blob: 0ae6a8791cc70fc05162b3fed0c076768045434e [file] [log] [blame]
/* Copyright (c) 2018-2022 The Khronos Group Inc.
* Copyright (c) 2018-2022 Valve Corporation
* Copyright (c) 2018-2022 LunarG, Inc.
*
* Licensed under the Apache License, Version 2.0 (the "License");
* you may not use this file except in compliance with the License.
* You may obtain a copy of the License at
*
* http://www.apache.org/licenses/LICENSE-2.0
*
* Unless required by applicable law or agreed to in writing, software
* distributed under the License is distributed on an "AS IS" BASIS,
* WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
* See the License for the specific language governing permissions and
* limitations under the License.
*
* Author: Karl Schultz <karl@lunarg.com>
* Author: Tony Barbour <tony@lunarg.com>
*/
#include <climits>
#include <cmath>
#include "gpu_validation.h"
#include "spirv-tools/optimizer.hpp"
#include "spirv-tools/instrument.hpp"
#include "layer_chassis_dispatch.h"
#include "gpu_vuids.h"
#include "buffer_state.h"
#include "cmd_buffer_state.h"
#include "render_pass_state.h"
// Generated shaders
#include "gpu_shaders/gpu_shaders_constants.h"
#include "gpu_pre_draw_vert.h"
#include "gpu_pre_dispatch_comp.h"
#include "gpu_as_inspection_comp.h"
// Keep in sync with the GLSL shader below.
struct GpuAccelerationStructureBuildValidationBuffer {
uint32_t instances_to_validate;
uint32_t replacement_handle_bits_0;
uint32_t replacement_handle_bits_1;
uint32_t invalid_handle_found;
uint32_t invalid_handle_bits_0;
uint32_t invalid_handle_bits_1;
uint32_t valid_handles_count;
};
bool GpuAssisted::CheckForDescriptorIndexing(DeviceFeatures enabled_features) const {
bool result =
(IsExtEnabled(device_extensions.vk_ext_descriptor_indexing) &&
(enabled_features.core12.descriptorIndexing || enabled_features.core12.shaderInputAttachmentArrayDynamicIndexing ||
enabled_features.core12.shaderUniformTexelBufferArrayDynamicIndexing ||
enabled_features.core12.shaderStorageTexelBufferArrayDynamicIndexing ||
enabled_features.core12.shaderUniformBufferArrayNonUniformIndexing ||
enabled_features.core12.shaderSampledImageArrayNonUniformIndexing ||
enabled_features.core12.shaderStorageBufferArrayNonUniformIndexing ||
enabled_features.core12.shaderStorageImageArrayNonUniformIndexing ||
enabled_features.core12.shaderInputAttachmentArrayNonUniformIndexing ||
enabled_features.core12.shaderUniformTexelBufferArrayNonUniformIndexing ||
enabled_features.core12.shaderStorageTexelBufferArrayNonUniformIndexing ||
enabled_features.core12.descriptorBindingUniformBufferUpdateAfterBind ||
enabled_features.core12.descriptorBindingSampledImageUpdateAfterBind ||
enabled_features.core12.descriptorBindingStorageImageUpdateAfterBind ||
enabled_features.core12.descriptorBindingStorageBufferUpdateAfterBind ||
enabled_features.core12.descriptorBindingUniformTexelBufferUpdateAfterBind ||
enabled_features.core12.descriptorBindingStorageTexelBufferUpdateAfterBind ||
enabled_features.core12.descriptorBindingUpdateUnusedWhilePending ||
enabled_features.core12.descriptorBindingPartiallyBound ||
enabled_features.core12.descriptorBindingVariableDescriptorCount || enabled_features.core12.runtimeDescriptorArray));
return result;
}
void GpuAssisted::PreCallRecordCreateBuffer(VkDevice device, const VkBufferCreateInfo *pCreateInfo,
const VkAllocationCallbacks *pAllocator, VkBuffer *pBuffer, void *cb_state_data) {
create_buffer_api_state *cb_state = reinterpret_cast<create_buffer_api_state *>(cb_state_data);
if (cb_state) {
// Ray tracing acceleration structure instance buffers also need the storage buffer usage as
// acceleration structure build validation will find and replace invalid acceleration structure
// handles inside of a compute shader.
if (cb_state->modified_create_info.usage & VK_BUFFER_USAGE_RAY_TRACING_BIT_NV) {
cb_state->modified_create_info.usage |= VK_BUFFER_USAGE_STORAGE_BUFFER_BIT;
}
// Indirect buffers will require validation shader to bind the indirect buffers as a storage buffer.
if ((validate_draw_indirect || validate_dispatch_indirect) &&
cb_state->modified_create_info.usage & VK_BUFFER_USAGE_INDIRECT_BUFFER_BIT) {
cb_state->modified_create_info.usage |= VK_BUFFER_USAGE_STORAGE_BUFFER_BIT;
}
}
ValidationStateTracker::PreCallRecordCreateBuffer(device, pCreateInfo, pAllocator, pBuffer, cb_state_data);
}
// Perform initializations that can be done at Create Device time.
void GpuAssisted::CreateDevice(const VkDeviceCreateInfo *pCreateInfo) {
// GpuAssistedBase::CreateDevice will set up bindings
VkDescriptorSetLayoutBinding binding = {0, VK_DESCRIPTOR_TYPE_STORAGE_BUFFER, 1,
VK_SHADER_STAGE_ALL_GRAPHICS | VK_SHADER_STAGE_COMPUTE_BIT |
VK_SHADER_STAGE_MESH_BIT_NV | VK_SHADER_STAGE_TASK_BIT_NV |
kShaderStageAllRayTracing,
NULL};
bindings_.push_back(binding);
for (auto i = 1; i < 3; i++) {
binding.binding = i;
bindings_.push_back(binding);
}
GpuAssistedBase::CreateDevice(pCreateInfo);
if (enabled_features.core.robustBufferAccess || enabled_features.robustness2_features.robustBufferAccess2) {
buffer_oob_enabled = false;
} else {
buffer_oob_enabled = GpuGetOption("khronos_validation.gpuav_buffer_oob", true);
}
bool validate_descriptor_indexing = GpuGetOption("khronos_validation.gpuav_descriptor_indexing", true);
validate_draw_indirect = GpuGetOption("khronos_validation.validate_draw_indirect", true);
validate_dispatch_indirect = GpuGetOption("khronos_validation.validate_dispatch_indirect", true);
if (phys_dev_props.apiVersion < VK_API_VERSION_1_1) {
ReportSetupProblem(device, "GPU-Assisted validation requires Vulkan 1.1 or later. GPU-Assisted Validation disabled.");
aborted = true;
return;
}
DispatchGetPhysicalDeviceFeatures(physical_device, &supported_features);
if (!supported_features.fragmentStoresAndAtomics || !supported_features.vertexPipelineStoresAndAtomics) {
ReportSetupProblem(device,
"GPU-Assisted validation requires fragmentStoresAndAtomics and vertexPipelineStoresAndAtomics. "
"GPU-Assisted Validation disabled.");
aborted = true;
return;
}
if ((IsExtEnabled(device_extensions.vk_ext_buffer_device_address) ||
IsExtEnabled(device_extensions.vk_khr_buffer_device_address)) &&
!supported_features.shaderInt64) {
LogWarning(device, "UNASSIGNED-GPU-Assisted Validation Warning",
"shaderInt64 feature is not available. No buffer device address checking will be attempted");
}
shaderInt64 = supported_features.shaderInt64;
output_buffer_size = sizeof(uint32_t) * (spvtools::kInstMaxOutCnt + 1);
if (validate_descriptor_indexing) {
descriptor_indexing = CheckForDescriptorIndexing(enabled_features);
}
bool use_linear_output_pool = GpuGetOption("khronos_validation.vma_linear_output", true);
if (use_linear_output_pool) {
auto output_buffer_create_info = LvlInitStruct<VkBufferCreateInfo>();
output_buffer_create_info.size = output_buffer_size;
output_buffer_create_info.usage = VK_BUFFER_USAGE_STORAGE_BUFFER_BIT;
VmaAllocationCreateInfo alloc_create_info = {};
alloc_create_info.requiredFlags = VK_MEMORY_PROPERTY_HOST_VISIBLE_BIT | VK_MEMORY_PROPERTY_HOST_COHERENT_BIT;
uint32_t mem_type_index;
vmaFindMemoryTypeIndexForBufferInfo(vmaAllocator, &output_buffer_create_info, &alloc_create_info, &mem_type_index);
VmaPoolCreateInfo pool_create_info = {};
pool_create_info.memoryTypeIndex = mem_type_index;
pool_create_info.blockSize = 0;
pool_create_info.maxBlockCount = 0;
pool_create_info.flags = VMA_POOL_CREATE_LINEAR_ALGORITHM_BIT;
VkResult result = vmaCreatePool(vmaAllocator, &pool_create_info, &output_buffer_pool);
if (result != VK_SUCCESS) {
ReportSetupProblem(device, "Unable to create VMA memory pool");
}
}
CreateAccelerationStructureBuildValidationState();
}
void GpuAssistedPreDrawValidationState::Destroy(VkDevice device) {
if (shader_module != VK_NULL_HANDLE) {
DispatchDestroyShaderModule(device, shader_module, nullptr);
shader_module = VK_NULL_HANDLE;
}
if (ds_layout != VK_NULL_HANDLE) {
DispatchDestroyDescriptorSetLayout(device, ds_layout, nullptr);
ds_layout = VK_NULL_HANDLE;
}
if (pipeline_layout != VK_NULL_HANDLE) {
DispatchDestroyPipelineLayout(device, pipeline_layout, nullptr);
pipeline_layout = VK_NULL_HANDLE;
}
auto to_destroy = renderpass_to_pipeline.snapshot();
for (auto &entry : to_destroy) {
DispatchDestroyPipeline(device, entry.second, nullptr);
renderpass_to_pipeline.erase(entry.first);
}
initialized = false;
}
void GpuAssistedPreDispatchValidationState::Destroy(VkDevice device) {
if (shader_module != VK_NULL_HANDLE) {
DispatchDestroyShaderModule(device, shader_module, nullptr);
shader_module = VK_NULL_HANDLE;
}
if (ds_layout != VK_NULL_HANDLE) {
DispatchDestroyDescriptorSetLayout(device, ds_layout, nullptr);
ds_layout = VK_NULL_HANDLE;
}
if (pipeline_layout != VK_NULL_HANDLE) {
DispatchDestroyPipelineLayout(device, pipeline_layout, nullptr);
pipeline_layout = VK_NULL_HANDLE;
}
if (pipeline != VK_NULL_HANDLE) {
DispatchDestroyPipeline(device, pipeline, nullptr);
pipeline = VK_NULL_HANDLE;
}
initialized = false;
}
// Clean up device-related resources
void GpuAssisted::PreCallRecordDestroyDevice(VkDevice device, const VkAllocationCallbacks *pAllocator) {
acceleration_structure_validation_state.Destroy(device, vmaAllocator);
pre_draw_validation_state.Destroy(device);
pre_dispatch_validation_state.Destroy(device);
if (output_buffer_pool) {
vmaDestroyPool(vmaAllocator, output_buffer_pool);
}
GpuAssistedBase::PreCallRecordDestroyDevice(device, pAllocator);
}
void GpuAssisted::CreateAccelerationStructureBuildValidationState() {
if (aborted) {
return;
}
auto &as_validation_state = acceleration_structure_validation_state;
if (as_validation_state.initialized) {
return;
}
if (!IsExtEnabled(device_extensions.vk_nv_ray_tracing)) {
return;
}
// Outline:
// - Create valid bottom level acceleration structure which acts as replacement
// - Create and load vertex buffer
// - Create and load index buffer
// - Create, allocate memory for, and bind memory for acceleration structure
// - Query acceleration structure handle
// - Create command pool and command buffer
// - Record build acceleration structure command
// - Submit command buffer and wait for completion
// - Cleanup
// - Create compute pipeline for validating instance buffers
// - Create descriptor set layout
// - Create pipeline layout
// - Create pipeline
// - Cleanup
VkResult result = VK_SUCCESS;
VkBuffer vbo = VK_NULL_HANDLE;
VmaAllocation vbo_allocation = VK_NULL_HANDLE;
if (result == VK_SUCCESS) {
auto vbo_ci = LvlInitStruct<VkBufferCreateInfo>();
vbo_ci.size = sizeof(float) * 9;
vbo_ci.usage = VK_BUFFER_USAGE_RAY_TRACING_BIT_NV;
VmaAllocationCreateInfo vbo_ai = {};
vbo_ai.usage = VMA_MEMORY_USAGE_CPU_TO_GPU;
vbo_ai.requiredFlags = VK_MEMORY_PROPERTY_HOST_VISIBLE_BIT | VK_MEMORY_PROPERTY_HOST_COHERENT_BIT;
result = vmaCreateBuffer(vmaAllocator, &vbo_ci, &vbo_ai, &vbo, &vbo_allocation, nullptr);
if (result != VK_SUCCESS) {
ReportSetupProblem(device, "Failed to create vertex buffer for acceleration structure build validation.");
}
}
if (result == VK_SUCCESS) {
uint8_t *mapped_vbo_buffer = nullptr;
result = vmaMapMemory(vmaAllocator, vbo_allocation, reinterpret_cast<void **>(&mapped_vbo_buffer));
if (result != VK_SUCCESS) {
ReportSetupProblem(device, "Failed to map vertex buffer for acceleration structure build validation.");
} else {
const std::vector<float> vertices = {1.0f, 0.0f, 0.0f, 0.5f, 1.0f, 0.0f, 0.0f, 0.0f, 0.0f};
std::memcpy(mapped_vbo_buffer, (uint8_t *)vertices.data(), sizeof(float) * vertices.size());
vmaUnmapMemory(vmaAllocator, vbo_allocation);
}
}
VkBuffer ibo = VK_NULL_HANDLE;
VmaAllocation ibo_allocation = VK_NULL_HANDLE;
if (result == VK_SUCCESS) {
auto ibo_ci = LvlInitStruct<VkBufferCreateInfo>();
ibo_ci.size = sizeof(uint32_t) * 3;
ibo_ci.usage = VK_BUFFER_USAGE_RAY_TRACING_BIT_NV;
VmaAllocationCreateInfo ibo_ai = {};
ibo_ai.usage = VMA_MEMORY_USAGE_CPU_TO_GPU;
ibo_ai.requiredFlags = VK_MEMORY_PROPERTY_HOST_VISIBLE_BIT | VK_MEMORY_PROPERTY_HOST_COHERENT_BIT;
result = vmaCreateBuffer(vmaAllocator, &ibo_ci, &ibo_ai, &ibo, &ibo_allocation, nullptr);
if (result != VK_SUCCESS) {
ReportSetupProblem(device, "Failed to create index buffer for acceleration structure build validation.");
}
}
if (result == VK_SUCCESS) {
uint8_t *mapped_ibo_buffer = nullptr;
result = vmaMapMemory(vmaAllocator, ibo_allocation, reinterpret_cast<void **>(&mapped_ibo_buffer));
if (result != VK_SUCCESS) {
ReportSetupProblem(device, "Failed to map index buffer for acceleration structure build validation.");
} else {
const std::vector<uint32_t> indicies = {0, 1, 2};
std::memcpy(mapped_ibo_buffer, (uint8_t *)indicies.data(), sizeof(uint32_t) * indicies.size());
vmaUnmapMemory(vmaAllocator, ibo_allocation);
}
}
auto geometry = LvlInitStruct<VkGeometryNV>();
geometry.geometryType = VK_GEOMETRY_TYPE_TRIANGLES_NV;
geometry.geometry.triangles = LvlInitStruct<VkGeometryTrianglesNV>();
geometry.geometry.triangles.vertexData = vbo;
geometry.geometry.triangles.vertexOffset = 0;
geometry.geometry.triangles.vertexCount = 3;
geometry.geometry.triangles.vertexStride = 12;
