blob: 7bc7c3edd6578c0db432bc607d41b7a703136dab [file] [log] [blame]
/* Copyright (c) 2020-2022 The Khronos Group Inc.
* Copyright (c) 2020-2022 Valve Corporation
* Copyright (c) 2020-2022 LunarG, Inc.
*
* Licensed under the Apache License, Version 2.0 (the "License");
* you may not use this file except in compliance with the License.
* You may obtain a copy of the License at
*
* http://www.apache.org/licenses/LICENSE-2.0
*
* Unless required by applicable law or agreed to in writing, software
* distributed under the License is distributed on an "AS IS" BASIS,
* WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
* See the License for the specific language governing permissions and
* limitations under the License.
*
* Author: Tony Barbour <tony@lunarg.com>
*/
#include "gpu_utils.h"
#include "descriptor_sets.h"
#include "sync_utils.h"
#include "spirv-tools/libspirv.h"
#include "spirv-tools/optimizer.hpp"
#include "spirv-tools/instrument.hpp"
#include <spirv/unified1/spirv.hpp>
#include <algorithm>
#include <regex>
#ifdef _MSC_VER
#pragma warning(push)
#pragma warning(disable : 4189)
#endif
#define VMA_IMPLEMENTATION
// This define indicates that we will supply Vulkan function pointers at initialization
#define VMA_STATIC_VULKAN_FUNCTIONS 0
#include "vk_mem_alloc.h"
#ifdef _MSC_VER
#pragma warning(pop)
#endif
// Implementation for Descriptor Set Manager class
UtilDescriptorSetManager::UtilDescriptorSetManager(VkDevice device, uint32_t num_bindings_in_set)
: device(device), num_bindings_in_set(num_bindings_in_set) {}
UtilDescriptorSetManager::~UtilDescriptorSetManager() {
for (auto &pool : desc_pool_map_) {
DispatchDestroyDescriptorPool(device, pool.first, NULL);
}
desc_pool_map_.clear();
}
VkResult UtilDescriptorSetManager::GetDescriptorSet(VkDescriptorPool *desc_pool, VkDescriptorSetLayout ds_layout,
VkDescriptorSet *desc_set) {
std::vector<VkDescriptorSet> desc_sets;
VkResult result = GetDescriptorSets(1, desc_pool, ds_layout, &desc_sets);
assert(result == VK_SUCCESS);
if (result == VK_SUCCESS) {
*desc_set = desc_sets[0];
}
return result;
}
VkResult UtilDescriptorSetManager::GetDescriptorSets(uint32_t count, VkDescriptorPool *pool, VkDescriptorSetLayout ds_layout,
std::vector<VkDescriptorSet> *desc_sets) {
auto guard = Lock();
const uint32_t default_pool_size = kItemsPerChunk;
VkResult result = VK_SUCCESS;
VkDescriptorPool pool_to_use = VK_NULL_HANDLE;
assert(count > 0);
if (0 == count) {
return result;
}
desc_sets->clear();
desc_sets->resize(count);
for (auto &pool : desc_pool_map_) {
if (pool.second.used + count < pool.second.size) {
pool_to_use = pool.first;
break;
}
}
if (VK_NULL_HANDLE == pool_to_use) {
uint32_t pool_count = default_pool_size;
if (count > default_pool_size) {
pool_count = count;
}
const VkDescriptorPoolSize size_counts = {
VK_DESCRIPTOR_TYPE_STORAGE_BUFFER,
pool_count * num_bindings_in_set,
};
auto desc_pool_info = LvlInitStruct<VkDescriptorPoolCreateInfo>();
desc_pool_info.flags = VK_DESCRIPTOR_POOL_CREATE_FREE_DESCRIPTOR_SET_BIT;
desc_pool_info.maxSets = pool_count;
desc_pool_info.poolSizeCount = 1;
desc_pool_info.pPoolSizes = &size_counts;
result = DispatchCreateDescriptorPool(device, &desc_pool_info, NULL, &pool_to_use);
assert(result == VK_SUCCESS);
if (result != VK_SUCCESS) {
return result;
}
desc_pool_map_[pool_to_use].size = desc_pool_info.maxSets;
desc_pool_map_[pool_to_use].used = 0;
}
std::vector<VkDescriptorSetLayout> desc_layouts(count, ds_layout);
VkDescriptorSetAllocateInfo alloc_info = {VK_STRUCTURE_TYPE_DESCRIPTOR_SET_ALLOCATE_INFO, NULL, pool_to_use, count,
desc_layouts.data()};
result = DispatchAllocateDescriptorSets(device, &alloc_info, desc_sets->data());
assert(result == VK_SUCCESS);
if (result != VK_SUCCESS) {
return result;
}
*pool = pool_to_use;
desc_pool_map_[pool_to_use].used += count;
return result;
}
void UtilDescriptorSetManager::PutBackDescriptorSet(VkDescriptorPool desc_pool, VkDescriptorSet desc_set) {
auto guard = Lock();
auto iter = desc_pool_map_.find(desc_pool);
if (iter != desc_pool_map_.end()) {
VkResult result = DispatchFreeDescriptorSets(device, desc_pool, 1, &desc_set);
assert(result == VK_SUCCESS);
if (result != VK_SUCCESS) {
return;
}
desc_pool_map_[desc_pool].used--;
if (0 == desc_pool_map_[desc_pool].used) {
DispatchDestroyDescriptorPool(device, desc_pool, NULL);
desc_pool_map_.erase(desc_pool);
}
}
return;
}
// Trampolines to make VMA call Dispatch for Vulkan calls
static VKAPI_ATTR PFN_vkVoidFunction VKAPI_CALL gpuVkGetInstanceProcAddr(VkInstance inst, const char *name) {
return DispatchGetInstanceProcAddr(inst, name);
}
static VKAPI_ATTR PFN_vkVoidFunction VKAPI_CALL gpuVkGetDeviceProcAddr(VkDevice dev, const char *name) {
return DispatchGetDeviceProcAddr(dev, name);
}
static VKAPI_ATTR void VKAPI_CALL gpuVkGetPhysicalDeviceProperties(VkPhysicalDevice physicalDevice,
VkPhysicalDeviceProperties *pProperties) {
DispatchGetPhysicalDeviceProperties(physicalDevice, pProperties);
}
static VKAPI_ATTR void VKAPI_CALL gpuVkGetPhysicalDeviceMemoryProperties(VkPhysicalDevice physicalDevice,
VkPhysicalDeviceMemoryProperties *pMemoryProperties) {
DispatchGetPhysicalDeviceMemoryProperties(physicalDevice, pMemoryProperties);
}
static VKAPI_ATTR VkResult VKAPI_CALL gpuVkAllocateMemory(VkDevice device, const VkMemoryAllocateInfo *pAllocateInfo,
const VkAllocationCallbacks *pAllocator, VkDeviceMemory *pMemory) {
return DispatchAllocateMemory(device, pAllocateInfo, pAllocator, pMemory);
}
static VKAPI_ATTR void VKAPI_CALL gpuVkFreeMemory(VkDevice device, VkDeviceMemory memory, const VkAllocationCallbacks *pAllocator) {
DispatchFreeMemory(device, memory, pAllocator);
}
static VKAPI_ATTR VkResult VKAPI_CALL gpuVkMapMemory(VkDevice device, VkDeviceMemory memory, VkDeviceSize offset, VkDeviceSize size,
VkMemoryMapFlags flags, void **ppData) {
return DispatchMapMemory(device, memory, offset, size, flags, ppData);
}
static VKAPI_ATTR void VKAPI_CALL gpuVkUnmapMemory(VkDevice device, VkDeviceMemory memory) { DispatchUnmapMemory(device, memory); }
static VKAPI_ATTR VkResult VKAPI_CALL gpuVkFlushMappedMemoryRanges(VkDevice device, uint32_t memoryRangeCount,
const VkMappedMemoryRange *pMemoryRanges) {
return DispatchFlushMappedMemoryRanges(device, memoryRangeCount, pMemoryRanges);
}
static VKAPI_ATTR VkResult VKAPI_CALL gpuVkInvalidateMappedMemoryRanges(VkDevice device, uint32_t memoryRangeCount,
const VkMappedMemoryRange *pMemoryRanges) {
return DispatchInvalidateMappedMemoryRanges(device, memoryRangeCount, pMemoryRanges);
}
static VKAPI_ATTR VkResult VKAPI_CALL gpuVkBindBufferMemory(VkDevice device, VkBuffer buffer, VkDeviceMemory memory,
VkDeviceSize memoryOffset) {
return DispatchBindBufferMemory(device, buffer, memory, memoryOffset);
}
static VKAPI_ATTR VkResult VKAPI_CALL gpuVkBindImageMemory(VkDevice device, VkImage image, VkDeviceMemory memory,
VkDeviceSize memoryOffset) {
return DispatchBindImageMemory(device, image, memory, memoryOffset);
}
static VKAPI_ATTR void VKAPI_CALL gpuVkGetBufferMemoryRequirements(VkDevice device, VkBuffer buffer,
