blob: b8d3ddca33441151976bbf2510f93708b89e2c69 [file] [log] [blame]
/* Copyright (c) 2015-2022 The Khronos Group Inc.
* Copyright (c) 2015-2022 Valve Corporation
* Copyright (c) 2015-2022 LunarG, Inc.
* Modifications Copyright (C) 2020 Advanced Micro Devices, Inc. All rights reserved.
*
* Licensed under the Apache License, Version 2.0 (the "License");
* you may not use this file except in compliance with the License.
* You may obtain a copy of the License at
*
* http://www.apache.org/licenses/LICENSE-2.0
*
* Unless required by applicable law or agreed to in writing, software
* distributed under the License is distributed on an "AS IS" BASIS,
* WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
* See the License for the specific language governing permissions and
* limitations under the License.
*
* Author: Camden Stocker <camden@lunarg.com>
* Author: Nadav Geva <nadav.geva@amd.com>
*/
#include "best_practices_validation.h"
#include "layer_chassis_dispatch.h"
#include "best_practices_error_enums.h"
#include "shader_validation.h"
#include "sync_utils.h"
#include "cmd_buffer_state.h"
#include "device_state.h"
#include "render_pass_state.h"
#include <string>
#include <bitset>
#include <memory>
struct VendorSpecificInfo {
EnableFlags vendor_id;
std::string name;
};
const std::map<BPVendorFlagBits, VendorSpecificInfo> kVendorInfo = {{kBPVendorArm, {vendor_specific_arm, "Arm"}},
{kBPVendorAMD, {vendor_specific_amd, "AMD"}},
{kBPVendorIMG, {vendor_specific_img, "IMG"}},
{kBPVendorNVIDIA, {vendor_specific_nvidia, "NVIDIA"}}};
const SpecialUseVUIDs kSpecialUseInstanceVUIDs {
kVUID_BestPractices_CreateInstance_SpecialUseExtension_CADSupport,
kVUID_BestPractices_CreateInstance_SpecialUseExtension_D3DEmulation,
kVUID_BestPractices_CreateInstance_SpecialUseExtension_DevTools,
kVUID_BestPractices_CreateInstance_SpecialUseExtension_Debugging,
kVUID_BestPractices_CreateInstance_SpecialUseExtension_GLEmulation,
};
const SpecialUseVUIDs kSpecialUseDeviceVUIDs {
kVUID_BestPractices_CreateDevice_SpecialUseExtension_CADSupport,
kVUID_BestPractices_CreateDevice_SpecialUseExtension_D3DEmulation,
kVUID_BestPractices_CreateDevice_SpecialUseExtension_DevTools,
kVUID_BestPractices_CreateDevice_SpecialUseExtension_Debugging,
kVUID_BestPractices_CreateDevice_SpecialUseExtension_GLEmulation,
};
static constexpr std::array<VkFormat, 12> kCustomClearColorCompressedFormatsNVIDIA = {
VK_FORMAT_R8G8B8A8_UNORM, VK_FORMAT_B8G8R8A8_UNORM, VK_FORMAT_A8B8G8R8_UNORM_PACK32,
VK_FORMAT_A2R10G10B10_UNORM_PACK32, VK_FORMAT_A2B10G10R10_UNORM_PACK32, VK_FORMAT_R16G16B16A16_UNORM,
VK_FORMAT_R16G16B16A16_SNORM, VK_FORMAT_R16G16B16A16_UINT, VK_FORMAT_R16G16B16A16_SINT,
VK_FORMAT_R16G16B16A16_SFLOAT, VK_FORMAT_R32G32B32A32_SFLOAT, VK_FORMAT_B10G11R11_UFLOAT_PACK32,
};
ReadLockGuard BestPractices::ReadLock() {
if (fine_grained_locking) {
return ReadLockGuard(validation_object_mutex, std::defer_lock);
} else {
return ReadLockGuard(validation_object_mutex);
}
}
WriteLockGuard BestPractices::WriteLock() {
if (fine_grained_locking) {
return WriteLockGuard(validation_object_mutex, std::defer_lock);
} else {
return WriteLockGuard(validation_object_mutex);
}
}
std::shared_ptr<CMD_BUFFER_STATE> BestPractices::CreateCmdBufferState(VkCommandBuffer cb,
const VkCommandBufferAllocateInfo* pCreateInfo,
const COMMAND_POOL_STATE* pool) {
return std::static_pointer_cast<CMD_BUFFER_STATE>(std::make_shared<bp_state::CommandBuffer>(this, cb, pCreateInfo, pool));
}
bp_state::CommandBuffer::CommandBuffer(BestPractices* bp, VkCommandBuffer cb, const VkCommandBufferAllocateInfo* pCreateInfo,
const COMMAND_POOL_STATE* pool)
: CMD_BUFFER_STATE(bp, cb, pCreateInfo, pool) {}
bool BestPractices::VendorCheckEnabled(BPVendorFlags vendors) const {
for (const auto& vendor : kVendorInfo) {
if (vendors & vendor.first && enabled[vendor.second.vendor_id]) {
return true;
}
}
return false;
}
const char* VendorSpecificTag(BPVendorFlags vendors) {
// Cache built vendor tags in a map
static layer_data::unordered_map<BPVendorFlags, std::string> tag_map;
auto res = tag_map.find(vendors);
if (res == tag_map.end()) {
// Build the vendor tag string
std::stringstream vendor_tag;
vendor_tag << "[";
bool first_vendor = true;
for (const auto& vendor : kVendorInfo) {
if (vendors & vendor.first) {
if (!first_vendor) {
vendor_tag << ", ";
}
vendor_tag << vendor.second.name;
first_vendor = false;
}
}
vendor_tag << "]";
tag_map[vendors] = vendor_tag.str();
res = tag_map.find(vendors);
}
return res->second.c_str();
}
const char* DepReasonToString(ExtDeprecationReason reason) {
switch (reason) {
case kExtPromoted:
return "promoted to";
break;
case kExtObsoleted:
return "obsoleted by";
break;
case kExtDeprecated:
return "deprecated by";
break;
default:
return "";
break;
}
}
bool BestPractices::ValidateDeprecatedExtensions(const char* api_name, const char* extension_name, uint32_t version,
const char* vuid) const {
bool skip = false;
auto dep_info_it = deprecated_extensions.find(extension_name);
if (dep_info_it != deprecated_extensions.end()) {
auto dep_info = dep_info_it->second;
if (((dep_info.target.compare("VK_VERSION_1_1") == 0) && (version >= VK_API_VERSION_1_1)) ||
((dep_info.target.compare("VK_VERSION_1_2") == 0) && (version >= VK_API_VERSION_1_2)) ||
((dep_info.target.compare("VK_VERSION_1_3") == 0) && (version >= VK_API_VERSION_1_3))) {
skip |=
LogWarning(instance, vuid, "%s(): Attempting to enable deprecated extension %s, but this extension has been %s %s.",
api_name, extension_name, DepReasonToString(dep_info.reason), (dep_info.target).c_str());
} else if (dep_info.target.find("VK_VERSION") == std::string::npos) {
if (dep_info.target.length() == 0) {
skip |= LogWarning(instance, vuid,
"%s(): Attempting to enable deprecated extension %s, but this extension has been deprecated "
"without replacement.",
api_name, extension_name);
} else {
skip |= LogWarning(instance, vuid,
"%s(): Attempting to enable deprecated extension %s, but this extension has been %s %s.",
api_name, extension_name, DepReasonToString(dep_info.reason), (dep_info.target).c_str());
}
}
}
return skip;
}
bool BestPractices::ValidateSpecialUseExtensions(const char* api_name, const char* extension_name, const SpecialUseVUIDs& special_use_vuids) const
{
bool skip = false;
auto dep_info_it = special_use_extensions.find(extension_name);
