat) {
// Validate Floats
if (atomic.storage_class == spv::StorageClassStorageBuffer) {
if (valid_storage_buffer_float == false) {
const char *vuid = IsExtEnabled(device_extensions.vk_ext_shader_atomic_float2) ? "VUID-RuntimeSpirv-None-06284"
: "VUID-RuntimeSpirv-None-06280";
skip |= LogError(device, vuid,
"%s: Can't use float atomics operations\n%s\nwith StorageBuffer storage class without "
"shaderBufferFloat32Atomics or shaderBufferFloat32AtomicAdd or shaderBufferFloat64Atomics or "
"shaderBufferFloat64AtomicAdd or shaderBufferFloat16Atomics or shaderBufferFloat16AtomicAdd "
"or shaderBufferFloat16AtomicMinMax or shaderBufferFloat32AtomicMinMax or "
"shaderBufferFloat64AtomicMinMax enabled.",
report_data->FormatHandle(module_state.vk_shader_module()).c_str(),
module_state.DescribeInstruction(atomic_def).c_str());
} else if (opcode == spv::OpAtomicFAddEXT) {
if ((atomic.bit_width == 16) && (float2_features.shaderBufferFloat16AtomicAdd == VK_FALSE)) {
skip |= LogError(device, kVUID_Core_Shader_AtomicFeature,
"%s: Can't use 16-bit float atomics for add operations\n%s\nwith "
"StorageBuffer storage class without shaderBufferFloat16AtomicAdd enabled.",
report_data->FormatHandle(module_state.vk_shader_module()).c_str(),
module_state.DescribeInstruction(atomic_def).c_str());
} else if ((atomic.bit_width == 32) && (float_features.shaderBufferFloat32AtomicAdd == VK_FALSE)) {
skip |= LogError(device, kVUID_Core_Shader_AtomicFeature,
"%s: Can't use 32-bit float atomics for add operations\n%s\nwith "
"StorageBuffer storage class without shaderBufferFloat32AtomicAdd enabled.",
report_data->FormatHandle(module_state.vk_shader_module()).c_str(),
module_state.DescribeInstruction(atomic_def).c_str());
} else if ((atomic.bit_width == 64) && (float_features.shaderBufferFloat64AtomicAdd == VK_FALSE)) {
skip |= LogError(device, kVUID_Core_Shader_AtomicFeature,
"%s: Can't use 64-bit float atomics for add operations\n%s\nwith "
"StorageBuffer storage class without shaderBufferFloat64AtomicAdd enabled.",
report_data->FormatHandle(module_state.vk_shader_module()).c_str(),
module_state.DescribeInstruction(atomic_def).c_str());
}
} else if (opcode == spv::OpAtomicFMinEXT || opcode == spv::OpAtomicFMaxEXT) {
if ((atomic.bit_width == 16) && (float2_features.shaderBufferFloat16AtomicMinMax == VK_FALSE)) {
skip |= LogError(device, kVUID_Core_Shader_AtomicFeature,
"%s: Can't use 16-bit float atomics for min/max operations\n%s\nwith "
"StorageBuffer storage class without shaderBufferFloat16AtomicMinMax enabled.",
report_data->FormatHandle(module_state.vk_shader_module()).c_str(),
module_state.DescribeInstruction(atomic_def).c_str());
} else if ((atomic.bit_width == 32) && (float2_features.shaderBufferFloat32AtomicMinMax == VK_FALSE)) {
skip |= LogError(device, kVUID_Core_Shader_AtomicFeature,
"%s: Can't use 32-bit float atomics for min/max operations\n%s\nwith "
"StorageBuffer storage class without shaderBufferFloat32AtomicMinMax enabled.",
report_data->FormatHandle(module_state.vk_shader_module()).c_str(),
module_state.DescribeInstruction(atomic_def).c_str());
} else if ((atomic.bit_width == 64) && (float2_features.shaderBufferFloat64AtomicMinMax == VK_FALSE)) {
skip |= LogError(device, kVUID_Core_Shader_AtomicFeature,
"%s: Can't use 64-bit float atomics for min/max operations\n%s\nwith "
"StorageBuffer storage class without shaderBufferFloat64AtomicMinMax enabled.",
report_data->FormatHandle(module_state.vk_shader_module()).c_str(),
module_state.DescribeInstruction(atomic_def).c_str());
}
} else {
// Assume is valid load/store/exchange (rest of supported atomic operations) or else spirv-val will catch
if ((atomic.bit_width == 16) && (float2_features.shaderBufferFloat16Atomics == VK_FALSE)) {
skip |= LogError(device, kVUID_Core_Shader_AtomicFeature,
"%s: Can't use 16-bit float atomics for load/store/exhange operations\n%s\nwith "
"StorageBuffer storage class without shaderBufferFloat16Atomics enabled.",
report_data->FormatHandle(module_state.vk_shader_module()).c_str(),
module_state.DescribeInstruction(atomic_def).c_str());
} else if ((atomic.bit_width == 32) && (float_features.shaderBufferFloat32Atomics == VK_FALSE)) {
skip |= LogError(device, kVUID_Core_Shader_AtomicFeature,
"%s: Can't use 32-bit float atomics for load/store/exhange operations\n%s\nwith "
"StorageBuffer storage class without shaderBufferFloat32Atomics enabled.",
report_data->FormatHandle(module_state.vk_shader_module()).c_str(),
module_state.DescribeInstruction(atomic_def).c_str());
} else if ((atomic.bit_width == 64) && (float_features.shaderBufferFloat64Atomics == VK_FALSE)) {
skip |= LogError(device, kVUID_Core_Shader_AtomicFeature,
"%s: Can't use 64-bit float atomics for load/store/exhange operations\n%s\nwith "
"StorageBuffer storage class without shaderBufferFloat64Atomics enabled.",
report_data->FormatHandle(module_state.vk_shader_module()).c_str(),
module_state.DescribeInstruction(atomic_def).c_str());
}
}
} else if (atomic.storage_class == spv::StorageClassWorkgroup) {
if (valid_workgroup_float == false) {
const char *vuid = IsExtEnabled(device_extensions.vk_ext_shader_atomic_float2) ? "VUID-RuntimeSpirv-None-06285"
: "VUID-RuntimeSpirv-None-06281";
skip |=
LogError(device, vuid,
"%s: Can't use float atomics operations\n%s\nwith Workgroup storage class without "
"shaderSharedFloat32Atomics or "
"shaderSharedFloat32AtomicAdd or shaderSharedFloat64Atomics or shaderSharedFloat64AtomicAdd or "
"shaderSharedFloat16Atomics or shaderSharedFloat16AtomicAdd or shaderSharedFloat16AtomicMinMax or "
"shaderSharedFloat32AtomicMinMax or shaderSharedFloat64AtomicMinMax enabled.",
report_data->FormatHandle(module_state.vk_shader_module()).c_str(),
module_state.DescribeInstruction(atomic_def).c_str());
} else if (opcode == spv::OpAtomicFAddEXT) {
if ((atomic.bit_width == 16) && (float2_features.shaderSharedFloat16AtomicAdd == VK_FALSE)) {
skip |= LogError(device, kVUID_Core_Shader_AtomicFeature,
"%s: Can't use 16-bit float atomics for add operations\n%s\nwith Workgroup "
"storage class without shaderSharedFloat16AtomicAdd enabled.",
report_data->FormatHandle(module_state.vk_shader_module()).c_str(),
module_state.DescribeInstruction(atomic_def).c_str());
} else if ((atomic.bit_width == 32) && (float_features.shaderSharedFloat32AtomicAdd == VK_FALSE)) {
skip |= LogError(device, kVUID_Core_Shader_AtomicFeature,
"%s: Can't use 32-bit float atomics for add operations\n%s\nwith Workgroup "
"storage class without shaderSharedFloat32AtomicAdd enabled.",
report_data->FormatHandle(module_state.vk_shader_module()).c_str(),
module_state.DescribeInstruction(atomic_def).c_str());
} else if ((atomic.bit_width == 64) && (float_features.shaderSharedFloat64AtomicAdd == VK_FALSE)) {
skip |= LogError(device, kVUID_Core_Shader_AtomicFeature,
"%s: Can't use 64-bit float atomics for add operations\n%s\nwith Workgroup "
"storage class without shaderSharedFloat64AtomicAdd enabled.",
report_data->FormatHandle(module_state.vk_shader_module()).c_str(),
module_state.DescribeInstruction(atomic_def).c_str());
}
} else if (opcode == spv::OpAtomicFMinEXT || opcode == spv::OpAtomicFMaxEXT) {
if ((atomic.bit_width == 16) && (float2_features.shaderSharedFloat16AtomicMinMax == VK_FALSE)) {
skip |= LogError(device, kVUID_Core_Shader_AtomicFeature,
"%s: Can't use 16-bit float atomics for min/max operations\n%s\nwith "
"Workgroup storage class without shaderSharedFloat16AtomicMinMax enabled.",
report_data->FormatHandle(module_state.vk_shader_module()).c_str(),
module_state.DescribeInstruction(atomic_def).c_str());
} else if ((atomic.bit_width == 32) && (float2_features.shaderSharedFloat32AtomicMinMax == VK_FALSE)) {
skip |= LogError(device, kVUID_Core_Shader_AtomicFeature,
"%s: Can't use 32-bit float atomics for min/max operations\n%s\nwith "
"Workgroup storage class without shaderSharedFloat32AtomicMinMax enabled.",
report_data->FormatHandle(module_state.vk_shader_module()).c_str(),
module_state.DescribeInstruction(atomic_def).c_str());
} else if ((atomic.bit_width == 64) && (float2_features.shaderSharedFloat64AtomicMinMax == VK_FALSE)) {
skip |= LogError(device, kVUID_Core_Shader_AtomicFeature,
"%s: Can't use 64-bit float atomics for min/max operations\n%s\nwith "
"Workgroup storage class without shaderSharedFloat64AtomicMinMax enabled.",
report_data->FormatHandle(module_state.vk_shader_module()).c_str(),
module_state.DescribeInstruction(atomic_def).c_str());
}
} else {
// Assume is valid load/store/exchange (rest of supported atomic operations) or else spirv-val will catch
if ((atomic.bit_width == 16) && (float2_features.shaderSharedFloat16Atomics == VK_FALSE)) {
skip |= LogError(device, kVUID_Core_Shader_AtomicFeature,
"%s: Can't use 16-bit float atomics for load/store/exhange operations\n%s\nwith Workgroup "
"storage class without shaderSharedFloat16Atomics enabled.",
report_data->FormatHandle(module_state.vk_shader_module()).c_str(),
module_state.DescribeInstruction(atomic_def).c_str());
} else if ((atomic.bit_width == 32) && (float_features.shaderSharedFloat32Atomics == VK_FALSE)) {
skip |= LogError(device, kVUID_Core_Shader_AtomicFeature,
"%s: Can't use 32-bit float atomics for load/store/exhange operations\n%s\nwith Workgroup "
"storage class without shaderSharedFloat32Atomics enabled.",
report_data->FormatHandle(module_state.vk_shader_module()).c_str(),
module_state.DescribeInstruction(atomic_def).c_str());
} else if ((atomic.bit_width == 64) && (float_features.shaderSharedFloat64Atomics == VK_FALSE)) {
skip |= LogError(device, kVUID_Core_Shader_AtomicFeature,
"%s: Can't use 64-bit float atomics for load/store/exhange operations\n%s\nwith Workgroup "
"storage class without shaderSharedFloat64Atomics enabled.",
report_data->FormatHandle(module_state.vk_shader_module()).c_str(),
module_state.DescribeInstruction(atomic_def).c_str());
}
}
} else if ((atomic.storage_class == spv::StorageClassImage) && (valid_image_float == false)) {
const char *vuid = IsExtEnabled(device_extensions.vk_ext_shader_atomic_float2) ? "VUID-RuntimeSpirv-None-06286"
: "VUID-RuntimeSpirv-None-06282";
skip |= LogError(
device, vuid,
"%s: Can't use float atomics operations\n%s\nwith Image storage class without shaderImageFloat32Atomics or "
"shaderImageFloat32AtomicAdd or shaderImageFloat32AtomicMinMax enabled.",
report_data->FormatHandle(module_state.vk_shader_module()).c_str(),
module_state.DescribeInstruction(atomic_def).c_str());
} else if ((atomic.bit_width == 16) && (valid_16_float == false)) {
skip |= LogError(device, "VUID-RuntimeSpirv-None-06337",
"%s: Can't use 16-bit float atomics operations\n%s\nwithout shaderBufferFloat16Atomics, "
"shaderBufferFloat16AtomicAdd, shaderBufferFloat16AtomicMinMax, shaderSharedFloat16Atomics, "
"shaderSharedFloat16AtomicAdd or shaderSharedFloat16AtomicMinMax enabled.",
report_data->FormatHandle(module_state.vk_shader_module()).c_str(),
module_state.DescribeInstruction(atomic_def).c_str());
} else if ((atomic.bit_width == 32) && (valid_32_float == false)) {
const char *vuid = IsExtEnabled(device_extensions.vk_ext_shader_atomic_float2) ? "VUID-RuntimeSpirv-None-06338"
: "VUID-RuntimeSpirv-None-06335";
skip |= LogError(device, vuid,
"%s: Can't use 32-bit float atomics operations\n%s\nwithout shaderBufferFloat32AtomicMinMax, "
"shaderSharedFloat32AtomicMinMax, shaderImageFloat32AtomicMinMax, sparseImageFloat32AtomicMinMax, "
"shaderBufferFloat32Atomics, shaderBufferFloat32AtomicAdd, shaderSharedFloat32Atomics, "
"shaderSharedFloat32AtomicAdd, shaderImageFloat32Atomics, shaderImageFloat32AtomicAdd, "
"sparseImageFloat32Atomics or sparseImageFloat32AtomicAdd enabled.",
report_data->FormatHandle(module_state.vk_shader_module()).c_str(),
module_state.DescribeInstruction(atomic_def).c_str());
} else if ((atomic.bit_width == 64) && (valid_64_float == false)) {
const char *vuid = IsExtEnabled(device_extensions.vk_ext_shader_atomic_float2) ? "VUID-RuntimeSpirv-None-06339"
: "VUID-RuntimeSpirv-None-06336";
skip |= LogError(device, vuid,
"%s: Can't use 64-bit float atomics operations\n%s\nwithout shaderBufferFloat64AtomicMinMax, "
"shaderSharedFloat64AtomicMinMax, shaderBufferFloat64Atomics, shaderBufferFloat64AtomicAdd, "
"shaderSharedFloat64Atomics or shaderSharedFloat64AtomicAdd enabled.",
report_data->FormatHandle(module_state.vk_shader_module()).c_str(),
module_state.DescribeInstruction(atomic_def).c_str());
}
}
}
return skip;
}
bool CoreChecks::ValidateExecutionModes(const SHADER_MODULE_STATE &module_state, const Instruction &entrypoint,
VkShaderStageFlagBits stage, const PIPELINE_STATE *pipeline) const {
auto entrypoint_id = entrypoint.Word(2);
// The first denorm execution mode encountered, along with its bit width.
// Used to check if SeparateDenormSettings is respected.
std::pair<spv::ExecutionMode, uint32_t> first_denorm_execution_mode = std::make_pair(spv::ExecutionModeMax, 0);
// The first rounding mode encountered, along with its bit width.