geometry.geometry.triangles.vertexFormat = VK_FORMAT_R32G32B32_SFLOAT;
geometry.geometry.triangles.indexData = ibo;
geometry.geometry.triangles.indexOffset = 0;
geometry.geometry.triangles.indexCount = 3;
geometry.geometry.triangles.indexType = VK_INDEX_TYPE_UINT32;
geometry.geometry.triangles.transformData = VK_NULL_HANDLE;
geometry.geometry.triangles.transformOffset = 0;
geometry.geometry.aabbs = LvlInitStruct<VkGeometryAABBNV>();
auto as_ci = LvlInitStruct<VkAccelerationStructureCreateInfoNV>();
as_ci.info = LvlInitStruct<VkAccelerationStructureInfoNV>();
as_ci.info.type = VK_ACCELERATION_STRUCTURE_TYPE_BOTTOM_LEVEL_NV;
as_ci.info.instanceCount = 0;
as_ci.info.geometryCount = 1;
as_ci.info.pGeometries = &geometry;
if (result == VK_SUCCESS) {
result = DispatchCreateAccelerationStructureNV(device, &as_ci, nullptr, &as_validation_state.replacement_as);
if (result != VK_SUCCESS) {
ReportSetupProblem(device, "Failed to create acceleration structure for acceleration structure build validation.");
}
}
VkMemoryRequirements2 as_mem_requirements = {};
if (result == VK_SUCCESS) {
auto as_mem_requirements_info = LvlInitStruct<VkAccelerationStructureMemoryRequirementsInfoNV>();
as_mem_requirements_info.type = VK_ACCELERATION_STRUCTURE_MEMORY_REQUIREMENTS_TYPE_OBJECT_NV;
as_mem_requirements_info.accelerationStructure = as_validation_state.replacement_as;
DispatchGetAccelerationStructureMemoryRequirementsNV(device, &as_mem_requirements_info, &as_mem_requirements);
}
VmaAllocationInfo as_memory_ai = {};
if (result == VK_SUCCESS) {
VmaAllocationCreateInfo as_memory_aci = {};
as_memory_aci.usage = VMA_MEMORY_USAGE_GPU_ONLY;
result = vmaAllocateMemory(vmaAllocator, &as_mem_requirements.memoryRequirements, &as_memory_aci,
&as_validation_state.replacement_as_allocation, &as_memory_ai);
if (result != VK_SUCCESS) {
ReportSetupProblem(device,
"Failed to alloc acceleration structure memory for acceleration structure build validation.");
}
}
if (result == VK_SUCCESS) {
auto as_bind_info = LvlInitStruct<VkBindAccelerationStructureMemoryInfoNV>();
as_bind_info.accelerationStructure = as_validation_state.replacement_as;
as_bind_info.memory = as_memory_ai.deviceMemory;
as_bind_info.memoryOffset = as_memory_ai.offset;
result = DispatchBindAccelerationStructureMemoryNV(device, 1, &as_bind_info);
if (result != VK_SUCCESS) {
ReportSetupProblem(device, "Failed to bind acceleration structure memory for acceleration structure build validation.");
}
}
if (result == VK_SUCCESS) {
result = DispatchGetAccelerationStructureHandleNV(device, as_validation_state.replacement_as, sizeof(uint64_t),
&as_validation_state.replacement_as_handle);
if (result != VK_SUCCESS) {
ReportSetupProblem(device, "Failed to get acceleration structure handle for acceleration structure build validation.");
}
}
VkMemoryRequirements2 scratch_mem_requirements = {};
if (result == VK_SUCCESS) {
auto scratch_mem_requirements_info = LvlInitStruct<VkAccelerationStructureMemoryRequirementsInfoNV>();
scratch_mem_requirements_info.type = VK_ACCELERATION_STRUCTURE_MEMORY_REQUIREMENTS_TYPE_BUILD_SCRATCH_NV;
scratch_mem_requirements_info.accelerationStructure = as_validation_state.replacement_as;
DispatchGetAccelerationStructureMemoryRequirementsNV(device, &scratch_mem_requirements_info, &scratch_mem_requirements);
}
VkBuffer scratch = VK_NULL_HANDLE;
VmaAllocation scratch_allocation = {};
if (result == VK_SUCCESS) {
auto scratch_ci = LvlInitStruct<VkBufferCreateInfo>();
scratch_ci.size = scratch_mem_requirements.memoryRequirements.size;
scratch_ci.usage = VK_BUFFER_USAGE_RAY_TRACING_BIT_NV;
VmaAllocationCreateInfo scratch_aci = {};
scratch_aci.usage = VMA_MEMORY_USAGE_GPU_ONLY;
result = vmaCreateBuffer(vmaAllocator, &scratch_ci, &scratch_aci, &scratch, &scratch_allocation, nullptr);
if (result != VK_SUCCESS) {
ReportSetupProblem(device, "Failed to create scratch buffer for acceleration structure build validation.");
}
}
VkCommandPool command_pool = VK_NULL_HANDLE;
if (result == VK_SUCCESS) {
auto command_pool_ci = LvlInitStruct<VkCommandPoolCreateInfo>();
command_pool_ci.queueFamilyIndex = 0;
result = DispatchCreateCommandPool(device, &command_pool_ci, nullptr, &command_pool);
if (result != VK_SUCCESS) {
ReportSetupProblem(device, "Failed to create command pool for acceleration structure build validation.");
}
}
VkCommandBuffer command_buffer = VK_NULL_HANDLE;
if (result == VK_SUCCESS) {
auto command_buffer_ai = LvlInitStruct<VkCommandBufferAllocateInfo>();
command_buffer_ai.commandPool = command_pool;
command_buffer_ai.commandBufferCount = 1;
command_buffer_ai.level = VK_COMMAND_BUFFER_LEVEL_PRIMARY;
result = DispatchAllocateCommandBuffers(device, &command_buffer_ai, &command_buffer);
if (result != VK_SUCCESS) {
ReportSetupProblem(device, "Failed to create command buffer for acceleration structure build validation.");
}
// Hook up command buffer dispatch
vkSetDeviceLoaderData(device, command_buffer);
}
if (result == VK_SUCCESS) {
auto command_buffer_bi = LvlInitStruct<VkCommandBufferBeginInfo>();
result = DispatchBeginCommandBuffer(command_buffer, &command_buffer_bi);
if (result != VK_SUCCESS) {
ReportSetupProblem(device, "Failed to begin command buffer for acceleration structure build validation.");
}
}
if (result == VK_SUCCESS) {
DispatchCmdBuildAccelerationStructureNV(command_buffer, &as_ci.info, VK_NULL_HANDLE, 0, VK_FALSE,
as_validation_state.replacement_as, VK_NULL_HANDLE, scratch, 0);
DispatchEndCommandBuffer(command_buffer);
}
VkQueue queue = VK_NULL_HANDLE;
if (result == VK_SUCCESS) {
DispatchGetDeviceQueue(device, 0, 0, &queue);
// Hook up queue dispatch
vkSetDeviceLoaderData(device, queue);
auto submit_info = LvlInitStruct<VkSubmitInfo>();
submit_info.commandBufferCount = 1;
submit_info.pCommandBuffers = &command_buffer;
result = DispatchQueueSubmit(queue, 1, &submit_info, VK_NULL_HANDLE);
if (result != VK_SUCCESS) {
ReportSetupProblem(device, "Failed to submit command buffer for acceleration structure build validation.");
}
}
if (result == VK_SUCCESS) {
result = DispatchQueueWaitIdle(queue);
if (result != VK_SUCCESS) {
ReportSetupProblem(device, "Failed to wait for queue idle for acceleration structure build validation.");
}
}
if (vbo != VK_NULL_HANDLE) {
vmaDestroyBuffer(vmaAllocator, vbo, vbo_allocation);
}
if (ibo != VK_NULL_HANDLE) {
vmaDestroyBuffer(vmaAllocator, ibo, ibo_allocation);
}
if (scratch != VK_NULL_HANDLE) {
vmaDestroyBuffer(vmaAllocator, scratch, scratch_allocation);
}
if (command_pool != VK_NULL_HANDLE) {
DispatchDestroyCommandPool(device, command_pool, nullptr);
}
if (debug_desc_layout == VK_NULL_HANDLE) {
ReportSetupProblem(device, "Failed to find descriptor set layout for acceleration structure build validation.");
result = VK_INCOMPLETE;
}
if (result == VK_SUCCESS) {
auto pipeline_layout_ci = LvlInitStruct<VkPipelineLayoutCreateInfo>();
pipeline_layout_ci.setLayoutCount = 1;
pipeline_layout_ci.pSetLayouts = &debug_desc_layout;
result = DispatchCreatePipelineLayout(device, &pipeline_layout_ci, 0, &as_validation_state.pipeline_layout);
if (result != VK_SUCCESS) {
ReportSetupProblem(device, "Failed to create pipeline layout for acceleration structure build validation.");
}
}
VkShaderModule shader_module = VK_NULL_HANDLE;
if (result == VK_SUCCESS) {
auto shader_module_ci = LvlInitStruct<VkShaderModuleCreateInfo>();
shader_module_ci.codeSize = sizeof(gpu_as_inspection_comp);
shader_module_ci.pCode = gpu_as_inspection_comp;
result = DispatchCreateShaderModule(device, &shader_module_ci, nullptr, &shader_module);
if (result != VK_SUCCESS) {
ReportSetupProblem(device, "Failed to create compute shader module for acceleration structure build validation.");
}
}
if (result == VK_SUCCESS) {
auto pipeline_stage_ci = LvlInitStruct<VkPipelineShaderStageCreateInfo>();
pipeline_stage_ci.stage = VK_SHADER_STAGE_COMPUTE_BIT;
pipeline_stage_ci.module = shader_module;
pipeline_stage_ci.pName = "main";
auto pipeline_ci = LvlInitStruct<VkComputePipelineCreateInfo>();
pipeline_ci.stage = pipeline_stage_ci;
pipeline_ci.layout = as_validation_state.pipeline_layout;
result = DispatchCreateComputePipelines(device, VK_NULL_HANDLE, 1, &pipeline_ci, nullptr, &as_validation_state.pipeline);
if (result != VK_SUCCESS) {
ReportSetupProblem(device, "Failed to create compute pipeline for acceleration structure build validation.");
}
}
if (shader_module != VK_NULL_HANDLE) {
DispatchDestroyShaderModule(device, shader_module, nullptr);
}
if (result == VK_SUCCESS) {
as_validation_state.initialized = true;
LogInfo(device, "UNASSIGNED-GPU-Assisted Validation.", "Acceleration Structure Building GPU Validation Enabled.");
} else {
aborted = true;
}
}
void GpuAssistedAccelerationStructureBuildValidationState::Destroy(VkDevice device, VmaAllocator &vmaAllocator) {
if (pipeline != VK_NULL_HANDLE) {
DispatchDestroyPipeline(device, pipeline, nullptr);
pipeline = VK_NULL_HANDLE;
}
if (pipeline_layout != VK_NULL_HANDLE) {
DispatchDestroyPipelineLayout(device, pipeline_layout, nullptr);
pipeline_layout = VK_NULL_HANDLE;
}
if (replacement_as != VK_NULL_HANDLE) {
DispatchDestroyAccelerationStructureNV(device, replacement_as, nullptr);
replacement_as = VK_NULL_HANDLE;
}
if (replacement_as_allocation != VK_NULL_HANDLE) {
vmaFreeMemory(vmaAllocator, replacement_as_allocation);
replacement_as_allocation = VK_NULL_HANDLE;
}
initialized = false;
}
struct GPUAV_RESTORABLE_PIPELINE_STATE {
VkPipelineBindPoint pipeline_bind_point = VK_PIPELINE_BIND_POINT_MAX_ENUM;
VkPipeline pipeline = VK_NULL_HANDLE;
VkPipelineLayout pipeline_layout = VK_NULL_HANDLE;
std::vector<std::pair<VkDescriptorSet, uint32_t>> descriptor_sets;
std::vector<std::vector<uint32_t>> dynamic_offsets;
uint32_t push_descriptor_set_index = 0;
std::vector<safe_VkWriteDescriptorSet> push_descriptor_set_writes;
std::vector<uint8_t> push_constants_data;
PushConstantRangesId push_constants_ranges;
void Create(CMD_BUFFER_STATE *cb_state, VkPipelineBindPoint bind_point) {
pipeline_bind_point = bind_point;
const auto lv_bind_point = ConvertToLvlBindPoint(bind_point);
LAST_BOUND_STATE &last_bound = cb_state->lastBound[lv_bind_point];
if (last_bound.pipeline_state) {
pipeline = last_bound.pipeline_state->pipeline();
pipeline_layout = last_bound.pipeline_layout;
descriptor_sets.reserve(last_bound.per_set.size());
for (std::size_t i = 0; i < last_bound.per_set.size(); i++) {
const auto &bound_descriptor_set = last_bound.per_set[i].bound_descriptor_set;
if (bound_descriptor_set) {
descriptor_sets.push_back(std::make_pair(bound_descriptor_set->GetSet(), static_cast<uint32_t>(i)));
if (bound_descriptor_set->IsPushDescriptor()) {
push_descriptor_set_index = static_cast<uint32_t>(i);
}
dynamic_offsets.push_back(last_bound.per_set[i].dynamicOffsets);
}
}
if (last_bound.push_descriptor_set) {
push_descriptor_set_writes = last_bound.push_descriptor_set->GetWrites();
}
const auto &pipeline_layout = last_bound.pipeline_state->PipelineLayoutState();
if (pipeline_layout->push_constant_ranges == cb_state->push_constant_data_ranges) {
push_constants_data = cb_state->push_constant_data;
push_constants_ranges = pipeline_layout->push_constant_ranges;
}
}
}
void Restore(VkCommandBuffer command_buffer) const {
if (pipeline != VK_NULL_HANDLE) {
DispatchCmdBindPipeline(command_buffer, pipeline_bind_point, pipeline);
if (!descriptor_sets.empty()) {
for (std::size_t i = 0; i < descriptor_sets.size(); i++) {
VkDescriptorSet descriptor_set = descriptor_sets[i].first;
if (descriptor_set != VK_NULL_HANDLE) {
DispatchCmdBindDescriptorSets(command_buffer, pipeline_bind_point, pipeline_layout,
descriptor_sets[i].second, 1, &descriptor_set,
static_cast<uint32_t>(dynamic_offsets[i].size()), dynamic_offsets[i].data());
}
}
}
if (!push_descriptor_set_writes.empty()) {
DispatchCmdPushDescriptorSetKHR(command_buffer, pipeline_bind_point, pipeline_layout, push_descriptor_set_index,
static_cast<uint32_t>(push_descriptor_set_writes.size()),
reinterpret_cast<const VkWriteDescriptorSet *>(push_descriptor_set_writes.data()));
}
if (!push_constants_data.empty()) {
for (const auto &push_constant_range : *push_constants_ranges) {
if (push_constant_range.size == 0) continue;
DispatchCmdPushConstants(command_buffer, pipeline_layout, push_constant_range.stageFlags,
push_constant_range.offset, push_constant_range.size, push_constants_data.data());
}
}
}
}
};
void GpuAssisted::PreCallRecordCmdBuildAccelerationStructureNV(VkCommandBuffer commandBuffer,
const VkAccelerationStructureInfoNV *pInfo, VkBuffer instanceData,
VkDeviceSize instanceOffset, VkBool32 update,
VkAccelerationStructureNV dst, VkAccelerationStructureNV src,
VkBuffer scratch, VkDeviceSize scratchOffset) {
ValidationStateTracker::PreCallRecordCmdBuildAccelerationStructureNV(commandBuffer, pInfo, instanceData, instanceOffset, update,
dst, src, scratch, scratchOffset);
if (pInfo == nullptr || pInfo->type != VK_ACCELERATION_STRUCTURE_TYPE_TOP_LEVEL_NV) {
return;
}
auto &as_validation_state = acceleration_structure_validation_state;
if (!as_validation_state.initialized) {
return;
}
// Empty acceleration structure is valid according to the spec.