if (dep_info_it != special_use_extensions.end()) {
const char* const format = "%s(): Attempting to enable extension %s, but this extension is intended to support %s "
"and it is strongly recommended that it be otherwise avoided.";
auto& special_uses = dep_info_it->second;
if (special_uses.find("cadsupport") != std::string::npos) {
skip |= LogWarning(instance, special_use_vuids.cadsupport, format, api_name, extension_name,
"specialized functionality used by CAD/CAM applications");
}
if (special_uses.find("d3demulation") != std::string::npos) {
skip |= LogWarning(instance, special_use_vuids.d3demulation, format, api_name, extension_name,
"D3D emulation layers, and applications ported from D3D, by adding functionality specific to D3D");
}
if (special_uses.find("devtools") != std::string::npos) {
skip |= LogWarning(instance, special_use_vuids.devtools, format, api_name, extension_name,
"developer tools such as capture-replay libraries");
}
if (special_uses.find("debugging") != std::string::npos) {
skip |= LogWarning(instance, special_use_vuids.debugging, format, api_name, extension_name,
"use by applications when debugging");
}
if (special_uses.find("glemulation") != std::string::npos) {
skip |= LogWarning(instance, special_use_vuids.glemulation, format, api_name, extension_name,
"OpenGL and/or OpenGL ES emulation layers, and applications ported from those APIs, by adding functionality "
"specific to those APIs");
}
}
return skip;
}
bool BestPractices::PreCallValidateCreateInstance(const VkInstanceCreateInfo* pCreateInfo, const VkAllocationCallbacks* pAllocator,
VkInstance* pInstance) const {
bool skip = false;
for (uint32_t i = 0; i < pCreateInfo->enabledExtensionCount; i++) {
if (white_list(pCreateInfo->ppEnabledExtensionNames[i], kDeviceExtensionNames)) {
skip |= LogWarning(instance, kVUID_BestPractices_CreateInstance_ExtensionMismatch,
"vkCreateInstance(): Attempting to enable Device Extension %s at CreateInstance time.",
pCreateInfo->ppEnabledExtensionNames[i]);
}
uint32_t specified_version =
(pCreateInfo->pApplicationInfo ? pCreateInfo->pApplicationInfo->apiVersion : VK_API_VERSION_1_0);
skip |= ValidateDeprecatedExtensions("CreateInstance", pCreateInfo->ppEnabledExtensionNames[i], specified_version,
kVUID_BestPractices_CreateInstance_DeprecatedExtension);
skip |= ValidateSpecialUseExtensions("CreateInstance", pCreateInfo->ppEnabledExtensionNames[i], kSpecialUseInstanceVUIDs);
}
return skip;
}
bool BestPractices::PreCallValidateCreateDevice(VkPhysicalDevice physicalDevice, const VkDeviceCreateInfo* pCreateInfo,
const VkAllocationCallbacks* pAllocator, VkDevice* pDevice) const {
bool skip = false;
// get API version of physical device passed when creating device.
VkPhysicalDeviceProperties physical_device_properties{};
DispatchGetPhysicalDeviceProperties(physicalDevice, &physical_device_properties);
auto device_api_version = physical_device_properties.apiVersion;
// Check api versions and log an info message when instance api Version is higher than version on device.
if (api_version > device_api_version) {
std::string inst_api_name = StringAPIVersion(api_version);
std::string dev_api_name = StringAPIVersion(device_api_version);
skip |= LogInfo(device, kVUID_BestPractices_CreateDevice_API_Mismatch,
"vkCreateDevice(): API Version of current instance, %s is higher than API Version on device, %s",
inst_api_name.c_str(), dev_api_name.c_str());
}
std::vector<std::string> extensions;
{
uint32_t property_count = 0;
if (DispatchEnumerateDeviceExtensionProperties(physicalDevice, nullptr, &property_count, nullptr) == VK_SUCCESS) {
std::vector<VkExtensionProperties> property_list(property_count);
if (DispatchEnumerateDeviceExtensionProperties(physicalDevice, nullptr, &property_count, property_list.data()) == VK_SUCCESS) {
extensions.reserve(property_list.size());
for (const VkExtensionProperties& properties : property_list) {
extensions.push_back(properties.extensionName);
}
}
}
}
for (uint32_t i = 0; i < pCreateInfo->enabledExtensionCount; i++) {
const char *extension_name = pCreateInfo->ppEnabledExtensionNames[i];
uint32_t extension_api_version = std::min(api_version, device_api_version);
if (white_list(extension_name, kInstanceExtensionNames)) {
skip |= LogWarning(instance, kVUID_BestPractices_CreateDevice_ExtensionMismatch,
"vkCreateDevice(): Attempting to enable Instance Extension %s at CreateDevice time.",
extension_name);
extension_api_version = api_version;
}
skip |= ValidateDeprecatedExtensions("CreateDevice", extension_name, extension_api_version,
kVUID_BestPractices_CreateDevice_DeprecatedExtension);
skip |= ValidateSpecialUseExtensions("CreateDevice", extension_name, kSpecialUseDeviceVUIDs);
}
const auto bp_pd_state = Get<bp_state::PhysicalDevice>(physicalDevice);
if ((bp_pd_state->vkGetPhysicalDeviceFeaturesState == UNCALLED) && (pCreateInfo->pEnabledFeatures != NULL)) {
skip |= LogWarning(device, kVUID_BestPractices_CreateDevice_PDFeaturesNotCalled,
"vkCreateDevice() called before getting physical device features from vkGetPhysicalDeviceFeatures().");
}
if ((VendorCheckEnabled(kBPVendorArm) || VendorCheckEnabled(kBPVendorAMD) || VendorCheckEnabled(kBPVendorIMG)) &&
(pCreateInfo->pEnabledFeatures != nullptr) && (pCreateInfo->pEnabledFeatures->robustBufferAccess == VK_TRUE)) {
skip |= LogPerformanceWarning(
device, kVUID_BestPractices_CreateDevice_RobustBufferAccess,
"%s %s %s: vkCreateDevice() called with enabled robustBufferAccess. Use robustBufferAccess as a debugging tool during "
"development. Enabling it causes loss in performance for accesses to uniform buffers and shader storage "
"buffers. Disable robustBufferAccess in release builds. Only leave it enabled if the application use-case "
"requires the additional level of reliability due to the use of unverified user-supplied draw parameters.",
VendorSpecificTag(kBPVendorArm), VendorSpecificTag(kBPVendorAMD), VendorSpecificTag(kBPVendorIMG));
}
const bool enabled_pageable_device_local_memory = IsExtEnabled(device_extensions.vk_ext_pageable_device_local_memory);
if (VendorCheckEnabled(kBPVendorNVIDIA) && !enabled_pageable_device_local_memory &&
std::find(extensions.begin(), extensions.end(), VK_EXT_PAGEABLE_DEVICE_LOCAL_MEMORY_EXTENSION_NAME) != extensions.end()) {
skip |= LogPerformanceWarning(