// Used to check if SeparateRoundingModeSettings is respected.
std::pair<spv::ExecutionMode, uint32_t> first_rounding_mode = std::make_pair(spv::ExecutionModeMax, 0);
bool skip = false;
uint32_t vertices_out = 0;
uint32_t invocations = 0;
const auto &execution_mode_inst = module_state.GetExecutionModeInstructions();
auto it = execution_mode_inst.find(entrypoint_id);
if (it != execution_mode_inst.end()) {
for (const Instruction *insn : it->second) {
auto mode = insn->Word(2);
switch (mode) {
case spv::ExecutionModeSignedZeroInfNanPreserve: {
auto bit_width = insn->Word(3);
if (bit_width == 16 && !phys_dev_props_core12.shaderSignedZeroInfNanPreserveFloat16) {
skip |= LogError(
module_state.vk_shader_module(), "VUID-RuntimeSpirv-shaderSignedZeroInfNanPreserveFloat16-06293",
"Shader requires SignedZeroInfNanPreserve for bit width 16 but it is not enabled on the device\n%s",
module_state.DescribeInstruction(insn).c_str());
} else if (bit_width == 32 && !phys_dev_props_core12.shaderSignedZeroInfNanPreserveFloat32) {
skip |= LogError(
module_state.vk_shader_module(), "VUID-RuntimeSpirv-shaderSignedZeroInfNanPreserveFloat32-06294",
"Shader requires SignedZeroInfNanPreserve for bit width 32 but it is not enabled on the device\n%s",
module_state.DescribeInstruction(insn).c_str());
} else if (bit_width == 64 && !phys_dev_props_core12.shaderSignedZeroInfNanPreserveFloat64) {
skip |= LogError(
module_state.vk_shader_module(), "VUID-RuntimeSpirv-shaderSignedZeroInfNanPreserveFloat64-06295",
"Shader requires SignedZeroInfNanPreserve for bit width 64 but it is not enabled on the device\n%s",
module_state.DescribeInstruction(insn).c_str());
}
break;
}
case spv::ExecutionModeDenormPreserve: {
auto bit_width = insn->Word(3);
if (bit_width == 16 && !phys_dev_props_core12.shaderDenormPreserveFloat16) {
skip |= LogError(module_state.vk_shader_module(), "VUID-RuntimeSpirv-shaderDenormPreserveFloat16-06296",
"Shader requires DenormPreserve for bit width 16 but it is not enabled on the device\n%s",
module_state.DescribeInstruction(insn).c_str());
;
} else if (bit_width == 32 && !phys_dev_props_core12.shaderDenormPreserveFloat32) {
skip |= LogError(module_state.vk_shader_module(), "VUID-RuntimeSpirv-shaderDenormPreserveFloat32-06297",
"Shader requires DenormPreserve for bit width 32 but it is not enabled on the device\n%s",
module_state.DescribeInstruction(insn).c_str());
} else if (bit_width == 64 && !phys_dev_props_core12.shaderDenormPreserveFloat64) {
skip |= LogError(module_state.vk_shader_module(), "VUID-RuntimeSpirv-shaderDenormPreserveFloat64-06298",
"Shader requires DenormPreserve for bit width 64 but it is not enabled on the device\n%s",
module_state.DescribeInstruction(insn).c_str());
}
if (first_denorm_execution_mode.first == spv::ExecutionModeMax) {
// Register the first denorm execution mode found
first_denorm_execution_mode = std::make_pair(static_cast<spv::ExecutionMode>(mode), bit_width);
} else if (first_denorm_execution_mode.first != mode && first_denorm_execution_mode.second != bit_width) {
switch (phys_dev_props_core12.denormBehaviorIndependence) {
case VK_SHADER_FLOAT_CONTROLS_INDEPENDENCE_32_BIT_ONLY:
if (first_rounding_mode.second != 32 && bit_width != 32) {
skip |= LogError(module_state.vk_shader_module(),
"VUID-RuntimeSpirv-denormBehaviorIndependence-06289",
"Shader uses different denorm execution modes for 16 and 64-bit but "
"denormBehaviorIndependence is "
"VK_SHADER_FLOAT_CONTROLS_INDEPENDENCE_32_BIT_ONLY on the device\n%s",
module_state.DescribeInstruction(insn).c_str());
}
break;
case VK_SHADER_FLOAT_CONTROLS_INDEPENDENCE_ALL:
break;
case VK_SHADER_FLOAT_CONTROLS_INDEPENDENCE_NONE: {
skip |=
LogError(module_state.vk_shader_module(), "VUID-RuntimeSpirv-denormBehaviorIndependence-06290",
"Shader uses different denorm execution modes for different bit widths but "
"denormBehaviorIndependence is "
"VK_SHADER_FLOAT_CONTROLS_INDEPENDENCE_NONE on the device\n%s",
module_state.DescribeInstruction(insn).c_str());
break;
}
default:
break;
}
}
break;
}
case spv::ExecutionModeDenormFlushToZero: {
auto bit_width = insn->Word(3);
if (bit_width == 16 && !phys_dev_props_core12.shaderDenormFlushToZeroFloat16) {
skip |=
LogError(module_state.vk_shader_module(), "VUID-RuntimeSpirv-shaderDenormFlushToZeroFloat16-06299",
"Shader requires DenormFlushToZero for bit width 16 but it is not enabled on the device\n%s",
module_state.DescribeInstruction(insn).c_str());
} else if (bit_width == 32 && !phys_dev_props_core12.shaderDenormFlushToZeroFloat32) {
skip |=
LogError(module_state.vk_shader_module(), "VUID-RuntimeSpirv-shaderDenormFlushToZeroFloat32-06300",
"Shader requires DenormFlushToZero for bit width 32 but it is not enabled on the device\n%s",
module_state.DescribeInstruction(insn).c_str());
} else if (bit_width == 64 && !phys_dev_props_core12.shaderDenormFlushToZeroFloat64) {
skip |=
LogError(module_state.vk_shader_module(), "VUID-RuntimeSpirv-shaderDenormFlushToZeroFloat64-06301",
"Shader requires DenormFlushToZero for bit width 64 but it is not enabled on the device\n%s",
module_state.DescribeInstruction(insn).c_str());
}
if (first_denorm_execution_mode.first == spv::ExecutionModeMax) {
// Register the first denorm execution mode found
first_denorm_execution_mode = std::make_pair(static_cast<spv::ExecutionMode>(mode), bit_width);
} else if (first_denorm_execution_mode.first != mode && first_denorm_execution_mode.second != bit_width) {
switch (phys_dev_props_core12.denormBehaviorIndependence) {
case VK_SHADER_FLOAT_CONTROLS_INDEPENDENCE_32_BIT_ONLY:
if (first_rounding_mode.second != 32 && bit_width != 32) {
skip |= LogError(module_state.vk_shader_module(),
"VUID-RuntimeSpirv-denormBehaviorIndependence-06289",
"Shader uses different denorm execution modes for 16 and 64-bit but "
"denormBehaviorIndependence is "
"VK_SHADER_FLOAT_CONTROLS_INDEPENDENCE_32_BIT_ONLY on the device\n%s",
module_state.DescribeInstruction(insn).c_str());
}
break;
case VK_SHADER_FLOAT_CONTROLS_INDEPENDENCE_ALL:
break;
case VK_SHADER_FLOAT_CONTROLS_INDEPENDENCE_NONE: {
skip |=
LogError(module_state.vk_shader_module(), "VUID-RuntimeSpirv-denormBehaviorIndependence-06290",
"Shader uses different denorm execution modes for different bit widths but "
"denormBehaviorIndependence is "
"VK_SHADER_FLOAT_CONTROLS_INDEPENDENCE_NONE on the device\n%s",
module_state.DescribeInstruction(insn).c_str());
break;
}
default:
break;
}
}
break;
}
case spv::ExecutionModeRoundingModeRTE: {
auto bit_width = insn->Word(3);
if (bit_width == 16 && !phys_dev_props_core12.shaderRoundingModeRTEFloat16) {
skip |= LogError(module_state.vk_shader_module(), "VUID-RuntimeSpirv-shaderRoundingModeRTEFloat16-06302",
"Shader requires RoundingModeRTE for bit width 16 but it is not enabled on the device\n%s",
module_state.DescribeInstruction(insn).c_str());
} else if (bit_width == 32 && !phys_dev_props_core12.shaderRoundingModeRTEFloat32) {
skip |= LogError(module_state.vk_shader_module(), "VUID-RuntimeSpirv-shaderRoundingModeRTEFloat32-06303",
"Shader requires RoundingModeRTE for bit width 32 but it is not enabled on the device\n%s",
module_state.DescribeInstruction(insn).c_str());
} else if (bit_width == 64 && !phys_dev_props_core12.shaderRoundingModeRTEFloat64) {
skip |= LogError(module_state.vk_shader_module(), "VUID-RuntimeSpirv-shaderRoundingModeRTEFloat64-06304",
"Shader requires RoundingModeRTE for bit width 64 but it is not enabled on the device\n%s",
module_state.DescribeInstruction(insn).c_str());
}
if (first_rounding_mode.first == spv::ExecutionModeMax) {
// Register the first rounding mode found
first_rounding_mode = std::make_pair(static_cast<spv::ExecutionMode>(mode), bit_width);
} else if (first_rounding_mode.first != mode && first_rounding_mode.second != bit_width) {
switch (phys_dev_props_core12.roundingModeIndependence) {
case VK_SHADER_FLOAT_CONTROLS_INDEPENDENCE_32_BIT_ONLY:
if (first_rounding_mode.second != 32 && bit_width != 32) {
skip |= LogError(module_state.vk_shader_module(),
"VUID-RuntimeSpirv-roundingModeIndependence-06291",
"Shader uses different rounding modes for 16 and 64-bit but "
"roundingModeIndependence is "
"VK_SHADER_FLOAT_CONTROLS_INDEPENDENCE_32_BIT_ONLY on the device\n%s",
module_state.DescribeInstruction(insn).c_str());
}
break;
case VK_SHADER_FLOAT_CONTROLS_INDEPENDENCE_ALL:
break;
case VK_SHADER_FLOAT_CONTROLS_INDEPENDENCE_NONE: {
skip |=
LogError(module_state.vk_shader_module(), "VUID-RuntimeSpirv-roundingModeIndependence-06292",
"Shader uses different rounding modes for different bit widths but "
"roundingModeIndependence is "
"VK_SHADER_FLOAT_CONTROLS_INDEPENDENCE_NONE on the device\n%s",
module_state.DescribeInstruction(insn).c_str());
break;
}
default:
break;
}
}
break;
}
case spv::ExecutionModeRoundingModeRTZ: {
auto bit_width = insn->Word(3);
if (bit_width == 16 && !phys_dev_props_core12.shaderRoundingModeRTZFloat16) {
skip |= LogError(module_state.vk_shader_module(), "VUID-RuntimeSpirv-shaderRoundingModeRTZFloat16-06305",
"Shader requires RoundingModeRTZ for bit width 16 but it is not enabled on the device\n%s",
module_state.DescribeInstruction(insn).c_str());
} else if (bit_width == 32 && !phys_dev_props_core12.shaderRoundingModeRTZFloat32) {
skip |= LogError(module_state.vk_shader_module(), "VUID-RuntimeSpirv-shaderRoundingModeRTZFloat32-06306",
"Shader requires RoundingModeRTZ for bit width 32 but it is not enabled on the device\n%s",
module_state.DescribeInstruction(insn).c_str());
} else if (bit_width == 64 && !phys_dev_props_core12.shaderRoundingModeRTZFloat64) {
skip |= LogError(module_state.vk_shader_module(), "VUID-RuntimeSpirv-shaderRoundingModeRTZFloat64-06307",
"Shader requires RoundingModeRTZ for bit width 64 but it is not enabled on the device\n%s",
module_state.DescribeInstruction(insn).c_str());
}
if (first_rounding_mode.first == spv::ExecutionModeMax) {
// Register the first rounding mode found
first_rounding_mode = std::make_pair(static_cast<spv::ExecutionMode>(mode), bit_width);
} else if (first_rounding_mode.first != mode && first_rounding_mode.second != bit_width) {
switch (phys_dev_props_core12.roundingModeIndependence) {
case VK_SHADER_FLOAT_CONTROLS_INDEPENDENCE_32_BIT_ONLY:
if (first_rounding_mode.second != 32 && bit_width != 32) {
skip |= LogError(module_state.vk_shader_module(),
"VUID-RuntimeSpirv-roundingModeIndependence-06291",
"Shader uses different rounding modes for 16 and 64-bit but "
"roundingModeIndependence is "
"VK_SHADER_FLOAT_CONTROLS_INDEPENDENCE_32_BIT_ONLY on the device\n%s",
module_state.DescribeInstruction(insn).c_str());
}
break;
case VK_SHADER_FLOAT_CONTROLS_INDEPENDENCE_ALL:
break;
case VK_SHADER_FLOAT_CONTROLS_INDEPENDENCE_NONE: {
skip |=
LogError(module_state.vk_shader_module(), "VUID-RuntimeSpirv-roundingModeIndependence-06292",
"Shader uses different rounding modes for different bit widths but "
"roundingModeIndependence is "
"VK_SHADER_FLOAT_CONTROLS_INDEPENDENCE_NONE on the device\n%s",
module_state.DescribeInstruction(insn).c_str());
break;
}
default:
break;
}
}
break;
}
case spv::ExecutionModeOutputVertices: {
vertices_out = insn->Word(3);
break;
}
case spv::ExecutionModeInvocations: {
invocations = insn->Word(3);
break;
}
case spv::ExecutionModeLocalSizeId: {
if (!enabled_features.core13.maintenance4) {
skip |= LogError(module_state.vk_shader_module(), "VUID-RuntimeSpirv-LocalSizeId-06434",
"LocalSizeId execution mode used but maintenance4 feature not enabled");
}
if (!IsExtEnabled(device_extensions.vk_khr_maintenance4)) {
skip |= LogError(module_state.vk_shader_module(), "VUID-RuntimeSpirv-LocalSizeId-06433",
"LocalSizeId execution mode used but maintenance4 extension is not enabled and used "
"Vulkan api version is 1.2 or less");
}
break;
}
case spv::ExecutionModeEarlyFragmentTests: {
const auto *ds_state = (pipeline) ? pipeline->DepthStencilState() : nullptr;
if ((stage == VK_SHADER_STAGE_FRAGMENT_BIT) &&
(ds_state &&
(ds_state->flags &
(VK_PIPELINE_DEPTH_STENCIL_STATE_CREATE_RASTERIZATION_ORDER_ATTACHMENT_DEPTH_ACCESS_BIT_ARM |
VK_PIPELINE_DEPTH_STENCIL_STATE_CREATE_RASTERIZATION_ORDER_ATTACHMENT_STENCIL_ACCESS_BIT_ARM)) != 0)) {
skip |= LogError(
module_state.vk_shader_module(), "VUID-VkGraphicsPipelineCreateInfo-flags-06591",
"The fragment shader enables early fragment tests, but VkPipelineDepthStencilStateCreateInfo::flags == "
"%s",
string_VkPipelineDepthStencilStateCreateFlags(ds_state->flags).c_str());
}
break;
}
case spv::ExecutionModeSubgroupUniformControlFlowKHR: {
if (!enabled_features.shader_subgroup_uniform_control_flow_features.shaderSubgroupUniformControlFlow ||
(phys_dev_ext_props.subgroup_properties.supportedStages & stage) == 0 ||
module_state.HasInvocationRepackInstruction()) {
std::stringstream msg;
if (!enabled_features.shader_subgroup_uniform_control_flow_features.shaderSubgroupUniformControlFlow) {
msg << "shaderSubgroupUniformControlFlow feature must be enabled";
} else if ((phys_dev_ext_props.subgroup_properties.supportedStages & stage) == 0) {
msg << "stage" << string_VkShaderStageFlagBits(stage)
<< " must be in VkPhysicalDeviceSubgroupProperties::supportedStages("
<< string_VkShaderStageFlags(phys_dev_ext_props.subgroup_properties.supportedStages) << ")";
} else {
msg << "the shader must not use any invocation repack instructions";
}
skip |= LogError(module_state.vk_shader_module(), "VUID-RuntimeSpirv-SubgroupUniformControlFlowKHR-06379",
"If ExecutionModeSubgroupUniformControlFlowKHR is used %s.", msg.str().c_str());
}
} break;
}
}
}
if (entrypoint.Word(1) == spv::ExecutionModelGeometry) {
if (vertices_out == 0 || vertices_out > phys_dev_props.limits.maxGeometryOutputVertices) {
skip |= LogError(module_state.vk_shader_module(), "VUID-VkPipelineShaderStageCreateInfo-stage-00714",
"Geometry shader entry point must have an OpExecutionMode instruction that "
"specifies a maximum output vertex count that is greater than 0 and less "
"than or equal to maxGeometryOutputVertices. "
"OutputVertices=%d, maxGeometryOutputVertices=%d",
vertices_out, phys_dev_props.limits.maxGeometryOutputVertices);
}
if (invocations == 0 || invocations > phys_dev_props.limits.maxGeometryShaderInvocations) {
skip |= LogError(module_state.vk_shader_module(), "VUID-VkPipelineShaderStageCreateInfo-stage-00715",
"Geometry shader entry point must have an OpExecutionMode instruction that "
"specifies an invocation count that is greater than 0 and less "
"than or equal to maxGeometryShaderInvocations. "
"Invocations=%d, maxGeometryShaderInvocations=%d",
invocations, phys_dev_props.limits.maxGeometryShaderInvocations);
}
}
return skip;
}
// For given pipelineLayout verify that the set_layout_node at slot.first
// has the requested binding at slot.second and return ptr to that binding
static VkDescriptorSetLayoutBinding const *GetDescriptorBinding(PIPELINE_LAYOUT_STATE const *pipelineLayout,