if (pInfo->instanceCount == 0 || instanceData == VK_NULL_HANDLE) {
return;
}
auto cb_state = GetWrite<gpuav_state::CommandBuffer>(commandBuffer);
assert(cb_state != nullptr);
std::vector<uint64_t> current_valid_handles;
ForEach<ACCELERATION_STRUCTURE_STATE>([&current_valid_handles](const ACCELERATION_STRUCTURE_STATE &as_state) {
if (as_state.built && as_state.create_infoNV.info.type == VK_ACCELERATION_STRUCTURE_TYPE_BOTTOM_LEVEL_NV) {
current_valid_handles.push_back(as_state.opaque_handle);
}
});
GpuAssistedAccelerationStructureBuildValidationBufferInfo as_validation_buffer_info = {};
as_validation_buffer_info.acceleration_structure = dst;
const VkDeviceSize validation_buffer_size =
// One uint for number of instances to validate
4 +
// Two uint for the replacement acceleration structure handle
8 +
// One uint for number of invalid handles found
4 +
// Two uint for the first invalid handle found
8 +
// One uint for the number of current valid handles
4 +
// Two uint for each current valid handle
(8 * current_valid_handles.size());
auto validation_buffer_create_info = LvlInitStruct<VkBufferCreateInfo>();
validation_buffer_create_info.size = validation_buffer_size;
validation_buffer_create_info.usage = VK_BUFFER_USAGE_STORAGE_BUFFER_BIT;
VmaAllocationCreateInfo validation_buffer_alloc_info = {};
validation_buffer_alloc_info.requiredFlags = VK_MEMORY_PROPERTY_HOST_VISIBLE_BIT;
VkResult result = vmaCreateBuffer(vmaAllocator, &validation_buffer_create_info, &validation_buffer_alloc_info,
&as_validation_buffer_info.buffer, &as_validation_buffer_info.buffer_allocation, nullptr);
if (result != VK_SUCCESS) {
ReportSetupProblem(device, "Unable to allocate device memory. Device could become unstable.");
aborted = true;
return;
}
GpuAccelerationStructureBuildValidationBuffer *mapped_validation_buffer = nullptr;
result = vmaMapMemory(vmaAllocator, as_validation_buffer_info.buffer_allocation,
reinterpret_cast<void **>(&mapped_validation_buffer));
if (result != VK_SUCCESS) {
ReportSetupProblem(device, "Unable to allocate device memory for acceleration structure build val buffer.");
aborted = true;
return;
}
mapped_validation_buffer->instances_to_validate = pInfo->instanceCount;
mapped_validation_buffer->replacement_handle_bits_0 =
reinterpret_cast<const uint32_t *>(&as_validation_state.replacement_as_handle)[0];
mapped_validation_buffer->replacement_handle_bits_1 =
reinterpret_cast<const uint32_t *>(&as_validation_state.replacement_as_handle)[1];
mapped_validation_buffer->invalid_handle_found = 0;
mapped_validation_buffer->invalid_handle_bits_0 = 0;
mapped_validation_buffer->invalid_handle_bits_1 = 0;
mapped_validation_buffer->valid_handles_count = static_cast<uint32_t>(current_valid_handles.size());
uint32_t *mapped_valid_handles = reinterpret_cast<uint32_t *>(&mapped_validation_buffer[1]);
for (std::size_t i = 0; i < current_valid_handles.size(); i++) {
const uint64_t current_valid_handle = current_valid_handles[i];
*mapped_valid_handles = reinterpret_cast<const uint32_t *>(&current_valid_handle)[0];
++mapped_valid_handles;
*mapped_valid_handles = reinterpret_cast<const uint32_t *>(&current_valid_handle)[1];
++mapped_valid_handles;
}
vmaUnmapMemory(vmaAllocator, as_validation_buffer_info.buffer_allocation);
static constexpr const VkDeviceSize k_instance_size = 64;
const VkDeviceSize instance_buffer_size = k_instance_size * pInfo->instanceCount;
result = desc_set_manager->GetDescriptorSet(&as_validation_buffer_info.descriptor_pool, debug_desc_layout,
&as_validation_buffer_info.descriptor_set);
if (result != VK_SUCCESS) {
ReportSetupProblem(device, "Unable to get descriptor set for acceleration structure build.");
aborted = true;
return;
}
VkDescriptorBufferInfo descriptor_buffer_infos[2] = {};
descriptor_buffer_infos[0].buffer = instanceData;
descriptor_buffer_infos[0].offset = instanceOffset;
descriptor_buffer_infos[0].range = instance_buffer_size;
descriptor_buffer_infos[1].buffer = as_validation_buffer_info.buffer;
descriptor_buffer_infos[1].offset = 0;
descriptor_buffer_infos[1].range = validation_buffer_size;
VkWriteDescriptorSet descriptor_set_writes[2] = {
LvlInitStruct<VkWriteDescriptorSet>(),
LvlInitStruct<VkWriteDescriptorSet>(),
};
descriptor_set_writes[0].dstSet = as_validation_buffer_info.descriptor_set;
descriptor_set_writes[0].dstBinding = 0;
descriptor_set_writes[0].descriptorCount = 1;
descriptor_set_writes[0].descriptorType = VK_DESCRIPTOR_TYPE_STORAGE_BUFFER;
descriptor_set_writes[0].pBufferInfo = &descriptor_buffer_infos[0];
descriptor_set_writes[1].dstSet = as_validation_buffer_info.descriptor_set;
descriptor_set_writes[1].dstBinding = 1;
descriptor_set_writes[1].descriptorCount = 1;
descriptor_set_writes[1].descriptorType = VK_DESCRIPTOR_TYPE_STORAGE_BUFFER;
descriptor_set_writes[1].pBufferInfo = &descriptor_buffer_infos[1];
DispatchUpdateDescriptorSets(device, 2, descriptor_set_writes, 0, nullptr);
// Issue a memory barrier to make sure anything writing to the instance buffer has finished.
auto memory_barrier = LvlInitStruct<VkMemoryBarrier>();
memory_barrier.srcAccessMask = VK_ACCESS_MEMORY_WRITE_BIT;
memory_barrier.dstAccessMask = VK_ACCESS_SHADER_READ_BIT;
DispatchCmdPipelineBarrier(commandBuffer, VK_PIPELINE_STAGE_ALL_COMMANDS_BIT, VK_PIPELINE_STAGE_COMPUTE_SHADER_BIT, 0, 1,
&memory_barrier, 0, nullptr, 0, nullptr);
// Save a copy of the compute pipeline state that needs to be restored.
GPUAV_RESTORABLE_PIPELINE_STATE restorable_state;
restorable_state.Create(cb_state.get(), VK_PIPELINE_BIND_POINT_COMPUTE);
// Switch to and launch the validation compute shader to find, replace, and report invalid acceleration structure handles.
DispatchCmdBindPipeline(commandBuffer, VK_PIPELINE_BIND_POINT_COMPUTE, as_validation_state.pipeline);
DispatchCmdBindDescriptorSets(commandBuffer, VK_PIPELINE_BIND_POINT_COMPUTE, as_validation_state.pipeline_layout, 0, 1,
&as_validation_buffer_info.descriptor_set, 0, nullptr);
DispatchCmdDispatch(commandBuffer, 1, 1, 1);
// Issue a buffer memory barrier to make sure that any invalid bottom level acceleration structure handles
// have been replaced by the validation compute shader before any builds take place.
auto instance_buffer_barrier = LvlInitStruct<VkBufferMemoryBarrier>();
instance_buffer_barrier.srcAccessMask = VK_ACCESS_SHADER_WRITE_BIT;
instance_buffer_barrier.dstAccessMask = VK_ACCESS_ACCELERATION_STRUCTURE_READ_BIT_NV;
instance_buffer_barrier.srcQueueFamilyIndex = VK_QUEUE_FAMILY_IGNORED;
instance_buffer_barrier.dstQueueFamilyIndex = VK_QUEUE_FAMILY_IGNORED;
instance_buffer_barrier.buffer = instanceData;
instance_buffer_barrier.offset = instanceOffset;
instance_buffer_barrier.size = instance_buffer_size;
DispatchCmdPipelineBarrier(commandBuffer, VK_PIPELINE_STAGE_COMPUTE_SHADER_BIT,
VK_PIPELINE_STAGE_ACCELERATION_STRUCTURE_BUILD_BIT_NV, 0, 0, nullptr, 1, &instance_buffer_barrier, 0,
nullptr);
// Restore the previous compute pipeline state.
restorable_state.Restore(commandBuffer);
cb_state->as_validation_buffers.emplace_back(std::move(as_validation_buffer_info));
}
void gpuav_state::CommandBuffer::ProcessAccelerationStructure(VkQueue queue) {
if (!has_build_as_cmd) {
return;
}
auto *device_state = static_cast<GpuAssisted *>(dev_data);
for (const auto &as_validation_buffer_info : as_validation_buffers) {
GpuAccelerationStructureBuildValidationBuffer *mapped_validation_buffer = nullptr;
VkResult result = vmaMapMemory(device_state->vmaAllocator, as_validation_buffer_info.buffer_allocation,
reinterpret_cast<void **>(&mapped_validation_buffer));
if (result == VK_SUCCESS) {
if (mapped_validation_buffer->invalid_handle_found > 0) {
uint64_t invalid_handle = 0;
reinterpret_cast<uint32_t *>(&invalid_handle)[0] = mapped_validation_buffer->invalid_handle_bits_0;
reinterpret_cast<uint32_t *>(&invalid_handle)[1] = mapped_validation_buffer->invalid_handle_bits_1;
device_state->LogError(
as_validation_buffer_info.acceleration_structure, "UNASSIGNED-AccelerationStructure",
"Attempted to build top level acceleration structure using invalid bottom level acceleration structure "
"handle (%" PRIu64 ")",
invalid_handle);
}
vmaUnmapMemory(device_state->vmaAllocator, as_validation_buffer_info.buffer_allocation);
}
}
}
void GpuAssisted::PostCallRecordBindAccelerationStructureMemoryNV(VkDevice device, uint32_t bindInfoCount,
const VkBindAccelerationStructureMemoryInfoNV *pBindInfos,
VkResult result) {
if (VK_SUCCESS != result) return;
ValidationStateTracker::PostCallRecordBindAccelerationStructureMemoryNV(device, bindInfoCount, pBindInfos, result);
for (uint32_t i = 0; i < bindInfoCount; i++) {
const VkBindAccelerationStructureMemoryInfoNV &info = pBindInfos[i];
auto as_state = Get<ACCELERATION_STRUCTURE_STATE>(info.accelerationStructure);
if (as_state) {
DispatchGetAccelerationStructureHandleNV(device, info.accelerationStructure, 8, &as_state->opaque_handle);
}
}
}
// Free the device memory and descriptor set(s) associated with a command buffer.
void GpuAssisted::DestroyBuffer(GpuAssistedBufferInfo &buffer_info) {
vmaDestroyBuffer(vmaAllocator, buffer_info.output_mem_block.buffer, buffer_info.output_mem_block.allocation);
if (buffer_info.di_input_mem_block.buffer) {
vmaDestroyBuffer(vmaAllocator, buffer_info.di_input_mem_block.buffer, buffer_info.di_input_mem_block.allocation);
}
if (buffer_info.bda_input_mem_block.buffer) {
vmaDestroyBuffer(vmaAllocator, buffer_info.bda_input_mem_block.buffer, buffer_info.bda_input_mem_block.allocation);
}
if (buffer_info.desc_set != VK_NULL_HANDLE) {
desc_set_manager->PutBackDescriptorSet(buffer_info.desc_pool, buffer_info.desc_set);
}
if (buffer_info.pre_draw_resources.desc_set != VK_NULL_HANDLE) {
desc_set_manager->PutBackDescriptorSet(buffer_info.pre_draw_resources.desc_pool, buffer_info.pre_draw_resources.desc_set);
}
if (buffer_info.pre_dispatch_resources.desc_set != VK_NULL_HANDLE) {
desc_set_manager->PutBackDescriptorSet(buffer_info.pre_dispatch_resources.desc_pool,
buffer_info.pre_dispatch_resources.desc_set);
}
}
void GpuAssisted::DestroyBuffer(GpuAssistedAccelerationStructureBuildValidationBufferInfo &as_validation_buffer_info) {
vmaDestroyBuffer(vmaAllocator, as_validation_buffer_info.buffer, as_validation_buffer_info.buffer_allocation);
if (as_validation_buffer_info.descriptor_set != VK_NULL_HANDLE) {
desc_set_manager->PutBackDescriptorSet(as_validation_buffer_info.descriptor_pool, as_validation_buffer_info.descriptor_set);
}
}
void GpuAssisted::PostCallRecordGetPhysicalDeviceProperties(VkPhysicalDevice physicalDevice,
VkPhysicalDeviceProperties *pPhysicalDeviceProperties) {
// There is an implicit layer that can cause this call to return 0 for maxBoundDescriptorSets - Ignore such calls
if (enabled[gpu_validation_reserve_binding_slot] && pPhysicalDeviceProperties->limits.maxBoundDescriptorSets > 0) {
if (pPhysicalDeviceProperties->limits.maxBoundDescriptorSets > 1) {
pPhysicalDeviceProperties->limits.maxBoundDescriptorSets -= 1;
} else {
LogWarning(physicalDevice, "UNASSIGNED-GPU-Assisted Validation Setup Error.",
"Unable to reserve descriptor binding slot on a device with only one slot.");
}
}
ValidationStateTracker::PostCallRecordGetPhysicalDeviceProperties(physicalDevice, pPhysicalDeviceProperties);
}
void GpuAssisted::PostCallRecordGetPhysicalDeviceProperties2(VkPhysicalDevice physicalDevice,
VkPhysicalDeviceProperties2 *pPhysicalDeviceProperties2) {
// There is an implicit layer that can cause this call to return 0 for maxBoundDescriptorSets - Ignore such calls
if (enabled[gpu_validation_reserve_binding_slot] && pPhysicalDeviceProperties2->properties.limits.maxBoundDescriptorSets > 0) {
if (pPhysicalDeviceProperties2->properties.limits.maxBoundDescriptorSets > 1) {
pPhysicalDeviceProperties2->properties.limits.maxBoundDescriptorSets -= 1;
} else {
LogWarning(physicalDevice, "UNASSIGNED-GPU-Assisted Validation Setup Error.",
"Unable to reserve descriptor binding slot on a device with only one slot.");
}
}
ValidationStateTracker::PostCallRecordGetPhysicalDeviceProperties2(physicalDevice, pPhysicalDeviceProperties2);
}
void GpuAssisted::PreCallRecordDestroyRenderPass(VkDevice device, VkRenderPass renderPass,
const VkAllocationCallbacks *pAllocator) {
auto pipeline = pre_draw_validation_state.renderpass_to_pipeline.pop(renderPass);
if (pipeline != pre_draw_validation_state.renderpass_to_pipeline.end()) {
DispatchDestroyPipeline(device, pipeline->second, nullptr);
}
ValidationStateTracker::PreCallRecordDestroyRenderPass(device, renderPass, pAllocator);
}
// Call the SPIR-V Optimizer to run the instrumentation pass on the shader.