device, kVUID_BestPractices_CreateDevice_PageableDeviceLocalMemory,
"%s vkCreateDevice() called without pageable device local memory. "
"Use pageableDeviceLocalMemory from VK_EXT_pageable_device_local_memory when it is available.",
VendorSpecificTag(kBPVendorNVIDIA));
}
return skip;
}
bool BestPractices::PreCallValidateCreateBuffer(VkDevice device, const VkBufferCreateInfo* pCreateInfo,
const VkAllocationCallbacks* pAllocator, VkBuffer* pBuffer) const {
bool skip = false;
if ((pCreateInfo->queueFamilyIndexCount > 1) && (pCreateInfo->sharingMode == VK_SHARING_MODE_EXCLUSIVE)) {
std::stringstream buffer_hex;
buffer_hex << "0x" << std::hex << HandleToUint64(pBuffer);
skip |= LogWarning(
device, kVUID_BestPractices_SharingModeExclusive,
"Warning: Buffer (%s) specifies a sharing mode of VK_SHARING_MODE_EXCLUSIVE while specifying multiple queues "
"(queueFamilyIndexCount of %" PRIu32 ").",
buffer_hex.str().c_str(), pCreateInfo->queueFamilyIndexCount);
}
return skip;
}
bool BestPractices::PreCallValidateCreateImage(VkDevice device, const VkImageCreateInfo* pCreateInfo,
const VkAllocationCallbacks* pAllocator, VkImage* pImage) const {
bool skip = false;
if ((pCreateInfo->queueFamilyIndexCount > 1) && (pCreateInfo->sharingMode == VK_SHARING_MODE_EXCLUSIVE)) {
std::stringstream image_hex;
image_hex << "0x" << std::hex << HandleToUint64(pImage);
skip |=
LogWarning(device, kVUID_BestPractices_SharingModeExclusive,
"Warning: Image (%s) specifies a sharing mode of VK_SHARING_MODE_EXCLUSIVE while specifying multiple queues "
"(queueFamilyIndexCount of %" PRIu32 ").",
image_hex.str().c_str(), pCreateInfo->queueFamilyIndexCount);
}
if ((pCreateInfo->flags & VK_IMAGE_CREATE_EXTENDED_USAGE_BIT) && !(pCreateInfo->flags & VK_IMAGE_CREATE_MUTABLE_FORMAT_BIT)) {
skip |= LogWarning(device, kVUID_BestPractices_ImageCreateFlags,
"vkCreateImage(): pCreateInfo->flags has VK_IMAGE_CREATE_EXTENDED_USAGE_BIT set, but not "
"VK_IMAGE_CREATE_MUTABLE_FORMAT_BIT, therefore image views created from this image will have to use the "
"same format and VK_IMAGE_CREATE_EXTENDED_USAGE_BIT will not have any effect.");
}
if (VendorCheckEnabled(kBPVendorArm) || VendorCheckEnabled(kBPVendorIMG)) {
if (pCreateInfo->samples > VK_SAMPLE_COUNT_1_BIT && !(pCreateInfo->usage & VK_IMAGE_USAGE_TRANSIENT_ATTACHMENT_BIT)) {
skip |= LogPerformanceWarning(
device, kVUID_BestPractices_CreateImage_NonTransientMSImage,
"%s %s vkCreateImage(): Trying to create a multisampled image, but createInfo.usage did not have "
"VK_IMAGE_USAGE_TRANSIENT_ATTACHMENT_BIT set. Multisampled images may be resolved on-chip, "
"and do not need to be backed by physical storage. "
"TRANSIENT_ATTACHMENT allows tiled GPUs to not back the multisampled image with physical memory.",
VendorSpecificTag(kBPVendorArm), VendorSpecificTag(kBPVendorIMG));
}
}
if (VendorCheckEnabled(kBPVendorArm) && pCreateInfo->samples > kMaxEfficientSamplesArm) {
skip |= LogPerformanceWarning(
device, kVUID_BestPractices_CreateImage_TooLargeSampleCount,
"%s vkCreateImage(): Trying to create an image with %u samples. "
"The hardware revision may not have full throughput for framebuffers with more than %u samples.",
VendorSpecificTag(kBPVendorArm), static_cast<uint32_t>(pCreateInfo->samples), kMaxEfficientSamplesArm);
}
if (VendorCheckEnabled(kBPVendorIMG) && pCreateInfo->samples > kMaxEfficientSamplesImg) {
skip |= LogPerformanceWarning(
device, kVUID_BestPractices_CreateImage_TooLargeSampleCount,
"%s vkCreateImage(): Trying to create an image with %u samples. "
"The device may not have full support for true multisampling for images with more than %u samples. "
"XT devices support up to 8 samples, XE up to 4 samples.",
VendorSpecificTag(kBPVendorIMG), static_cast<uint32_t>(pCreateInfo->samples), kMaxEfficientSamplesImg);
}
if (VendorCheckEnabled(kBPVendorIMG) && (pCreateInfo->format == VK_FORMAT_PVRTC1_2BPP_SRGB_BLOCK_IMG ||
pCreateInfo->format == VK_FORMAT_PVRTC1_2BPP_UNORM_BLOCK_IMG ||
pCreateInfo->format == VK_FORMAT_PVRTC1_4BPP_SRGB_BLOCK_IMG ||
pCreateInfo->format == VK_FORMAT_PVRTC1_4BPP_UNORM_BLOCK_IMG ||
pCreateInfo->format == VK_FORMAT_PVRTC2_2BPP_SRGB_BLOCK_IMG ||
pCreateInfo->format == VK_FORMAT_PVRTC2_2BPP_UNORM_BLOCK_IMG ||
pCreateInfo->format == VK_FORMAT_PVRTC2_4BPP_SRGB_BLOCK_IMG ||
pCreateInfo->format == VK_FORMAT_PVRTC2_4BPP_UNORM_BLOCK_IMG)) {
skip |= LogPerformanceWarning(device, kVUID_BestPractices_Texture_Format_PVRTC_Outdated,
"%s vkCreateImage(): Trying to create an image with a PVRTC format. Both PVRTC1 and PVRTC2 "
"are slower than standard image formats on PowerVR GPUs, prefer ETC, BC, ASTC, etc.",
VendorSpecificTag(kBPVendorIMG));
}
if (VendorCheckEnabled(kBPVendorAMD)) {
std::stringstream image_hex;
image_hex << "0x" << std::hex << HandleToUint64(pImage);
if ((pCreateInfo->usage & (VK_IMAGE_USAGE_COLOR_ATTACHMENT_BIT | VK_IMAGE_USAGE_DEPTH_STENCIL_ATTACHMENT_BIT)) &&
(pCreateInfo->sharingMode == VK_SHARING_MODE_CONCURRENT)) {
skip |= LogPerformanceWarning(device,
kVUID_BestPractices_vkImage_AvoidConcurrentRenderTargets,
"%s Performance warning: image (%s) is created as a render target with VK_SHARING_MODE_CONCURRENT. "
"Using a SHARING_MODE_CONCURRENT "
"is not recommended with color and depth targets",
VendorSpecificTag(kBPVendorAMD), image_hex.str().c_str());
}
if ((pCreateInfo->usage &
(VK_IMAGE_USAGE_COLOR_ATTACHMENT_BIT | VK_IMAGE_USAGE_STORAGE_BIT | VK_IMAGE_USAGE_DEPTH_STENCIL_ATTACHMENT_BIT)) &&
(pCreateInfo->flags & VK_IMAGE_CREATE_MUTABLE_FORMAT_BIT)) {
skip |= LogPerformanceWarning(device, kVUID_BestPractices_vkImage_DontUseMutableRenderTargets,
"%s Performance warning: image (%s) is created as a render target with VK_IMAGE_CREATE_MUTABLE_FORMAT_BIT. "
"Using a MUTABLE_FORMAT is not recommended with color, depth, and storage targets",
VendorSpecificTag(kBPVendorAMD), image_hex.str().c_str());
}
if ((pCreateInfo->usage & (VK_IMAGE_USAGE_COLOR_ATTACHMENT_BIT | VK_IMAGE_USAGE_DEPTH_STENCIL_ATTACHMENT_BIT)) &&
(pCreateInfo->usage & VK_IMAGE_USAGE_STORAGE_BIT)) {
skip |= LogPerformanceWarning(device, kVUID_BestPractices_vkImage_DontUseStorageRenderTargets,
"%s Performance warning: image (%s) is created as a render target with VK_IMAGE_USAGE_STORAGE_BIT. Using a "
"VK_IMAGE_USAGE_STORAGE_BIT is not recommended with color and depth targets",