VkMemoryRequirements *pMemoryRequirements) {
DispatchGetBufferMemoryRequirements(device, buffer, pMemoryRequirements);
}
static VKAPI_ATTR void VKAPI_CALL gpuVkGetImageMemoryRequirements(VkDevice device, VkImage image,
VkMemoryRequirements *pMemoryRequirements) {
DispatchGetImageMemoryRequirements(device, image, pMemoryRequirements);
}
static VKAPI_ATTR VkResult VKAPI_CALL gpuVkCreateBuffer(VkDevice device, const VkBufferCreateInfo *pCreateInfo,
const VkAllocationCallbacks *pAllocator, VkBuffer *pBuffer) {
return DispatchCreateBuffer(device, pCreateInfo, pAllocator, pBuffer);
}
static VKAPI_ATTR void VKAPI_CALL gpuVkDestroyBuffer(VkDevice device, VkBuffer buffer, const VkAllocationCallbacks *pAllocator) {
return DispatchDestroyBuffer(device, buffer, pAllocator);
}
static VKAPI_ATTR VkResult VKAPI_CALL gpuVkCreateImage(VkDevice device, const VkImageCreateInfo *pCreateInfo,
const VkAllocationCallbacks *pAllocator, VkImage *pImage) {
return DispatchCreateImage(device, pCreateInfo, pAllocator, pImage);
}
static VKAPI_ATTR void VKAPI_CALL gpuVkDestroyImage(VkDevice device, VkImage image, const VkAllocationCallbacks *pAllocator) {
DispatchDestroyImage(device, image, pAllocator);
}
static VKAPI_ATTR void VKAPI_CALL gpuVkCmdCopyBuffer(VkCommandBuffer commandBuffer, VkBuffer srcBuffer, VkBuffer dstBuffer,
uint32_t regionCount, const VkBufferCopy *pRegions) {
DispatchCmdCopyBuffer(commandBuffer, srcBuffer, dstBuffer, regionCount, pRegions);
}
VkResult UtilInitializeVma(VkInstance instance, VkPhysicalDevice physical_device, VkDevice device, VmaAllocator *pAllocator) {
VmaVulkanFunctions functions;
VmaAllocatorCreateInfo allocator_info = {};
allocator_info.instance = instance;
allocator_info.device = device;
allocator_info.physicalDevice = physical_device;
functions.vkGetInstanceProcAddr = static_cast<PFN_vkGetInstanceProcAddr>(gpuVkGetInstanceProcAddr);
functions.vkGetDeviceProcAddr = static_cast<PFN_vkGetDeviceProcAddr>(gpuVkGetDeviceProcAddr);
functions.vkGetPhysicalDeviceProperties = static_cast<PFN_vkGetPhysicalDeviceProperties>(gpuVkGetPhysicalDeviceProperties);
functions.vkGetPhysicalDeviceMemoryProperties =
static_cast<PFN_vkGetPhysicalDeviceMemoryProperties>(gpuVkGetPhysicalDeviceMemoryProperties);
functions.vkAllocateMemory = static_cast<PFN_vkAllocateMemory>(gpuVkAllocateMemory);
functions.vkFreeMemory = static_cast<PFN_vkFreeMemory>(gpuVkFreeMemory);
functions.vkMapMemory = static_cast<PFN_vkMapMemory>(gpuVkMapMemory);
functions.vkUnmapMemory = static_cast<PFN_vkUnmapMemory>(gpuVkUnmapMemory);
functions.vkFlushMappedMemoryRanges = static_cast<PFN_vkFlushMappedMemoryRanges>(gpuVkFlushMappedMemoryRanges);
functions.vkInvalidateMappedMemoryRanges = static_cast<PFN_vkInvalidateMappedMemoryRanges>(gpuVkInvalidateMappedMemoryRanges);
functions.vkBindBufferMemory = static_cast<PFN_vkBindBufferMemory>(gpuVkBindBufferMemory);
functions.vkBindImageMemory = static_cast<PFN_vkBindImageMemory>(gpuVkBindImageMemory);
functions.vkGetBufferMemoryRequirements = static_cast<PFN_vkGetBufferMemoryRequirements>(gpuVkGetBufferMemoryRequirements);
functions.vkGetImageMemoryRequirements = static_cast<PFN_vkGetImageMemoryRequirements>(gpuVkGetImageMemoryRequirements);
functions.vkCreateBuffer = static_cast<PFN_vkCreateBuffer>(gpuVkCreateBuffer);
functions.vkDestroyBuffer = static_cast<PFN_vkDestroyBuffer>(gpuVkDestroyBuffer);
functions.vkCreateImage = static_cast<PFN_vkCreateImage>(gpuVkCreateImage);
functions.vkDestroyImage = static_cast<PFN_vkDestroyImage>(gpuVkDestroyImage);
functions.vkCmdCopyBuffer = static_cast<PFN_vkCmdCopyBuffer>(gpuVkCmdCopyBuffer);
allocator_info.pVulkanFunctions = &functions;
return vmaCreateAllocator(&allocator_info, pAllocator);
}
gpu_utils_state::CommandBuffer::CommandBuffer(GpuAssistedBase *ga, VkCommandBuffer cb,
const VkCommandBufferAllocateInfo *pCreateInfo, const COMMAND_POOL_STATE *pool)
: CMD_BUFFER_STATE(ga, cb, pCreateInfo, pool) {}
ReadLockGuard GpuAssistedBase::ReadLock() {
if (fine_grained_locking) {
return ReadLockGuard(validation_object_mutex, std::defer_lock);
} else {
return ReadLockGuard(validation_object_mutex);
}
}
WriteLockGuard GpuAssistedBase::WriteLock() {
if (fine_grained_locking) {
return WriteLockGuard(validation_object_mutex, std::defer_lock);
} else {
return WriteLockGuard(validation_object_mutex);
}
}
void GpuAssistedBase::PreCallRecordCreateDevice(VkPhysicalDevice gpu, const VkDeviceCreateInfo *pCreateInfo,
const VkAllocationCallbacks *pAllocator, VkDevice *pDevice, void *modified_ci) {
ValidationStateTracker::PreCallRecordCreateDevice(gpu, pCreateInfo, pAllocator, pDevice, modified_ci);
VkPhysicalDeviceFeatures *features = nullptr;
// Use a local variable to query features since this method runs in the instance validation object.
// To avoid confusion and race conditions about which physical device's features are stored in the
// 'supported_devices' member variable, it will only be set in the device validation objects.
// See CreateDevice() below.
VkPhysicalDeviceFeatures gpu_supported_features;
DispatchGetPhysicalDeviceFeatures(gpu, &gpu_supported_features);
auto modified_create_info = static_cast<VkDeviceCreateInfo *>(modified_ci);
if (modified_create_info->pEnabledFeatures) {
// If pEnabledFeatures, VkPhysicalDeviceFeatures2 in pNext chain is not allowed
features = const_cast<VkPhysicalDeviceFeatures *>(modified_create_info->pEnabledFeatures);
} else {
VkPhysicalDeviceFeatures2 *features2 = nullptr;
features2 = const_cast<VkPhysicalDeviceFeatures2 *>(LvlFindInChain<VkPhysicalDeviceFeatures2>(modified_create_info->pNext));
if (features2) features = &features2->features;
}
VkPhysicalDeviceFeatures new_features = {};
VkBool32 *desired = reinterpret_cast<VkBool32 *>(&desired_features);
VkBool32 *feature_ptr;
if (features) {
feature_ptr = reinterpret_cast<VkBool32 *>(features);
} else {
feature_ptr = reinterpret_cast<VkBool32 *>(&new_features);
}
VkBool32 *supported = reinterpret_cast<VkBool32 *>(&supported_features);
for (size_t i = 0; i < sizeof(VkPhysicalDeviceFeatures); i += (sizeof(VkBool32))) {
if (*supported && *desired) {
*feature_ptr = true;
}
supported++;
desired++;
feature_ptr++;
}
if (!features) {
delete modified_create_info->pEnabledFeatures;
modified_create_info->pEnabledFeatures = new VkPhysicalDeviceFeatures(new_features);
}
}
void GpuAssistedBase::CreateDevice(const VkDeviceCreateInfo *pCreateInfo) {
ValidationStateTracker::CreateDevice(pCreateInfo);
// If api version 1.1 or later, SetDeviceLoaderData will be in the loader
auto chain_info = get_chain_info(pCreateInfo, VK_LOADER_DATA_CALLBACK);
assert(chain_info->u.pfnSetDeviceLoaderData);
vkSetDeviceLoaderData = chain_info->u.pfnSetDeviceLoaderData;
// Some devices have extremely high limits here, so set a reasonable max because we have to pad
// the pipeline layout with dummy descriptor set layouts.
adjusted_max_desc_sets = phys_dev_props.limits.maxBoundDescriptorSets;
adjusted_max_desc_sets = std::min(33U, adjusted_max_desc_sets);
// We can't do anything if there is only one.