bool GpuAssisted::InstrumentShader(const VkShaderModuleCreateInfo *pCreateInfo, std::vector<uint32_t> &new_pgm,
uint32_t *unique_shader_id) {
if (aborted) return false;
if (pCreateInfo->pCode[0] != spv::MagicNumber) return false;
const spvtools::MessageConsumer gpu_console_message_consumer =
[this](spv_message_level_t level, const char *, const spv_position_t &position, const char *message) -> void {
switch (level) {
case SPV_MSG_FATAL:
case SPV_MSG_INTERNAL_ERROR:
case SPV_MSG_ERROR:
this->LogError(this->device, "UNASSIGNED-GPU-Assisted", "Error during shader instrumentation: line %zu: %s",
position.index, message);
break;
default:
break;
}
};
// Load original shader SPIR-V
uint32_t num_words = static_cast<uint32_t>(pCreateInfo->codeSize / 4);
new_pgm.clear();
new_pgm.reserve(num_words);
new_pgm.insert(new_pgm.end(), &pCreateInfo->pCode[0], &pCreateInfo->pCode[num_words]);
// Call the optimizer to instrument the shader.
// Use the unique_shader_module_id as a shader ID so we can look up its handle later in the shader_map.
// If descriptor indexing is enabled, enable length checks and updated descriptor checks
using namespace spvtools;
spv_target_env target_env = PickSpirvEnv(api_version, IsExtEnabled(device_extensions.vk_khr_spirv_1_4));
spvtools::ValidatorOptions val_options;
AdjustValidatorOptions(device_extensions, enabled_features, val_options);
spvtools::OptimizerOptions opt_options;
opt_options.set_run_validator(true);
opt_options.set_validator_options(val_options);
Optimizer optimizer(target_env);
optimizer.SetMessageConsumer(gpu_console_message_consumer);
optimizer.RegisterPass(CreateInstBindlessCheckPass(desc_set_bind_index, unique_shader_module_id, descriptor_indexing,
descriptor_indexing, buffer_oob_enabled, buffer_oob_enabled));
// Call CreateAggressiveDCEPass with preserve_interface == true
optimizer.RegisterPass(CreateAggressiveDCEPass(true));
if ((IsExtEnabled(device_extensions.vk_ext_buffer_device_address) ||
IsExtEnabled(device_extensions.vk_khr_buffer_device_address)) &&
shaderInt64 && enabled_features.core12.bufferDeviceAddress) {
optimizer.RegisterPass(CreateInstBuffAddrCheckPass(desc_set_bind_index, unique_shader_module_id));
}
bool pass = optimizer.Run(new_pgm.data(), new_pgm.size(), &new_pgm, opt_options);
if (!pass) {
ReportSetupProblem(device, "Failure to instrument shader. Proceeding with non-instrumented shader.");
}
*unique_shader_id = unique_shader_module_id++;
return pass;
}
// Create the instrumented shader data to provide to the driver.
void GpuAssisted::PreCallRecordCreateShaderModule(VkDevice device, const VkShaderModuleCreateInfo *pCreateInfo,
const VkAllocationCallbacks *pAllocator, VkShaderModule *pShaderModule,
void *csm_state_data) {
create_shader_module_api_state *csm_state = reinterpret_cast<create_shader_module_api_state *>(csm_state_data);
bool pass = InstrumentShader(pCreateInfo, csm_state->instrumented_pgm, &csm_state->unique_shader_id);
if (pass) {
csm_state->instrumented_create_info.pCode = csm_state->instrumented_pgm.data();
csm_state->instrumented_create_info.codeSize = csm_state->instrumented_pgm.size() * sizeof(uint32_t);
}
ValidationStateTracker::PreCallRecordCreateShaderModule(device, pCreateInfo, pAllocator, pShaderModule, csm_state_data);
}
// Generate the part of the message describing the violation.
bool GenerateValidationMessage(const uint32_t *debug_record, std::string &msg, std::string &vuid_msg, GpuAssistedBufferInfo buf_info, GpuAssisted *gpu_assisted) {
using namespace spvtools;
std::ostringstream strm;
bool return_code = true;
static_assert(
spvtools::kInstErrorMax == _kInstErrorMax,
"If this asserts then SPIRV-Tools was updated with a new instrument.hpp and kInstErrorMax was updated. This needs to be "
"changed in GPU-AV so that the GLSL gpu_shaders can read the constants.");
static_assert(spvtools::kInstValidationOutError == _kInstValidationOutError,
"If this asserts then SPIRV-Tools was updated with a new instrument.hpp and kInstValidationOutError was updated. "
"This needs to be changed in GPU-AV so that the GLSL gpu_shaders can read the constants.");
const GpuVuid vuid = GetGpuVuid(buf_info.cmd_type);
switch (debug_record[kInstValidationOutError]) {
case kInstErrorBindlessBounds: {
strm << "Index of " << debug_record[kInstBindlessBoundsOutDescIndex] << " used to index descriptor array of length "
<< debug_record[kInstBindlessBoundsOutDescBound] << ". ";
vuid_msg = "UNASSIGNED-Descriptor index out of bounds";
} break;
case kInstErrorBindlessUninit: {
strm << "Descriptor index " << debug_record[kInstBindlessUninitOutDescIndex] << " is uninitialized.";
vuid_msg = "UNASSIGNED-Descriptor uninitialized";
} break;
case kInstErrorBuffAddrUnallocRef: {
uint64_t *ptr = (uint64_t *)&debug_record[kInstBuffAddrUnallocOutDescPtrLo];
strm << "Device address 0x" << std::hex << *ptr << " access out of bounds. ";
vuid_msg = "UNASSIGNED-Device address out of bounds";
} break;
case kInstErrorBuffOOBUniform:
case kInstErrorBuffOOBStorage: {
auto size = debug_record[kInstBindlessBuffOOBOutBuffSize];
if (size == 0) {
strm << "Descriptor index " << debug_record[kInstBindlessBuffOOBOutDescIndex] << " is uninitialized.";
vuid_msg = "UNASSIGNED-Descriptor uninitialized";
} else {
strm << "Descriptor index " << debug_record[kInstBindlessBuffOOBOutDescIndex]
<< " access out of bounds. Descriptor size is " << debug_record[kInstBindlessBuffOOBOutBuffSize]
<< " and highest byte accessed was " << debug_record[kInstBindlessBuffOOBOutBuffOff];
if (debug_record[kInstValidationOutError] == kInstErrorBuffOOBUniform)
vuid_msg = vuid.uniform_access_oob;
else
vuid_msg = vuid.storage_access_oob;
}
} break;
case kInstErrorBuffOOBUniformTexel:
case kInstErrorBuffOOBStorageTexel: {
auto size = debug_record[kInstBindlessBuffOOBOutBuffSize];
if (size == 0) {
strm << "Descriptor index " << debug_record[kInstBindlessBuffOOBOutDescIndex] << " is uninitialized.";
vuid_msg = "UNASSIGNED-Descriptor uninitialized";
} else {
strm << "Descriptor index " << debug_record[kInstBindlessBuffOOBOutDescIndex]
<< " access out of bounds. Descriptor size is " << debug_record[kInstBindlessBuffOOBOutBuffSize]
<< " texels and highest texel accessed was " << debug_record[kInstBindlessBuffOOBOutBuffOff];
if (debug_record[kInstValidationOutError] == kInstErrorBuffOOBUniformTexel)
vuid_msg = vuid.uniform_access_oob;
else
vuid_msg = vuid.storage_access_oob;
}
} break;
case _kInstErrorPreDrawValidate: {
// Buffer size must be >= (stride * (drawCount - 1) + offset + sizeof(VkDrawIndexedIndirectCommand))
if (debug_record[_kPreValidateSubError] == pre_draw_count_exceeds_bufsize_error) {
uint32_t count = debug_record[_kPreValidateSubError + 1];
uint32_t stride = buf_info.pre_draw_resources.stride;
uint32_t offset = static_cast<uint32_t>(buf_info.pre_draw_resources.offset);
uint32_t draw_size = (stride * (count - 1) + offset + sizeof(VkDrawIndexedIndirectCommand));
strm << "Indirect draw count of " << count << " would exceed buffer size " << buf_info.pre_draw_resources.buf_size
<< " of buffer " << buf_info.pre_draw_resources.buffer << " stride = " << stride << " offset = " << offset
<< " (stride * (drawCount - 1) + offset + sizeof(VkDrawIndexedIndirectCommand)) = " << draw_size;
if (count == 1) {
vuid_msg = vuid.count_exceeds_bufsize_1;
} else {
vuid_msg = vuid.count_exceeds_bufsize;
}
} else if (debug_record[_kPreValidateSubError] == pre_draw_count_exceeds_limit_error) {
uint32_t count = debug_record[_kPreValidateSubError + 1];
strm << "Indirect draw count of " << count << " would exceed maxDrawIndirectCount limit of "
<< gpu_assisted->phys_dev_props.limits.maxDrawIndirectCount;
vuid_msg = vuid.count_exceeds_device_limit;
} else if (debug_record[_kPreValidateSubError] == pre_draw_first_instance_error) {
uint32_t index = debug_record[_kPreValidateSubError + 1];
strm << "The drawIndirectFirstInstance feature is not enabled, but the firstInstance member of the "
<< ((buf_info.cmd_type == CMD_DRAWINDIRECT) ? "VkDrawIndirectCommand" : "VkDrawIndexedIndirectCommand")
<< " structure at index " << index << " is not zero";
vuid_msg = vuid.first_instance_not_zero;
}
return_code = false;
} break;
case _kInstErrorPreDispatchValidate: {
if (debug_record[_kPreValidateSubError] == pre_dispatch_count_exceeds_limit_x_error) {
uint32_t count = debug_record[_kPreValidateSubError + 1];
strm << "Indirect dispatch VkDispatchIndirectCommand::x of " << count
<< " would exceed maxComputeWorkGroupCount[0] limit of "
<< gpu_assisted->phys_dev_props.limits.maxComputeWorkGroupCount[0];
vuid_msg = vuid.group_exceeds_device_limit_x;
} else if (debug_record[_kPreValidateSubError] == pre_dispatch_count_exceeds_limit_y_error) {
uint32_t count = debug_record[_kPreValidateSubError + 1];
strm << "Indirect dispatch VkDispatchIndirectCommand:y of " << count
<< " would exceed maxComputeWorkGroupCount[1] limit of "
<< gpu_assisted->phys_dev_props.limits.maxComputeWorkGroupCount[1];
vuid_msg = vuid.group_exceeds_device_limit_y;
} else if (debug_record[_kPreValidateSubError] == pre_dispatch_count_exceeds_limit_z_error) {
uint32_t count = debug_record[_kPreValidateSubError + 1];
strm << "Indirect dispatch VkDispatchIndirectCommand::z of " << count
<< " would exceed maxComputeWorkGroupCount[2] limit of "
<< gpu_assisted->phys_dev_props.limits.maxComputeWorkGroupCount[2];
vuid_msg = vuid.group_exceeds_device_limit_z;
}
return_code = false;
} break;
default: {
strm << "Internal Error (unexpected error type = " << debug_record[kInstValidationOutError] << "). ";
vuid_msg = "UNASSIGNED-Internal Error";
assert(false);
} break;
}
msg = strm.str();
return return_code;
}
// Pull together all the information from the debug record to build the error message strings,
// and then assemble them into a single message string.
// Retrieve the shader program referenced by the unique shader ID provided in the debug record.
// We had to keep a copy of the shader program with the same lifecycle as the pipeline to make
// sure it is available when the pipeline is submitted. (The ShaderModule tracking object also
// keeps a copy, but it can be destroyed after the pipeline is created and before it is submitted.)
//
void GpuAssisted::AnalyzeAndGenerateMessages(VkCommandBuffer command_buffer, VkQueue queue, GpuAssistedBufferInfo &buffer_info,
uint32_t operation_index, uint32_t *const debug_output_buffer) {
using namespace spvtools;
const uint32_t total_words = debug_output_buffer[0];
// A zero here means that the shader instrumentation didn't write anything.
// If you have nothing to say, don't say it here.
if (0 == total_words) {
return;
}
// The first word in the debug output buffer is the number of words that would have
// been written by the shader instrumentation, if there was enough room in the buffer we provided.
// The number of words actually written by the shaders is determined by the size of the buffer
// we provide via the descriptor. So, we process only the number of words that can fit in the
// buffer.