VendorSpecificTag(kBPVendorAMD), image_hex.str().c_str());
}
}
if (VendorCheckEnabled(kBPVendorNVIDIA)) {
std::stringstream image_hex;
image_hex << "0x" << std::hex << HandleToUint64(pImage);
if (pCreateInfo->tiling == VK_IMAGE_TILING_LINEAR) {
skip |= LogPerformanceWarning(device, kVUID_BestPractices_CreateImage_TilingLinear,
"%s Performance warning: image (%s) is created with tiling VK_IMAGE_TILING_LINEAR. "
"Use VK_IMAGE_TILING_OPTIMAL instead.",
VendorSpecificTag(kBPVendorNVIDIA), image_hex.str().c_str());
}
if (pCreateInfo->format == VK_FORMAT_D32_SFLOAT || pCreateInfo->format == VK_FORMAT_D32_SFLOAT_S8_UINT) {
skip |= LogPerformanceWarning(
device, kVUID_BestPractices_CreateImage_Depth32Format,
"%s Performance warning: image (%s) is created with a 32-bit depth format. Use VK_FORMAT_D24_UNORM_S8_UINT or "
"VK_FORMAT_D16_UNORM instead, unless the extra precision is needed.",
VendorSpecificTag(kBPVendorNVIDIA), image_hex.str().c_str());
}
}
return skip;
}
bool BestPractices::PreCallValidateCreateSwapchainKHR(VkDevice device, const VkSwapchainCreateInfoKHR* pCreateInfo,
const VkAllocationCallbacks* pAllocator, VkSwapchainKHR* pSwapchain) const {
bool skip = false;
const auto* bp_pd_state = GetPhysicalDeviceState();
if (bp_pd_state) {
if (bp_pd_state->vkGetPhysicalDeviceSurfaceCapabilitiesKHRState == UNCALLED) {
skip |= LogWarning(device, kVUID_BestPractices_Swapchain_GetSurfaceNotCalled,
"vkCreateSwapchainKHR() called before getting surface capabilities from "
"vkGetPhysicalDeviceSurfaceCapabilitiesKHR().");
}
if ((pCreateInfo->presentMode != VK_PRESENT_MODE_FIFO_KHR) &&
(bp_pd_state->vkGetPhysicalDeviceSurfacePresentModesKHRState != QUERY_DETAILS)) {
skip |= LogWarning(device, kVUID_BestPractices_Swapchain_GetSurfaceNotCalled,
"vkCreateSwapchainKHR() called before getting surface present mode(s) from "
"vkGetPhysicalDeviceSurfacePresentModesKHR().");
}
if (bp_pd_state->vkGetPhysicalDeviceSurfaceFormatsKHRState != QUERY_DETAILS) {
skip |= LogWarning(
device, kVUID_BestPractices_Swapchain_GetSurfaceNotCalled,
"vkCreateSwapchainKHR() called before getting surface format(s) from vkGetPhysicalDeviceSurfaceFormatsKHR().");
}
}
if ((pCreateInfo->queueFamilyIndexCount > 1) && (pCreateInfo->imageSharingMode == VK_SHARING_MODE_EXCLUSIVE)) {
skip |=
LogWarning(device, kVUID_BestPractices_SharingModeExclusive,
"Warning: A Swapchain is being created which specifies a sharing mode of VK_SHARING_MODE_EXCLUSIVE while "
"specifying multiple queues (queueFamilyIndexCount of %" PRIu32 ").",
pCreateInfo->queueFamilyIndexCount);
}
const auto present_mode = pCreateInfo->presentMode;
if (((present_mode == VK_PRESENT_MODE_MAILBOX_KHR) || (present_mode == VK_PRESENT_MODE_FIFO_KHR)) &&
(pCreateInfo->minImageCount == 2)) {
skip |= LogPerformanceWarning(
device, kVUID_BestPractices_SuboptimalSwapchainImageCount,
"Warning: A Swapchain is being created with minImageCount set to %" PRIu32
", which means double buffering is going "
"to be used. Using double buffering and vsync locks rendering to an integer fraction of the vsync rate. In turn, "
"reducing the performance of the application if rendering is slower than vsync. Consider setting minImageCount to "
"3 to use triple buffering to maximize performance in such cases.",
pCreateInfo->minImageCount);
}
if (VendorCheckEnabled(kBPVendorArm) && (pCreateInfo->presentMode != VK_PRESENT_MODE_FIFO_KHR)) {
skip |= LogWarning(device, kVUID_BestPractices_CreateSwapchain_PresentMode,
"%s Warning: Swapchain is not being created with presentation mode \"VK_PRESENT_MODE_FIFO_KHR\". "
"Prefer using \"VK_PRESENT_MODE_FIFO_KHR\" to avoid unnecessary CPU and GPU load and save power. "
"Presentation modes which are not FIFO will present the latest available frame and discard other "
"frame(s) if any.",
VendorSpecificTag(kBPVendorArm));
}
return skip;
}
bool BestPractices::PreCallValidateCreateSharedSwapchainsKHR(VkDevice device, uint32_t swapchainCount,
const VkSwapchainCreateInfoKHR* pCreateInfos,
const VkAllocationCallbacks* pAllocator,
VkSwapchainKHR* pSwapchains) const {
bool skip = false;
for (uint32_t i = 0; i < swapchainCount; i++) {
if ((pCreateInfos[i].queueFamilyIndexCount > 1) && (pCreateInfos[i].imageSharingMode == VK_SHARING_MODE_EXCLUSIVE)) {
skip |= LogWarning(
device, kVUID_BestPractices_SharingModeExclusive,
"Warning: A shared swapchain (index %" PRIu32
") is being created which specifies a sharing mode of VK_SHARING_MODE_EXCLUSIVE while specifying multiple "
"queues (queueFamilyIndexCount of %" PRIu32 ").",
i, pCreateInfos[i].queueFamilyIndexCount);
}
}
return skip;
}
bool BestPractices::PreCallValidateCreateRenderPass(VkDevice device, const VkRenderPassCreateInfo* pCreateInfo,
const VkAllocationCallbacks* pAllocator, VkRenderPass* pRenderPass) const {
bool skip = false;
for (uint32_t i = 0; i < pCreateInfo->attachmentCount; ++i) {
VkFormat format = pCreateInfo->pAttachments[i].format;
if (pCreateInfo->pAttachments[i].initialLayout == VK_IMAGE_LAYOUT_UNDEFINED) {
if ((FormatIsColor(format) || FormatHasDepth(format)) &&
pCreateInfo->pAttachments[i].loadOp == VK_ATTACHMENT_LOAD_OP_LOAD) {
skip |= LogWarning(device, kVUID_BestPractices_RenderPass_Attatchment,
"Render pass has an attachment with loadOp == VK_ATTACHMENT_LOAD_OP_LOAD and "
"initialLayout == VK_IMAGE_LAYOUT_UNDEFINED. This is probably not what you "
"intended. Consider using VK_ATTACHMENT_LOAD_OP_DONT_CARE instead if the "
"image truely is undefined at the start of the render pass.");
}
if (FormatHasStencil(format) && pCreateInfo->pAttachments[i].stencilLoadOp == VK_ATTACHMENT_LOAD_OP_LOAD) {
skip |= LogWarning(device, kVUID_BestPractices_RenderPass_Attatchment,
"Render pass has an attachment with stencilLoadOp == VK_ATTACHMENT_LOAD_OP_LOAD "
"and initialLayout == VK_IMAGE_LAYOUT_UNDEFINED. This is probably not what you "
"intended. Consider using VK_ATTACHMENT_LOAD_OP_DONT_CARE instead if the "
"image truely is undefined at the start of the render pass.");
}
}
const auto& attachment = pCreateInfo->pAttachments[i];
if (attachment.samples > VK_SAMPLE_COUNT_1_BIT) {
bool access_requires_memory =
attachment.loadOp == VK_ATTACHMENT_LOAD_OP_LOAD || attachment.storeOp == VK_ATTACHMENT_STORE_OP_STORE;
if (FormatHasStencil(format)) {
access_requires_memory |= attachment.stencilLoadOp == VK_ATTACHMENT_LOAD_OP_LOAD ||