// Device probably not a legit Vulkan device, since there should be at least 4. Protect ourselves.
if (adjusted_max_desc_sets == 1) {
ReportSetupProblem(device, "Device can bind only a single descriptor set.");
aborted = true;
return;
}
desc_set_bind_index = adjusted_max_desc_sets - 1;
VkResult result1 = UtilInitializeVma(instance, physical_device, device, &vmaAllocator);
assert(result1 == VK_SUCCESS);
desc_set_manager = layer_data::make_unique<UtilDescriptorSetManager>(device, static_cast<uint32_t>(bindings_.size()));
const VkDescriptorSetLayoutCreateInfo debug_desc_layout_info = {VK_STRUCTURE_TYPE_DESCRIPTOR_SET_LAYOUT_CREATE_INFO, NULL, 0,
static_cast<uint32_t>(bindings_.size()), bindings_.data()};
const VkDescriptorSetLayoutCreateInfo dummy_desc_layout_info = {VK_STRUCTURE_TYPE_DESCRIPTOR_SET_LAYOUT_CREATE_INFO, NULL, 0, 0,
NULL};
result1 = DispatchCreateDescriptorSetLayout(device, &debug_desc_layout_info, NULL, &debug_desc_layout);
// This is a layout used to "pad" a pipeline layout to fill in any gaps to the selected bind index.
VkResult result2 = DispatchCreateDescriptorSetLayout(device, &dummy_desc_layout_info, NULL, &dummy_desc_layout);
assert((result1 == VK_SUCCESS) && (result2 == VK_SUCCESS));
if ((result1 != VK_SUCCESS) || (result2 != VK_SUCCESS)) {
ReportSetupProblem(device, "Unable to create descriptor set layout.");
if (result1 == VK_SUCCESS) {
DispatchDestroyDescriptorSetLayout(device, debug_desc_layout, NULL);
}
if (result2 == VK_SUCCESS) {
DispatchDestroyDescriptorSetLayout(device, dummy_desc_layout, NULL);
}
debug_desc_layout = VK_NULL_HANDLE;
dummy_desc_layout = VK_NULL_HANDLE;
aborted = true;
return;
}
}
void GpuAssistedBase::PreCallRecordDestroyDevice(VkDevice device, const VkAllocationCallbacks *pAllocator) {
if (debug_desc_layout) {
DispatchDestroyDescriptorSetLayout(device, debug_desc_layout, NULL);
debug_desc_layout = VK_NULL_HANDLE;
}
if (dummy_desc_layout) {
DispatchDestroyDescriptorSetLayout(device, dummy_desc_layout, NULL);
dummy_desc_layout = VK_NULL_HANDLE;
}
ValidationStateTracker::PreCallRecordDestroyDevice(device, pAllocator);
// State Tracker can end up making vma calls through callbacks - don't destroy allocator until ST is done
if (vmaAllocator) {
vmaDestroyAllocator(vmaAllocator);
}
desc_set_manager.reset();
}
gpu_utils_state::Queue::Queue(GpuAssistedBase &state, VkQueue q, uint32_t index, VkDeviceQueueCreateFlags flags, const VkQueueFamilyProperties &queueFamilyProperties)
: QUEUE_STATE(state, q, index, flags, queueFamilyProperties), state_(state) {}
gpu_utils_state::Queue::~Queue() {
if (barrier_command_buffer_) {
DispatchFreeCommandBuffers(state_.device, barrier_command_pool_, 1, &barrier_command_buffer_);
barrier_command_buffer_ = VK_NULL_HANDLE;
}
if (barrier_command_pool_) {
DispatchDestroyCommandPool(state_.device, barrier_command_pool_, NULL);
barrier_command_pool_ = VK_NULL_HANDLE;
}
}
// Submit a memory barrier on graphics queues.
// Lazy-create and record the needed command buffer.
void gpu_utils_state::Queue::SubmitBarrier() {
if (barrier_command_pool_ == VK_NULL_HANDLE) {
VkResult result = VK_SUCCESS;
auto pool_create_info = LvlInitStruct<VkCommandPoolCreateInfo>();
pool_create_info.queueFamilyIndex = queueFamilyIndex;
result = DispatchCreateCommandPool(state_.device, &pool_create_info, nullptr, &barrier_command_pool_);
if (result != VK_SUCCESS) {
state_.ReportSetupProblem(state_.device, "Unable to create command pool for barrier CB.");
barrier_command_pool_ = VK_NULL_HANDLE;
return;
}
auto buffer_alloc_info = LvlInitStruct<VkCommandBufferAllocateInfo>();
buffer_alloc_info.commandPool = barrier_command_pool_;
buffer_alloc_info.commandBufferCount = 1;
buffer_alloc_info.level = VK_COMMAND_BUFFER_LEVEL_PRIMARY;
result = DispatchAllocateCommandBuffers(state_.device, &buffer_alloc_info, &barrier_command_buffer_);
if (result != VK_SUCCESS) {
state_.ReportSetupProblem(state_.device, "Unable to create barrier command buffer.");
DispatchDestroyCommandPool(state_.device, barrier_command_pool_, nullptr);
barrier_command_pool_ = VK_NULL_HANDLE;
barrier_command_buffer_ = VK_NULL_HANDLE;
return;
}
// Hook up command buffer dispatch
state_.vkSetDeviceLoaderData(state_.device, barrier_command_buffer_);
// Record a global memory barrier to force availability of device memory operations to the host domain.
auto command_buffer_begin_info = LvlInitStruct<VkCommandBufferBeginInfo>();
result = DispatchBeginCommandBuffer(barrier_command_buffer_, &command_buffer_begin_info);
if (result == VK_SUCCESS) {
auto memory_barrier = LvlInitStruct<VkMemoryBarrier>();
memory_barrier.srcAccessMask = VK_ACCESS_MEMORY_WRITE_BIT;
memory_barrier.dstAccessMask = VK_ACCESS_HOST_READ_BIT;
DispatchCmdPipelineBarrier(barrier_command_buffer_, VK_PIPELINE_STAGE_ALL_COMMANDS_BIT, VK_PIPELINE_STAGE_HOST_BIT, 0,
1, &memory_barrier, 0, nullptr, 0, nullptr);
DispatchEndCommandBuffer(barrier_command_buffer_);
}
}
if (barrier_command_buffer_ != VK_NULL_HANDLE) {
auto submit_info = LvlInitStruct<VkSubmitInfo>();
submit_info.commandBufferCount = 1;
submit_info.pCommandBuffers = &barrier_command_buffer_;
DispatchQueueSubmit(QUEUE_STATE::Queue(), 1, &submit_info, VK_NULL_HANDLE);
}
}
bool GpuAssistedBase::CommandBufferNeedsProcessing(VkCommandBuffer command_buffer) const {
auto cb_node = GetRead<gpu_utils_state::CommandBuffer>(command_buffer);
if (cb_node->NeedsProcessing()) {
return true;
}
for (const auto *secondary_cb : cb_node->linkedCommandBuffers) {
auto secondary_cb_node = static_cast<const gpu_utils_state::CommandBuffer *>(secondary_cb);
auto guard = secondary_cb_node->ReadLock();
if (secondary_cb_node->NeedsProcessing()) {
return true;
}
}
return false;
}
void GpuAssistedBase::ProcessCommandBuffer(VkQueue queue, VkCommandBuffer command_buffer) {
auto cb_node = GetWrite<gpu_utils_state::CommandBuffer>(command_buffer);
cb_node->Process(queue);
for (auto *secondary_cmd_base : cb_node->linkedCommandBuffers) {
auto *secondary_cb_node = static_cast<gpu_utils_state::CommandBuffer *>(secondary_cmd_base);
auto guard = secondary_cb_node->WriteLock();
secondary_cb_node->Process(queue);
}
}
// Issue a memory barrier to make GPU-written data available to host.
// Wait for the queue to complete execution.