DescriptorSlot slot) {
if (!pipelineLayout) return nullptr;
if (slot.set >= pipelineLayout->set_layouts.size()) return nullptr;
return pipelineLayout->set_layouts[slot.set]->GetDescriptorSetLayoutBindingPtrFromBinding(slot.binding);
}
// If PointList topology is specified in the pipeline, verify that a shader geometry stage writes PointSize
// o If there is only a vertex shader : gl_PointSize must be written when using points
// o If there is a geometry or tessellation shader:
// - If shaderTessellationAndGeometryPointSize feature is enabled:
// * gl_PointSize must be written in the final geometry stage
// - If shaderTessellationAndGeometryPointSize feature is disabled:
// * gl_PointSize must NOT be written and a default of 1.0 is assumed
bool CoreChecks::ValidatePointListShaderState(const PIPELINE_STATE *pipeline, const SHADER_MODULE_STATE &module_state,
const Instruction &entrypoint, VkShaderStageFlagBits stage) const {
if (pipeline->topology_at_rasterizer != VK_PRIMITIVE_TOPOLOGY_POINT_LIST) {
return false;
}
bool pointsize_written = false;
bool skip = false;
// Search for PointSize built-in decorations
for (const Instruction *insn : module_state.GetBuiltinDecorationList()) {
if (insn->GetBuiltIn() == spv::BuiltInPointSize) {
pointsize_written = module_state.IsBuiltInWritten(insn, entrypoint);
if (pointsize_written) {
break;
}
}
}
if ((stage == VK_SHADER_STAGE_TESSELLATION_EVALUATION_BIT || stage == VK_SHADER_STAGE_GEOMETRY_BIT) &&
!enabled_features.core.shaderTessellationAndGeometryPointSize) {
if (pointsize_written) {
skip |= LogError(module_state.vk_shader_module(), kVUID_Core_Shader_PointSizeBuiltInOverSpecified,
"Pipeline topology is set to POINT_LIST and geometry or tessellation shaders write PointSize which "
"is prohibited when the shaderTessellationAndGeometryPointSize feature is not enabled.");
}
} else if (!pointsize_written) {
skip |=
LogError(module_state.vk_shader_module(), kVUID_Core_Shader_MissingPointSizeBuiltIn,
"Pipeline topology is set to POINT_LIST, but PointSize is not written to in the shader corresponding to %s.",
string_VkShaderStageFlagBits(stage));
}
return skip;
}
bool CoreChecks::ValidatePrimitiveRateShaderState(const PIPELINE_STATE *pipeline, const SHADER_MODULE_STATE &module_state,
const Instruction &entrypoint, VkShaderStageFlagBits stage) const {
bool primitiverate_written = false;
bool viewportindex_written = false;
bool viewportmask_written = false;
bool skip = false;
// Check if the primitive shading rate is written
for (const Instruction *insn : module_state.GetBuiltinDecorationList()) {
spv::BuiltIn builtin = insn->GetBuiltIn();
if (builtin == spv::BuiltInPrimitiveShadingRateKHR) {
primitiverate_written = module_state.IsBuiltInWritten(insn, entrypoint);
} else if (builtin == spv::BuiltInViewportIndex) {
viewportindex_written = module_state.IsBuiltInWritten(insn, entrypoint);
} else if (builtin == spv::BuiltInViewportMaskNV) {
viewportmask_written = module_state.IsBuiltInWritten(insn, entrypoint);
}
if (primitiverate_written && viewportindex_written && viewportmask_written) {
break;
}
}
const auto viewport_state = pipeline->ViewportState();
if (!phys_dev_ext_props.fragment_shading_rate_props.primitiveFragmentShadingRateWithMultipleViewports &&
(pipeline->GetPipelineType() == VK_PIPELINE_BIND_POINT_GRAPHICS) && viewport_state) {
if (!IsDynamic(pipeline, VK_DYNAMIC_STATE_VIEWPORT_WITH_COUNT_EXT) && viewport_state->viewportCount > 1 &&
primitiverate_written) {
skip |= LogError(module_state.vk_shader_module(),
"VUID-VkGraphicsPipelineCreateInfo-primitiveFragmentShadingRateWithMultipleViewports-04503",
"vkCreateGraphicsPipelines: %s shader statically writes to PrimitiveShadingRateKHR built-in, but "
"multiple viewports "
"are used and the primitiveFragmentShadingRateWithMultipleViewports limit is not supported.",
string_VkShaderStageFlagBits(stage));
}
if (primitiverate_written && viewportindex_written) {
skip |= LogError(module_state.vk_shader_module(),
"VUID-VkGraphicsPipelineCreateInfo-primitiveFragmentShadingRateWithMultipleViewports-04504",
"vkCreateGraphicsPipelines: %s shader statically writes to both PrimitiveShadingRateKHR and "
"ViewportIndex built-ins,"
"but the primitiveFragmentShadingRateWithMultipleViewports limit is not supported.",
string_VkShaderStageFlagBits(stage));
}
if (primitiverate_written && viewportmask_written) {
skip |= LogError(module_state.vk_shader_module(),
"VUID-VkGraphicsPipelineCreateInfo-primitiveFragmentShadingRateWithMultipleViewports-04505",
"vkCreateGraphicsPipelines: %s shader statically writes to both PrimitiveShadingRateKHR and "
"ViewportMaskNV built-ins,"
"but the primitiveFragmentShadingRateWithMultipleViewports limit is not supported.",
string_VkShaderStageFlagBits(stage));
}
}
return skip;
}
bool CoreChecks::ValidateDecorations(const SHADER_MODULE_STATE &module_state) const {
bool skip = false;
std::vector<const Instruction *> xfb_streams;
std::vector<const Instruction *> xfb_buffers;
std::vector<const Instruction *> xfb_offsets;
for (const Instruction *op_decorate : module_state.GetDecorationInstructions()) {
uint32_t decoration = op_decorate->Word(2);
if (decoration == spv::DecorationXfbStride) {
uint32_t stride = op_decorate->Word(3);
if (stride > phys_dev_ext_props.transform_feedback_props.maxTransformFeedbackBufferDataStride) {
skip |= LogError(
module_state.vk_shader_module(), "VUID-RuntimeSpirv-XfbStride-06313",
"vkCreateGraphicsPipelines(): shader uses transform feedback with xfb_stride (%" PRIu32
") greater than VkPhysicalDeviceTransformFeedbackPropertiesEXT::maxTransformFeedbackBufferDataStride (%" PRIu32
").",
stride, phys_dev_ext_props.transform_feedback_props.maxTransformFeedbackBufferDataStride);
}
}
if (decoration == spv::DecorationStream) {
xfb_streams.push_back(op_decorate);
uint32_t stream = op_decorate->Word(3);
if (stream >= phys_dev_ext_props.transform_feedback_props.maxTransformFeedbackStreams) {
skip |= LogError(
module_state.vk_shader_module(), "VUID-RuntimeSpirv-Stream-06312",
"vkCreateGraphicsPipelines(): shader uses transform feedback with stream (%" PRIu32
") not less than VkPhysicalDeviceTransformFeedbackPropertiesEXT::maxTransformFeedbackStreams (%" PRIu32 ").",
stream, phys_dev_ext_props.transform_feedback_props.maxTransformFeedbackStreams);
}
}
if (decoration == spv::DecorationXfbBuffer) {
xfb_buffers.push_back(op_decorate);
}
if (decoration == spv::DecorationOffset) {
xfb_offsets.push_back(op_decorate);
}
}
// XfbBuffer, buffer data size
std::vector<std::pair<uint32_t, uint32_t>> buffer_data_sizes;
for (const Instruction *op_decorate : xfb_offsets) {
for (const Instruction *xfb_buffer : xfb_buffers) {
if (xfb_buffer->Word(1) == op_decorate->Word(1)) {
const auto offset = op_decorate->Word(3);
const Instruction *def = module_state.FindDef(xfb_buffer->Word(1));
const auto size = module_state.GetTypeBytesSize(def);
const uint32_t buffer_data_size = offset + size;
if (buffer_data_size > phys_dev_ext_props.transform_feedback_props.maxTransformFeedbackBufferDataSize) {
skip |= LogError(
module_state.vk_shader_module(), "VUID-RuntimeSpirv-Offset-06308",
"vkCreateGraphicsPipelines(): shader uses transform feedback with xfb_offset (%" PRIu32
") + size of variable (%" PRIu32
") greater than VkPhysicalDeviceTransformFeedbackPropertiesEXT::maxTransformFeedbackBufferDataSize "
"(%" PRIu32 ").",
offset, size, phys_dev_ext_props.transform_feedback_props.maxTransformFeedbackBufferDataSize);
}
bool found = false;
for (auto &bds : buffer_data_sizes) {
if (bds.first == xfb_buffer->Word(1)) {
bds.second = std::max(bds.second, buffer_data_size);
found = true;
break;
}
}
if (!found) {
buffer_data_sizes.emplace_back(xfb_buffer->Word(1), buffer_data_size);
}
break;
}
}
}
std::unordered_map<uint32_t, uint32_t> stream_data_size;
for (const Instruction *xfb_stream : xfb_streams) {
for (const auto& bds : buffer_data_sizes) {
if (xfb_stream->Word(1) == bds.first) {
uint32_t stream = xfb_stream->Word(3);
const auto itr = stream_data_size.find(stream);
if (itr != stream_data_size.end()) {
itr->second += bds.second;
} else {
stream_data_size.insert({stream, bds.second});
}
}
}
}
for (const auto& stream : stream_data_size) {
if (stream.second > phys_dev_ext_props.transform_feedback_props.maxTransformFeedbackStreamDataSize) {
skip |= LogError(module_state.vk_shader_module(), "VUID-RuntimeSpirv-XfbBuffer-06309",
"vkCreateGraphicsPipelines(): shader uses transform feedback with stream (%" PRIu32
") having the sum of buffer data sizes (%" PRIu32
") not less than VkPhysicalDeviceTransformFeedbackPropertiesEXT::maxTransformFeedbackBufferDataSize "
"(%" PRIu32 ").",
stream.first, stream.second,
phys_dev_ext_props.transform_feedback_props.maxTransformFeedbackBufferDataSize);
}
}
return skip;
}
bool CoreChecks::ValidateComputeSharedMemory(const SHADER_MODULE_STATE &module_state, uint32_t total_shared_size) const {
bool skip = false;
// If not found before with spec constants, find here
if (total_shared_size == 0) {
// when using WorkgroupMemoryExplicitLayoutKHR
// either all or none the structs are decorated with Block,
// if using block, all must decorated with Aliased.
// In this case we want to find the MAX not ADD the block sizes
bool find_max_block = false;
for (const Instruction *insn : module_state.GetVariableInstructions()) {
// StorageClass Workgroup is shared memory
if (insn->Word(3) == spv::StorageClassWorkgroup) {
if (module_state.get_decorations(insn->Word(2)).flags & decoration_set::aliased_bit) {
find_max_block = true;
}
const uint32_t result_type_id = insn->Word(1);
const Instruction *result_type = module_state.FindDef(result_type_id);
const Instruction *type = module_state.FindDef(result_type->Word(3));
const uint32_t variable_shared_size = module_state.GetTypeBytesSize(type);
if (find_max_block) {
total_shared_size = std::max(total_shared_size, variable_shared_size);
} else {
total_shared_size += variable_shared_size;
}
}
}
}
if (total_shared_size > phys_dev_props.limits.maxComputeSharedMemorySize) {
skip |=
LogError(module_state.vk_shader_module(), "VUID-RuntimeSpirv-Workgroup-06530",
"Shader uses %" PRIu32
" bytes of shared memory, more than allowed by physicalDeviceLimits::maxComputeSharedMemorySize (%" PRIu32 ")",
total_shared_size, phys_dev_props.limits.maxComputeSharedMemorySize);
}
return skip;
}
bool CoreChecks::ValidateShaderModuleId(const SHADER_MODULE_STATE &module_state, const PipelineStageState &stage_state,
const safe_VkPipelineShaderStageCreateInfo *pStage, const VkPipelineCreateFlags flags) const {
bool skip = false;
const auto module_identifier = LvlFindInChain<VkPipelineShaderStageModuleIdentifierCreateInfoEXT>(pStage->pNext);
const auto module_create_info = LvlFindInChain<VkShaderModuleCreateInfo>(pStage->pNext);
if (module_identifier && (module_identifier->identifierSize > 0)) {
if (!(enabled_features.shader_module_identifier_features.shaderModuleIdentifier)) {
skip |= LogError(
device, "VUID-VkPipelineShaderStageModuleIdentifierCreateInfoEXT-pNext-06850",
"%s module (stage %s) VkPipelineShaderStageCreateInfo has a VkPipelineShaderStageModuleIdentifierCreateInfoEXT "
"struct in the pNext chain but the shaderModuleIdentifier feature is not enabled",
report_data->FormatHandle(module_state.vk_shader_module()).c_str(),
string_VkShaderStageFlagBits(stage_state.stage_flag));
}
if (!(flags & VK_PIPELINE_CREATE_FAIL_ON_PIPELINE_COMPILE_REQUIRED_BIT)) {
skip |= LogError(
device, "VUID-VkPipelineShaderStageModuleIdentifierCreateInfoEXT-pNext-06851",
"%s module (stage %s) VkPipelineShaderStageCreateInfo has a VkPipelineShaderStageModuleIdentifierCreateInfoEXT "
"struct in the pNext chain whose identifierSize is > 0 (%" PRIu32
"), but the "
"VK_PIPELINE_CREATE_FAIL_ON_PIPELINE_COMPILE_REQUIRED_BIT bit is not set in the pipeline create flags",
report_data->FormatHandle(module_state.vk_shader_module()).c_str(),
string_VkShaderStageFlagBits(stage_state.stage_flag), module_identifier->identifierSize);
}
if (module_identifier->identifierSize > VK_MAX_SHADER_MODULE_IDENTIFIER_SIZE_EXT) {
skip |= LogError(
device, "VUID-VkPipelineShaderStageModuleIdentifierCreateInfoEXT-identifierSize-06852",
"%s module (stage %s) VkPipelineShaderStageCreateInfo has a VkPipelineShaderStageModuleIdentifierCreateInfoEXT "
"struct in the pNext chain whose identifierSize (%" PRIu32
") is > VK_MAX_SHADER_MODULE_IDENTIFIER_SIZE_EXT (%" PRIu32 ")",
report_data->FormatHandle(module_state.vk_shader_module()).c_str(),
string_VkShaderStageFlagBits(stage_state.stage_flag), module_identifier->identifierSize,
VK_MAX_SHADER_MODULE_IDENTIFIER_SIZE_EXT);
}
}
if (module_identifier && module_create_info) {
skip |= LogError(
device, "VUID-VkPipelineShaderStageCreateInfo-stage-06844",
"%s module (stage %s) VkPipelineShaderStageCreateInfo has both a VkPipelineShaderStageModuleIdentifierCreateInfoEXT "
"struct and a VkShaderModuleCreateInfo struct in the pNext chain",
report_data->FormatHandle(module_state.vk_shader_module()).c_str(),
string_VkShaderStageFlagBits(stage_state.stage_flag));
}
if (enabled_features.graphics_pipeline_library_features.graphicsPipelineLibrary) {
if (!module_identifier && pStage->module == VK_NULL_HANDLE && !module_create_info) {
skip |= LogError(
device, "VUID-VkPipelineShaderStageCreateInfo-stage-06845",
"%s module (stage %s) VkPipelineShaderStageCreateInfo has no VkPipelineShaderStageModuleIdentifierCreateInfoEXT "
"struct and no VkShaderModuleCreateInfo struct in the pNext chain, and module is not a valid VkShaderModule",
report_data->FormatHandle(module_state.vk_shader_module()).c_str(),
string_VkShaderStageFlagBits(stage_state.stage_flag));
}
} else {
if (!module_identifier && pStage->module == VK_NULL_HANDLE) {
const char *vuid = IsExtEnabled(device_extensions.vk_khr_pipeline_library)
? "VUID-VkPipelineShaderStageCreateInfo-stage-06846"
: "VUID-VkPipelineShaderStageCreateInfo-stage-06847";
skip |= LogError(
device, vuid,
"%s module (stage %s) VkPipelineShaderStageCreateInfo has no VkPipelineShaderStageModuleIdentifierCreateInfoEXT "
"struct in the pNext chain, the graphicsPipelineLibrary feature is not enabled, and module is not a valid "
"VkShaderModule",
report_data->FormatHandle(module_state.vk_shader_module()).c_str(),
string_VkShaderStageFlagBits(stage_state.stage_flag));
}
}
if (module_identifier && pStage->module != VK_NULL_HANDLE) {
skip |= LogError(
device, "VUID-VkPipelineShaderStageCreateInfo-stage-06848",
"%s module (stage %s) VkPipelineShaderStageCreateInfo has a VkPipelineShaderStageModuleIdentifierCreateInfoEXT "
"struct in the pNext chain, and module is not VK_NULL_HANDLE",
report_data->FormatHandle(module_state.vk_shader_module()).c_str(),
string_VkShaderStageFlagBits(stage_state.stage_flag));
}
return skip;
}
// Temporary data of a OpVariable when validating it.