attachment.stencilStoreOp == VK_ATTACHMENT_STORE_OP_STORE;
}
if (access_requires_memory) {
skip |= LogPerformanceWarning(
device, kVUID_BestPractices_CreateRenderPass_ImageRequiresMemory,
"Attachment %u in the VkRenderPass is a multisampled image with %u samples, but it uses loadOp/storeOp "
"which requires accessing data from memory. Multisampled images should always be loadOp = CLEAR or DONT_CARE, "
"storeOp = DONT_CARE. This allows the implementation to use lazily allocated memory effectively.",
i, static_cast<uint32_t>(attachment.samples));
}
}
}
for (uint32_t dependency = 0; dependency < pCreateInfo->dependencyCount; dependency++) {
skip |= CheckPipelineStageFlags("vkCreateRenderPass", pCreateInfo->pDependencies[dependency].srcStageMask);
skip |= CheckPipelineStageFlags("vkCreateRenderPass", pCreateInfo->pDependencies[dependency].dstStageMask);
}
return skip;
}
bool BestPractices::ValidateAttachments(const VkRenderPassCreateInfo2* rpci, uint32_t attachmentCount,
const VkImageView* image_views) const {
bool skip = false;
// Check for non-transient attachments that should be transient and vice versa
for (uint32_t i = 0; i < attachmentCount; ++i) {
const auto& attachment = rpci->pAttachments[i];
bool attachment_should_be_transient =
(attachment.loadOp != VK_ATTACHMENT_LOAD_OP_LOAD && attachment.storeOp != VK_ATTACHMENT_STORE_OP_STORE);
if (FormatHasStencil(attachment.format)) {
attachment_should_be_transient &= (attachment.stencilLoadOp != VK_ATTACHMENT_LOAD_OP_LOAD &&
attachment.stencilStoreOp != VK_ATTACHMENT_STORE_OP_STORE);
}
auto view_state = Get<IMAGE_VIEW_STATE>(image_views[i]);
if (view_state) {
const auto& ici = view_state->image_state->createInfo;
bool image_is_transient = (ici.usage & VK_IMAGE_USAGE_TRANSIENT_ATTACHMENT_BIT) != 0;
// The check for an image that should not be transient applies to all GPUs
if (!attachment_should_be_transient && image_is_transient) {
skip |= LogPerformanceWarning(
device, kVUID_BestPractices_CreateFramebuffer_AttachmentShouldNotBeTransient,
"Attachment %u in VkFramebuffer uses loadOp/storeOps which need to access physical memory, "
"but the image backing the image view has VK_IMAGE_USAGE_TRANSIENT_ATTACHMENT_BIT set. "
"Physical memory will need to be backed lazily to this image, potentially causing stalls.",
i);
}
bool supports_lazy = false;
for (uint32_t j = 0; j < phys_dev_mem_props.memoryTypeCount; j++) {
if (phys_dev_mem_props.memoryTypes[j].propertyFlags & VK_MEMORY_PROPERTY_LAZILY_ALLOCATED_BIT) {
supports_lazy = true;
}
}
// The check for an image that should be transient only applies to GPUs supporting
// lazily allocated memory
if (supports_lazy && attachment_should_be_transient && !image_is_transient) {
skip |= LogPerformanceWarning(
device, kVUID_BestPractices_CreateFramebuffer_AttachmentShouldBeTransient,
"Attachment %u in VkFramebuffer uses loadOp/storeOps which never have to be backed by physical memory, "
"but the image backing the image view does not have VK_IMAGE_USAGE_TRANSIENT_ATTACHMENT_BIT set. "
"You can save physical memory by using transient attachment backed by lazily allocated memory here.",
i);
}
}
}
return skip;
}
bool BestPractices::PreCallValidateCreateFramebuffer(VkDevice device, const VkFramebufferCreateInfo* pCreateInfo,
const VkAllocationCallbacks* pAllocator, VkFramebuffer* pFramebuffer) const {
bool skip = false;
auto rp_state = Get<RENDER_PASS_STATE>(pCreateInfo->renderPass);
if (rp_state && !(pCreateInfo->flags & VK_FRAMEBUFFER_CREATE_IMAGELESS_BIT)) {
skip = ValidateAttachments(rp_state->createInfo.ptr(), pCreateInfo->attachmentCount, pCreateInfo->pAttachments);
}
return skip;
}
bool BestPractices::PreCallValidateAllocateDescriptorSets(VkDevice device, const VkDescriptorSetAllocateInfo* pAllocateInfo,
VkDescriptorSet* pDescriptorSets, void* ads_state_data) const {
bool skip = false;
skip |= ValidationStateTracker::PreCallValidateAllocateDescriptorSets(device, pAllocateInfo, pDescriptorSets, ads_state_data);
if (!skip) {
const auto pool_state = Get<bp_state::DescriptorPool>(pAllocateInfo->descriptorPool);
// if the number of freed sets > 0, it implies they could be recycled instead if desirable
// this warning is specific to Arm
if (VendorCheckEnabled(kBPVendorArm) && pool_state && (pool_state->freed_count > 0)) {
skip |= LogPerformanceWarning(
device, kVUID_BestPractices_AllocateDescriptorSets_SuboptimalReuse,
"%s Descriptor set memory was allocated via vkAllocateDescriptorSets() for sets which were previously freed in the "
"same logical device. On some drivers or architectures it may be most optimal to re-use existing descriptor sets.",
VendorSpecificTag(kBPVendorArm));
}
if (IsExtEnabled(device_extensions.vk_khr_maintenance1)) {
// Track number of descriptorSets allowable in this pool
if (pool_state->GetAvailableSets() < pAllocateInfo->descriptorSetCount) {
skip |= LogWarning(pool_state->Handle(), kVUID_BestPractices_EmptyDescriptorPool,
"vkAllocateDescriptorSets(): Unable to allocate %" PRIu32 " descriptorSets from %s"
". This pool only has %" PRIu32 " descriptorSets remaining.",
pAllocateInfo->descriptorSetCount, report_data->FormatHandle(pool_state->Handle()).c_str(),
pool_state->GetAvailableSets());
}
}
}
return skip;
}
void BestPractices::ManualPostCallRecordAllocateDescriptorSets(VkDevice device, const VkDescriptorSetAllocateInfo* pAllocateInfo,
VkDescriptorSet* pDescriptorSets, VkResult result, void* ads_state) {
if (result == VK_SUCCESS) {
auto pool_state = Get<bp_state::DescriptorPool>(pAllocateInfo->descriptorPool);
if (pool_state) {
// we record successful allocations by subtracting the allocation count from the last recorded free count
const auto alloc_count = pAllocateInfo->descriptorSetCount;
// clamp the unsigned subtraction to the range [0, last_free_count]
if (pool_state->freed_count > alloc_count) {
pool_state->freed_count -= alloc_count;
} else {
pool_state->freed_count = 0;
}
}
}
}
void BestPractices::PostCallRecordFreeDescriptorSets(VkDevice device, VkDescriptorPool descriptorPool, uint32_t descriptorSetCount,
const VkDescriptorSet* pDescriptorSets, VkResult result) {
ValidationStateTracker::PostCallRecordFreeDescriptorSets(device, descriptorPool, descriptorSetCount, pDescriptorSets, result);
if (result == VK_SUCCESS) {
auto pool_state = Get<bp_state::DescriptorPool>(descriptorPool);