// Check the debug buffers for all the command buffers that were submitted.
void GpuAssistedBase::PostCallRecordQueueSubmit(VkQueue queue, uint32_t submitCount, const VkSubmitInfo *pSubmits, VkFence fence,
VkResult result) {
ValidationStateTracker::PostCallRecordQueueSubmit(queue, submitCount, pSubmits, fence, result);
if (aborted || (result != VK_SUCCESS)) return;
bool buffers_present = false;
// Don't QueueWaitIdle if there's nothing to process
for (uint32_t submit_idx = 0; submit_idx < submitCount; submit_idx++) {
const VkSubmitInfo *submit = &pSubmits[submit_idx];
for (uint32_t i = 0; i < submit->commandBufferCount; i++) {
buffers_present |= CommandBufferNeedsProcessing(submit->pCommandBuffers[i]);
}
}
if (!buffers_present) return;
SubmitBarrier(queue);
DispatchQueueWaitIdle(queue);
for (uint32_t submit_idx = 0; submit_idx < submitCount; submit_idx++) {
const VkSubmitInfo *submit = &pSubmits[submit_idx];
for (uint32_t i = 0; i < submit->commandBufferCount; i++) {
ProcessCommandBuffer(queue, submit->pCommandBuffers[i]);
}
}
}
void GpuAssistedBase::RecordQueueSubmit2(VkQueue queue, uint32_t submitCount, const VkSubmitInfo2 *pSubmits, VkFence fence,
VkResult result) {
if (aborted || (result != VK_SUCCESS)) return;
bool buffers_present = false;
// Don't QueueWaitIdle if there's nothing to process
for (uint32_t submit_idx = 0; submit_idx < submitCount; submit_idx++) {
const VkSubmitInfo2 *submit = &pSubmits[submit_idx];
for (uint32_t i = 0; i < submit->commandBufferInfoCount; i++) {
buffers_present |= CommandBufferNeedsProcessing(submit->pCommandBufferInfos[i].commandBuffer);
}
}
if (!buffers_present) return;
SubmitBarrier(queue);
DispatchQueueWaitIdle(queue);
for (uint32_t submit_idx = 0; submit_idx < submitCount; submit_idx++) {
const VkSubmitInfo2 *submit = &pSubmits[submit_idx];
for (uint32_t i = 0; i < submit->commandBufferInfoCount; i++) {
ProcessCommandBuffer(queue, submit->pCommandBufferInfos[i].commandBuffer);
}
}
}
void GpuAssistedBase::PostCallRecordQueueSubmit2KHR(VkQueue queue, uint32_t submitCount, const VkSubmitInfo2KHR *pSubmits,
VkFence fence, VkResult result) {
ValidationStateTracker::PostCallRecordQueueSubmit2KHR(queue, submitCount, pSubmits, fence, result);
RecordQueueSubmit2(queue, submitCount, pSubmits, fence, result);
}
void GpuAssistedBase::PostCallRecordQueueSubmit2(VkQueue queue, uint32_t submitCount, const VkSubmitInfo2 *pSubmits, VkFence fence,
VkResult result) {
ValidationStateTracker::PostCallRecordQueueSubmit2(queue, submitCount, pSubmits, fence, result);
RecordQueueSubmit2(queue, submitCount, pSubmits, fence, result);
}
// Just gives a warning about a possible deadlock.
bool GpuAssistedBase::ValidateCmdWaitEvents(VkCommandBuffer command_buffer, VkPipelineStageFlags2 src_stage_mask,
CMD_TYPE cmd_type) const {
if (src_stage_mask & VK_PIPELINE_STAGE_2_HOST_BIT) {
std::ostringstream error_msg;
error_msg << CommandTypeString(cmd_type)
<< ": recorded with VK_PIPELINE_STAGE_HOST_BIT set. GPU-Assisted validation waits on queue completion. This wait "
"could block the host's signaling of this event, resulting in deadlock.";
ReportSetupProblem(command_buffer, error_msg.str().c_str());
}
return false;
}
bool GpuAssistedBase::PreCallValidateCmdWaitEvents(VkCommandBuffer commandBuffer, uint32_t eventCount, const VkEvent *pEvents,
VkPipelineStageFlags srcStageMask, VkPipelineStageFlags dstStageMask,
uint32_t memoryBarrierCount, const VkMemoryBarrier *pMemoryBarriers,
uint32_t bufferMemoryBarrierCount,
const VkBufferMemoryBarrier *pBufferMemoryBarriers,
uint32_t imageMemoryBarrierCount,
const VkImageMemoryBarrier *pImageMemoryBarriers) const {
ValidationStateTracker::PreCallValidateCmdWaitEvents(commandBuffer, eventCount, pEvents, srcStageMask, dstStageMask,
memoryBarrierCount, pMemoryBarriers, bufferMemoryBarrierCount,
pBufferMemoryBarriers, imageMemoryBarrierCount, pImageMemoryBarriers);
return ValidateCmdWaitEvents(commandBuffer, static_cast<VkPipelineStageFlags2>(srcStageMask), CMD_WAITEVENTS);
}
bool GpuAssistedBase::PreCallValidateCmdWaitEvents2KHR(VkCommandBuffer commandBuffer, uint32_t eventCount, const VkEvent *pEvents,
const VkDependencyInfoKHR *pDependencyInfos) const {
VkPipelineStageFlags2 src_stage_mask = 0;
for (uint32_t i = 0; i < eventCount; i++) {
auto stage_masks = sync_utils::GetGlobalStageMasks(pDependencyInfos[i]);
src_stage_mask |= stage_masks.src;
}
ValidationStateTracker::PreCallValidateCmdWaitEvents2KHR(commandBuffer, eventCount, pEvents, pDependencyInfos);
return ValidateCmdWaitEvents(commandBuffer, src_stage_mask, CMD_WAITEVENTS2KHR);
}
bool GpuAssistedBase::PreCallValidateCmdWaitEvents2(VkCommandBuffer commandBuffer, uint32_t eventCount, const VkEvent *pEvents,
const VkDependencyInfo *pDependencyInfos) const {
VkPipelineStageFlags2 src_stage_mask = 0;
for (uint32_t i = 0; i < eventCount; i++) {
auto stage_masks = sync_utils::GetGlobalStageMasks(pDependencyInfos[i]);
src_stage_mask |= stage_masks.src;
}
ValidationStateTracker::PreCallValidateCmdWaitEvents2(commandBuffer, eventCount, pEvents, pDependencyInfos);
return ValidateCmdWaitEvents(commandBuffer, src_stage_mask, CMD_WAITEVENTS2);
}
void GpuAssistedBase::PreCallRecordCreatePipelineLayout(VkDevice device, const VkPipelineLayoutCreateInfo *pCreateInfo,
const VkAllocationCallbacks *pAllocator, VkPipelineLayout *pPipelineLayout,
void *cpl_state_data) {
if (aborted) {
return;
}
auto cpl_state = static_cast<create_pipeline_layout_api_state *>(cpl_state_data);
if (cpl_state->modified_create_info.setLayoutCount >= adjusted_max_desc_sets) {
std::ostringstream strm;
strm << "Pipeline Layout conflict with validation's descriptor set at slot " << desc_set_bind_index << ". "
<< "Application has too many descriptor sets in the pipeline layout to continue with gpu validation. "
<< "Validation is not modifying the pipeline layout. "
<< "Instrumented shaders are replaced with non-instrumented shaders.";
ReportSetupProblem(device, strm.str().c_str());
} else {
// Modify the pipeline layout by:
// 1. Copying the caller's descriptor set desc_layouts
// 2. Fill in dummy descriptor layouts up to the max binding
// 3. Fill in with the debug descriptor layout at the max binding slot
cpl_state->new_layouts.reserve(adjusted_max_desc_sets);
cpl_state->new_layouts.insert(cpl_state->new_layouts.end(), &pCreateInfo->pSetLayouts[0],
&pCreateInfo->pSetLayouts[pCreateInfo->setLayoutCount]);
for (uint32_t i = pCreateInfo->setLayoutCount; i < adjusted_max_desc_sets - 1; ++i) {
cpl_state->new_layouts.push_back(dummy_desc_layout);
}
cpl_state->new_layouts.push_back(debug_desc_layout);
cpl_state->modified_create_info.pSetLayouts = cpl_state->new_layouts.data();
cpl_state->modified_create_info.setLayoutCount = adjusted_max_desc_sets;
}
ValidationStateTracker::PreCallRecordCreatePipelineLayout(device, pCreateInfo, pAllocator, pPipelineLayout, cpl_state_data);
}
void GpuAssistedBase::PostCallRecordCreatePipelineLayout(VkDevice device, const VkPipelineLayoutCreateInfo *pCreateInfo,
const VkAllocationCallbacks *pAllocator, VkPipelineLayout *pPipelineLayout,
VkResult result) {
if (result != VK_SUCCESS) {
ReportSetupProblem(device, "Unable to create pipeline layout. Device could become unstable.");
aborted = true;
}
ValidationStateTracker::PostCallRecordCreatePipelineLayout(device, pCreateInfo, pAllocator, pPipelineLayout, result);
}
void GpuAssistedBase::PreCallRecordCreateGraphicsPipelines(VkDevice device, VkPipelineCache pipelineCache, uint32_t count,
const VkGraphicsPipelineCreateInfo *pCreateInfos,