// If found useful in another location, can move out to the header
struct VariableInstInfo {
bool has_8bit = false;
bool has_16bit = false;
};
// easier to use recursion to traverse the OpTypeStruct
static void GetVariableInfo(const SHADER_MODULE_STATE &module_state, const Instruction *insn, VariableInstInfo &info) {
if (!insn) {
return;
} else if (insn->Opcode() == spv::OpTypeFloat || insn->Opcode() == spv::OpTypeInt) {
const uint32_t bit_width = insn->Word(2);
info.has_8bit |= (bit_width == 8);
info.has_16bit |= (bit_width == 16);
} else if (insn->Opcode() == spv::OpTypeStruct) {
for (uint32_t i = 2; i < insn->Length(); i++) {
const Instruction *base_insn = GetBaseTypeInstruction(module_state, insn->Word(i));
GetVariableInfo(module_state, base_insn, info);
}
}
}
bool CoreChecks::ValidateVariables(const SHADER_MODULE_STATE &module_state) const {
bool skip = false;
for (const Instruction *insn : module_state.GetVariableInstructions()) {
const uint32_t storage_class = insn->Word(3);
if (storage_class == spv::StorageClassWorkgroup) {
// If Workgroup variable is initalized, make sure the feature is enabled
if (insn->Length() > 4 && !enabled_features.core13.shaderZeroInitializeWorkgroupMemory) {
const char *vuid = IsExtEnabled(device_extensions.vk_khr_zero_initialize_workgroup_memory)
? "VUID-RuntimeSpirv-shaderZeroInitializeWorkgroupMemory-06372"
: "VUID-RuntimeSpirv-OpVariable-06373";
skip |= LogError(
module_state.vk_shader_module(), vuid,
"vkCreateShaderModule(): "
"VkPhysicalDeviceZeroInitializeWorkgroupMemoryFeaturesKHR::shaderZeroInitializeWorkgroupMemory is not enabled, "
"but shader contains an OpVariable with Workgroup Storage Class with an Initializer operand.\n%s",
module_state.DescribeInstruction(insn).c_str());
}
}
const Instruction *type_pointer = module_state.FindDef(insn->Word(1));
const Instruction *type = module_state.FindDef(type_pointer->Word(3));
// type will either be a float, int, or struct and if struct need to traverse it
VariableInstInfo info;
GetVariableInfo(module_state, type, info);
if (info.has_8bit) {
if (!enabled_features.core12.storageBuffer8BitAccess &&
(storage_class == spv::StorageClassStorageBuffer || storage_class == spv::StorageClassShaderRecordBufferKHR || storage_class == spv::StorageClassPhysicalStorageBuffer)) {
skip |= LogError(module_state.vk_shader_module(), "VUID-RuntimeSpirv-storageBuffer8BitAccess-06328",
"vkCreateShaderModule(): storageBuffer8BitAccess is not enabled, but shader contains an 8-bit "
"OpVariable with %s Storage Class.\n%s",
string_SpvStorageClass(storage_class), module_state.DescribeInstruction(insn).c_str());
}
if (!enabled_features.core12.uniformAndStorageBuffer8BitAccess && storage_class == spv::StorageClassUniform) {
skip |= LogError(module_state.vk_shader_module(), "VUID-RuntimeSpirv-uniformAndStorageBuffer8BitAccess-06329",
"vkCreateShaderModule(): uniformAndStorageBuffer8BitAccess is not enabled, but shader contains an "
"8-bit OpVariable with Uniform Storage Class.\n%s",
module_state.DescribeInstruction(insn).c_str());
}
if (!enabled_features.core12.storagePushConstant8 && storage_class == spv::StorageClassPushConstant) {
skip |= LogError(module_state.vk_shader_module(), "VUID-RuntimeSpirv-storagePushConstant8-06330",
"vkCreateShaderModule(): storagePushConstant8 is not enabled, but shader contains an 8-bit "
"OpVariable with PushConstant Storage Class.\n%s",
module_state.DescribeInstruction(insn).c_str());
}
}
if (info.has_16bit) {
if (!enabled_features.core11.storageBuffer16BitAccess &&
(storage_class == spv::StorageClassStorageBuffer || storage_class == spv::StorageClassShaderRecordBufferKHR || storage_class == spv::StorageClassPhysicalStorageBuffer)) {
skip |= LogError(module_state.vk_shader_module(), "VUID-RuntimeSpirv-storageBuffer16BitAccess-06331",
"vkCreateShaderModule(): storageBuffer16BitAccess is not enabled, but shader contains an 16-bit "
"OpVariable with %s Storage Class.\n%s",
string_SpvStorageClass(storage_class), module_state.DescribeInstruction(insn).c_str());
}
if (!enabled_features.core11.uniformAndStorageBuffer16BitAccess && storage_class == spv::StorageClassUniform) {
skip |= LogError(module_state.vk_shader_module(), "VUID-RuntimeSpirv-uniformAndStorageBuffer16BitAccess-06332",
"vkCreateShaderModule(): uniformAndStorageBuffer16BitAccess is not enabled, but shader contains an "
"16-bit OpVariable with Uniform Storage Class.\n%s",
module_state.DescribeInstruction(insn).c_str());
}
if (!enabled_features.core11.storagePushConstant16 && storage_class == spv::StorageClassPushConstant) {
skip |= LogError(module_state.vk_shader_module(), "VUID-RuntimeSpirv-storagePushConstant16-06333",
"vkCreateShaderModule(): storagePushConstant16 is not enabled, but shader contains an 16-bit "
"OpVariable with PushConstant Storage Class.\n%s",
module_state.DescribeInstruction(insn).c_str());
}
if (!enabled_features.core11.storageInputOutput16 &&
(storage_class == spv::StorageClassInput || storage_class == spv::StorageClassOutput)) {
skip |= LogError(module_state.vk_shader_module(), "VUID-RuntimeSpirv-storageInputOutput16-06334",
"vkCreateShaderModule(): storageInputOutput16 is not enabled, but shader contains an 16-bit "
"OpVariable with %s Storage Class.\n%s",
string_SpvStorageClass(storage_class), module_state.DescribeInstruction(insn).c_str());
}
}
// Checks based off shaderStorageImage(Read|Write)WithoutFormat are
// disabled if VK_KHR_format_feature_flags2 is supported.
//
// https://github.com/KhronosGroup/Vulkan-Docs/blob/6177645341afc/appendices/spirvenv.txt#L553
//
// The other checks need to take into account the format features and so
// we apply that in the descriptor set matching validation code (see
// descriptor_sets.cpp).
if (!has_format_feature2) {
skip |= ValidateShaderStorageImageFormatsVariables(module_state, insn);
}
}
return skip;
}
bool CoreChecks::ValidateTransformFeedback(const SHADER_MODULE_STATE &module_state) const {
bool skip = false;
// Temp workaround to prevent false positive errors
// https://github.com/KhronosGroup/Vulkan-ValidationLayers/issues/2450
if (module_state.HasMultipleEntryPoints()) {
return skip;
}
layer_data::unordered_set<uint32_t> emitted_streams;
bool output_points = false;
// TODO - Don't do a full loop here over the module
for (const Instruction &insn : module_state.GetInstructions()) {
const uint32_t opcode = insn.Opcode();
if (opcode == spv::OpEmitStreamVertex) {
emitted_streams.emplace(static_cast<uint32_t>(module_state.GetConstantValueById(insn.Word(1))));
}
if (opcode == spv::OpEmitStreamVertex || opcode == spv::OpEndStreamPrimitive) {
uint32_t stream = static_cast<uint32_t>(module_state.GetConstantValueById(insn.Word(1)));
if (stream >= phys_dev_ext_props.transform_feedback_props.maxTransformFeedbackStreams) {
skip |= LogError(
module_state.vk_shader_module(), "VUID-RuntimeSpirv-OpEmitStreamVertex-06310",
"vkCreateGraphicsPipelines(): shader uses transform feedback stream\n%s\nwith index %" PRIu32
", which is not less than VkPhysicalDeviceTransformFeedbackPropertiesEXT::maxTransformFeedbackStreams (%" PRIu32
").",
module_state.DescribeInstruction(&insn).c_str(), stream,
phys_dev_ext_props.transform_feedback_props.maxTransformFeedbackStreams);
}
}
if ((opcode == spv::OpExecutionMode || opcode == spv::OpExecutionModeId) &&
insn.Word(2) == spv::ExecutionModeOutputPoints) {
output_points = true;
}
}
const uint32_t emitted_streams_size = static_cast<uint32_t>(emitted_streams.size());
if (emitted_streams_size > 1 && !output_points &&
phys_dev_ext_props.transform_feedback_props.transformFeedbackStreamsLinesTriangles == VK_FALSE) {
skip |=
LogError(module_state.vk_shader_module(), "VUID-RuntimeSpirv-transformFeedbackStreamsLinesTriangles-06311",
"vkCreateGraphicsPipelines(): shader emits to %" PRIu32
" vertex streams and VkPhysicalDeviceTransformFeedbackPropertiesEXT::transformFeedbackStreamsLinesTriangles "
"is VK_FALSE, but execution mode is not OutputPoints.",
emitted_streams_size);
}
return skip;
}
// Checks for both TexelOffset and TexelGatherOffset limits
bool CoreChecks::ValidateTexelOffsetLimits(const SHADER_MODULE_STATE &module_state, const Instruction &insn) const {
bool skip = false;
const uint32_t opcode = insn.Opcode();
if (ImageGatherOperation(opcode) || ImageSampleOperation(opcode) || ImageFetchOperation(opcode)) {
uint32_t image_operand_position = OpcodeImageOperandsPosition(opcode);
// Image operands can be optional
if (image_operand_position != 0 && insn.Length() > image_operand_position) {
auto image_operand = insn.Word(image_operand_position);
// Bits we are validating (sample/fetch only check ConstOffset)
uint32_t offset_bits =
ImageGatherOperation(opcode)
? (spv::ImageOperandsOffsetMask | spv::ImageOperandsConstOffsetMask | spv::ImageOperandsConstOffsetsMask)
: (spv::ImageOperandsConstOffsetMask);
if (image_operand & (offset_bits)) {
// Operand values follow
uint32_t index = image_operand_position + 1;
// Each bit has it's own operand, starts with the smallest set bit and loop to the highest bit among
// ImageOperandsOffsetMask, ImageOperandsConstOffsetMask and ImageOperandsConstOffsetsMask
for (uint32_t i = 1; i < spv::ImageOperandsConstOffsetsMask; i <<= 1) {
if (image_operand & i) { // If the bit is set, consume operand
if (insn.Length() > index && (i & offset_bits)) {
uint32_t constant_id = insn.Word(index);
const Instruction *constant = module_state.FindDef(constant_id);
const bool is_dynamic_offset = constant == nullptr;
if (!is_dynamic_offset && constant->Opcode() == spv::OpConstantComposite) {
for (uint32_t j = 3; j < constant->Length(); ++j) {
uint32_t comp_id = constant->Word(j);
const Instruction *comp = module_state.FindDef(comp_id);
const Instruction *comp_type = module_state.FindDef(comp->Word(1));
// Get operand value
const uint32_t offset = comp->Word(3);
// spec requires minTexelGatherOffset/minTexelOffset to be -8 or less so never can compare if
// unsigned spec requires maxTexelGatherOffset/maxTexelOffset to be 7 or greater so never can
// compare if signed is less then zero
const int32_t signed_offset = static_cast<int32_t>(offset);
const bool use_signed = (comp_type->Opcode() == spv::OpTypeInt && comp_type->Word(3) != 0);
// There are 2 sets of VU being covered where the only main difference is the opcode
if (ImageGatherOperation(opcode)) {
// min/maxTexelGatherOffset
if (use_signed && (signed_offset < phys_dev_props.limits.minTexelGatherOffset)) {
skip |=
LogError(module_state.vk_shader_module(), "VUID-RuntimeSpirv-OpImage-06376",
"vkCreateShaderModule(): Shader uses\n%s\nwith offset (%" PRIi32
") less than VkPhysicalDeviceLimits::minTexelGatherOffset (%" PRIi32 ").",
module_state.DescribeInstruction(&insn).c_str(), signed_offset,
phys_dev_props.limits.minTexelGatherOffset);
} else if ((offset > phys_dev_props.limits.maxTexelGatherOffset) &&
(!use_signed || (use_signed && signed_offset > 0))) {
skip |= LogError(module_state.vk_shader_module(), "VUID-RuntimeSpirv-OpImage-06377",
"vkCreateShaderModule(): Shader uses\n%s\nwith offset (%" PRIu32
") greater than VkPhysicalDeviceLimits::maxTexelGatherOffset (%" PRIu32
").",
module_state.DescribeInstruction(&insn).c_str(), offset,
phys_dev_props.limits.maxTexelGatherOffset);
}
} else {
// min/maxTexelOffset
if (use_signed && (signed_offset < phys_dev_props.limits.minTexelOffset)) {
skip |=
LogError(module_state.vk_shader_module(), "VUID-RuntimeSpirv-OpImageSample-06435",
"vkCreateShaderModule(): Shader uses\n%s\nwith offset (%" PRIi32
") less than VkPhysicalDeviceLimits::minTexelOffset (%" PRIi32 ").",
module_state.DescribeInstruction(&insn).c_str(), signed_offset,
phys_dev_props.limits.minTexelOffset);
} else if ((offset > phys_dev_props.limits.maxTexelOffset) &&
(!use_signed || (use_signed && signed_offset > 0))) {
skip |=
LogError(module_state.vk_shader_module(), "VUID-RuntimeSpirv-OpImageSample-06436",
"vkCreateShaderModule(): Shader uses\n%s\nwith offset (%" PRIu32
") greater than VkPhysicalDeviceLimits::maxTexelOffset (%" PRIu32 ").",
module_state.DescribeInstruction(&insn).c_str(), offset,
phys_dev_props.limits.maxTexelOffset);
}
}
}
}
}
index += ImageOperandsParamCount(i);
}
}
}
}
}
return skip;
}
bool CoreChecks::ValidateShaderClock(const SHADER_MODULE_STATE &module_state, const Instruction &insn) const {
bool skip = false;
switch (insn.Opcode()) {
case spv::OpReadClockKHR: {
const Instruction *scope_id = module_state.FindDef(insn.Word(3));
auto scope_type = scope_id->Word(3);
// if scope isn't Subgroup or Device, spirv-val will catch
if ((scope_type == spv::ScopeSubgroup) && (enabled_features.shader_clock_features.shaderSubgroupClock == VK_FALSE)) {
skip |= LogError(device, "VUID-RuntimeSpirv-shaderSubgroupClock-06267",
"%s: OpReadClockKHR is used with a Subgroup scope but shaderSubgroupClock was not enabled.\n%s",