// Each "report" written by the shader instrumentation is considered a "record". This function
// is hard-coded to process only one record because it expects the buffer to be large enough to
// hold only one record. If there is a desire to process more than one record, this function needs
// to be modified to loop over records and the buffer size increased.
std::string validation_message;
std::string stage_message;
std::string common_message;
std::string filename_message;
std::string source_message;
std::string vuid_msg;
VkShaderModule shader_module_handle = VK_NULL_HANDLE;
VkPipeline pipeline_handle = VK_NULL_HANDLE;
std::vector<uint32_t> pgm;
// The first record starts at this offset after the total_words.
const uint32_t *debug_record = &debug_output_buffer[kDebugOutputDataOffset];
// Lookup the VkShaderModule handle and SPIR-V code used to create the shader, using the unique shader ID value returned
// by the instrumented shader.
auto it = shader_map.find(debug_record[kInstCommonOutShaderId]);
if (it != shader_map.end()) {
shader_module_handle = it->second.shader_module;
pipeline_handle = it->second.pipeline;
pgm = it->second.pgm;
}
bool gen_full_message = GenerateValidationMessage(debug_record, validation_message, vuid_msg, buffer_info, this);
if (gen_full_message) {
UtilGenerateStageMessage(debug_record, stage_message);
UtilGenerateCommonMessage(report_data, command_buffer, debug_record, shader_module_handle, pipeline_handle,
buffer_info.pipeline_bind_point, operation_index, common_message);
UtilGenerateSourceMessages(pgm, debug_record, false, filename_message, source_message);
LogError(queue, vuid_msg.c_str(), "%s %s %s %s%s", validation_message.c_str(), common_message.c_str(), stage_message.c_str(),
filename_message.c_str(), source_message.c_str());
}
else {
LogError(queue, vuid_msg.c_str(), "%s", validation_message.c_str());
}
// The debug record at word kInstCommonOutSize is the number of words in the record
// written by the shader. Clear the entire record plus the total_words word at the start.
const uint32_t words_to_clear = 1 + std::min(debug_record[kInstCommonOutSize], static_cast<uint32_t>(kInstMaxOutCnt));
memset(debug_output_buffer, 0, sizeof(uint32_t) * words_to_clear);
}
// For the given command buffer, map its debug data buffers and read their contents for analysis.
void gpuav_state::CommandBuffer::Process(VkQueue queue) {
auto *device_state = static_cast<GpuAssisted *>(dev_data);
if (has_draw_cmd || has_trace_rays_cmd || has_dispatch_cmd) {
auto &gpu_buffer_list = gpuav_buffer_list;
uint32_t draw_index = 0;
uint32_t compute_index = 0;
uint32_t ray_trace_index = 0;
for (auto &buffer_info : gpu_buffer_list) {
char *data;
uint32_t operation_index = 0;
if (buffer_info.pipeline_bind_point == VK_PIPELINE_BIND_POINT_GRAPHICS) {
operation_index = draw_index;
draw_index++;
} else if (buffer_info.pipeline_bind_point == VK_PIPELINE_BIND_POINT_COMPUTE) {
operation_index = compute_index;
compute_index++;
} else if (buffer_info.pipeline_bind_point == VK_PIPELINE_BIND_POINT_RAY_TRACING_KHR) {
operation_index = ray_trace_index;
ray_trace_index++;
} else {
assert(false);
}
VkResult result = vmaMapMemory(device_state->vmaAllocator, buffer_info.output_mem_block.allocation, (void **)&data);
if (result == VK_SUCCESS) {
device_state->AnalyzeAndGenerateMessages(commandBuffer(), queue, buffer_info, operation_index, (uint32_t *)data);
vmaUnmapMemory(device_state->vmaAllocator, buffer_info.output_mem_block.allocation);
}
}
}
ProcessAccelerationStructure(queue);
}
void GpuAssisted::SetBindingState(uint32_t *data, uint32_t index, const cvdescriptorset::DescriptorBinding *binding) {
switch (binding->descriptor_class) {
case cvdescriptorset::DescriptorClass::GeneralBuffer: {
auto buffer_binding = static_cast<const cvdescriptorset::BufferBinding *>(binding);
for (uint32_t di = 0; di < buffer_binding->count; di++) {
const auto &desc = buffer_binding->descriptors[di];
if (!buffer_binding->updated[di]) {
data[index++] = 0;
continue;
}
auto buffer = desc.GetBuffer();
if (buffer == VK_NULL_HANDLE) {
data[index++] = UINT_MAX;
} else {
auto buffer_state = desc.GetBufferState();
data[index++] = static_cast<uint32_t>(buffer_state->createInfo.size);
}
}
break;
}
case cvdescriptorset::DescriptorClass::TexelBuffer: {
auto texel_binding = static_cast<const cvdescriptorset::TexelBinding *>(binding);
for (uint32_t di = 0; di < texel_binding->count; di++) {
const auto &desc = texel_binding->descriptors[di];
if (!texel_binding->updated[di]) {
data[index++] = 0;
continue;
}
auto buffer_view = desc.GetBufferView();
if (buffer_view == VK_NULL_HANDLE) {
data[index++] = UINT_MAX;
} else {
auto buffer_view_state = desc.GetBufferViewState();
data[index++] = static_cast<uint32_t>(buffer_view_state->buffer_state->createInfo.size);
}
}
break;
}
case cvdescriptorset::DescriptorClass::Mutable: {
auto mutable_binding = static_cast<const cvdescriptorset::MutableBinding *>(binding);
for (uint32_t di = 0; di < mutable_binding->count; di++) {
const auto &desc = mutable_binding->descriptors[di];
if (!mutable_binding->updated[di]) {
data[index++] = 0;
continue;
}
switch (desc.ActiveType()) {
case VK_DESCRIPTOR_TYPE_UNIFORM_BUFFER:
case VK_DESCRIPTOR_TYPE_STORAGE_BUFFER:
case VK_DESCRIPTOR_TYPE_UNIFORM_TEXEL_BUFFER:
case VK_DESCRIPTOR_TYPE_STORAGE_TEXEL_BUFFER:
data[index++] = static_cast<uint32_t>(desc.GetBufferSize());
break;
default:
data[index++] = 1;
break;
}
}
break;
}
default: {
for (uint32_t i = 0; i < binding->count; i++, index++) {
data[index] = static_cast<uint32_t>(binding->updated[i]);
}
break;
}
}
}
// For the given command buffer, map its debug data buffers and update the status of any update after bind descriptors
void GpuAssisted::UpdateInstrumentationBuffer(gpuav_state::CommandBuffer *cb_node) {
uint32_t *data;
for (auto &buffer_info : cb_node->gpuav_buffer_list) {
if (buffer_info.di_input_mem_block.update_at_submit.size() > 0) {
VkResult result =
vmaMapMemory(vmaAllocator, buffer_info.di_input_mem_block.allocation, reinterpret_cast<void **>(&data));
if (result == VK_SUCCESS) {
for (const auto &update : buffer_info.di_input_mem_block.update_at_submit) {
SetBindingState(data, update.first, update.second);
}
vmaUnmapMemory(vmaAllocator, buffer_info.di_input_mem_block.allocation);
}
}
}
}
void GpuAssisted::PreRecordCommandBuffer(VkCommandBuffer command_buffer) {
auto cb_node = GetWrite<gpuav_state::CommandBuffer>(command_buffer);
UpdateInstrumentationBuffer(cb_node.get());
for (auto *secondary_cmd_buffer : cb_node->linkedCommandBuffers) {
auto guard = secondary_cmd_buffer->WriteLock();
UpdateInstrumentationBuffer(static_cast<gpuav_state::CommandBuffer *>(secondary_cmd_buffer));
}
}
void GpuAssisted::PreCallRecordQueueSubmit(VkQueue queue, uint32_t submitCount, const VkSubmitInfo *pSubmits, VkFence fence) {
ValidationStateTracker::PreCallRecordQueueSubmit(queue, submitCount, pSubmits, fence);
for (uint32_t submit_idx = 0; submit_idx < submitCount; submit_idx++) {
const VkSubmitInfo *submit = &pSubmits[submit_idx];
for (uint32_t i = 0; i < submit->commandBufferCount; i++) {
PreRecordCommandBuffer(submit->pCommandBuffers[i]);
}
}
}
void GpuAssisted::PreCallRecordQueueSubmit2KHR(VkQueue queue, uint32_t submitCount, const VkSubmitInfo2KHR *pSubmits,
VkFence fence) {
ValidationStateTracker::PreCallRecordQueueSubmit2KHR(queue, submitCount, pSubmits, fence);
for (uint32_t submit_idx = 0; submit_idx < submitCount; submit_idx++) {
const VkSubmitInfo2KHR *submit = &pSubmits[submit_idx];
for (uint32_t i = 0; i < submit->commandBufferInfoCount; i++) {
PreRecordCommandBuffer(submit->pCommandBufferInfos[i].commandBuffer);
}
}
}
void GpuAssisted::PreCallRecordQueueSubmit2(VkQueue queue, uint32_t submitCount, const VkSubmitInfo2 *pSubmits, VkFence fence) {
for (uint32_t submit_idx = 0; submit_idx < submitCount; submit_idx++) {
const VkSubmitInfo2 *submit = &pSubmits[submit_idx];
for (uint32_t i = 0; i < submit->commandBufferInfoCount; i++) {
PreRecordCommandBuffer(submit->pCommandBufferInfos[i].commandBuffer);
}
}
}
void GpuAssisted::PreCallRecordCmdDraw(VkCommandBuffer commandBuffer, uint32_t vertexCount, uint32_t instanceCount,
uint32_t firstVertex, uint32_t firstInstance) {
ValidationStateTracker::PreCallRecordCmdDraw(commandBuffer, vertexCount, instanceCount, firstVertex, firstInstance);
AllocateValidationResources(commandBuffer, VK_PIPELINE_BIND_POINT_GRAPHICS, CMD_DRAW);
}
void GpuAssisted::PreCallRecordCmdDrawMultiEXT(VkCommandBuffer commandBuffer, uint32_t drawCount,
const VkMultiDrawInfoEXT *pVertexInfo, uint32_t instanceCount,
uint32_t firstInstance, uint32_t stride) {
ValidationStateTracker::PreCallRecordCmdDrawMultiEXT(commandBuffer, drawCount, pVertexInfo, instanceCount, firstInstance,
stride);
for (uint32_t i = 0; i < drawCount; i++) {
AllocateValidationResources(commandBuffer, VK_PIPELINE_BIND_POINT_GRAPHICS, CMD_DRAWMULTIEXT);
}
}
void GpuAssisted::PreCallRecordCmdDrawIndexed(VkCommandBuffer commandBuffer, uint32_t indexCount, uint32_t instanceCount,
uint32_t firstIndex, int32_t vertexOffset, uint32_t firstInstance) {
ValidationStateTracker::PreCallRecordCmdDrawIndexed(commandBuffer, indexCount, instanceCount, firstIndex, vertexOffset,
firstInstance);
AllocateValidationResources(commandBuffer, VK_PIPELINE_BIND_POINT_GRAPHICS, CMD_DRAWINDEXED);
}
void GpuAssisted::PreCallRecordCmdDrawMultiIndexedEXT(VkCommandBuffer commandBuffer, uint32_t drawCount,
const VkMultiDrawIndexedInfoEXT *pIndexInfo, uint32_t instanceCount,
uint32_t firstInstance, uint32_t stride, const int32_t *pVertexOffset) {
ValidationStateTracker::PreCallRecordCmdDrawMultiIndexedEXT(commandBuffer, drawCount, pIndexInfo, instanceCount, firstInstance,
stride, pVertexOffset);
for (uint32_t i = 0; i < drawCount; i++) {
AllocateValidationResources(commandBuffer, VK_PIPELINE_BIND_POINT_GRAPHICS, CMD_DRAWMULTIINDEXEDEXT);
}
}
void GpuAssisted::PreCallRecordCmdDrawIndirect(VkCommandBuffer commandBuffer, VkBuffer buffer, VkDeviceSize offset, uint32_t count,
uint32_t stride) {
ValidationStateTracker::PreCallRecordCmdDrawIndirect(commandBuffer, buffer, offset, count, stride);
GpuAssistedCmdIndirectState indirect_state = {buffer, offset, count, stride, VK_NULL_HANDLE, 0};
AllocateValidationResources(commandBuffer, VK_PIPELINE_BIND_POINT_GRAPHICS, CMD_DRAWINDIRECT, &indirect_state);
}
void GpuAssisted::PreCallRecordCmdDrawIndexedIndirect(VkCommandBuffer commandBuffer, VkBuffer buffer, VkDeviceSize offset,
uint32_t count, uint32_t stride) {
ValidationStateTracker::PreCallRecordCmdDrawIndexedIndirect(commandBuffer, buffer, offset, count, stride);
GpuAssistedCmdIndirectState indirect_state = {buffer, offset, count, stride, VK_NULL_HANDLE, 0};
AllocateValidationResources(commandBuffer, VK_PIPELINE_BIND_POINT_GRAPHICS, CMD_DRAWINDEXEDINDIRECT, &indirect_state);
}
void GpuAssisted::PreCallRecordCmdDrawIndirectCountKHR(VkCommandBuffer commandBuffer, VkBuffer buffer, VkDeviceSize offset,
VkBuffer countBuffer, VkDeviceSize countBufferOffset, uint32_t maxDrawCount,
uint32_t stride) {
ValidationStateTracker::PreCallRecordCmdDrawIndirectCountKHR(commandBuffer, buffer, offset, countBuffer, countBufferOffset,
maxDrawCount, stride);
GpuAssistedCmdIndirectState indirect_state = {buffer, offset, 0, stride, countBuffer, countBufferOffset};
AllocateValidationResources(commandBuffer, VK_PIPELINE_BIND_POINT_GRAPHICS, CMD_DRAWINDIRECTCOUNTKHR, &indirect_state);
}
void GpuAssisted::PreCallRecordCmdDrawIndirectCount(VkCommandBuffer commandBuffer, VkBuffer buffer, VkDeviceSize offset,
VkBuffer countBuffer, VkDeviceSize countBufferOffset, uint32_t maxDrawCount,
uint32_t stride) {
ValidationStateTracker::PreCallRecordCmdDrawIndirectCount(commandBuffer, buffer, offset, countBuffer, countBufferOffset,
maxDrawCount, stride);
GpuAssistedCmdIndirectState indirect_state = {buffer, offset, 0, stride, countBuffer, countBufferOffset};
AllocateValidationResources(commandBuffer, VK_PIPELINE_BIND_POINT_GRAPHICS, CMD_DRAWINDIRECTCOUNT, &indirect_state);
}
void GpuAssisted::PreCallRecordCmdDrawIndirectByteCountEXT(VkCommandBuffer commandBuffer, uint32_t instanceCount,
uint32_t firstInstance, VkBuffer counterBuffer,
VkDeviceSize counterBufferOffset, uint32_t counterOffset,