const VkAllocationCallbacks *pAllocator, VkPipeline *pPipelines,
void *cgpl_state_data) {
if (aborted) return;
std::vector<safe_VkGraphicsPipelineCreateInfo> new_pipeline_create_infos;
create_graphics_pipeline_api_state *cgpl_state = reinterpret_cast<create_graphics_pipeline_api_state *>(cgpl_state_data);
PreCallRecordPipelineCreations(count, pCreateInfos, pAllocator, pPipelines, cgpl_state->pipe_state, &new_pipeline_create_infos,
VK_PIPELINE_BIND_POINT_GRAPHICS);
cgpl_state->modified_create_infos = new_pipeline_create_infos;
cgpl_state->pCreateInfos = reinterpret_cast<VkGraphicsPipelineCreateInfo *>(cgpl_state->modified_create_infos.data());
}
void GpuAssistedBase::PreCallRecordCreateComputePipelines(VkDevice device, VkPipelineCache pipelineCache, uint32_t count,
const VkComputePipelineCreateInfo *pCreateInfos,
const VkAllocationCallbacks *pAllocator, VkPipeline *pPipelines,
void *ccpl_state_data) {
if (aborted) return;
std::vector<safe_VkComputePipelineCreateInfo> new_pipeline_create_infos;
auto *ccpl_state = reinterpret_cast<create_compute_pipeline_api_state *>(ccpl_state_data);
PreCallRecordPipelineCreations(count, pCreateInfos, pAllocator, pPipelines, ccpl_state->pipe_state, &new_pipeline_create_infos,
VK_PIPELINE_BIND_POINT_COMPUTE);
ccpl_state->modified_create_infos = new_pipeline_create_infos;
ccpl_state->pCreateInfos = reinterpret_cast<VkComputePipelineCreateInfo *>(ccpl_state->modified_create_infos.data());
}
void GpuAssistedBase::PreCallRecordCreateRayTracingPipelinesNV(VkDevice device, VkPipelineCache pipelineCache, uint32_t count,
const VkRayTracingPipelineCreateInfoNV *pCreateInfos,
const VkAllocationCallbacks *pAllocator, VkPipeline *pPipelines,
void *crtpl_state_data) {
if (aborted) return;
std::vector<safe_VkRayTracingPipelineCreateInfoCommon> new_pipeline_create_infos;
auto *crtpl_state = reinterpret_cast<create_ray_tracing_pipeline_api_state *>(crtpl_state_data);
PreCallRecordPipelineCreations(count, pCreateInfos, pAllocator, pPipelines, crtpl_state->pipe_state, &new_pipeline_create_infos,
VK_PIPELINE_BIND_POINT_RAY_TRACING_NV);
crtpl_state->modified_create_infos = new_pipeline_create_infos;
crtpl_state->pCreateInfos = reinterpret_cast<VkRayTracingPipelineCreateInfoNV *>(crtpl_state->modified_create_infos.data());
}
void GpuAssistedBase::PreCallRecordCreateRayTracingPipelinesKHR(VkDevice device, VkDeferredOperationKHR deferredOperation,
VkPipelineCache pipelineCache, uint32_t count,
const VkRayTracingPipelineCreateInfoKHR *pCreateInfos,
const VkAllocationCallbacks *pAllocator, VkPipeline *pPipelines,
void *crtpl_state_data) {
if (aborted) return;
std::vector<safe_VkRayTracingPipelineCreateInfoCommon> new_pipeline_create_infos;
auto *crtpl_state = reinterpret_cast<create_ray_tracing_pipeline_khr_api_state *>(crtpl_state_data);
PreCallRecordPipelineCreations(count, pCreateInfos, pAllocator, pPipelines, crtpl_state->pipe_state, &new_pipeline_create_infos,
VK_PIPELINE_BIND_POINT_RAY_TRACING_KHR);
crtpl_state->modified_create_infos = new_pipeline_create_infos;
crtpl_state->pCreateInfos = reinterpret_cast<VkRayTracingPipelineCreateInfoKHR *>(crtpl_state->modified_create_infos.data());
}
template <typename CreateInfos, typename SafeCreateInfos>
static void UtilCopyCreatePipelineFeedbackData(const uint32_t count, CreateInfos *pCreateInfos, SafeCreateInfos *pSafeCreateInfos) {
for (uint32_t i = 0; i < count; i++) {
auto src_feedback_struct = LvlFindInChain<VkPipelineCreationFeedbackCreateInfoEXT>(pSafeCreateInfos[i].pNext);
if (!src_feedback_struct) return;
auto dst_feedback_struct = const_cast<VkPipelineCreationFeedbackCreateInfoEXT *>(
LvlFindInChain<VkPipelineCreationFeedbackCreateInfoEXT>(pCreateInfos[i].pNext));
*dst_feedback_struct->pPipelineCreationFeedback = *src_feedback_struct->pPipelineCreationFeedback;
for (uint32_t j = 0; j < src_feedback_struct->pipelineStageCreationFeedbackCount; j++) {
dst_feedback_struct->pPipelineStageCreationFeedbacks[j] = src_feedback_struct->pPipelineStageCreationFeedbacks[j];
}
}
}
void GpuAssistedBase::PostCallRecordCreateGraphicsPipelines(VkDevice device, VkPipelineCache pipelineCache, uint32_t count,
const VkGraphicsPipelineCreateInfo *pCreateInfos,
const VkAllocationCallbacks *pAllocator, VkPipeline *pPipelines,
VkResult result, void *cgpl_state_data) {
ValidationStateTracker::PostCallRecordCreateGraphicsPipelines(device, pipelineCache, count, pCreateInfos, pAllocator,
pPipelines, result, cgpl_state_data);
if (aborted) return;
create_graphics_pipeline_api_state *cgpl_state = reinterpret_cast<create_graphics_pipeline_api_state *>(cgpl_state_data);
UtilCopyCreatePipelineFeedbackData(count, pCreateInfos, cgpl_state->modified_create_infos.data());
PostCallRecordPipelineCreations(count, pCreateInfos, pAllocator, pPipelines, VK_PIPELINE_BIND_POINT_GRAPHICS,
cgpl_state->modified_create_infos.data());
}
void GpuAssistedBase::PostCallRecordCreateComputePipelines(VkDevice device, VkPipelineCache pipelineCache, uint32_t count,
const VkComputePipelineCreateInfo *pCreateInfos,
const VkAllocationCallbacks *pAllocator, VkPipeline *pPipelines,
VkResult result, void *ccpl_state_data) {
ValidationStateTracker::PostCallRecordCreateComputePipelines(device, pipelineCache, count, pCreateInfos, pAllocator, pPipelines,
result, ccpl_state_data);
if (aborted) return;
create_compute_pipeline_api_state *ccpl_state = reinterpret_cast<create_compute_pipeline_api_state *>(ccpl_state_data);
UtilCopyCreatePipelineFeedbackData(count, pCreateInfos, ccpl_state->modified_create_infos.data());
PostCallRecordPipelineCreations(count, pCreateInfos, pAllocator, pPipelines, VK_PIPELINE_BIND_POINT_COMPUTE,
ccpl_state->modified_create_infos.data());
}
void GpuAssistedBase::PostCallRecordCreateRayTracingPipelinesNV(VkDevice device, VkPipelineCache pipelineCache, uint32_t count,
const VkRayTracingPipelineCreateInfoNV *pCreateInfos,
const VkAllocationCallbacks *pAllocator, VkPipeline *pPipelines,
VkResult result, void *crtpl_state_data) {
auto *crtpl_state = reinterpret_cast<create_ray_tracing_pipeline_khr_api_state *>(crtpl_state_data);
ValidationStateTracker::PostCallRecordCreateRayTracingPipelinesNV(device, pipelineCache, count, pCreateInfos, pAllocator,
pPipelines, result, crtpl_state_data);
if (aborted) return;
UtilCopyCreatePipelineFeedbackData(count, pCreateInfos, crtpl_state->modified_create_infos.data());
PostCallRecordPipelineCreations(count, pCreateInfos, pAllocator, pPipelines, VK_PIPELINE_BIND_POINT_RAY_TRACING_NV,
crtpl_state->modified_create_infos.data());
}
void GpuAssistedBase::PostCallRecordCreateRayTracingPipelinesKHR(VkDevice device, VkDeferredOperationKHR deferredOperation,
VkPipelineCache pipelineCache, uint32_t count,
const VkRayTracingPipelineCreateInfoKHR *pCreateInfos,
const VkAllocationCallbacks *pAllocator, VkPipeline *pPipelines,
VkResult result, void *crtpl_state_data) {
auto *crtpl_state = reinterpret_cast<create_ray_tracing_pipeline_khr_api_state *>(crtpl_state_data);
ValidationStateTracker::PostCallRecordCreateRayTracingPipelinesKHR(
device, deferredOperation, pipelineCache, count, pCreateInfos, pAllocator, pPipelines, result, crtpl_state_data);
if (aborted) return;
UtilCopyCreatePipelineFeedbackData(count, pCreateInfos, crtpl_state->modified_create_infos.data());
PostCallRecordPipelineCreations(count, pCreateInfos, pAllocator, pPipelines, VK_PIPELINE_BIND_POINT_RAY_TRACING_KHR,
crtpl_state->modified_create_infos.data());
}
// Remove all the shader trackers associated with this destroyed pipeline.