// we want to track frees because we're interested in suggesting re-use
if (pool_state) {
pool_state->freed_count += descriptorSetCount;
}
}
}
void BestPractices::PreCallRecordAllocateMemory(VkDevice device, const VkMemoryAllocateInfo* pAllocateInfo,
const VkAllocationCallbacks* pAllocator, VkDeviceMemory* pMemory) {
if (VendorCheckEnabled(kBPVendorNVIDIA)) {
WriteLockGuard guard{memory_free_events_lock_};
// Release old allocations to avoid overpopulating the container
const auto now = std::chrono::high_resolution_clock::now();
const auto last_old = std::find_if(memory_free_events_.rbegin(), memory_free_events_.rend(), [now](const MemoryFreeEvent& event) {
return now - event.time > kAllocateMemoryReuseTimeThresholdNVIDIA;
});
memory_free_events_.erase(memory_free_events_.begin(), last_old.base());
}
}
bool BestPractices::PreCallValidateAllocateMemory(VkDevice device, const VkMemoryAllocateInfo* pAllocateInfo,
const VkAllocationCallbacks* pAllocator, VkDeviceMemory* pMemory) const {
bool skip = false;
if ((Count<DEVICE_MEMORY_STATE>() + 1) > kMemoryObjectWarningLimit) {
skip |= LogPerformanceWarning(device, kVUID_BestPractices_AllocateMemory_TooManyObjects,
"Performance Warning: This app has > %" PRIu32 " memory objects.", kMemoryObjectWarningLimit);
}
if (pAllocateInfo->allocationSize < kMinDeviceAllocationSize) {
skip |= LogPerformanceWarning(
device, kVUID_BestPractices_AllocateMemory_SmallAllocation,
"vkAllocateMemory(): Allocating a VkDeviceMemory of size %" PRIu64 ". This is a very small allocation (current "
"threshold is %" PRIu64 " bytes). "
"You should make large allocations and sub-allocate from one large VkDeviceMemory.",
pAllocateInfo->allocationSize, kMinDeviceAllocationSize);
}
if (VendorCheckEnabled(kBPVendorNVIDIA)) {
if (!device_extensions.vk_ext_pageable_device_local_memory &&
!LvlFindInChain<VkMemoryPriorityAllocateInfoEXT>(pAllocateInfo->pNext)) {
skip |= LogPerformanceWarning(
device, kVUID_BestPractices_AllocateMemory_SetPriority,
"%s Use VkMemoryPriorityAllocateInfoEXT to provide the operating system information on the allocations that "
"should stay in video memory and which should be demoted first when video memory is limited. "
"The highest priority should be given to GPU-written resources like color attachments, depth attachments, "
"storage images, and buffers written from the GPU.",
VendorSpecificTag(kBPVendorNVIDIA));
}
{
// Size in bytes for an allocation to be considered "compatible"
static constexpr VkDeviceSize size_threshold = VkDeviceSize{1} << 20;
ReadLockGuard guard{memory_free_events_lock_};
const auto now = std::chrono::high_resolution_clock::now();
const VkDeviceSize alloc_size = pAllocateInfo->allocationSize;
const uint32_t memory_type_index = pAllocateInfo->memoryTypeIndex;
const auto latest_event = std::find_if(memory_free_events_.rbegin(), memory_free_events_.rend(), [&](const MemoryFreeEvent& event) {
return (memory_type_index == event.memory_type_index) && (alloc_size <= event.allocation_size) &&
(alloc_size - event.allocation_size <= size_threshold) && (now - event.time < kAllocateMemoryReuseTimeThresholdNVIDIA);
});
if (latest_event != memory_free_events_.rend()) {
const auto time_delta = std::chrono::duration_cast<std::chrono::milliseconds>(now - latest_event->time);
if (time_delta < std::chrono::milliseconds{5}) {
skip |=
LogPerformanceWarning(device, kVUID_BestPractices_AllocateMemory_ReuseAllocations,
"%s Reuse memory allocations instead of releasing and reallocating. A memory allocation "
"has just been released, and it could have been reused in place of this allocation.",
VendorSpecificTag(kBPVendorNVIDIA));
} else {
const uint32_t seconds = static_cast<uint32_t>(time_delta.count() / 1000);
const uint32_t milliseconds = static_cast<uint32_t>(time_delta.count() % 1000);
skip |= LogPerformanceWarning(
device, kVUID_BestPractices_AllocateMemory_ReuseAllocations,
"%s Reuse memory allocations instead of releasing and reallocating. A memory allocation has been released "
"%" PRIu32 ".%03" PRIu32 " seconds ago, and it could have been reused in place of this allocation.",
VendorSpecificTag(kBPVendorNVIDIA), seconds, milliseconds);
}
}
}
}
// TODO: Insert get check for GetPhysicalDeviceMemoryProperties once the state is tracked in the StateTracker
return skip;
}
void BestPractices::ManualPostCallRecordAllocateMemory(VkDevice device, const VkMemoryAllocateInfo* pAllocateInfo,
const VkAllocationCallbacks* pAllocator, VkDeviceMemory* pMemory,
VkResult result) {
if (result != VK_SUCCESS) {
static std::vector<VkResult> error_codes = {VK_ERROR_OUT_OF_HOST_MEMORY, VK_ERROR_OUT_OF_DEVICE_MEMORY,
VK_ERROR_TOO_MANY_OBJECTS, VK_ERROR_INVALID_EXTERNAL_HANDLE,
VK_ERROR_INVALID_OPAQUE_CAPTURE_ADDRESS};
static std::vector<VkResult> success_codes = {};
ValidateReturnCodes("vkAllocateMemory", result, error_codes, success_codes);
return;
}
}
void BestPractices::ValidateReturnCodes(const char* api_name, VkResult result, const std::vector<VkResult>& error_codes,
const std::vector<VkResult>& success_codes) const {
auto error = std::find(error_codes.begin(), error_codes.end(), result);
if (error != error_codes.end()) {
static const std::vector<VkResult> common_failure_codes = {VK_ERROR_OUT_OF_DATE_KHR,
VK_ERROR_FULL_SCREEN_EXCLUSIVE_MODE_LOST_EXT};
auto common_failure = std::find(common_failure_codes.begin(), common_failure_codes.end(), result);
if (common_failure != common_failure_codes.end()) {
LogInfo(instance, kVUID_BestPractices_Failure_Result, "%s(): Returned error %s.", api_name, string_VkResult(result));
} else {
LogWarning(instance, kVUID_BestPractices_Error_Result, "%s(): Returned error %s.", api_name, string_VkResult(result));
}
return;
}
auto success = std::find(success_codes.begin(), success_codes.end(), result);
if (success != success_codes.end()) {
LogInfo(instance, kVUID_BestPractices_NonSuccess_Result, "%s(): Returned non-success return code %s.", api_name,
string_VkResult(result));
}
}
void BestPractices::PreCallRecordFreeMemory(VkDevice device, VkDeviceMemory memory, const VkAllocationCallbacks* pAllocator) {
if (memory != VK_NULL_HANDLE && VendorCheckEnabled(kBPVendorNVIDIA)) {
auto mem_info = Get<DEVICE_MEMORY_STATE>(memory);
// Exclude memory free events on dedicated allocations, or imported/exported allocations.