uint32_t vertexStride) {
ValidationStateTracker::PreCallRecordCmdDrawIndirectByteCountEXT(commandBuffer, instanceCount, firstInstance, counterBuffer,
counterBufferOffset, counterOffset, vertexStride);
AllocateValidationResources(commandBuffer, VK_PIPELINE_BIND_POINT_GRAPHICS, CMD_DRAWINDIRECTBYTECOUNTEXT);
}
void GpuAssisted::PreCallRecordCmdDrawIndexedIndirectCountKHR(VkCommandBuffer commandBuffer, VkBuffer buffer, VkDeviceSize offset,
VkBuffer countBuffer, VkDeviceSize countBufferOffset,
uint32_t maxDrawCount, uint32_t stride) {
ValidationStateTracker::PreCallRecordCmdDrawIndexedIndirectCountKHR(commandBuffer, buffer, offset, countBuffer,
countBufferOffset, maxDrawCount, stride);
GpuAssistedCmdIndirectState indirect_state = {buffer, offset, 0, stride, countBuffer, countBufferOffset};
AllocateValidationResources(commandBuffer, VK_PIPELINE_BIND_POINT_GRAPHICS, CMD_DRAWINDEXEDINDIRECTCOUNTKHR, &indirect_state);
}
void GpuAssisted::PreCallRecordCmdDrawIndexedIndirectCount(VkCommandBuffer commandBuffer, VkBuffer buffer, VkDeviceSize offset,
VkBuffer countBuffer, VkDeviceSize countBufferOffset,
uint32_t maxDrawCount, uint32_t stride) {
ValidationStateTracker::PreCallRecordCmdDrawIndexedIndirectCount(commandBuffer, buffer, offset, countBuffer, countBufferOffset,
maxDrawCount, stride);
GpuAssistedCmdIndirectState indirect_state = {buffer, offset, 0, stride, countBuffer, countBufferOffset};
AllocateValidationResources(commandBuffer, VK_PIPELINE_BIND_POINT_GRAPHICS, CMD_DRAWINDEXEDINDIRECTCOUNT, &indirect_state);
}
void GpuAssisted::PreCallRecordCmdDrawMeshTasksNV(VkCommandBuffer commandBuffer, uint32_t taskCount, uint32_t firstTask) {
ValidationStateTracker::PreCallRecordCmdDrawMeshTasksNV(commandBuffer, taskCount, firstTask);
AllocateValidationResources(commandBuffer, VK_PIPELINE_BIND_POINT_GRAPHICS, CMD_DRAWMESHTASKSNV);
}
void GpuAssisted::PreCallRecordCmdDrawMeshTasksIndirectNV(VkCommandBuffer commandBuffer, VkBuffer buffer, VkDeviceSize offset,
uint32_t drawCount, uint32_t stride) {
ValidationStateTracker::PreCallRecordCmdDrawMeshTasksIndirectNV(commandBuffer, buffer, offset, drawCount, stride);
AllocateValidationResources(commandBuffer, VK_PIPELINE_BIND_POINT_GRAPHICS, CMD_DRAWMESHTASKSINDIRECTNV);
}
void GpuAssisted::PreCallRecordCmdDrawMeshTasksIndirectCountNV(VkCommandBuffer commandBuffer, VkBuffer buffer, VkDeviceSize offset,
VkBuffer countBuffer, VkDeviceSize countBufferOffset,
uint32_t maxDrawCount, uint32_t stride) {
ValidationStateTracker::PreCallRecordCmdDrawMeshTasksIndirectCountNV(commandBuffer, buffer, offset, countBuffer,
countBufferOffset, maxDrawCount, stride);
AllocateValidationResources(commandBuffer, VK_PIPELINE_BIND_POINT_GRAPHICS, CMD_DRAWMESHTASKSINDIRECTCOUNTNV);
}
void GpuAssisted::PreCallRecordCmdDispatch(VkCommandBuffer commandBuffer, uint32_t x, uint32_t y, uint32_t z) {
ValidationStateTracker::PreCallRecordCmdDispatch(commandBuffer, x, y, z);
AllocateValidationResources(commandBuffer, VK_PIPELINE_BIND_POINT_COMPUTE, CMD_DISPATCH);
}
void GpuAssisted::PreCallRecordCmdDispatchIndirect(VkCommandBuffer commandBuffer, VkBuffer buffer, VkDeviceSize offset) {
ValidationStateTracker::PreCallRecordCmdDispatchIndirect(commandBuffer, buffer, offset);
GpuAssistedCmdIndirectState indirect_state = {buffer, offset, 0, 0, VK_NULL_HANDLE, 0};
AllocateValidationResources(commandBuffer, VK_PIPELINE_BIND_POINT_COMPUTE, CMD_DISPATCHINDIRECT, &indirect_state);
}
void GpuAssisted::PreCallRecordCmdDispatchBase(VkCommandBuffer commandBuffer, uint32_t baseGroupX, uint32_t baseGroupY,
uint32_t baseGroupZ, uint32_t groupCountX, uint32_t groupCountY,
uint32_t groupCountZ) {
ValidationStateTracker::PreCallRecordCmdDispatchBase(commandBuffer, baseGroupX, baseGroupY, baseGroupZ, groupCountX,
groupCountY, groupCountZ);
AllocateValidationResources(commandBuffer, VK_PIPELINE_BIND_POINT_COMPUTE, CMD_DISPATCHBASE);
}
void GpuAssisted::PreCallRecordCmdDispatchBaseKHR(VkCommandBuffer commandBuffer, uint32_t baseGroupX, uint32_t baseGroupY,
uint32_t baseGroupZ, uint32_t groupCountX, uint32_t groupCountY,
uint32_t groupCountZ) {
ValidationStateTracker::PreCallRecordCmdDispatchBaseKHR(commandBuffer, baseGroupX, baseGroupY, baseGroupZ, groupCountX,
groupCountY, groupCountZ);
AllocateValidationResources(commandBuffer, VK_PIPELINE_BIND_POINT_COMPUTE, CMD_DISPATCHBASEKHR);
}
void GpuAssisted::PreCallRecordCmdTraceRaysNV(VkCommandBuffer commandBuffer, VkBuffer raygenShaderBindingTableBuffer,
VkDeviceSize raygenShaderBindingOffset, VkBuffer missShaderBindingTableBuffer,
VkDeviceSize missShaderBindingOffset, VkDeviceSize missShaderBindingStride,
VkBuffer hitShaderBindingTableBuffer, VkDeviceSize hitShaderBindingOffset,
VkDeviceSize hitShaderBindingStride, VkBuffer callableShaderBindingTableBuffer,
VkDeviceSize callableShaderBindingOffset, VkDeviceSize callableShaderBindingStride,
uint32_t width, uint32_t height, uint32_t depth) {
ValidationStateTracker::PreCallRecordCmdTraceRaysNV(
commandBuffer, raygenShaderBindingTableBuffer, raygenShaderBindingOffset, missShaderBindingTableBuffer,
missShaderBindingOffset, missShaderBindingStride, hitShaderBindingTableBuffer, hitShaderBindingOffset,
hitShaderBindingStride, callableShaderBindingTableBuffer, callableShaderBindingOffset, callableShaderBindingStride, width,
height, depth);
AllocateValidationResources(commandBuffer, VK_PIPELINE_BIND_POINT_RAY_TRACING_NV, CMD_TRACERAYSNV);
}
void GpuAssisted::PreCallRecordCmdTraceRaysKHR(VkCommandBuffer commandBuffer,
const VkStridedDeviceAddressRegionKHR *pRaygenShaderBindingTable,
const VkStridedDeviceAddressRegionKHR *pMissShaderBindingTable,
const VkStridedDeviceAddressRegionKHR *pHitShaderBindingTable,
const VkStridedDeviceAddressRegionKHR *pCallableShaderBindingTable, uint32_t width,
uint32_t height, uint32_t depth) {
ValidationStateTracker::PreCallRecordCmdTraceRaysKHR(commandBuffer, pRaygenShaderBindingTable, pMissShaderBindingTable,
pHitShaderBindingTable, pCallableShaderBindingTable, width, height, depth);
AllocateValidationResources(commandBuffer, VK_PIPELINE_BIND_POINT_RAY_TRACING_KHR, CMD_TRACERAYSKHR);
}
void GpuAssisted::PreCallRecordCmdTraceRaysIndirectKHR(VkCommandBuffer commandBuffer,
const VkStridedDeviceAddressRegionKHR *pRaygenShaderBindingTable,
const VkStridedDeviceAddressRegionKHR *pMissShaderBindingTable,
const VkStridedDeviceAddressRegionKHR *pHitShaderBindingTable,
const VkStridedDeviceAddressRegionKHR *pCallableShaderBindingTable,
VkDeviceAddress indirectDeviceAddress) {
ValidationStateTracker::PreCallRecordCmdTraceRaysIndirectKHR(commandBuffer, pRaygenShaderBindingTable, pMissShaderBindingTable,
pHitShaderBindingTable, pCallableShaderBindingTable,
indirectDeviceAddress);
AllocateValidationResources(commandBuffer, VK_PIPELINE_BIND_POINT_RAY_TRACING_KHR, CMD_TRACERAYSINDIRECTKHR);
}
void GpuAssisted::PreCallRecordCmdTraceRaysIndirect2KHR(VkCommandBuffer commandBuffer, VkDeviceAddress indirectDeviceAddress) {
ValidationStateTracker::PreCallRecordCmdTraceRaysIndirect2KHR(commandBuffer, indirectDeviceAddress);
AllocateValidationResources(commandBuffer, VK_PIPELINE_BIND_POINT_RAY_TRACING_KHR, CMD_TRACERAYSINDIRECT2KHR);
}
// This function will add the returned VkPipeline handle to another object incharge of destroying it. Caller does NOT have to
// destroy it
VkPipeline GpuAssisted::GetValidationPipeline(VkRenderPass render_pass) {
VkPipeline pipeline = VK_NULL_HANDLE;
//NOTE: for dynamic rendering, render_pass will be VK_NULL_HANDLE but we'll use that as a map
//key anyways;
auto pipeentry = pre_draw_validation_state.renderpass_to_pipeline.find(render_pass);
if (pipeentry != pre_draw_validation_state.renderpass_to_pipeline.end()) {
pipeline = pipeentry->second;
}
if (pipeline != VK_NULL_HANDLE) {
return pipeline;
}
auto pipeline_stage_ci = LvlInitStruct<VkPipelineShaderStageCreateInfo>();
pipeline_stage_ci.stage = VK_SHADER_STAGE_VERTEX_BIT;
pipeline_stage_ci.module = pre_draw_validation_state.shader_module;
pipeline_stage_ci.pName = "main";
auto pipeline_ci = LvlInitStruct<VkGraphicsPipelineCreateInfo>();
auto vertex_input_state = LvlInitStruct<VkPipelineVertexInputStateCreateInfo>();
auto input_assembly_state = LvlInitStruct<VkPipelineInputAssemblyStateCreateInfo>();
input_assembly_state.topology = VK_PRIMITIVE_TOPOLOGY_TRIANGLE_LIST;
auto rasterization_state = LvlInitStruct<VkPipelineRasterizationStateCreateInfo>();
rasterization_state.rasterizerDiscardEnable = VK_TRUE;
auto color_blend_state = LvlInitStruct<VkPipelineColorBlendStateCreateInfo>();
pipeline_ci.pVertexInputState = &vertex_input_state;
pipeline_ci.pInputAssemblyState = &input_assembly_state;
pipeline_ci.pRasterizationState = &rasterization_state;
pipeline_ci.pColorBlendState = &color_blend_state;
pipeline_ci.renderPass = render_pass;
pipeline_ci.layout = pre_draw_validation_state.pipeline_layout;
pipeline_ci.stageCount = 1;
pipeline_ci.pStages = &pipeline_stage_ci;
VkResult result = DispatchCreateGraphicsPipelines(device, VK_NULL_HANDLE, 1, &pipeline_ci, nullptr, &pipeline);
if (result != VK_SUCCESS) {
ReportSetupProblem(device, "Unable to create graphics pipeline. Aborting GPU-AV");
aborted = true;
return VK_NULL_HANDLE;
}
pre_draw_validation_state.renderpass_to_pipeline.insert(render_pass, pipeline);
return pipeline;
}
void GpuAssisted::AllocatePreDrawValidationResources(GpuAssistedDeviceMemoryBlock output_block,
GpuAssistedPreDrawResources &resources, const VkRenderPass render_pass,
VkPipeline *pPipeline, const GpuAssistedCmdIndirectState *indirect_state) {
VkResult result;
if (!pre_draw_validation_state.initialized) {
auto shader_module_ci = LvlInitStruct<VkShaderModuleCreateInfo>();
shader_module_ci.codeSize = sizeof(gpu_pre_draw_vert);
shader_module_ci.pCode = gpu_pre_draw_vert;
result = DispatchCreateShaderModule(device, &shader_module_ci, nullptr, &pre_draw_validation_state.shader_module);
if (result != VK_SUCCESS) {
ReportSetupProblem(device, "Unable to create shader module. Aborting GPU-AV");
aborted = true;
return;
}
std::vector<VkDescriptorSetLayoutBinding> bindings = {
{0, VK_DESCRIPTOR_TYPE_STORAGE_BUFFER, 1, VK_SHADER_STAGE_VERTEX_BIT, nullptr}, // output buffer
{1, VK_DESCRIPTOR_TYPE_STORAGE_BUFFER, 1, VK_SHADER_STAGE_VERTEX_BIT, nullptr}, // count/draws buffer
};
VkDescriptorSetLayoutCreateInfo ds_layout_ci = LvlInitStruct<VkDescriptorSetLayoutCreateInfo>();
ds_layout_ci.bindingCount = static_cast<uint32_t>(bindings.size());
ds_layout_ci.pBindings = bindings.data();
result = DispatchCreateDescriptorSetLayout(device, &ds_layout_ci, nullptr, &pre_draw_validation_state.ds_layout);
if (result != VK_SUCCESS) {
ReportSetupProblem(device, "Unable to create descriptor set layout. Aborting GPU-AV");
aborted = true;
return;
}
VkPushConstantRange push_constant_range = {};
push_constant_range.stageFlags = VK_SHADER_STAGE_VERTEX_BIT;
push_constant_range.offset = 0;
push_constant_range.size = resources.push_constant_words * sizeof(uint32_t);
VkPipelineLayoutCreateInfo pipeline_layout_ci = LvlInitStruct<VkPipelineLayoutCreateInfo>();
pipeline_layout_ci.pushConstantRangeCount = 1;
pipeline_layout_ci.pPushConstantRanges = &push_constant_range;
pipeline_layout_ci.setLayoutCount = 1;
pipeline_layout_ci.pSetLayouts = &pre_draw_validation_state.ds_layout;
result = DispatchCreatePipelineLayout(device, &pipeline_layout_ci, nullptr, &pre_draw_validation_state.pipeline_layout);
if (result != VK_SUCCESS) {
ReportSetupProblem(device, "Unable to create pipeline layout. Aborting GPU-AV");
aborted = true;
return;
}
pre_draw_validation_state.initialized = true;
}
*pPipeline = GetValidationPipeline(render_pass);
if (*pPipeline == VK_NULL_HANDLE) {
ReportSetupProblem(device, "Could not find or create a pipeline. Aborting GPU-AV");
aborted = true;
return;
}
result = desc_set_manager->GetDescriptorSet(&resources.desc_pool, pre_draw_validation_state.ds_layout, &resources.desc_set);
if (result != VK_SUCCESS) {
ReportSetupProblem(device, "Unable to allocate descriptor set. Aborting GPU-AV");
aborted = true;
return;
}
const uint32_t buffer_count = 2;
VkDescriptorBufferInfo buffer_infos[buffer_count] = {};
// Error output buffer
buffer_infos[0].buffer = output_block.buffer;
buffer_infos[0].offset = 0;
buffer_infos[0].range = VK_WHOLE_SIZE;