report_data->FormatHandle(module_state.vk_shader_module()).c_str(),
module_state.DescribeInstruction(&insn).c_str());
} else if ((scope_type == spv::ScopeDevice) && (enabled_features.shader_clock_features.shaderDeviceClock == VK_FALSE)) {
skip |= LogError(device, "VUID-RuntimeSpirv-shaderDeviceClock-06268",
"%s: OpReadClockKHR is used with a Device scope but shaderDeviceClock was not enabled.\n%s",
report_data->FormatHandle(module_state.vk_shader_module()).c_str(),
module_state.DescribeInstruction(&insn).c_str());
}
break;
}
}
return skip;
}
bool CoreChecks::ValidateImageWrite(const SHADER_MODULE_STATE &module_state, const Instruction &insn) const {
bool skip = false;
if (insn.Opcode() == spv::OpImageWrite) {
// guaranteed by spirv-val to be an OpTypeImage
const uint32_t image = module_state.GetTypeId(insn.Word(1));
const Instruction *image_def = module_state.FindDef(image);
const uint32_t image_format = image_def->Word(8);
// If format is 'Unknown' then need to wait until a descriptor is bound to it
if (image_format != spv::ImageFormatUnknown) {
const VkFormat compatible_format = CompatibleSpirvImageFormat(image_format);
if (compatible_format != VK_FORMAT_UNDEFINED) {
const uint32_t format_component_count = FormatComponentCount(compatible_format);
const Instruction *texel_def = module_state.FindDef(insn.Word(3));
const Instruction *texel_type = module_state.FindDef(texel_def->Word(1));
const uint32_t texel_component_count = (texel_type->Opcode() == spv::OpTypeVector) ? texel_type->Word(3) : 1;
if (texel_component_count < format_component_count) {
skip |= LogError(device, " VUID-RuntimeSpirv-OpImageWrite-07112",
"%s: OpImageWrite Texel operand only contains %" PRIu32
" components, but the OpImage format mapping to %s has %" PRIu32 " components.\n%s\n%s",
report_data->FormatHandle(module_state.vk_shader_module()).c_str(), texel_component_count,
string_VkFormat(compatible_format), format_component_count,
module_state.DescribeInstruction(&insn).c_str(),
module_state.DescribeInstruction(image_def).c_str());
}
}
}
}
return skip;
}
bool CoreChecks::ValidatePipelineShaderStage(const PIPELINE_STATE *pipeline, const PipelineStageState &stage_state,
bool check_point_size) const {
bool skip = false;
const auto *pStage = stage_state.create_info;
const SHADER_MODULE_STATE &module_state = *stage_state.module_state.get();
auto entrypoint_optional = stage_state.entrypoint;
skip |= ValidateShaderModuleId(module_state, stage_state, pStage, pipeline->GetPipelineCreateFlags());
if (module_state.vk_shader_module() == VK_NULL_HANDLE) return skip; // No real shader for further validation
// to prevent const_cast on pipeline object, just store here as not needed outside function anyway
uint32_t local_size_x = 0;
uint32_t local_size_y = 0;
uint32_t local_size_z = 0;
uint32_t total_shared_size = 0;
// Check the module
if (!module_state.has_valid_spirv) {
skip |= LogError(device, "VUID-VkPipelineShaderStageCreateInfo-module-parameter",
"%s does not contain valid spirv for stage %s.",
report_data->FormatHandle(module_state.vk_shader_module()).c_str(),
string_VkShaderStageFlagBits(stage_state.stage_flag));
}
// If specialization-constant instructions are present in the shader, the specializations should be applied.
if (module_state.HasSpecConstants()) {
// both spirv-opt and spirv-val will use the same flags
spvtools::ValidatorOptions options;
AdjustValidatorOptions(device_extensions, enabled_features, options);
// setup the call back if the optimizer fails
spv_target_env spirv_environment = PickSpirvEnv(api_version, IsExtEnabled(device_extensions.vk_khr_spirv_1_4));
spvtools::Optimizer optimizer(spirv_environment);
spvtools::MessageConsumer consumer = [&skip, &module_state, &stage_state, this](
spv_message_level_t level, const char *source, const spv_position_t &position,
const char *message) {
skip |= LogError(device, "VUID-VkPipelineShaderStageCreateInfo-module-parameter",
"%s does not contain valid spirv for stage %s. %s",
report_data->FormatHandle(module_state.vk_shader_module()).c_str(),
string_VkShaderStageFlagBits(stage_state.stage_flag), message);
};
optimizer.SetMessageConsumer(consumer);
// The app might be using the default spec constant values, but if they pass values at runtime to the pipeline then need to
// use those values to apply to the spec constants
if (pStage->pSpecializationInfo != nullptr && pStage->pSpecializationInfo->mapEntryCount > 0 &&
pStage->pSpecializationInfo->pMapEntries != nullptr) {
// Gather the specialization-constant values.
auto const &specialization_info = pStage->pSpecializationInfo;
auto const &specialization_data = reinterpret_cast<uint8_t const *>(specialization_info->pData);
std::unordered_map<uint32_t, std::vector<uint32_t>> id_value_map; // note: this must be std:: to work with spvtools
id_value_map.reserve(specialization_info->mapEntryCount);
for (auto i = 0u; i < specialization_info->mapEntryCount; ++i) {
auto const &map_entry = specialization_info->pMapEntries[i];
const auto itr = module_state.GetSpecConstMap().find(map_entry.constantID);
// "If a constantID value is not a specialization constant ID used in the shader, that map entry does not affect the
// behavior of the pipeline."
if (itr != module_state.GetSpecConstMap().cend()) {
// Make sure map_entry.size matches the spec constant's size
uint32_t spec_const_size = decoration_set::kInvalidValue;
const Instruction *def_insn = module_state.FindDef(itr->second);
const Instruction *type_insn = module_state.FindDef(def_insn->Word(1));
// Specialization constants can only be of type bool, scalar integer, or scalar floating point
switch (type_insn->Opcode()) {
case spv::OpTypeBool:
// "If the specialization constant is of type boolean, size must be the byte size of VkBool32"
spec_const_size = sizeof(VkBool32);
break;
case spv::OpTypeInt:
case spv::OpTypeFloat:
spec_const_size = type_insn->Word(2) / 8;
break;
default:
// spirv-val should catch if SpecId is not used on a
// OpSpecConstantTrue/OpSpecConstantFalse/OpSpecConstant and OpSpecConstant is validated to be a
// OpTypeInt or OpTypeFloat
break;
}
if (map_entry.size != spec_const_size) {
skip |= LogError(device, "VUID-VkSpecializationMapEntry-constantID-00776",
"Specialization constant (ID = %" PRIu32 ", entry = %" PRIu32
") has invalid size %zu in shader module %s. Expected size is %" PRIu32
" from shader definition.",
map_entry.constantID, i, map_entry.size,
report_data->FormatHandle(module_state.vk_shader_module()).c_str(), spec_const_size);
}
}
if ((map_entry.offset + map_entry.size) <= specialization_info->dataSize) {
// Allocate enough room for ceil(map_entry.size / 4) to store entries
std::vector<uint32_t> entry_data((map_entry.size + 4 - 1) / 4, 0);
uint8_t *out_p = reinterpret_cast<uint8_t *>(entry_data.data());
const uint8_t *const start_in_p = specialization_data + map_entry.offset;
const uint8_t *const end_in_p = start_in_p + map_entry.size;
std::copy(start_in_p, end_in_p, out_p);
id_value_map.emplace(map_entry.constantID, std::move(entry_data));
}
}
// This pass takes the runtime spec const values and applies it into the SPIR-V
// will turn a spec constant like
// OpSpecConstant %uint 1
// to a use the value passed in instead (for example if the value is 32) so now it looks like
// OpSpecConstant %uint 32
optimizer.RegisterPass(spvtools::CreateSetSpecConstantDefaultValuePass(id_value_map));
}
// This pass will turn OpSpecConstant into a OpConstant (also OpSpecConstantTrue/OpSpecConstantFalse)
optimizer.RegisterPass(spvtools::CreateFreezeSpecConstantValuePass());
// Using the new frozen OpConstant all OpSpecConstantComposite can be resolved turning them into OpConstantComposite
// This is need incase a shdaer looks like:
//
// layout(constant_id = 0) const uint x = 64;
// shared uint arr[x > 64 ? 64 : x];
//
// this will generate branch/switch statements that we want to leverage spirv-opt to apply to make parsing easier
optimizer.RegisterPass(spvtools::CreateFoldSpecConstantOpAndCompositePass());
// Apply the specialization-constant values and revalidate the shader module is valid.
const char *pSpecializationInfo_vuid = IsExtEnabled(device_extensions.vk_ext_shader_module_identifier)
? "VUID-VkPipelineShaderStageCreateInfo-pSpecializationInfo-06849"
: "VUID-VkPipelineShaderStageCreateInfo-pSpecializationInfo-06719";
std::vector<uint32_t> specialized_spirv;
auto const optimized =
optimizer.Run(module_state.words_.data(), module_state.words_.size(), &specialized_spirv, options, true);
if (optimized) {
spv_context ctx = spvContextCreate(spirv_environment);
spv_const_binary_t binary{specialized_spirv.data(), specialized_spirv.size()};
spv_diagnostic diag = nullptr;
auto const spv_valid = spvValidateWithOptions(ctx, options, &binary, &diag);
if (spv_valid != SPV_SUCCESS) {
skip |= LogError(device, pSpecializationInfo_vuid,
"After specialization was applied, %s does not contain valid spirv for stage %s.",
report_data->FormatHandle(module_state.vk_shader_module()).c_str(),
string_VkShaderStageFlagBits(stage_state.stage_flag));
}
// The new optimized SPIR-V will NOT match the original SHADER_MODULE_STATE object parsing, so a new SHADER_MODULE_STATE
// object is needed. This an issue due to each pipeline being able to reuse the same shader module but with different
// spec constant values.
SHADER_MODULE_STATE spec_mod(specialized_spirv);
// According to https://github.com/KhronosGroup/Vulkan-Docs/issues/1671 anything labeled as "static use" (such as if an
// input is used or not) don't have to be checked post spec constants freezing since the device compiler is not
// guaranteed to run things such as dead-code elimination. The following checks are things that don't follow under
// "static use" rules and need to be validated still.
// see ValidateComputeSharedMemory() for details why we might track max block size
layer_data::unordered_set<uint32_t> aliased_id;
bool find_max_block = false;
uint32_t workgroup_size_id = 0; // result id can't be zero
uint32_t local_size_id_x = 0;
uint32_t local_size_id_y = 0;
uint32_t local_size_id_z = 0;
// make single interation through new shader
for (const Instruction &insn : spec_mod.GetInstructions()) {
const uint32_t opcode = insn.Opcode();
if (opcode == spv::OpExecutionModeId && insn.Word(2) == spv::ExecutionModeLocalSizeId) {
local_size_id_x = insn.Word(3);
local_size_id_y = insn.Word(4);
local_size_id_z = insn.Word(5);
}
if (opcode == spv::OpDecorate) {
// Validate applied WorkgroupSize is still below maxComputeWorkGroupSize limit
if (insn.Word(2) == spv::DecorationBuiltIn && insn.Word(3) == spv::BuiltInWorkgroupSize) {
// Will be a OpConstantComposite and always have the OpDecorate section
workgroup_size_id = insn.Word(1);
}
if (insn.Word(2) == spv::DecorationAliased) {
aliased_id.emplace(insn.Word(1));
}
}
if (opcode == spv::OpConstantComposite && workgroup_size_id == insn.Word(2)) {
// VUID-WorkgroupSize-WorkgroupSize-04427 makes sure this is a OpTypeVector of int32 so this can be assuemd
local_size_x = spec_mod.FindDef(insn.Word(3))->Word(3);
local_size_y = spec_mod.FindDef(insn.Word(4))->Word(3);
local_size_z = spec_mod.FindDef(insn.Word(5))->Word(3);
}
if (opcode == spv::OpVariable && insn.Word(3) == spv::StorageClassWorkgroup) {
if (aliased_id.find(insn.Word(2)) != aliased_id.end()) {
find_max_block = true;
}
const uint32_t result_type_id = insn.Word(1);
const Instruction *result_type = spec_mod.FindDef(result_type_id);
const Instruction *type = spec_mod.FindDef(result_type->Word(3));
const uint32_t variable_shared_size = spec_mod.GetTypeBitsSize(type) / 8;
if (find_max_block) {
total_shared_size = std::max(total_shared_size, variable_shared_size);
} else {
total_shared_size += variable_shared_size;
}
}
}
// if after no WorkgroupSize is found, then can apply any possible LocalSizeId due to precedence order
if (local_size_x == 0 && local_size_id_x != 0) {
local_size_x = spec_mod.FindDef(local_size_id_x)->Word(3);
local_size_y = spec_mod.FindDef(local_size_id_y)->Word(3);
local_size_z = spec_mod.FindDef(local_size_id_z)->Word(3);
}
spvDiagnosticDestroy(diag);
spvContextDestroy(ctx);
} else {
// Should never get here, but better then asserting
skip |= LogError(device, pSpecializationInfo_vuid,
"%s module (stage %s) attempted to apply specialization constants with spirv-opt but failed.",
report_data->FormatHandle(module_state.vk_shader_module()).c_str(),
string_VkShaderStageFlagBits(stage_state.stage_flag));
}
}
// Check the entrypoint
if (!entrypoint_optional) {
skip |= LogError(device, "VUID-VkPipelineShaderStageCreateInfo-pName-00707", "No entrypoint found named `%s` for stage %s.",
pStage->pName, string_VkShaderStageFlagBits(stage_state.stage_flag));
}
if (skip) return true; // no point continuing beyond here, any analysis is just going to be garbage.