void GpuAssistedBase::PreCallRecordDestroyPipeline(VkDevice device, VkPipeline pipeline, const VkAllocationCallbacks *pAllocator) {
auto to_erase = shader_map.snapshot([pipeline](const GpuAssistedShaderTracker &entry) { return entry.pipeline == pipeline; });
for (const auto &entry : to_erase) {
shader_map.erase(entry.first);
}
ValidationStateTracker::PreCallRecordDestroyPipeline(device, pipeline, pAllocator);
}
template <typename CreateInfo>
struct CreatePipelineTraits {};
template <>
struct CreatePipelineTraits<VkGraphicsPipelineCreateInfo> {
using SafeType = safe_VkGraphicsPipelineCreateInfo;
static uint32_t GetStageCount(const VkGraphicsPipelineCreateInfo &createInfo) { return createInfo.stageCount; }
static VkShaderModule GetShaderModule(const VkGraphicsPipelineCreateInfo &createInfo, uint32_t stage) {
return createInfo.pStages[stage].module;
}
static void SetShaderModule(SafeType *createInfo, VkShaderModule shader_module, uint32_t stage) {
createInfo->pStages[stage].module = shader_module;
}
};
template <>
struct CreatePipelineTraits<VkComputePipelineCreateInfo> {
using SafeType = safe_VkComputePipelineCreateInfo;
static uint32_t GetStageCount(const VkComputePipelineCreateInfo &createInfo) { return 1; }
static VkShaderModule GetShaderModule(const VkComputePipelineCreateInfo &createInfo, uint32_t stage) {
return createInfo.stage.module;
}
static void SetShaderModule(SafeType *createInfo, VkShaderModule shader_module, uint32_t stage) {
assert(stage == 0);
createInfo->stage.module = shader_module;
}
};
template <>
struct CreatePipelineTraits<VkRayTracingPipelineCreateInfoNV> {
using SafeType = safe_VkRayTracingPipelineCreateInfoCommon;
static uint32_t GetStageCount(const VkRayTracingPipelineCreateInfoNV &createInfo) { return createInfo.stageCount; }
static VkShaderModule GetShaderModule(const VkRayTracingPipelineCreateInfoNV &createInfo, uint32_t stage) {
return createInfo.pStages[stage].module;
}
static void SetShaderModule(SafeType *createInfo, VkShaderModule shader_module, uint32_t stage) {
createInfo->pStages[stage].module = shader_module;
}
};
template <>
struct CreatePipelineTraits<VkRayTracingPipelineCreateInfoKHR> {
using SafeType = safe_VkRayTracingPipelineCreateInfoCommon;
static uint32_t GetStageCount(const VkRayTracingPipelineCreateInfoKHR &createInfo) { return createInfo.stageCount; }
static VkShaderModule GetShaderModule(const VkRayTracingPipelineCreateInfoKHR &createInfo, uint32_t stage) {
return createInfo.pStages[stage].module;
}
static void SetShaderModule(SafeType *createInfo, VkShaderModule shader_module, uint32_t stage) {
createInfo->pStages[stage].module = shader_module;
}
};
// Examine the pipelines to see if they use the debug descriptor set binding index.
// If any do, create new non-instrumented shader modules and use them to replace the instrumented
// shaders in the pipeline. Return the (possibly) modified create infos to the caller.
template <typename CreateInfo, typename SafeCreateInfo>
void GpuAssistedBase::PreCallRecordPipelineCreations(uint32_t count, const CreateInfo *pCreateInfos,
const VkAllocationCallbacks *pAllocator, VkPipeline *pPipelines,
std::vector<std::shared_ptr<PIPELINE_STATE>> &pipe_state,
std::vector<SafeCreateInfo> *new_pipeline_create_infos,
const VkPipelineBindPoint bind_point) {
using Accessor = CreatePipelineTraits<CreateInfo>;
if (bind_point != VK_PIPELINE_BIND_POINT_GRAPHICS && bind_point != VK_PIPELINE_BIND_POINT_COMPUTE &&
bind_point != VK_PIPELINE_BIND_POINT_RAY_TRACING_KHR) {
return;
}
// Walk through all the pipelines, make a copy of each and flag each pipeline that contains a shader that uses the debug
// descriptor set index.
for (uint32_t pipeline = 0; pipeline < count; ++pipeline) {
uint32_t stageCount = Accessor::GetStageCount(pCreateInfos[pipeline]);
const auto &pipe = pipe_state[pipeline];
new_pipeline_create_infos->push_back(pipe->GetCreateInfo<CreateInfo>());
if (!pipe->IsGraphicsLibrary()) {
bool replace_shaders = false;
if (pipe->active_slots.find(desc_set_bind_index) != pipe->active_slots.end()) {
replace_shaders = true;
}
// If the app requests all available sets, the pipeline layout was not modified at pipeline layout creation and the
// already instrumented shaders need to be replaced with uninstrumented shaders
const auto pipeline_layout = pipe->PipelineLayoutState();
if (pipeline_layout->set_layouts.size() >= adjusted_max_desc_sets) {
replace_shaders = true;
}
if (replace_shaders) {
for (uint32_t stage = 0; stage < stageCount; ++stage) {
const auto module_state = Get<SHADER_MODULE_STATE>(pipe->GetShaderModuleByCIIndex<CreateInfo>(stage));
VkShaderModule shader_module;
auto create_info = LvlInitStruct<VkShaderModuleCreateInfo>();
create_info.pCode = module_state->words_.data();
create_info.codeSize = module_state->words_.size() * sizeof(uint32_t);
VkResult result = DispatchCreateShaderModule(device, &create_info, pAllocator, &shader_module);
if (result == VK_SUCCESS) {
Accessor::SetShaderModule(&(*new_pipeline_create_infos)[pipeline], shader_module, stage);
} else {
ReportSetupProblem(device,
"Unable to replace instrumented shader with non-instrumented one. "
"Device could become unstable.");
}
}
}
}
}
}
// For every pipeline:
// - For every shader in a pipeline:
// - If the shader had to be replaced in PreCallRecord (because the pipeline is using the debug desc set index):
// - Destroy it since it has been bound into the pipeline by now. This is our only chance to delete it.