if (indirect_state->count_buffer) {
// Count buffer
buffer_infos[1].buffer = indirect_state->count_buffer;
} else {
// Draw Buffer
buffer_infos[1].buffer = indirect_state->buffer;
}
buffer_infos[1].offset = 0;
buffer_infos[1].range = VK_WHOLE_SIZE;
VkWriteDescriptorSet desc_writes[buffer_count] = {};
for (uint32_t i = 0; i < buffer_count; i++) {
desc_writes[i] = LvlInitStruct<VkWriteDescriptorSet>();
desc_writes[i].dstBinding = i;
desc_writes[i].descriptorCount = 1;
desc_writes[i].descriptorType = VK_DESCRIPTOR_TYPE_STORAGE_BUFFER;
desc_writes[i].pBufferInfo = &buffer_infos[i];
desc_writes[i].dstSet = resources.desc_set;
}
DispatchUpdateDescriptorSets(device, buffer_count, desc_writes, 0, NULL);
}
void GpuAssisted::AllocatePreDispatchValidationResources(GpuAssistedDeviceMemoryBlock output_block,
GpuAssistedPreDispatchResources &resources,
const GpuAssistedCmdIndirectState *indirect_state) {
VkResult result;
if (!pre_dispatch_validation_state.initialized) {
auto shader_module_ci = LvlInitStruct<VkShaderModuleCreateInfo>();
shader_module_ci.codeSize = sizeof(gpu_pre_dispatch_comp);
shader_module_ci.pCode = gpu_pre_dispatch_comp;
result = DispatchCreateShaderModule(device, &shader_module_ci, nullptr, &pre_dispatch_validation_state.shader_module);
if (result != VK_SUCCESS) {
ReportSetupProblem(device, "Unable to create shader module. Aborting GPU-AV");
aborted = true;
return;
}
std::vector<VkDescriptorSetLayoutBinding> bindings = {
{0, VK_DESCRIPTOR_TYPE_STORAGE_BUFFER, 1, VK_SHADER_STAGE_COMPUTE_BIT, nullptr}, // output buffer
{1, VK_DESCRIPTOR_TYPE_STORAGE_BUFFER, 1, VK_SHADER_STAGE_COMPUTE_BIT, nullptr}, // indirect buffer
};
VkDescriptorSetLayoutCreateInfo ds_layout_ci = LvlInitStruct<VkDescriptorSetLayoutCreateInfo>();
ds_layout_ci.bindingCount = static_cast<uint32_t>(bindings.size());
ds_layout_ci.pBindings = bindings.data();
result = DispatchCreateDescriptorSetLayout(device, &ds_layout_ci, nullptr, &pre_dispatch_validation_state.ds_layout);
if (result != VK_SUCCESS) {
ReportSetupProblem(device, "Unable to create descriptor set layout. Aborting GPU-AV");
aborted = true;
return;
}
VkPushConstantRange push_constant_range = {};
push_constant_range.stageFlags = VK_SHADER_STAGE_COMPUTE_BIT;
push_constant_range.offset = 0;
push_constant_range.size = resources.push_constant_words * sizeof(uint32_t);
VkPipelineLayoutCreateInfo pipeline_layout_ci = LvlInitStruct<VkPipelineLayoutCreateInfo>();
pipeline_layout_ci.pushConstantRangeCount = 1;
pipeline_layout_ci.pPushConstantRanges = &push_constant_range;
pipeline_layout_ci.setLayoutCount = 1;
pipeline_layout_ci.pSetLayouts = &pre_dispatch_validation_state.ds_layout;
result = DispatchCreatePipelineLayout(device, &pipeline_layout_ci, nullptr, &pre_dispatch_validation_state.pipeline_layout);
if (result != VK_SUCCESS) {
ReportSetupProblem(device, "Unable to create pipeline layout. Aborting GPU-AV");
aborted = true;
return;
}
// Create pipeline
auto pipeline_stage_ci = LvlInitStruct<VkPipelineShaderStageCreateInfo>();
pipeline_stage_ci.stage = VK_SHADER_STAGE_COMPUTE_BIT;
pipeline_stage_ci.module = pre_dispatch_validation_state.shader_module;
pipeline_stage_ci.pName = "main";
auto pipeline_ci = LvlInitStruct<VkComputePipelineCreateInfo>();
pipeline_ci.stage = pipeline_stage_ci;
pipeline_ci.layout = pre_dispatch_validation_state.pipeline_layout;
result = DispatchCreateComputePipelines(device, VK_NULL_HANDLE, 1, &pipeline_ci, nullptr,
&pre_dispatch_validation_state.pipeline);
if (result != VK_SUCCESS) {
ReportSetupProblem(device, "Failed to create compute pipeline for pre dispatch validation.");
}
pre_dispatch_validation_state.initialized = true;
}
result = desc_set_manager->GetDescriptorSet(&resources.desc_pool, pre_dispatch_validation_state.ds_layout, &resources.desc_set);
if (result != VK_SUCCESS) {
ReportSetupProblem(device, "Unable to allocate descriptor set. Aborting GPU-AV");
aborted = true;
return;
}
const uint32_t buffer_count = 2;
VkDescriptorBufferInfo buffer_infos[buffer_count] = {};
// Error output buffer
buffer_infos[0].buffer = output_block.buffer;
buffer_infos[0].offset = 0;
buffer_infos[0].range = VK_WHOLE_SIZE;
buffer_infos[1].buffer = indirect_state->buffer;
buffer_infos[1].offset = 0;
buffer_infos[1].range = VK_WHOLE_SIZE;
VkWriteDescriptorSet desc_writes[buffer_count] = {};
for (uint32_t i = 0; i < buffer_count; i++) {
desc_writes[i] = LvlInitStruct<VkWriteDescriptorSet>();
desc_writes[i].dstBinding = i;
desc_writes[i].descriptorCount = 1;
desc_writes[i].descriptorType = VK_DESCRIPTOR_TYPE_STORAGE_BUFFER;
desc_writes[i].pBufferInfo = &buffer_infos[i];
desc_writes[i].dstSet = resources.desc_set;
}
DispatchUpdateDescriptorSets(device, buffer_count, desc_writes, 0, nullptr);
}
void GpuAssisted::AllocateValidationResources(const VkCommandBuffer cmd_buffer, const VkPipelineBindPoint bind_point,
CMD_TYPE cmd_type, const GpuAssistedCmdIndirectState *indirect_state) {
if (bind_point != VK_PIPELINE_BIND_POINT_GRAPHICS && bind_point != VK_PIPELINE_BIND_POINT_COMPUTE &&
bind_point != VK_PIPELINE_BIND_POINT_RAY_TRACING_KHR) {
return;
}
VkResult result;
if (aborted) return;
auto cb_node = GetWrite<gpuav_state::CommandBuffer>(cmd_buffer);
if (!cb_node) {
ReportSetupProblem(device, "Unrecognized command buffer");
aborted = true;
return;
}
const auto lv_bind_point = ConvertToLvlBindPoint(bind_point);
auto const &state = cb_node->lastBound[lv_bind_point];
const auto *pipeline_state = state.pipeline_state;
// TODO (ncesario) remove once VK_EXT_graphics_pipeline_library support is added for GPU-AV
if (pipeline_state->IsGraphicsLibrary()) {
ReportSetupProblem(device, "GPU-AV does not currently support VK_EXT_graphics_pipeline_library");
aborted = true;
return;
}
std::vector<VkDescriptorSet> desc_sets;
VkDescriptorPool desc_pool = VK_NULL_HANDLE;
result = desc_set_manager->GetDescriptorSets(1, &desc_pool, debug_desc_layout, &desc_sets);
assert(result == VK_SUCCESS);
if (result != VK_SUCCESS) {
ReportSetupProblem(device, "Unable to allocate descriptor sets. Device could become unstable.");
aborted = true;
return;
}
VkDescriptorBufferInfo output_desc_buffer_info = {};
output_desc_buffer_info.range = output_buffer_size;
// Allocate memory for the output block that the gpu will use to return any error information
GpuAssistedDeviceMemoryBlock output_block = {};
VkBufferCreateInfo buffer_info = LvlInitStruct<VkBufferCreateInfo>();
buffer_info.size = output_buffer_size;
buffer_info.usage = VK_BUFFER_USAGE_STORAGE_BUFFER_BIT;
VmaAllocationCreateInfo alloc_info = {};
alloc_info.requiredFlags = VK_MEMORY_PROPERTY_HOST_VISIBLE_BIT | VK_MEMORY_PROPERTY_HOST_COHERENT_BIT;
alloc_info.pool = output_buffer_pool;
result = vmaCreateBuffer(vmaAllocator, &buffer_info, &alloc_info, &output_block.buffer, &output_block.allocation, nullptr);
if (result != VK_SUCCESS) {
ReportSetupProblem(device, "Unable to allocate device memory. Device could become unstable.", true);
aborted = true;
return;
}
// Clear the output block to zeros so that only error information from the gpu will be present
uint32_t *data_ptr;
result = vmaMapMemory(vmaAllocator, output_block.allocation, reinterpret_cast<void **>(&data_ptr));
if (result == VK_SUCCESS) {
memset(data_ptr, 0, output_buffer_size);
vmaUnmapMemory(vmaAllocator, output_block.allocation);
}
GpuAssistedDeviceMemoryBlock di_input_block = {}, bda_input_block = {};
VkDescriptorBufferInfo di_input_desc_buffer_info = {};
VkDescriptorBufferInfo bda_input_desc_buffer_info = {};
VkWriteDescriptorSet desc_writes[3] = {};
GpuAssistedPreDrawResources pre_draw_resources = {};
GpuAssistedPreDispatchResources pre_dispatch_resources = {};
uint32_t desc_count = 1;
uint32_t number_of_sets = static_cast<uint32_t>(state.per_set.size());
if (validate_draw_indirect && ((cmd_type == CMD_DRAWINDIRECTCOUNT || cmd_type == CMD_DRAWINDIRECTCOUNTKHR ||
cmd_type == CMD_DRAWINDEXEDINDIRECTCOUNT || cmd_type == CMD_DRAWINDEXEDINDIRECTCOUNTKHR) ||
((cmd_type == CMD_DRAWINDIRECT || cmd_type == CMD_DRAWINDEXEDINDIRECT) &&
!(enabled_features.core.drawIndirectFirstInstance)))) {
// Insert a draw that can examine some device memory right before the draw we're validating (Pre Draw Validation)
//
// NOTE that this validation does not attempt to abort invalid api calls as most other validation does. A crash
// or DEVICE_LOST resulting from the invalid call will prevent preceeding validation errors from being reported.
assert(bind_point == VK_PIPELINE_BIND_POINT_GRAPHICS);
assert(indirect_state != NULL);
VkPipeline validation_pipeline;
AllocatePreDrawValidationResources(output_block, pre_draw_resources, cb_node->activeRenderPass.get()->renderPass(),
&validation_pipeline, indirect_state);
if (aborted) return;
// Save current graphics pipeline state
GPUAV_RESTORABLE_PIPELINE_STATE restorable_state;
restorable_state.Create(cb_node.get(), VK_PIPELINE_BIND_POINT_GRAPHICS);
// Save parameters for error message
pre_draw_resources.buffer = indirect_state->buffer;
pre_draw_resources.offset = indirect_state->offset;
pre_draw_resources.stride = indirect_state->stride;
uint32_t push_constants[pre_draw_resources.push_constant_words] = {};
if (cmd_type == CMD_DRAWINDIRECTCOUNT || cmd_type == CMD_DRAWINDIRECTCOUNTKHR || cmd_type == CMD_DRAWINDEXEDINDIRECTCOUNT ||
cmd_type == CMD_DRAWINDEXEDINDIRECTCOUNTKHR) {
// Validate count buffer
if (indirect_state->count_buffer_offset > std::numeric_limits<uint32_t>::max()) {
ReportSetupProblem(device,
"Count buffer offset is larger than can be contained in an unsigned int. Aborting GPU-AV");
aborted = true;
return;
}
// Buffer size must be >= (stride * (drawCount - 1) + offset + sizeof(VkDrawIndirectCommand))
uint32_t struct_size;
if (cmd_type == CMD_DRAWINDIRECTCOUNT || cmd_type == CMD_DRAWINDIRECTCOUNTKHR) {
struct_size = sizeof(VkDrawIndirectCommand);
} else {
assert(cmd_type == CMD_DRAWINDEXEDINDIRECTCOUNT || cmd_type == CMD_DRAWINDEXEDINDIRECTCOUNTKHR);
struct_size = sizeof(VkDrawIndexedIndirectCommand);
}
auto buffer_state = Get<BUFFER_STATE>(indirect_state->buffer);
uint32_t max_count;
uint64_t bufsize = buffer_state->createInfo.size;
uint64_t first_command_bytes = struct_size + indirect_state->offset;
if (first_command_bytes > bufsize) {
max_count = 0;
} else {
max_count = 1 + static_cast<uint32_t>(std::floor(((bufsize - first_command_bytes) / indirect_state->stride)));
}
pre_draw_resources.buf_size = buffer_state->createInfo.size;
assert(phys_dev_props.limits.maxDrawIndirectCount > 0);
push_constants[0] = phys_dev_props.limits.maxDrawIndirectCount;
push_constants[1] = max_count;
push_constants[2] = static_cast<uint32_t>((indirect_state->count_buffer_offset / sizeof(uint32_t)));
} else {
// Validate buffer for firstInstance check instead of count buffer check
push_constants[0] = 0;
push_constants[1] = indirect_state->draw_count;
if (cmd_type == CMD_DRAWINDIRECT) {
push_constants[2] = static_cast<uint32_t>(
((indirect_state->offset + offsetof(struct VkDrawIndirectCommand, firstInstance)) / sizeof(uint32_t)));
} else {
assert(cmd_type == CMD_DRAWINDEXEDINDIRECT);
push_constants[2] = static_cast<uint32_t>(
((indirect_state->offset + offsetof(struct VkDrawIndexedIndirectCommand, firstInstance)) / sizeof(uint32_t)));
}
push_constants[3] = (indirect_state->stride / sizeof(uint32_t));
}
// Insert diagnostic draw
DispatchCmdBindPipeline(cmd_buffer, VK_PIPELINE_BIND_POINT_GRAPHICS, validation_pipeline);
DispatchCmdPushConstants(cmd_buffer, pre_draw_validation_state.pipeline_layout, VK_SHADER_STAGE_VERTEX_BIT, 0,
sizeof(push_constants), push_constants);
DispatchCmdBindDescriptorSets(cmd_buffer, VK_PIPELINE_BIND_POINT_GRAPHICS, pre_draw_validation_state.pipeline_layout, 0, 1,
&pre_draw_resources.desc_set, 0, nullptr);
DispatchCmdDraw(cmd_buffer, 3, 1, 0, 0);
// Restore the previous graphics pipeline state.
restorable_state.Restore(cmd_buffer);
} else if (validate_dispatch_indirect && cmd_type == CMD_DISPATCHINDIRECT) {
// Insert a dispatch that can examine some device memory right before the dispatch we're validating
//
// NOTE that this validation does not attempt to abort invalid api calls as most other validation does. A crash
// or DEVICE_LOST resulting from the invalid call will prevent preceeding validation errors from being reported.