const Instruction &entrypoint = *entrypoint_optional;
// Mark accessible ids
auto &accessible_ids = stage_state.accessible_ids;
// Validate descriptor set layout against what the entrypoint actually uses
// The following tries to limit the number of passes through the shader module. The validation passes in here are "stateless"
// and mainly only checking the instruction in detail for a single operation
for (const Instruction &insn : module_state.GetInstructions()) {
skip |= ValidateTexelOffsetLimits(module_state, insn);
skip |= ValidateShaderCapabilitiesAndExtensions(insn);
skip |= ValidateShaderClock(module_state, insn);
skip |= ValidateShaderStageGroupNonUniform(module_state, pStage->stage, insn);
skip |= ValidateMemoryScope(module_state, insn);
skip |= ValidateImageWrite(module_state, insn);
}
skip |= ValidateTransformFeedback(module_state);
skip |= ValidateShaderStageWritableOrAtomicDescriptor(module_state, pStage->stage, stage_state.has_writable_descriptor,
stage_state.has_atomic_descriptor);
skip |= ValidateShaderStageInputOutputLimits(module_state, pStage, pipeline, entrypoint);
skip |= ValidateShaderStageMaxResources(module_state, pStage->stage, pipeline);
skip |= ValidateAtomicsTypes(module_state);
skip |= ValidateExecutionModes(module_state, entrypoint, pStage->stage, pipeline);
skip |= ValidateSpecializations(module_state, pStage);
skip |= ValidateDecorations(module_state);
skip |= ValidateVariables(module_state);
const auto *raster_state = pipeline->RasterizationState();
if (check_point_size && raster_state && !raster_state->rasterizerDiscardEnable) {
skip |= ValidatePointListShaderState(pipeline, module_state, entrypoint, pStage->stage);
}
skip |= ValidateBuiltinLimits(module_state, entrypoint);
if (enabled_features.cooperative_matrix_features.cooperativeMatrix) {
skip |= ValidateCooperativeMatrix(module_state, pStage, pipeline);
}
if (enabled_features.fragment_shading_rate_features.primitiveFragmentShadingRate) {
skip |= ValidatePrimitiveRateShaderState(pipeline, module_state, entrypoint, pStage->stage);
}
if (IsExtEnabled(device_extensions.vk_qcom_render_pass_shader_resolve)) {
skip |= ValidateShaderResolveQCOM(module_state, pStage, pipeline);
}
if (IsExtEnabled(device_extensions.vk_ext_subgroup_size_control)) {
skip |= ValidateShaderSubgroupSizeControl(module_state, pStage);
}
// "layout must be consistent with the layout of the * shader"
// 'consistent' -> #descriptorsets-pipelinelayout-consistency
std::string vuid_layout_mismatch;
switch (pipeline->GetCreateInfoSType()) {
case VK_STRUCTURE_TYPE_GRAPHICS_PIPELINE_CREATE_INFO:
vuid_layout_mismatch = "VUID-VkGraphicsPipelineCreateInfo-layout-00756";
break;
case VK_STRUCTURE_TYPE_COMPUTE_PIPELINE_CREATE_INFO:
vuid_layout_mismatch = "VUID-VkComputePipelineCreateInfo-layout-00703";
break;
case VK_STRUCTURE_TYPE_RAY_TRACING_PIPELINE_CREATE_INFO_KHR:
vuid_layout_mismatch = "VUID-VkRayTracingPipelineCreateInfoKHR-layout-03427";
break;
case VK_STRUCTURE_TYPE_RAY_TRACING_PIPELINE_CREATE_INFO_NV:
vuid_layout_mismatch = "VUID-VkRayTracingPipelineCreateInfoNV-layout-03427";
break;
default:
assert(false);
break;
}
// Validate Push Constants use
skip |= ValidatePushConstantUsage(*pipeline, module_state, pStage, vuid_layout_mismatch);
// Validate descriptor use
for (auto use : stage_state.descriptor_uses) {
// Verify given pipelineLayout has requested setLayout with requested binding
// const auto& layout_state = (stage_state.stage_flag == VK_SHADER_STAGE_VERTEX_BIT) ?
// pipeline->PreRasterPipelineLayoutState() : pipeline->FragmentShaderPipelineLayoutState();
const auto &binding = GetDescriptorBinding(pipeline->PipelineLayoutState().get(), use.first);
unsigned required_descriptor_count;
bool is_khr = binding && binding->descriptorType == VK_DESCRIPTOR_TYPE_ACCELERATION_STRUCTURE_KHR;
std::set<uint32_t> descriptor_types =
TypeToDescriptorTypeSet(module_state, use.second.type_id, required_descriptor_count, is_khr);
if (!binding) {
LogObjectList objlist(module_state.vk_shader_module());
objlist.add(pipeline->PipelineLayoutState()->layout());
skip |= LogError(objlist, vuid_layout_mismatch,
"Shader uses descriptor slot %u.%u (expected `%s`) but not declared in pipeline layout", use.first.set,
use.first.binding, string_descriptorTypes(descriptor_types).c_str());
} else if (~binding->stageFlags & pStage->stage) {
LogObjectList objlist(module_state.vk_shader_module());
objlist.add(pipeline->PipelineLayoutState()->layout());
skip |= LogError(objlist, vuid_layout_mismatch,
"Shader uses descriptor slot %u.%u but descriptor not accessible from stage %s", use.first.set,
use.first.binding, string_VkShaderStageFlagBits(pStage->stage));
} else if ((binding->descriptorType != VK_DESCRIPTOR_TYPE_MUTABLE_EXT) &&
(descriptor_types.find(binding->descriptorType) == descriptor_types.end())) {
LogObjectList objlist(module_state.vk_shader_module());
objlist.add(pipeline->PipelineLayoutState()->layout());
skip |= LogError(objlist, vuid_layout_mismatch,
"Type mismatch on descriptor slot %u.%u (expected `%s`) but descriptor of type %s", use.first.set,
use.first.binding, string_descriptorTypes(descriptor_types).c_str(),
string_VkDescriptorType(binding->descriptorType));
} else if (binding->descriptorCount < required_descriptor_count) {
LogObjectList objlist(module_state.vk_shader_module());
objlist.add(pipeline->PipelineLayoutState()->layout());
skip |= LogError(objlist, vuid_layout_mismatch,
"Shader expects at least %u descriptors for binding %u.%u but only %u provided",
required_descriptor_count, use.first.set, use.first.binding, binding->descriptorCount);
}
}
// Validate use of input attachments against subpass structure
if (pStage->stage == VK_SHADER_STAGE_FRAGMENT_BIT) {
auto input_attachment_uses = module_state.CollectInterfaceByInputAttachmentIndex(accessible_ids);
const auto &rp_state = pipeline->RenderPassState();
if (rp_state && !rp_state->UsesDynamicRendering()) {
auto rpci = rp_state->createInfo.ptr();
auto subpass = pipeline->Subpass();
for (auto use : input_attachment_uses) {
auto input_attachments = rpci->pSubpasses[subpass].pInputAttachments;
auto index = (input_attachments && use.first < rpci->pSubpasses[subpass].inputAttachmentCount)
? input_attachments[use.first].attachment
: VK_ATTACHMENT_UNUSED;
if (index == VK_ATTACHMENT_UNUSED) {
LogObjectList objlist(module_state.vk_shader_module());
objlist.add(pipeline->PipelineLayoutState()->layout());
skip |= LogError(objlist, kVUID_Core_Shader_MissingInputAttachment,
"Shader consumes input attachment index %d but not provided in subpass", use.first);
} else if (!(GetFormatType(rpci->pAttachments[index].format) &
module_state.GetFundamentalType(use.second.type_id))) {
LogObjectList objlist(module_state.vk_shader_module());
objlist.add(pipeline->PipelineLayoutState()->layout());
skip |= LogError(objlist, kVUID_Core_Shader_InputAttachmentTypeMismatch,
"Subpass input attachment %u format of %s does not match type used in shader `%s`", use.first,
string_VkFormat(rpci->pAttachments[index].format),
module_state.DescribeType(use.second.type_id).c_str());
}
}
}
}
if (pStage->stage == VK_SHADER_STAGE_COMPUTE_BIT) {
skip |= ValidateComputeWorkGroupSizes(module_state, entrypoint, stage_state, local_size_x, local_size_y, local_size_z);
skip |= ValidateComputeSharedMemory(module_state, total_shared_size);
}
return skip;
}
bool CoreChecks::ValidateInterfaceBetweenStages(const SHADER_MODULE_STATE &producer, const Instruction &producer_entrypoint,
shader_stage_attributes const *producer_stage, const SHADER_MODULE_STATE &consumer,
const Instruction &consumer_entrypoint,
shader_stage_attributes const *consumer_stage) const {
bool skip = false;
auto outputs =
producer.CollectInterfaceByLocation(producer_entrypoint, spv::StorageClassOutput, producer_stage->arrayed_output);
auto inputs = consumer.CollectInterfaceByLocation(consumer_entrypoint, spv::StorageClassInput, consumer_stage->arrayed_input);
auto output_it = outputs.begin();
auto input_it = inputs.begin();
uint32_t output_component = 0;
uint32_t input_component = 0;
// Maps sorted by key (location); walk them together to find mismatches
while ((outputs.size() > 0 && output_it != outputs.end()) || (inputs.size() && input_it != inputs.end())) {
bool output_at_end = outputs.size() == 0 || output_it == outputs.end();
bool input_at_end = inputs.size() == 0 || input_it == inputs.end();
auto output_first = output_at_end ? std::make_pair(0u, 0u) : output_it->first;
auto input_first = input_at_end ? std::make_pair(0u, 0u) : input_it->first;
output_first.second += output_component;
input_first.second += input_component;
const auto output_length =
output_at_end ? 0 : producer.GetNumComponentsInBaseType(producer.FindDef(output_it->second.type_id));
const auto input_length =
input_at_end ? 0 : consumer.GetNumComponentsInBaseType(consumer.FindDef(input_it->second.type_id));
assert(output_at_end || output_component < output_length);
assert(input_at_end || input_component < input_length);
if (input_at_end || ((!output_at_end) && (output_first < input_first))) {
if (!enabled_features.core13.maintenance4) {
const std::string msg = std::string{producer_stage->name} + " writes to output location " +
std::to_string(output_first.first) + "." + std::to_string(output_first.second) +
" which is not consumed by " + consumer_stage->name +
". "
"Enable VK_KHR_maintenance4 device extension to allow relaxed interface matching between "
"input and output vectors.";
// It is not an error if a stage does not consume all outputs from the previous stage
skip |= LogPerformanceWarning(producer.vk_shader_module(), kVUID_Core_Shader_OutputNotConsumed, "%s", msg.c_str());
}
if ((input_first.first > output_first.first) || input_at_end || (output_component + 1 == output_length)) {
output_it++;
output_component = 0;
} else {
output_component++;
}
} else if (output_at_end || output_first > input_first) {
skip |= LogError(consumer.vk_shader_module(), kVUID_Core_Shader_InputNotProduced,
"%s consumes input location %" PRIu32 ".%" PRIu32 " which is not written by %s", consumer_stage->name,
input_first.first, input_first.second, producer_stage->name);
if ((output_first.first > input_first.first) || output_at_end || (input_component + 1 == input_length)) {
input_it++;
input_component = 0;
} else {
input_component++;
}
} else {
// subtleties of arrayed interfaces:
// - if is_patch, then the member is not arrayed, even though the interface may be.
// - if is_block_member, then the extra array level of an arrayed interface is not
// expressed in the member type -- it's expressed in the block type.
if (!TypesMatch(producer, consumer, output_it->second.type_id, input_it->second.type_id)) {
skip |= LogError(producer.vk_shader_module(), kVUID_Core_Shader_InterfaceTypeMismatch,
"Type mismatch on location %" PRIu32 ".%" PRIu32 ", between %s and %s: '%s' vs '%s'",
output_first.first, output_first.second, producer_stage->name, consumer_stage->name,
producer.DescribeType(output_it->second.type_id).c_str(),
consumer.DescribeType(input_it->second.type_id).c_str());
output_it++;
input_it++;
continue;
}
if (output_it->second.is_patch != input_it->second.is_patch) {
skip |= LogError(producer.vk_shader_module(), kVUID_Core_Shader_InterfaceTypeMismatch,
"Decoration mismatch on location %" PRIu32 ".%" PRIu32
": is per-%s in %s stage but per-%s in %s stage",
output_first.first, output_first.second, output_it->second.is_patch ? "patch" : "vertex",
producer_stage->name, input_it->second.is_patch ? "patch" : "vertex", consumer_stage->name);
}
uint32_t output_remaining = output_length - output_component;
uint32_t input_remaining = input_length - input_component;
if (output_remaining == input_remaining) { // Sizes match so we can advance both output_it and input_it
output_it++;
input_it++;
output_component = 0;
input_component = 0;
} else if (output_remaining > input_remaining) { // a has more components remaining
output_component += input_remaining;
input_component = 0;
input_it++;
} else if (input_remaining > output_remaining) { // b has more components remaining
input_component += output_remaining;
output_component = 0;
output_it++;
}
if (output_component == 4) {
output_component = 0;
output_it++;
}
if (input_component == 4) {
input_component = 0;
input_it++;
}
}
}
if (consumer_stage->stage != VK_SHADER_STAGE_FRAGMENT_BIT) {
auto builtins_producer = producer.CollectBuiltinBlockMembers(producer_entrypoint, spv::StorageClassOutput);
auto builtins_consumer = consumer.CollectBuiltinBlockMembers(consumer_entrypoint, spv::StorageClassInput);
if (!builtins_producer.empty() && !builtins_consumer.empty()) {
if (builtins_producer.size() != builtins_consumer.size()) {
skip |= LogError(producer.vk_shader_module(), kVUID_Core_Shader_InterfaceTypeMismatch,
"Number of elements inside builtin block differ between stages (%s %d vs %s %d).",
producer_stage->name, static_cast<int>(builtins_producer.size()), consumer_stage->name,
static_cast<int>(builtins_consumer.size()));
} else {
auto it_producer = builtins_producer.begin();
auto it_consumer = builtins_consumer.begin();
while (it_producer != builtins_producer.end() && it_consumer != builtins_consumer.end()) {
if (*it_producer != *it_consumer) {
skip |= LogError(producer.vk_shader_module(), kVUID_Core_Shader_InterfaceTypeMismatch,
"Builtin variable inside block doesn't match between %s and %s.", producer_stage->name,
consumer_stage->name);
break;
}
it_producer++;
it_consumer++;
}
}
}
}
return skip;
}
static inline uint32_t DetermineFinalGeomStage(const PIPELINE_STATE &pipeline) {
uint32_t stage_mask = pipeline.active_shaders;
if (pipeline.topology_at_rasterizer == VK_PRIMITIVE_TOPOLOGY_POINT_LIST) {
// Determine which shader in which PointSize should be written (the final geometry stage)
if (stage_mask & VK_SHADER_STAGE_MESH_BIT_NV) {
stage_mask = VK_SHADER_STAGE_MESH_BIT_NV;
} else if (stage_mask & VK_SHADER_STAGE_GEOMETRY_BIT) {
stage_mask = VK_SHADER_STAGE_GEOMETRY_BIT;
} else if (stage_mask & VK_SHADER_STAGE_TESSELLATION_EVALUATION_BIT) {
stage_mask = VK_SHADER_STAGE_TESSELLATION_EVALUATION_BIT;
} else if (stage_mask & VK_SHADER_STAGE_VERTEX_BIT) {
stage_mask = VK_SHADER_STAGE_VERTEX_BIT;
}
}
return stage_mask;
}
// Validate that the shaders used by the given pipeline and store the active_slots
// that are actually used by the pipeline into pPipeline->active_slots
bool CoreChecks::ValidateGraphicsPipelineShaderState(const PIPELINE_STATE *pipeline) const {
bool skip = false;
if (pipeline->IsGraphicsLibrary()) {
// Only validate stages in an executable pipeline, not a graphics library
// TODO This currently makes executing executable pipeline more expensive than they need to be since we could be validating
// more per library.