if (!mem_info->IsDedicatedBuffer() && !mem_info->IsDedicatedImage() && !mem_info->IsExport() && !mem_info->IsImport()) {
MemoryFreeEvent event;
event.time = std::chrono::high_resolution_clock::now();
event.memory_type_index = mem_info->alloc_info.memoryTypeIndex;
event.allocation_size = mem_info->alloc_info.allocationSize;
WriteLockGuard guard{memory_free_events_lock_};
memory_free_events_.push_back(event);
}
}
ValidationStateTracker::PreCallRecordFreeMemory(device, memory, pAllocator);
}
bool BestPractices::PreCallValidateFreeMemory(VkDevice device, VkDeviceMemory memory,
const VkAllocationCallbacks* pAllocator) const {
if (memory == VK_NULL_HANDLE) return false;
bool skip = false;
auto mem_info = Get<DEVICE_MEMORY_STATE>(memory);
for (const auto& item : mem_info->ObjectBindings()) {
const auto& obj = item.first;
LogObjectList objlist(device);
objlist.add(obj);
objlist.add(mem_info->mem());
skip |= LogWarning(objlist, layer_name.c_str(), "VK Object %s still has a reference to mem obj %s.",
report_data->FormatHandle(obj).c_str(), report_data->FormatHandle(mem_info->mem()).c_str());
}
return skip;
}
bool BestPractices::ValidateBindBufferMemory(VkBuffer buffer, VkDeviceMemory memory, const char* api_name) const {
bool skip = false;
auto buffer_state = Get<BUFFER_STATE>(buffer);
if (!buffer_state->memory_requirements_checked && !buffer_state->external_memory_handle) {
skip |= LogWarning(device, kVUID_BestPractices_BufferMemReqNotCalled,
"%s: Binding memory to %s but vkGetBufferMemoryRequirements() has not been called on that buffer.",
api_name, report_data->FormatHandle(buffer).c_str());
}
auto mem_state = Get<DEVICE_MEMORY_STATE>(memory);
if (mem_state && mem_state->alloc_info.allocationSize == buffer_state->createInfo.size &&
mem_state->alloc_info.allocationSize < kMinDedicatedAllocationSize) {
skip |= LogPerformanceWarning(
device, kVUID_BestPractices_SmallDedicatedAllocation,
"%s: Trying to bind %s to a memory block which is fully consumed by the buffer. "
"The required size of the allocation is %" PRIu64 ", but smaller buffers like this should be sub-allocated from "
"larger memory blocks. (Current threshold is %" PRIu64 " bytes.)",
api_name, report_data->FormatHandle(buffer).c_str(), mem_state->alloc_info.allocationSize, kMinDedicatedAllocationSize);
}
skip |= ValidateBindMemory(device, memory);
return skip;
}
bool BestPractices::PreCallValidateBindBufferMemory(VkDevice device, VkBuffer buffer, VkDeviceMemory memory,
VkDeviceSize memoryOffset) const {
bool skip = false;
const char* api_name = "BindBufferMemory()";
skip |= ValidateBindBufferMemory(buffer, memory, api_name);
return skip;
}
bool BestPractices::PreCallValidateBindBufferMemory2(VkDevice device, uint32_t bindInfoCount,
const VkBindBufferMemoryInfo* pBindInfos) const {
char api_name[64];
bool skip = false;
for (uint32_t i = 0; i < bindInfoCount; i++) {
snprintf(api_name, sizeof(api_name), "vkBindBufferMemory2() pBindInfos[%u]", i);
skip |= ValidateBindBufferMemory(pBindInfos[i].buffer, pBindInfos[i].memory, api_name);
}
return skip;
}
bool BestPractices::PreCallValidateBindBufferMemory2KHR(VkDevice device, uint32_t bindInfoCount,
const VkBindBufferMemoryInfo* pBindInfos) const {
char api_name[64];
bool skip = false;
for (uint32_t i = 0; i < bindInfoCount; i++) {
snprintf(api_name, sizeof(api_name), "vkBindBufferMemory2KHR() pBindInfos[%u]", i);
skip |= ValidateBindBufferMemory(pBindInfos[i].buffer, pBindInfos[i].memory, api_name);
}
return skip;
}
bool BestPractices::ValidateBindImageMemory(VkImage image, VkDeviceMemory memory, const char* api_name) const {
bool skip = false;
auto image_state = Get<IMAGE_STATE>(image);
if (image_state->disjoint == false) {
if (!image_state->memory_requirements_checked[0] && !image_state->external_memory_handle) {
skip |= LogWarning(device, kVUID_BestPractices_ImageMemReqNotCalled,
"%s: Binding memory to %s but vkGetImageMemoryRequirements() has not been called on that image.",
api_name, report_data->FormatHandle(image).c_str());
}
} else {
// TODO If binding disjoint image then this needs to check that VkImagePlaneMemoryRequirementsInfo was called for each
// plane.
}
auto mem_state = Get<DEVICE_MEMORY_STATE>(memory);
if (mem_state->alloc_info.allocationSize == image_state->requirements[0].size &&
mem_state->alloc_info.allocationSize < kMinDedicatedAllocationSize) {
skip |= LogPerformanceWarning(
device, kVUID_BestPractices_SmallDedicatedAllocation,
"%s: Trying to bind %s to a memory block which is fully consumed by the image. "
"The required size of the allocation is %" PRIu64 ", but smaller images like this should be sub-allocated from "
"larger memory blocks. (Current threshold is %" PRIu64 " bytes.)",
api_name, report_data->FormatHandle(image).c_str(), mem_state->alloc_info.allocationSize, kMinDedicatedAllocationSize);
}
// If we're binding memory to a image which was created as TRANSIENT and the image supports LAZY allocation,
// make sure this type is actually used.