AllocatePreDispatchValidationResources(output_block, pre_dispatch_resources, indirect_state);
if (aborted) return;
// Save current graphics pipeline state
GPUAV_RESTORABLE_PIPELINE_STATE restorable_state;
restorable_state.Create(cb_node.get(), VK_PIPELINE_BIND_POINT_COMPUTE);
// Save parameters for error message
pre_dispatch_resources.buffer = indirect_state->buffer;
pre_dispatch_resources.offset = indirect_state->offset;
uint32_t push_constants[pre_dispatch_resources.push_constant_words] = {};
push_constants[0] = phys_dev_props.limits.maxComputeWorkGroupCount[0];
push_constants[1] = phys_dev_props.limits.maxComputeWorkGroupCount[1];
push_constants[2] = phys_dev_props.limits.maxComputeWorkGroupCount[2];
push_constants[3] = static_cast<uint32_t>((indirect_state->offset / sizeof(uint32_t)));
// Insert diagnostic dispatch
DispatchCmdBindPipeline(cmd_buffer, VK_PIPELINE_BIND_POINT_COMPUTE, pre_dispatch_validation_state.pipeline);
DispatchCmdPushConstants(cmd_buffer, pre_dispatch_validation_state.pipeline_layout, VK_SHADER_STAGE_COMPUTE_BIT, 0,
sizeof(push_constants), push_constants);
DispatchCmdBindDescriptorSets(cmd_buffer, VK_PIPELINE_BIND_POINT_COMPUTE, pre_dispatch_validation_state.pipeline_layout, 0,
1, &pre_dispatch_resources.desc_set, 0, nullptr);
DispatchCmdDispatch(cmd_buffer, 1, 1, 1);
// Restore the previous compute pipeline state.
restorable_state.Restore(cmd_buffer);
}
bool has_buffers = false;
// Figure out how much memory we need for the input block based on how many sets and bindings there are
// and how big each of the bindings is
if (number_of_sets > 0 && (descriptor_indexing || buffer_oob_enabled)) {
uint32_t descriptor_count = 0; // Number of descriptors, including all array elements
uint32_t binding_count = 0; // Number of bindings based on the max binding number used
for (const auto &s : state.per_set) {
auto desc = s.bound_descriptor_set;
if (desc && (desc->GetBindingCount() > 0)) {
binding_count += desc->GetLayout()->GetMaxBinding() + 1;
for (const auto &binding : *desc) {
// Shader instrumentation is tracking inline uniform blocks as scalers. Don't try to validate inline uniform
// blocks
if (binding->type == VK_DESCRIPTOR_TYPE_INLINE_UNIFORM_BLOCK_EXT) {
descriptor_count++;
LogWarning(device, "UNASSIGNED-GPU-Assisted Validation Warning",
"VK_DESCRIPTOR_TYPE_INLINE_UNIFORM_BLOCK_EXT descriptors will not be validated by GPU assisted "
"validation");
} else {
descriptor_count += binding->count;
}
if (!has_buffers && (binding->type == VK_DESCRIPTOR_TYPE_STORAGE_BUFFER ||
binding->type == VK_DESCRIPTOR_TYPE_STORAGE_BUFFER_DYNAMIC ||
binding->type == VK_DESCRIPTOR_TYPE_UNIFORM_BUFFER ||
binding->type == VK_DESCRIPTOR_TYPE_UNIFORM_BUFFER_DYNAMIC ||
binding->type == VK_DESCRIPTOR_TYPE_UNIFORM_TEXEL_BUFFER ||
binding->type == VK_DESCRIPTOR_TYPE_STORAGE_TEXEL_BUFFER)) {
has_buffers = true;
}
}
}
}
if (descriptor_indexing || has_buffers) {
// Note that the size of the input buffer is dependent on the maximum binding number, which
// can be very large. This is because for (set = s, binding = b, index = i), the validation
// code is going to dereference Input[ i + Input[ b + Input[ s + Input[ Input[0] ] ] ] ] to
// see if descriptors have been written. In gpu_validation.md, we note this and advise
// using densely packed bindings as a best practice when using gpu-av with descriptor indexing
uint32_t words_needed;
if (descriptor_indexing) {
words_needed = 1 + (number_of_sets * 2) + (binding_count * 2) + descriptor_count;
} else {
words_needed = 1 + number_of_sets + binding_count + descriptor_count;
}
buffer_info.size = words_needed * 4;
alloc_info.pool = VK_NULL_HANDLE;
result = vmaCreateBuffer(vmaAllocator, &buffer_info, &alloc_info, &di_input_block.buffer, &di_input_block.allocation,
nullptr);
if (result != VK_SUCCESS) {
ReportSetupProblem(device, "Unable to allocate device memory. Device could become unstable.", true);
aborted = true;
return;
}
// Populate input buffer first with the sizes of every descriptor in every set, then with whether
// each element of each descriptor has been written or not. See gpu_validation.md for a more thourough
// outline of the input buffer format
result = vmaMapMemory(vmaAllocator, di_input_block.allocation, reinterpret_cast<void **>(&data_ptr));
memset(data_ptr, 0, static_cast<size_t>(buffer_info.size));
// Descriptor indexing needs the number of descriptors at each binding.
if (descriptor_indexing) {
// Pointer to a sets array that points into the sizes array
uint32_t *sets_to_sizes = data_ptr + 1;
// Pointer to the sizes array that contains the array size of the descriptor at each binding
uint32_t *sizes = sets_to_sizes + number_of_sets;
// Pointer to another sets array that points into the bindings array that points into the written array
uint32_t *sets_to_bindings = sizes + binding_count;
// Pointer to the bindings array that points at the start of the writes in the writes array for each binding
uint32_t *bindings_to_written = sets_to_bindings + number_of_sets;
// Index of the next entry in the written array to be updated
uint32_t written_index = 1 + (number_of_sets * 2) + (binding_count * 2);
uint32_t bind_counter = number_of_sets + 1;
// Index of the start of the sets_to_bindings array
data_ptr[0] = number_of_sets + binding_count + 1;
for (const auto &s : state.per_set) {
auto desc = s.bound_descriptor_set;
if (desc && (desc->GetBindingCount() > 0)) {
auto layout = desc->GetLayout();
// For each set, fill in index of its bindings sizes in the sizes array
*sets_to_sizes++ = bind_counter;
// For each set, fill in the index of its bindings in the bindings_to_written array
*sets_to_bindings++ = bind_counter + number_of_sets + binding_count;
for (auto &binding : *desc) {
// For each binding, fill in its size in the sizes array
// Shader instrumentation is tracking inline uniform blocks as scalers. Don't try to validate inline
// uniform blocks
if (VK_DESCRIPTOR_TYPE_INLINE_UNIFORM_BLOCK_EXT == binding->type) {
sizes[binding->binding] = 1;
} else {
sizes[binding->binding] = binding->count;
}
// Fill in the starting index for this binding in the written array in the bindings_to_written array
bindings_to_written[binding->binding] = written_index;
// Shader instrumentation is tracking inline uniform blocks as scalers. Don't try to validate inline
// uniform blocks
if (VK_DESCRIPTOR_TYPE_INLINE_UNIFORM_BLOCK_EXT == binding->type) {
data_ptr[written_index++] = UINT_MAX;
continue;
}
if ((binding->binding_flags & VK_DESCRIPTOR_BINDING_UPDATE_AFTER_BIND_BIT) != 0) {
di_input_block.update_at_submit[written_index] = binding.get();
} else {
SetBindingState(data_ptr, written_index, binding.get());
}
written_index += binding->count;
}
auto last = desc->GetLayout()->GetMaxBinding();
bindings_to_written += last + 1;
bind_counter += last + 1;
sizes += last + 1;
} else {
*sets_to_sizes++ = 0;
*sets_to_bindings++ = 0;
}
}
} else {
// If no descriptor indexing, we don't need number of descriptors at each binding, so
// no sets_to_sizes or sizes arrays, just sets_to_bindings, bindings_to_written and written_index
// Pointer to sets array that points into the bindings array that points into the written array
uint32_t *sets_to_bindings = data_ptr + 1;
// Pointer to the bindings array that points at the start of the writes in the writes array for each binding
uint32_t *bindings_to_written = sets_to_bindings + number_of_sets;
// Index of the next entry in the written array to be updated
uint32_t written_index = 1 + number_of_sets + binding_count;
uint32_t bind_counter = number_of_sets + 1;
data_ptr[0] = 1;
for (const auto &s : state.per_set) {
auto desc = s.bound_descriptor_set;
if (desc && (desc->GetBindingCount() > 0)) {
auto layout = desc->GetLayout();
*sets_to_bindings++ = bind_counter;
for (auto &binding : *desc) {
// Fill in the starting index for this binding in the written array in the bindings_to_written array
bindings_to_written[binding->binding] = written_index;
// Shader instrumentation is tracking inline uniform blocks as scalers. Don't try to validate inline
// uniform blocks
if (VK_DESCRIPTOR_TYPE_INLINE_UNIFORM_BLOCK_EXT == binding->type) {
data_ptr[written_index++] = UINT_MAX;
continue;
}
// note that VK_DESCRIPTOR_BINDING_UPDATE_AFTER_BIND_BIT is part of descriptor indexing
SetBindingState(data_ptr, written_index, binding.get());
written_index += binding->count;
}
auto last = desc->GetLayout()->GetMaxBinding();
bindings_to_written += last + 1;
bind_counter += last + 1;
} else {
*sets_to_bindings++ = 0;
}
}
}
vmaUnmapMemory(vmaAllocator, di_input_block.allocation);
di_input_desc_buffer_info.range = (words_needed * 4);
di_input_desc_buffer_info.buffer = di_input_block.buffer;
di_input_desc_buffer_info.offset = 0;
desc_writes[1] = LvlInitStruct<VkWriteDescriptorSet>();
desc_writes[1].dstBinding = 1;
desc_writes[1].descriptorCount = 1;
desc_writes[1].descriptorType = VK_DESCRIPTOR_TYPE_STORAGE_BUFFER;
desc_writes[1].pBufferInfo = &di_input_desc_buffer_info;
desc_writes[1].dstSet = desc_sets[0];
desc_count = 2;
}
}
if ((IsExtEnabled(device_extensions.vk_ext_buffer_device_address) ||
IsExtEnabled(device_extensions.vk_khr_buffer_device_address)) &&
shaderInt64 && enabled_features.core12.bufferDeviceAddress) {
auto address_ranges = GetBufferAddressRanges();
if (address_ranges.size() > 0) {
// Example BDA input buffer assuming 2 buffers using BDA:
// Word 0 | Index of start of buffer sizes (in this case 5)
// Word 1 | 0x0000000000000000
// Word 2 | Device Address of first buffer (Addresses sorted in ascending order)
// Word 3 | Device Address of second buffer
// Word 4 | 0xffffffffffffffff
// Word 5 | 0 (size of pretend buffer at word 1)
// Word 6 | Size in bytes of first buffer
// Word 7 | Size in bytes of second buffer
// Word 8 | 0 (size of pretend buffer in word 4)
uint32_t num_buffers = static_cast<uint32_t>(address_ranges.size());
uint32_t words_needed = (num_buffers + 3) + (num_buffers + 2);
buffer_info.size = words_needed * 8; // 64 bit words
alloc_info.pool = VK_NULL_HANDLE;
result = vmaCreateBuffer(vmaAllocator, &buffer_info, &alloc_info, &bda_input_block.buffer, &bda_input_block.allocation,
nullptr);
if (result != VK_SUCCESS) {
ReportSetupProblem(device, "Unable to allocate device memory. Device could become unstable.", true);
aborted = true;
return;
}
uint64_t *bda_data;
result = vmaMapMemory(vmaAllocator, bda_input_block.allocation, reinterpret_cast<void **>(&bda_data));
uint32_t address_index = 1;
uint32_t size_index = 3 + num_buffers;
memset(bda_data, 0, static_cast<size_t>(buffer_info.size));
bda_data[0] = size_index; // Start of buffer sizes
bda_data[address_index++] = 0; // NULL address
bda_data[size_index++] = 0;
for (const auto &range : address_ranges) {
bda_data[address_index++] = range.begin;
bda_data[size_index++] = range.end - range.begin;
}
bda_data[address_index] = UINTPTR_MAX;
bda_data[size_index] = 0;
vmaUnmapMemory(vmaAllocator, bda_input_block.allocation);
bda_input_desc_buffer_info.range = (words_needed * 8);
bda_input_desc_buffer_info.buffer = bda_input_block.buffer;
bda_input_desc_buffer_info.offset = 0;
desc_writes[desc_count] = LvlInitStruct<VkWriteDescriptorSet>();
desc_writes[desc_count].dstBinding = 2;
desc_writes[desc_count].descriptorCount = 1;
desc_writes[desc_count].descriptorType = VK_DESCRIPTOR_TYPE_STORAGE_BUFFER;
desc_writes[desc_count].pBufferInfo = &bda_input_desc_buffer_info;
desc_writes[desc_count].dstSet = desc_sets[0];
desc_count++;
}
}
// Write the descriptor
output_desc_buffer_info.buffer = output_block.buffer;
output_desc_buffer_info.offset = 0;
desc_writes[0] = LvlInitStruct<VkWriteDescriptorSet>();
desc_writes[0].descriptorCount = 1;
desc_writes[0].descriptorType = VK_DESCRIPTOR_TYPE_STORAGE_BUFFER;
desc_writes[0].pBufferInfo = &output_desc_buffer_info;
desc_writes[0].dstSet = desc_sets[0];
DispatchUpdateDescriptorSets(device, desc_count, desc_writes, 0, NULL);
if (pipeline_state) {
const auto &pipeline_layout = pipeline_state->PipelineLayoutState();
if ((pipeline_layout->set_layouts.size() <= desc_set_bind_index) && !pipeline_layout->Destroyed()) {
DispatchCmdBindDescriptorSets(cmd_buffer, bind_point, pipeline_layout->layout(), desc_set_bind_index, 1,
desc_sets.data(), 0, nullptr);
}
if (pipeline_layout->Destroyed()) {
ReportSetupProblem(device, "Pipeline layout has been destroyed, aborting GPU-AV");
aborted = true;
} else {
// Record buffer and memory info in CB state tracking
cb_node->gpuav_buffer_list.emplace_back(output_block, di_input_block, bda_input_block, pre_draw_resources,
pre_dispatch_resources, desc_sets[0], desc_pool, bind_point, cmd_type);
}
} else {
ReportSetupProblem(device, "Unable to find pipeline state");
aborted = true;
}
if (aborted) {
vmaDestroyBuffer(vmaAllocator, di_input_block.buffer, di_input_block.allocation);
vmaDestroyBuffer(vmaAllocator, bda_input_block.buffer, bda_input_block.allocation);
vmaDestroyBuffer(vmaAllocator, output_block.buffer, output_block.allocation);
return;
}
}
std::shared_ptr<CMD_BUFFER_STATE> GpuAssisted::CreateCmdBufferState(VkCommandBuffer cb,
const VkCommandBufferAllocateInfo *pCreateInfo,
const COMMAND_POOL_STATE *pool) {
return std::static_pointer_cast<CMD_BUFFER_STATE>(std::make_shared<gpuav_state::CommandBuffer>(this, cb, pCreateInfo, pool));
}
gpuav_state::CommandBuffer::CommandBuffer(GpuAssisted *ga, VkCommandBuffer cb, const VkCommandBufferAllocateInfo *pCreateInfo,
const COMMAND_POOL_STATE *pool)
: gpu_utils_state::CommandBuffer(ga, cb, pCreateInfo, pool) {}
void gpuav_state::CommandBuffer::Reset() {
CMD_BUFFER_STATE::Reset();
auto gpuav = static_cast<GpuAssisted *>(dev_data);
// Free the device memory and descriptor set(s) associated with a command buffer.
if (gpuav->aborted) {
return;
}
for (auto &buffer_info : gpuav_buffer_list) {
gpuav->DestroyBuffer(buffer_info);
}
gpuav_buffer_list.clear();
for (auto &as_validation_buffer_info : as_validation_buffers) {
gpuav->DestroyBuffer(as_validation_buffer_info);
}
as_validation_buffers.clear();
}