return skip;
}
uint32_t pointlist_stage_mask = DetermineFinalGeomStage(*pipeline);
const PipelineStageState *vertex_stage = nullptr, *fragment_stage = nullptr;
for (auto &stage : pipeline->stage_state) {
skip |= ValidatePipelineShaderStage(pipeline, stage, (pointlist_stage_mask == stage.stage_flag));
if (stage.stage_flag == VK_SHADER_STAGE_VERTEX_BIT) {
vertex_stage = &stage;
}
if (stage.stage_flag == VK_SHADER_STAGE_FRAGMENT_BIT) {
fragment_stage = &stage;
}
}
// if the shader stages are no good individually, cross-stage validation is pointless.
if (skip) return true;
auto vi_state = pipeline->InputState();
if (vi_state) {
skip |= ValidateViConsistency(vi_state);
}
if (vertex_stage && vertex_stage->entrypoint && vertex_stage->module_state->has_valid_spirv &&
!IsDynamic(pipeline, VK_DYNAMIC_STATE_VERTEX_INPUT_EXT)) {
skip |= ValidateViAgainstVsInputs(vi_state, *vertex_stage->module_state.get(), *(vertex_stage->entrypoint));
}
for (size_t i = 1; i < pipeline->stage_state.size(); i++) {
const auto &producer = pipeline->stage_state[i - 1];
const auto &consumer = pipeline->stage_state[i];
assert(producer.module_state);
if (&producer == fragment_stage) {
break;
}
if (consumer.module_state) {
if (consumer.module_state->has_valid_spirv && producer.module_state->has_valid_spirv && consumer.entrypoint &&
producer.entrypoint) {
auto producer_id = GetShaderStageId(producer.stage_flag);
auto consumer_id = GetShaderStageId(consumer.stage_flag);
skip |= ValidateInterfaceBetweenStages(*producer.module_state.get(), *(producer.entrypoint),
&shader_stage_attribs[producer_id], *consumer.module_state.get(),
*(consumer.entrypoint), &shader_stage_attribs[consumer_id]);
}
}
}
if (fragment_stage && fragment_stage->entrypoint && fragment_stage->module_state->has_valid_spirv) {
const auto &rp_state = pipeline->RenderPassState();
if (rp_state && rp_state->UsesDynamicRendering()) {
skip |= ValidateFsOutputsAgainstDynamicRenderingRenderPass(*fragment_stage->module_state.get(),
*(fragment_stage->entrypoint), pipeline);
} else {
skip |= ValidateFsOutputsAgainstRenderPass(*fragment_stage->module_state.get(), *(fragment_stage->entrypoint), pipeline,
pipeline->Subpass());
}
}
return skip;
}
bool CoreChecks::ValidateGraphicsPipelineShaderDynamicState(const PIPELINE_STATE *pipeline, const CMD_BUFFER_STATE *pCB,
const char *caller, const DrawDispatchVuid &vuid) const {
bool skip = false;
for (auto &stage : pipeline->stage_state) {
if (stage.stage_flag == VK_SHADER_STAGE_VERTEX_BIT || stage.stage_flag == VK_SHADER_STAGE_GEOMETRY_BIT ||
stage.stage_flag == VK_SHADER_STAGE_MESH_BIT_NV) {
if (!phys_dev_ext_props.fragment_shading_rate_props.primitiveFragmentShadingRateWithMultipleViewports &&
IsDynamic(pipeline, VK_DYNAMIC_STATE_VIEWPORT_WITH_COUNT_EXT) && pCB->viewportWithCountCount != 1) {
if (stage.wrote_primitive_shading_rate) {
skip |=
LogError(stage.module_state.get()->vk_shader_module(), vuid.viewport_count_primitive_shading_rate,
"%s: %s shader of currently bound pipeline statically writes to PrimitiveShadingRateKHR built-in"
"but multiple viewports are set by the last call to vkCmdSetViewportWithCountEXT,"
"and the primitiveFragmentShadingRateWithMultipleViewports limit is not supported.",
caller, string_VkShaderStageFlagBits(stage.stage_flag));
}
}
}
}
return skip;
}
bool CoreChecks::ValidateComputePipelineShaderState(PIPELINE_STATE *pipeline) const {
return ValidatePipelineShaderStage(pipeline, pipeline->stage_state[0], false);
}
uint32_t CoreChecks::CalcShaderStageCount(const PIPELINE_STATE &pipeline, VkShaderStageFlagBits stageBit) const {
uint32_t total = 0;
const auto stages = pipeline.GetShaderStages();
for (const auto &stage : stages) {
if (stage.stage == stageBit) {
total++;
}
}
const auto rt_lib_info = pipeline.GetRayTracingLibraryCreateInfo();
if (rt_lib_info) {
for (uint32_t i = 0; i < rt_lib_info->libraryCount; ++i) {
auto library_pipeline = Get<PIPELINE_STATE>(rt_lib_info->pLibraries[i]);
total += CalcShaderStageCount(*library_pipeline, stageBit);
}
}
return total;
}
bool CoreChecks::GroupHasValidIndex(const PIPELINE_STATE &pipeline, uint32_t group, uint32_t stage) const {
if (group == VK_SHADER_UNUSED_NV) {
return true;
}
const auto stages = pipeline.GetShaderStages();
const auto num_stages = static_cast<uint32_t>(stages.size());
if (group < num_stages) {
return (stages[group].stage & stage) != 0;
}
group -= num_stages;
// Search libraries
const auto rt_lib_info = pipeline.GetRayTracingLibraryCreateInfo();
if (rt_lib_info) {
for (uint32_t i = 0; i < rt_lib_info->libraryCount; ++i) {
auto library_pipeline = Get<PIPELINE_STATE>(rt_lib_info->pLibraries[i]);
const auto lib_stages = library_pipeline->GetShaderStages();
const uint32_t stage_count = static_cast<uint32_t>(lib_stages.size());
if (group < stage_count) {
return (stages[group].stage & stage) != 0;
}
group -= stage_count;
}
}
// group index too large
return false;
}
bool CoreChecks::ValidateRayTracingPipeline(PIPELINE_STATE *pipeline, const safe_VkRayTracingPipelineCreateInfoCommon &create_info,
VkPipelineCreateFlags flags, bool isKHR) const {
bool skip = false;
if (isKHR) {
if (create_info.maxPipelineRayRecursionDepth > phys_dev_ext_props.ray_tracing_propsKHR.maxRayRecursionDepth) {
skip |=
LogError(device, "VUID-VkRayTracingPipelineCreateInfoKHR-maxPipelineRayRecursionDepth-03589",
"vkCreateRayTracingPipelinesKHR: maxPipelineRayRecursionDepth (%d ) must be less than or equal to "
"VkPhysicalDeviceRayTracingPipelinePropertiesKHR::maxRayRecursionDepth %d",
create_info.maxPipelineRayRecursionDepth, phys_dev_ext_props.ray_tracing_propsKHR.maxRayRecursionDepth);
}
if (create_info.pLibraryInfo) {
for (uint32_t i = 0; i < create_info.pLibraryInfo->libraryCount; ++i) {
const auto library_pipelinestate = Get<PIPELINE_STATE>(create_info.pLibraryInfo->pLibraries[i]);
const auto &library_create_info = library_pipelinestate->GetCreateInfo<VkRayTracingPipelineCreateInfoKHR>();
if (library_create_info.maxPipelineRayRecursionDepth != create_info.maxPipelineRayRecursionDepth) {
skip |= LogError(
device, "VUID-VkRayTracingPipelineCreateInfoKHR-pLibraries-03591",
"vkCreateRayTracingPipelinesKHR: Each element (%d) of the pLibraries member of libraries must have been"
"created with the value of maxPipelineRayRecursionDepth (%d) equal to that in this pipeline (%d) .",
i, library_create_info.maxPipelineRayRecursionDepth, create_info.maxPipelineRayRecursionDepth);
}
if (library_create_info.pLibraryInfo && (library_create_info.pLibraryInterface->maxPipelineRayHitAttributeSize !=
create_info.pLibraryInterface->maxPipelineRayHitAttributeSize ||
library_create_info.pLibraryInterface->maxPipelineRayPayloadSize !=
create_info.pLibraryInterface->maxPipelineRayPayloadSize)) {
skip |= LogError(device, "VUID-VkRayTracingPipelineCreateInfoKHR-pLibraryInfo-03593",
"vkCreateRayTracingPipelinesKHR: If pLibraryInfo is not NULL, each element of its pLibraries "
"member must have been created with values of the maxPipelineRayPayloadSize and "
"maxPipelineRayHitAttributeSize members of pLibraryInterface equal to those in this pipeline");
}
if ((flags & VK_PIPELINE_CREATE_RAY_TRACING_SHADER_GROUP_HANDLE_CAPTURE_REPLAY_BIT_KHR) &&
!(library_create_info.flags & VK_PIPELINE_CREATE_RAY_TRACING_SHADER_GROUP_HANDLE_CAPTURE_REPLAY_BIT_KHR)) {
skip |= LogError(device, "VUID-VkRayTracingPipelineCreateInfoKHR-flags-03594",
"vkCreateRayTracingPipelinesKHR: If flags includes "
"VK_PIPELINE_CREATE_RAY_TRACING_SHADER_GROUP_HANDLE_CAPTURE_REPLAY_BIT_KHR, each element of "
"the pLibraries member of libraries must have been created with the "
"VK_PIPELINE_CREATE_RAY_TRACING_SHADER_GROUP_HANDLE_CAPTURE_REPLAY_BIT_KHR bit set");
}
}
}
} else {
if (create_info.maxRecursionDepth > phys_dev_ext_props.ray_tracing_propsNV.maxRecursionDepth) {
skip |= LogError(device, "VUID-VkRayTracingPipelineCreateInfoNV-maxRecursionDepth-03457",
"vkCreateRayTracingPipelinesNV: maxRecursionDepth (%d) must be less than or equal to "
"VkPhysicalDeviceRayTracingPropertiesNV::maxRecursionDepth (%d)",
create_info.maxRecursionDepth, phys_dev_ext_props.ray_tracing_propsNV.maxRecursionDepth);
}
}
const auto *groups = create_info.ptr()->pGroups;
for (uint32_t stage_index = 0; stage_index < create_info.stageCount; stage_index++) {
skip |= ValidatePipelineShaderStage(pipeline, pipeline->stage_state[stage_index], false);
}
if ((create_info.flags & VK_PIPELINE_CREATE_LIBRARY_BIT_KHR) == 0) {
const uint32_t raygen_stages_count = CalcShaderStageCount(*pipeline, VK_SHADER_STAGE_RAYGEN_BIT_KHR);
if (raygen_stages_count == 0) {
skip |= LogError(
device,
isKHR ? "VUID-VkRayTracingPipelineCreateInfoKHR-stage-03425" : "VUID-VkRayTracingPipelineCreateInfoNV-stage-06232",
" : The stage member of at least one element of pStages must be VK_SHADER_STAGE_RAYGEN_BIT_KHR.");
}
}
if ((flags & VK_PIPELINE_CREATE_RAY_TRACING_SKIP_TRIANGLES_BIT_KHR) != 0 &&
(flags & VK_PIPELINE_CREATE_RAY_TRACING_SKIP_AABBS_BIT_KHR) != 0) {
skip |= LogError(
device, "VUID-VkRayTracingPipelineCreateInfoKHR-flags-06546",
"vkCreateRayTracingPipelinesKHR: flags (%s) contains both VK_PIPELINE_CREATE_RAY_TRACING_SKIP_TRIANGLES_BIT_KHR and "
"VK_PIPELINE_CREATE_RAY_TRACING_SKIP_AABBS_BIT_KHR bits.",
string_VkPipelineCreateFlags(flags).c_str());
}
for (uint32_t group_index = 0; group_index < create_info.groupCount; group_index++) {
const auto &group = groups[group_index];
if (group.type == VK_RAY_TRACING_SHADER_GROUP_TYPE_GENERAL_NV) {
if (!GroupHasValidIndex(
*pipeline, group.generalShader,
VK_SHADER_STAGE_RAYGEN_BIT_NV | VK_SHADER_STAGE_MISS_BIT_NV | VK_SHADER_STAGE_CALLABLE_BIT_NV)) {
skip |= LogError(device,
isKHR ? "VUID-VkRayTracingShaderGroupCreateInfoKHR-type-03474"
: "VUID-VkRayTracingShaderGroupCreateInfoNV-type-02413",
": pGroups[%d]", group_index);
}
if (group.anyHitShader != VK_SHADER_UNUSED_NV || group.closestHitShader != VK_SHADER_UNUSED_NV ||
group.intersectionShader != VK_SHADER_UNUSED_NV) {
skip |= LogError(device,
isKHR ? "VUID-VkRayTracingShaderGroupCreateInfoKHR-type-03475"
: "VUID-VkRayTracingShaderGroupCreateInfoNV-type-02414",
": pGroups[%d]", group_index);
}
} else if (group.type == VK_RAY_TRACING_SHADER_GROUP_TYPE_PROCEDURAL_HIT_GROUP_NV) {
if (!GroupHasValidIndex(*pipeline, group.intersectionShader, VK_SHADER_STAGE_INTERSECTION_BIT_NV)) {
skip |= LogError(device,
isKHR ? "VUID-VkRayTracingShaderGroupCreateInfoKHR-type-03476"
: "VUID-VkRayTracingShaderGroupCreateInfoNV-type-02415",
": pGroups[%d]", group_index);
}
} else if (group.type == VK_RAY_TRACING_SHADER_GROUP_TYPE_TRIANGLES_HIT_GROUP_NV) {
if (group.intersectionShader != VK_SHADER_UNUSED_NV) {
skip |= LogError(device,
isKHR ? "VUID-VkRayTracingShaderGroupCreateInfoKHR-type-03477"
: "VUID-VkRayTracingShaderGroupCreateInfoNV-type-02416",
": pGroups[%d]", group_index);
}
}
if (group.type == VK_RAY_TRACING_SHADER_GROUP_TYPE_PROCEDURAL_HIT_GROUP_NV ||
group.type == VK_RAY_TRACING_SHADER_GROUP_TYPE_TRIANGLES_HIT_GROUP_NV) {
if (!GroupHasValidIndex(*pipeline, group.anyHitShader, VK_SHADER_STAGE_ANY_HIT_BIT_KHR)) {
skip |= LogError(device,
isKHR ? "VUID-VkRayTracingShaderGroupCreateInfoKHR-anyHitShader-03479"
: "VUID-VkRayTracingShaderGroupCreateInfoNV-anyHitShader-02418",
": pGroups[%d]", group_index);
}
if (!GroupHasValidIndex(*pipeline, group.closestHitShader, VK_SHADER_STAGE_CLOSEST_HIT_BIT_KHR)) {
skip |= LogError(device,
isKHR ? "VUID-VkRayTracingShaderGroupCreateInfoKHR-closestHitShader-03478"
: "VUID-VkRayTracingShaderGroupCreateInfoNV-closestHitShader-02417",
": pGroups[%d]", group_index);
}
}
}
return skip;
}
uint32_t ValidationCache::MakeShaderHash(VkShaderModuleCreateInfo const *smci) { return XXH32(smci->pCode, smci->codeSize, 0); }
static ValidationCache *GetValidationCacheInfo(VkShaderModuleCreateInfo const *pCreateInfo) {
const auto validation_cache_ci = LvlFindInChain<VkShaderModuleValidationCacheCreateInfoEXT>(pCreateInfo->pNext);
if (validation_cache_ci) {
return CastFromHandle<ValidationCache *>(validation_cache_ci->validationCache);
}
return nullptr;
}
bool CoreChecks::PreCallValidateCreateShaderModule(VkDevice device, const VkShaderModuleCreateInfo *pCreateInfo,
const VkAllocationCallbacks *pAllocator, VkShaderModule *pShaderModule) const {
bool skip = false;
spv_result_t spv_valid = SPV_SUCCESS;
if (disabled[shader_validation]) {
return false;
}
auto have_glsl_shader = IsExtEnabled(device_extensions.vk_nv_glsl_shader);
if (!have_glsl_shader && (pCreateInfo->codeSize % 4)) {
skip |= LogError(device, "VUID-VkShaderModuleCreateInfo-pCode-01376",
"SPIR-V module not valid: Codesize must be a multiple of 4 but is %zu", pCreateInfo->codeSize);
} else {
auto cache = GetValidationCacheInfo(pCreateInfo);
uint32_t hash = 0;
// If app isn't using a shader validation cache, use the default one from CoreChecks
if (!cache) cache = CastFromHandle<ValidationCache *>(core_validation_cache);
if (cache) {
hash = ValidationCache::MakeShaderHash(pCreateInfo);
if (cache->Contains(hash)) return false;
}
// Use SPIRV-Tools validator to try and catch any issues with the module itself. If specialization constants are present,
// the default values will be used during validation.