// - Track the shader in the shader_map
// - Save the shader binary if it contains debug code
template <typename CreateInfo, typename SafeCreateInfo>
void GpuAssistedBase::PostCallRecordPipelineCreations(const uint32_t count, const CreateInfo *pCreateInfos,
const VkAllocationCallbacks *pAllocator, VkPipeline *pPipelines,
const VkPipelineBindPoint bind_point, const SafeCreateInfo &modified_create_infos) {
if (bind_point != VK_PIPELINE_BIND_POINT_GRAPHICS && bind_point != VK_PIPELINE_BIND_POINT_COMPUTE &&
bind_point != VK_PIPELINE_BIND_POINT_RAY_TRACING_KHR) {
return;
}
for (uint32_t pipeline = 0; pipeline < count; ++pipeline) {
auto pipeline_state = Get<PIPELINE_STATE>(pPipelines[pipeline]);
if (!pipeline_state || pipeline_state->IsGraphicsLibrary()) continue;
const uint32_t stageCount = static_cast<uint32_t>(pipeline_state->stage_state.size());
assert(stageCount > 0);
const auto pipeline_layout = pipeline_state->PipelineLayoutState();
for (uint32_t stage = 0; stage < stageCount; ++stage) {
assert((bind_point != VK_PIPELINE_BIND_POINT_COMPUTE) || (stage == 0));
auto shader_module = pipeline_state->GetShaderModuleByCIIndex<CreateInfo>(stage);
auto module_state = Get<SHADER_MODULE_STATE>(shader_module);
if (pipeline_state->active_slots.find(desc_set_bind_index) != pipeline_state->active_slots.end() ||
(pipeline_layout->set_layouts.size() >= adjusted_max_desc_sets)) {
auto *modified_ci = reinterpret_cast<const CreateInfo *>(modified_create_infos[pipeline].ptr());
auto uninstrumented_module = CreatePipelineTraits<CreateInfo>::GetShaderModule(*modified_ci, stage);
assert(uninstrumented_module != shader_module);
DispatchDestroyShaderModule(device, uninstrumented_module, pAllocator);
}
std::vector<unsigned int> code;
// Save the shader binary
// The core_validation ShaderModule tracker saves the binary too, but discards it when the ShaderModule
// is destroyed. Applications may destroy ShaderModules after they are placed in a pipeline and before
// the pipeline is used, so we have to keep another copy.
if (module_state && module_state->has_valid_spirv) code = module_state->words_;
shader_map.insert_or_assign(module_state->gpu_validation_shader_id, pipeline_state->pipeline(), shader_module,
std::move(code));
}
}
}
// Generate the stage-specific part of the message.
void UtilGenerateStageMessage(const uint32_t *debug_record, std::string &msg) {
using namespace spvtools;
std::ostringstream strm;
switch (debug_record[kInstCommonOutStageIdx]) {
case spv::ExecutionModelVertex: {
strm << "Stage = Vertex. Vertex Index = " << debug_record[kInstVertOutVertexIndex]
<< " Instance Index = " << debug_record[kInstVertOutInstanceIndex] << ". ";
} break;
case spv::ExecutionModelTessellationControl: {
strm << "Stage = Tessellation Control. Invocation ID = " << debug_record[kInstTessCtlOutInvocationId]
<< ", Primitive ID = " << debug_record[kInstTessCtlOutPrimitiveId];
} break;
case spv::ExecutionModelTessellationEvaluation: {
strm << "Stage = Tessellation Eval. Primitive ID = " << debug_record[kInstTessEvalOutPrimitiveId]
<< ", TessCoord (u, v) = (" << debug_record[kInstTessEvalOutTessCoordU] << ", "
<< debug_record[kInstTessEvalOutTessCoordV] << "). ";
} break;
case spv::ExecutionModelGeometry: {
strm << "Stage = Geometry. Primitive ID = " << debug_record[kInstGeomOutPrimitiveId]
<< " Invocation ID = " << debug_record[kInstGeomOutInvocationId] << ". ";
} break;
case spv::ExecutionModelFragment: {
strm << "Stage = Fragment. Fragment coord (x,y) = ("
<< *reinterpret_cast<const float *>(&debug_record[kInstFragOutFragCoordX]) << ", "
<< *reinterpret_cast<const float *>(&debug_record[kInstFragOutFragCoordY]) << "). ";
} break;
case spv::ExecutionModelGLCompute: {
strm << "Stage = Compute. Global invocation ID (x, y, z) = (" << debug_record[kInstCompOutGlobalInvocationIdX] << ", "
<< debug_record[kInstCompOutGlobalInvocationIdY] << ", " << debug_record[kInstCompOutGlobalInvocationIdZ] << " )";
} break;
case spv::ExecutionModelRayGenerationNV: {
strm << "Stage = Ray Generation. Global Launch ID (x,y,z) = (" << debug_record[kInstRayTracingOutLaunchIdX] << ", "
<< debug_record[kInstRayTracingOutLaunchIdY] << ", " << debug_record[kInstRayTracingOutLaunchIdZ] << "). ";
} break;
case spv::ExecutionModelIntersectionNV: {
strm << "Stage = Intersection. Global Launch ID (x,y,z) = (" << debug_record[kInstRayTracingOutLaunchIdX] << ", "
<< debug_record[kInstRayTracingOutLaunchIdY] << ", " << debug_record[kInstRayTracingOutLaunchIdZ] << "). ";
} break;
case spv::ExecutionModelAnyHitNV: {
strm << "Stage = Any Hit. Global Launch ID (x,y,z) = (" << debug_record[kInstRayTracingOutLaunchIdX] << ", "
<< debug_record[kInstRayTracingOutLaunchIdY] << ", " << debug_record[kInstRayTracingOutLaunchIdZ] << "). ";
} break;
case spv::ExecutionModelClosestHitNV: {
strm << "Stage = Closest Hit. Global Launch ID (x,y,z) = (" << debug_record[kInstRayTracingOutLaunchIdX] << ", "
<< debug_record[kInstRayTracingOutLaunchIdY] << ", " << debug_record[kInstRayTracingOutLaunchIdZ] << "). ";
} break;
case spv::ExecutionModelMissNV: {
strm << "Stage = Miss. Global Launch ID (x,y,z) = (" << debug_record[kInstRayTracingOutLaunchIdX] << ", "
<< debug_record[kInstRayTracingOutLaunchIdY] << ", " << debug_record[kInstRayTracingOutLaunchIdZ] << "). ";
} break;
case spv::ExecutionModelCallableNV: {
strm << "Stage = Callable. Global Launch ID (x,y,z) = (" << debug_record[kInstRayTracingOutLaunchIdX] << ", "
<< debug_record[kInstRayTracingOutLaunchIdY] << ", " << debug_record[kInstRayTracingOutLaunchIdZ] << "). ";
} break;
case spv::ExecutionModelTaskNV: {
strm << "Stage = Task. Global invocation ID (x, y, z) = (" << debug_record[kInstTaskOutGlobalInvocationIdX] << ", "
<< debug_record[kInstTaskOutGlobalInvocationIdY] << ", " << debug_record[kInstTaskOutGlobalInvocationIdZ] << " )";
} break;
case spv::ExecutionModelMeshNV: {
strm << "Stage = Mesh.Global invocation ID (x, y, z) = (" << debug_record[kInstMeshOutGlobalInvocationIdX] << ", "
<< debug_record[kInstMeshOutGlobalInvocationIdY] << ", " << debug_record[kInstMeshOutGlobalInvocationIdZ] << " )";
} break;
default: {
strm << "Internal Error (unexpected stage = " << debug_record[kInstCommonOutStageIdx] << "). ";
assert(false);
} break;
}
msg = strm.str();
}
std::string LookupDebugUtilsName(const debug_report_data *report_data, const uint64_t object) {
auto object_label = report_data->DebugReportGetUtilsObjectName(object);
if (object_label != "") {
object_label = "(" + object_label + ")";
}
return object_label;
}
// Generate message from the common portion of the debug report record.
void UtilGenerateCommonMessage(const debug_report_data *report_data, const VkCommandBuffer commandBuffer,
const uint32_t *debug_record, const VkShaderModule shader_module_handle,
const VkPipeline pipeline_handle, const VkPipelineBindPoint pipeline_bind_point,
const uint32_t operation_index, std::string &msg) {
using namespace spvtools;
std::ostringstream strm;
if (shader_module_handle == VK_NULL_HANDLE) {
strm << std::hex << std::showbase << "Internal Error: Unable to locate information for shader used in command buffer "
<< LookupDebugUtilsName(report_data, HandleToUint64(commandBuffer)) << "(" << HandleToUint64(commandBuffer) << "). ";
assert(true);
} else {
strm << std::hex << std::showbase << "Command buffer " << LookupDebugUtilsName(report_data, HandleToUint64(commandBuffer))
<< "(" << HandleToUint64(commandBuffer) << "). ";
if (pipeline_bind_point == VK_PIPELINE_BIND_POINT_GRAPHICS) {
strm << "Draw ";
} else if (pipeline_bind_point == VK_PIPELINE_BIND_POINT_COMPUTE) {
strm << "Compute Dispatch ";
} else if (pipeline_bind_point == VK_PIPELINE_BIND_POINT_RAY_TRACING_KHR) {
strm << "Ray Trace ";
} else {
assert(false);
strm << "Unknown Pipeline Operation ";
}
strm << "Index " << operation_index << ". "
<< "Pipeline " << LookupDebugUtilsName(report_data, HandleToUint64(pipeline_handle)) << "("
<< HandleToUint64(pipeline_handle) << "). "
<< "Shader Module " << LookupDebugUtilsName(report_data, HandleToUint64(shader_module_handle)) << "("
<< HandleToUint64(shader_module_handle) << "). ";
}
strm << std::dec << std::noshowbase;
strm << "Shader Instruction Index = " << debug_record[kInstCommonOutInstructionIdx] << ". ";
msg = strm.str();
}
// Read the contents of the SPIR-V OpSource instruction and any following continuation instructions.