spv_target_env spirv_environment = PickSpirvEnv(api_version, IsExtEnabled(device_extensions.vk_khr_spirv_1_4));
spv_context ctx = spvContextCreate(spirv_environment);
spv_const_binary_t binary{pCreateInfo->pCode, pCreateInfo->codeSize / sizeof(uint32_t)};
spv_diagnostic diag = nullptr;
spvtools::ValidatorOptions options;
AdjustValidatorOptions(device_extensions, enabled_features, options);
spv_valid = spvValidateWithOptions(ctx, options, &binary, &diag);
if (spv_valid != SPV_SUCCESS) {
if (!have_glsl_shader || (pCreateInfo->pCode[0] == spv::MagicNumber)) {
if (spv_valid == SPV_WARNING) {
skip |= LogWarning(device, kVUID_Core_Shader_InconsistentSpirv, "SPIR-V module not valid: %s",
diag && diag->error ? diag->error : "(no error text)");
} else {
skip |= LogError(device, kVUID_Core_Shader_InconsistentSpirv, "SPIR-V module not valid: %s",
diag && diag->error ? diag->error : "(no error text)");
}
}
} else {
if (cache) {
cache->Insert(hash);
}
}
spvDiagnosticDestroy(diag);
spvContextDestroy(ctx);
}
return skip;
}
bool CoreChecks::PreCallValidateGetShaderModuleIdentifierEXT(VkDevice device, VkShaderModule shaderModule,
VkShaderModuleIdentifierEXT *pIdentifier) const {
bool skip = false;
if (!(enabled_features.shader_module_identifier_features.shaderModuleIdentifier)) {
skip |= LogError(shaderModule, "VUID-vkGetShaderModuleIdentifierEXT-shaderModuleIdentifier-06884",
"vkGetShaderModuleIdentifierEXT() was called when the shaderModuleIdentifier feature was not enabled");
}
return skip;
}
bool CoreChecks::PreCallValidateGetShaderModuleCreateInfoIdentifierEXT(VkDevice device, const VkShaderModuleCreateInfo *pCreateInfo,
VkShaderModuleIdentifierEXT *pIdentifier) const {
bool skip = false;
if (!(enabled_features.shader_module_identifier_features.shaderModuleIdentifier)) {
skip |= LogError(
device, "VUID-vkGetShaderModuleCreateInfoIdentifierEXT-shaderModuleIdentifier-06885",
"vkGetShaderModuleCreateInfoIdentifierEXT() was called when the shaderModuleIdentifier feature was not enabled");
}
return skip;
}
bool CoreChecks::ValidateComputeWorkGroupSizes(const SHADER_MODULE_STATE &module_state, const Instruction &entrypoint,
const PipelineStageState &stage_state, uint32_t local_size_x, uint32_t local_size_y,
uint32_t local_size_z) const {
bool skip = false;
// If spec constants were used then the local size are already found if possible
if (local_size_x == 0) {
if (!module_state.FindLocalSize(entrypoint, local_size_x, local_size_y, local_size_z)) {
return skip; // no local size found
}
}
if (local_size_x > phys_dev_props.limits.maxComputeWorkGroupSize[0]) {
skip |= LogError(module_state.vk_shader_module(), "VUID-RuntimeSpirv-x-06429",
"%s local_size_x (%" PRIu32 ") exceeds device limit maxComputeWorkGroupSize[0] (%" PRIu32 ").",
report_data->FormatHandle(module_state.vk_shader_module()).c_str(), local_size_x,
phys_dev_props.limits.maxComputeWorkGroupSize[0]);
}
if (local_size_y > phys_dev_props.limits.maxComputeWorkGroupSize[1]) {
skip |= LogError(module_state.vk_shader_module(), "VUID-RuntimeSpirv-y-06430",
"%s local_size_y (%" PRIu32 ") exceeds device limit maxComputeWorkGroupSize[1] (%" PRIu32 ").",
report_data->FormatHandle(module_state.vk_shader_module()).c_str(), local_size_x,
phys_dev_props.limits.maxComputeWorkGroupSize[1]);
}
if (local_size_z > phys_dev_props.limits.maxComputeWorkGroupSize[2]) {
skip |= LogError(module_state.vk_shader_module(), "VUID-RuntimeSpirv-z-06431",
"%s local_size_z (%" PRIu32 ") exceeds device limit maxComputeWorkGroupSize[2] (%" PRIu32 ").",
report_data->FormatHandle(module_state.vk_shader_module()).c_str(), local_size_x,
phys_dev_props.limits.maxComputeWorkGroupSize[2]);
}
uint32_t limit = phys_dev_props.limits.maxComputeWorkGroupInvocations;
uint64_t invocations = local_size_x * local_size_y;
// Prevent overflow.
bool fail = false;
if (invocations > UINT32_MAX || invocations > limit) {
fail = true;
}
if (!fail) {
invocations *= local_size_z;
if (invocations > UINT32_MAX || invocations > limit) {
fail = true;
}
}
if (fail) {
skip |= LogError(module_state.vk_shader_module(), "VUID-RuntimeSpirv-x-06432",
"%s local_size (%" PRIu32 ", %" PRIu32 ", %" PRIu32
") exceeds device limit maxComputeWorkGroupInvocations (%" PRIu32 ").",
report_data->FormatHandle(module_state.vk_shader_module()).c_str(), local_size_x, local_size_y,
local_size_z, limit);
}
const auto subgroup_flags = VK_PIPELINE_SHADER_STAGE_CREATE_REQUIRE_FULL_SUBGROUPS_BIT_EXT |
VK_PIPELINE_SHADER_STAGE_CREATE_ALLOW_VARYING_SUBGROUP_SIZE_BIT_EXT;
const auto *required_subgroup_size_features =
LvlFindInChain<VkPipelineShaderStageRequiredSubgroupSizeCreateInfoEXT>(stage_state.create_info->pNext);
if (required_subgroup_size_features) {
const uint32_t requiredSubgroupSize = required_subgroup_size_features->requiredSubgroupSize;
skip |= RequireFeature(module_state, enabled_features.core13.subgroupSizeControl, "subgroupSizeControl",
"VUID-VkPipelineShaderStageCreateInfo-pNext-02755");
if ((phys_dev_ext_props.subgroup_size_control_props.requiredSubgroupSizeStages & stage_state.stage_flag) == 0) {
skip |= LogError(
module_state.vk_shader_module(), "VUID-VkPipelineShaderStageCreateInfo-pNext-02755",
"Stage %s is not in VkPhysicalDeviceSubgroupSizeControlPropertiesEXT::requiredSubgroupSizeStages (%s).",
string_VkShaderStageFlagBits(stage_state.stage_flag),
string_VkShaderStageFlags(phys_dev_ext_props.subgroup_size_control_props.requiredSubgroupSizeStages).c_str());
}
if ((invocations > requiredSubgroupSize * phys_dev_ext_props.subgroup_size_control_props.maxComputeWorkgroupSubgroups)) {
skip |=
LogError(module_state.vk_shader_module(), "VUID-VkPipelineShaderStageCreateInfo-pNext-02756",
"Local workgroup size (%" PRIu32 ", %" PRIu32 ", %" PRIu32
") is greater than VkPipelineShaderStageRequiredSubgroupSizeCreateInfoEXT::requiredSubgroupSize (%" PRIu32
") * maxComputeWorkgroupSubgroups (%" PRIu32 ").",
local_size_x, local_size_y, local_size_z, requiredSubgroupSize,
phys_dev_ext_props.subgroup_size_control_props.maxComputeWorkgroupSubgroups);
}
if ((stage_state.create_info->flags & VK_PIPELINE_SHADER_STAGE_CREATE_REQUIRE_FULL_SUBGROUPS_BIT) > 0) {
if (SafeModulo(local_size_x, requiredSubgroupSize) != 0) {
skip |= LogError(
module_state.vk_shader_module(), "VUID-VkPipelineShaderStageCreateInfo-pNext-02757",
"Local workgroup size x (%" PRIu32
") is not a multiple of VkPipelineShaderStageRequiredSubgroupSizeCreateInfoEXT::requiredSubgroupSize (%" PRIu32
").",
local_size_x, requiredSubgroupSize);
}
}
if (!IsPowerOfTwo(requiredSubgroupSize)) {
skip |= LogError(module_state.vk_shader_module(),
"VUID-VkPipelineShaderStageRequiredSubgroupSizeCreateInfo-requiredSubgroupSize-02760",
"VkPhysicalDeviceSubgroupSizeControlPropertiesEXT::requiredSubgroupSizeStages (%" PRIu32
") is not a power of 2.",
requiredSubgroupSize);
}
if (requiredSubgroupSize < phys_dev_ext_props.subgroup_size_control_props.minSubgroupSize) {
skip |= LogError(module_state.vk_shader_module(),
"VUID-VkPipelineShaderStageRequiredSubgroupSizeCreateInfo-requiredSubgroupSize-02761",
"VkPhysicalDeviceSubgroupSizeControlPropertiesEXT::requiredSubgroupSizeStages (%" PRIu32
") is less than minSubgroupSize (%" PRIu32 ").",
requiredSubgroupSize, phys_dev_ext_props.subgroup_size_control_props.minSubgroupSize);
}
if (requiredSubgroupSize > phys_dev_ext_props.subgroup_size_control_props.maxSubgroupSize) {
skip |= LogError(module_state.vk_shader_module(),
"VUID-VkPipelineShaderStageRequiredSubgroupSizeCreateInfo-requiredSubgroupSize-02762",
"VkPhysicalDeviceSubgroupSizeControlPropertiesEXT::requiredSubgroupSizeStages (%" PRIu32
") is greater than maxSubgroupSize (%" PRIu32 ").",
requiredSubgroupSize, phys_dev_ext_props.subgroup_size_control_props.maxSubgroupSize);
}
}
if ((stage_state.create_info->flags & subgroup_flags) == subgroup_flags) {
if (SafeModulo(local_size_x, phys_dev_ext_props.subgroup_size_control_props.maxSubgroupSize) != 0) {
skip |= LogError(
module_state.vk_shader_module(), "VUID-VkPipelineShaderStageCreateInfo-flags-02758",
"%s flags contain VK_PIPELINE_SHADER_STAGE_CREATE_REQUIRE_FULL_SUBGROUPS_BIT_EXT and "
"VK_PIPELINE_SHADER_STAGE_CREATE_ALLOW_VARYING_SUBGROUP_SIZE_BIT_EXT bits, but local workgroup size in the X "
"dimension (%" PRIu32
") is not a multiple of VkPhysicalDeviceSubgroupSizeControlPropertiesEXT::maxSubgroupSize (%" PRIu32 ").",
report_data->FormatHandle(module_state.vk_shader_module()).c_str(), local_size_x,
phys_dev_ext_props.subgroup_size_control_props.maxSubgroupSize);
}
} else if ((stage_state.create_info->flags & VK_PIPELINE_SHADER_STAGE_CREATE_REQUIRE_FULL_SUBGROUPS_BIT_EXT) &&
(stage_state.create_info->flags & VK_PIPELINE_SHADER_STAGE_CREATE_ALLOW_VARYING_SUBGROUP_SIZE_BIT_EXT) == 0) {
if (!required_subgroup_size_features) {
if (SafeModulo(local_size_x, phys_dev_props_core11.subgroupSize) != 0) {
skip |= LogError(
module_state.vk_shader_module(), "VUID-VkPipelineShaderStageCreateInfo-flags-02759",
"%s flags contain VK_PIPELINE_SHADER_STAGE_CREATE_REQUIRE_FULL_SUBGROUPS_BIT_EXT bit, and not the"
"VK_PIPELINE_SHADER_STAGE_CREATE_ALLOW_VARYING_SUBGROUP_SIZE_BIT_EXT bit, but local workgroup size in the "
"X dimension (%" PRIu32 ") is not a multiple of VkPhysicalDeviceVulkan11Properties::subgroupSize (%" PRIu32
").",
report_data->FormatHandle(module_state.vk_shader_module()).c_str(), local_size_x,
phys_dev_props_core11.subgroupSize);
}
}
}
return skip;
}
spv_target_env PickSpirvEnv(uint32_t api_version, bool spirv_1_4) {
if (api_version >= VK_API_VERSION_1_3) {
return SPV_ENV_VULKAN_1_3;
} else if (api_version >= VK_API_VERSION_1_2) {
return SPV_ENV_VULKAN_1_2;
} else if (api_version >= VK_API_VERSION_1_1) {
if (spirv_1_4) {
return SPV_ENV_VULKAN_1_1_SPIRV_1_4;
} else {
return SPV_ENV_VULKAN_1_1;
}
}
return SPV_ENV_VULKAN_1_0;
}
// Some Vulkan extensions/features are just all done in spirv-val behind optional settings
void AdjustValidatorOptions(const DeviceExtensions &device_extensions, const DeviceFeatures &enabled_features,
spvtools::ValidatorOptions &options) {
// VK_KHR_relaxed_block_layout never had a feature bit so just enabling the extension allows relaxed layout
// Was promotoed in Vulkan 1.1 so anyone using Vulkan 1.1 also gets this for free
if (IsExtEnabled(device_extensions.vk_khr_relaxed_block_layout)) {
// --relax-block-layout
options.SetRelaxBlockLayout(true);
}
// The rest of the settings are controlled from a feature bit, which are set correctly in the state tracking. Regardless of
// Vulkan version used, the feature bit is needed (also described in the spec).
if (enabled_features.core12.uniformBufferStandardLayout == VK_TRUE) {
// --uniform-buffer-standard-layout
options.SetUniformBufferStandardLayout(true);
}
if (enabled_features.core12.scalarBlockLayout == VK_TRUE) {
// --scalar-block-layout
options.SetScalarBlockLayout(true);
}
if (enabled_features.workgroup_memory_explicit_layout_features.workgroupMemoryExplicitLayoutScalarBlockLayout) {
// --workgroup-scalar-block-layout
options.SetWorkgroupScalarBlockLayout(true);
}
if (enabled_features.core13.maintenance4) {
// --allow-localsizeid
options.SetAllowLocalSizeId(true);
}
// Faster validation without friendly names.
options.SetFriendlyNames(false);
}