// Split the single string into a vector of strings, one for each line, for easier processing.
void ReadOpSource(const SHADER_MODULE_STATE &module_state, const uint32_t reported_file_id,
std::vector<std::string> &opsource_lines) {
for (auto insn : module_state) {
if ((insn.opcode() == spv::OpSource) && (insn.len() >= 5) && (insn.word(3) == reported_file_id)) {
std::istringstream in_stream;
std::string cur_line;
in_stream.str((char *)&insn.word(4));
while (std::getline(in_stream, cur_line)) {
opsource_lines.push_back(cur_line);
}
while ((++insn).opcode() == spv::OpSourceContinued) {
in_stream.str((char *)&insn.word(1));
while (std::getline(in_stream, cur_line)) {
opsource_lines.push_back(cur_line);
}
}
break;
}
}
}
// The task here is to search the OpSource content to find the #line directive with the
// line number that is closest to, but still prior to the reported error line number and
// still within the reported filename.
// From this known position in the OpSource content we can add the difference between
// the #line line number and the reported error line number to determine the location
// in the OpSource content of the reported error line.
//
// Considerations:
// - Look only at #line directives that specify the reported_filename since
// the reported error line number refers to its location in the reported filename.
// - If a #line directive does not have a filename, the file is the reported filename, or
// the filename found in a prior #line directive. (This is C-preprocessor behavior)
// - It is possible (e.g., inlining) for blocks of code to get shuffled out of their
// original order and the #line directives are used to keep the numbering correct. This
// is why we need to examine the entire contents of the source, instead of leaving early
// when finding a #line line number larger than the reported error line number.
//
// GCC 4.8 has a problem with std::regex that is fixed in GCC 4.9. Provide fallback code for 4.8
#define GCC_VERSION (__GNUC__ * 10000 + __GNUC_MINOR__ * 100 + __GNUC_PATCHLEVEL__)
#if defined(__GNUC__) && GCC_VERSION < 40900
bool GetLineAndFilename(const std::string string, uint32_t *linenumber, std::string &filename) {
// # line <linenumber> "<filename>" or
// #line <linenumber> "<filename>"
std::vector<std::string> tokens;
std::stringstream stream(string);
std::string temp;
uint32_t line_index = 0;
while (stream >> temp) tokens.push_back(temp);
auto size = tokens.size();
if (size > 1) {
if (tokens[0] == "#" && tokens[1] == "line") {
line_index = 2;
} else if (tokens[0] == "#line") {
line_index = 1;
}
}
if (0 == line_index) return false;
*linenumber = static_cast<uint32_t>(std::stoul(tokens[line_index]));
uint32_t filename_index = line_index + 1;
// Remove enclosing double quotes around filename
if (size > filename_index) filename = tokens[filename_index].substr(1, tokens[filename_index].size() - 2);
return true;
}
#else
bool GetLineAndFilename(const std::string string, uint32_t *linenumber, std::string &filename) {
static const std::regex line_regex( // matches #line directives
"^" // beginning of line
"\\s*" // optional whitespace
"#" // required text
"\\s*" // optional whitespace
"line" // required text
"\\s+" // required whitespace
"([0-9]+)" // required first capture - line number
"(\\s+)?" // optional second capture - whitespace
"(\".+\")?" // optional third capture - quoted filename with at least one char inside
".*"); // rest of line (needed when using std::regex_match since the entire line is tested)
std::smatch captures;
bool found_line = std::regex_match(string, captures, line_regex);
if (!found_line) return false;
// filename is optional and considered found only if the whitespace and the filename are captured
if (captures[2].matched && captures[3].matched) {
// Remove enclosing double quotes. The regex guarantees the quotes and at least one char.
filename = captures[3].str().substr(1, captures[3].str().size() - 2);
}
*linenumber = (uint32_t)std::stoul(captures[1]);
return true;
}
#endif // GCC_VERSION
// Extract the filename, line number, and column number from the correct OpLine and build a message string from it.
// Scan the source (from OpSource) to find the line of source at the reported line number and place it in another message string.
void UtilGenerateSourceMessages(const std::vector<uint32_t> &pgm, const uint32_t *debug_record, bool from_printf,
std::string &filename_msg, std::string &source_msg) {
using namespace spvtools;
std::ostringstream filename_stream;
std::ostringstream source_stream;
SHADER_MODULE_STATE module_state(pgm);
// Find the OpLine just before the failing instruction indicated by the debug info.
// SPIR-V can only be iterated in the forward direction due to its opcode/length encoding.
uint32_t instruction_index = 0;
uint32_t reported_file_id = 0;
uint32_t reported_line_number = 0;
uint32_t reported_column_number = 0;
if (module_state.words_.size() > 0) {
for (const auto &insn : module_state) {
if (insn.opcode() == spv::OpLine) {
reported_file_id = insn.word(1);
reported_line_number = insn.word(2);
reported_column_number = insn.word(3);
}
if (instruction_index == debug_record[kInstCommonOutInstructionIdx]) {
break;
}
instruction_index++;
}
}
// Create message with file information obtained from the OpString pointed to by the discovered OpLine.
std::string reported_filename;
if (reported_file_id == 0) {
filename_stream
<< "Unable to find SPIR-V OpLine for source information. Build shader with debug info to get source information.";
} else {
bool found_opstring = false;
std::string prefix;
if (from_printf) {
prefix = "Debug shader printf message generated ";
} else {
prefix = "Shader validation error occurred ";
}
for (const auto &insn : module_state) {
if ((insn.opcode() == spv::OpString) && (insn.len() >= 3) && (insn.word(1) == reported_file_id)) {
found_opstring = true;
reported_filename = (char *)&insn.word(2);
if (reported_filename.empty()) {
filename_stream << prefix << "at line " << reported_line_number;
} else {
filename_stream << prefix << "in file " << reported_filename << " at line " << reported_line_number;
}
if (reported_column_number > 0) {
filename_stream << ", column " << reported_column_number;
}
filename_stream << ".";
break;
}
}
if (!found_opstring) {
filename_stream << "Unable to find SPIR-V OpString for file id " << reported_file_id << " from OpLine instruction."
<< std::endl;
filename_stream << "File ID = " << reported_file_id << ", Line Number = " << reported_line_number
<< ", Column = " << reported_column_number << std::endl;
}
}
filename_msg = filename_stream.str();
// Create message to display source code line containing error.
if ((reported_file_id != 0)) {
// Read the source code and split it up into separate lines.
std::vector<std::string> opsource_lines;
ReadOpSource(module_state, reported_file_id, opsource_lines);
// Find the line in the OpSource content that corresponds to the reported error file and line.
if (!opsource_lines.empty()) {
uint32_t saved_line_number = 0;
std::string current_filename = reported_filename; // current "preprocessor" filename state.
std::vector<std::string>::size_type saved_opsource_offset = 0;
bool found_best_line = false;
for (auto it = opsource_lines.begin(); it != opsource_lines.end(); ++it) {
uint32_t parsed_line_number;
std::string parsed_filename;
bool found_line = GetLineAndFilename(*it, &parsed_line_number, parsed_filename);
if (!found_line) continue;
bool found_filename = parsed_filename.size() > 0;
if (found_filename) {
current_filename = parsed_filename;
}
if ((!found_filename) || (current_filename == reported_filename)) {
// Update the candidate best line directive, if the current one is prior and closer to the reported line
if (reported_line_number >= parsed_line_number) {
if (!found_best_line ||
(reported_line_number - parsed_line_number <= reported_line_number - saved_line_number)) {
saved_line_number = parsed_line_number;
saved_opsource_offset = std::distance(opsource_lines.begin(), it);
found_best_line = true;
}
}
}
}
if (found_best_line) {
assert(reported_line_number >= saved_line_number);
std::vector<std::string>::size_type opsource_index =
(reported_line_number - saved_line_number) + 1 + saved_opsource_offset;
if (opsource_index < opsource_lines.size()) {
source_stream << "\n" << reported_line_number << ": " << opsource_lines[opsource_index].c_str();
} else {
source_stream << "Internal error: calculated source line of " << opsource_index << " for source size of "
<< opsource_lines.size() << " lines.";
}
} else {
source_stream << "Unable to find suitable #line directive in SPIR-V OpSource.";
}
} else {
source_stream << "Unable to find SPIR-V OpSource.";
}
}
source_msg = source_stream.str();
}