// This warning will only trigger if this layer is run on a platform that supports LAZILY_ALLOCATED_BIT
// (i.e.most tile - based renderers)
if (image_state->createInfo.usage & VK_IMAGE_USAGE_TRANSIENT_ATTACHMENT_BIT) {
bool supports_lazy = false;
uint32_t suggested_type = 0;
for (uint32_t i = 0; i < phys_dev_mem_props.memoryTypeCount; i++) {
if ((1u << i) & image_state->requirements[0].memoryTypeBits) {
if (phys_dev_mem_props.memoryTypes[i].propertyFlags & VK_MEMORY_PROPERTY_LAZILY_ALLOCATED_BIT) {
supports_lazy = true;
suggested_type = i;
break;
}
}
}
uint32_t allocated_properties = phys_dev_mem_props.memoryTypes[mem_state->alloc_info.memoryTypeIndex].propertyFlags;
if (supports_lazy && (allocated_properties & VK_MEMORY_PROPERTY_LAZILY_ALLOCATED_BIT) == 0) {
skip |= LogPerformanceWarning(
device, kVUID_BestPractices_NonLazyTransientImage,
"%s: Attempting to bind memory type %u to VkImage which was created with TRANSIENT_ATTACHMENT_BIT,"
"but this memory type is not LAZILY_ALLOCATED_BIT. You should use memory type %u here instead to save "
"%" PRIu64 " bytes of physical memory.",
api_name, mem_state->alloc_info.memoryTypeIndex, suggested_type, image_state->requirements[0].size);
}
}
skip |= ValidateBindMemory(device, memory);
return skip;
}
bool BestPractices::PreCallValidateBindImageMemory(VkDevice device, VkImage image, VkDeviceMemory memory,
VkDeviceSize memoryOffset) const {
bool skip = false;
const char* api_name = "vkBindImageMemory()";
skip |= ValidateBindImageMemory(image, memory, api_name);
return skip;
}
bool BestPractices::PreCallValidateBindImageMemory2(VkDevice device, uint32_t bindInfoCount,
const VkBindImageMemoryInfo* pBindInfos) const {
char api_name[64];
bool skip = false;
for (uint32_t i = 0; i < bindInfoCount; i++) {
snprintf(api_name, sizeof(api_name), "vkBindImageMemory2() pBindInfos[%u]", i);
if (!LvlFindInChain<VkBindImageMemorySwapchainInfoKHR>(pBindInfos[i].pNext)) {
skip |= ValidateBindImageMemory(pBindInfos[i].image, pBindInfos[i].memory, api_name);
}
}
return skip;
}
bool BestPractices::PreCallValidateBindImageMemory2KHR(VkDevice device, uint32_t bindInfoCount,
const VkBindImageMemoryInfo* pBindInfos) const {
char api_name[64];
bool skip = false;
for (uint32_t i = 0; i < bindInfoCount; i++) {
snprintf(api_name, sizeof(api_name), "vkBindImageMemory2KHR() pBindInfos[%u]", i);
skip |= ValidateBindImageMemory(pBindInfos[i].image, pBindInfos[i].memory, api_name);
}
return skip;
}
void BestPractices::PreCallRecordSetDeviceMemoryPriorityEXT(VkDevice device, VkDeviceMemory memory, float priority) {
auto mem_info = std::static_pointer_cast<bp_state::DeviceMemory>(Get<DEVICE_MEMORY_STATE>(memory));
mem_info->dynamic_priority.emplace(priority);
}
static inline bool FormatHasFullThroughputBlendingArm(VkFormat format) {
switch (format) {
case VK_FORMAT_B10G11R11_UFLOAT_PACK32:
case VK_FORMAT_R16_SFLOAT:
case VK_FORMAT_R16G16_SFLOAT:
case VK_FORMAT_R16G16B16_SFLOAT:
case VK_FORMAT_R16G16B16A16_SFLOAT:
case VK_FORMAT_R32_SFLOAT:
case VK_FORMAT_R32G32_SFLOAT:
case VK_FORMAT_R32G32B32_SFLOAT:
case VK_FORMAT_R32G32B32A32_SFLOAT:
return false;
default:
return true;
}
}
bool BestPractices::ValidateMultisampledBlendingArm(uint32_t createInfoCount,
const VkGraphicsPipelineCreateInfo* pCreateInfos) const {
bool skip = false;
for (uint32_t i = 0; i < createInfoCount; i++) {
auto create_info = &pCreateInfos[i];
if (!create_info->pColorBlendState || !create_info->pMultisampleState ||
create_info->pMultisampleState->rasterizationSamples == VK_SAMPLE_COUNT_1_BIT ||
create_info->pMultisampleState->sampleShadingEnable) {
return skip;
}
auto rp_state = Get<RENDER_PASS_STATE>(create_info->renderPass);
const auto& subpass = rp_state->createInfo.pSubpasses[create_info->subpass];
// According to spec, pColorBlendState must be ignored if subpass does not have color attachments.
uint32_t num_color_attachments = std::min(subpass.colorAttachmentCount, create_info->pColorBlendState->attachmentCount);
for (uint32_t j = 0; j < num_color_attachments; j++) {
const auto& blend_att = create_info->pColorBlendState->pAttachments[j];
uint32_t att = subpass.pColorAttachments[j].attachment;
if (att != VK_ATTACHMENT_UNUSED && blend_att.blendEnable && blend_att.colorWriteMask) {
if (!FormatHasFullThroughputBlendingArm(rp_state->createInfo.pAttachments[att].format)) {
skip |= LogPerformanceWarning(device, kVUID_BestPractices_CreatePipelines_MultisampledBlending,
"%s vkCreateGraphicsPipelines() - createInfo #%u: Pipeline is multisampled and "
"color attachment #%u makes use "
"of a format which cannot be blended at full throughput when using MSAA.",
VendorSpecificTag(kBPVendorArm), i, j);
}
}
}
}
return skip;
}
void BestPractices::ManualPostCallRecordCreateComputePipelines(VkDevice device, VkPipelineCache pipelineCache, uint32_t createInfoCount,
const VkComputePipelineCreateInfo* pCreateInfos,
const VkAllocationCallbacks* pAllocator, VkPipeline* pPipelines,
VkResult result, void* pipe_state) {
// AMD best practice
pipeline_cache_ = pipelineCache;
}
bool BestPractices::PreCallValidateCreateGraphicsPipelines(VkDevice device, VkPipelineCache pipelineCache, uint32_t createInfoCount,
const VkGraphicsPipelineCreateInfo* pCreateInfos,
const VkAllocationCallbacks* pAllocator, VkPipeline* pPipelines,
void* cgpl_state_data) const {
bool skip = StateTracker::PreCallValidateCreateGraphicsPipelines(device, pipelineCache, createInfoCount, pCreateInfos,
pAllocator, pPipelines, cgpl_state_data);
if (skip) {
return skip;
}
create_graphics_pipeline_api_state* cgpl_state = reinterpret_cast<create_graphics_pipeline_api_state*>(cgpl_state_data);
if ((createInfoCount > 1) && (!pipelineCache)) {
skip |= LogPerformanceWarning(
device, kVUID_BestPractices_CreatePipelines_MultiplePipelines,
"Performance Warning: This vkCreateGraphicsPipelines call is creating multiple pipelines but is not using a "
"pipeline cache, which may help with performance");
}
for (uint32_t i = 0; i < createInfoCount; i++) {
const auto& create_info = pCreateInfos[i];
if (!(cgpl_state->pipe_state[i]->active_shaders & VK_SHADER_STAGE_MESH_BIT_NV) && create_info.pVertexInputState) {
const auto& vertex_input = *create_info.pVertexInputState;
uint32_t count = 0;
for (uint32_t j = 0; j < vertex_input.vertexBindingDescriptionCount; j++) {
if (vertex_input.pVertexBindingDescriptions[j].inputRate == VK_VERTEX_INPUT_RATE_INSTANCE) {
count++;
}
}
if (count > kMaxInstancedVertexBuffers) {
skip |= LogPerformanceWarning(
device, kVUID_BestPractices_CreatePipelines_TooManyInstancedVertexBuffers,
"The pipeline is using %u instanced vertex buffers (current limit: %u), but this can be inefficient on the "
"GPU. If using instanced vertex attributes prefer interleaving them in a single buffer.",
count, kMaxInstancedVertexBuffers);
}
}
if ((pCreateInfos[i].pRasterizationState) && (pCreateInfos[i].pRasterizationState->depthBiasEnable) &&
(pCreateInfos[i].pRasterizationState->depthBiasConstantFactor == 0.0f) &&
(pCreateInfos[i].pRasterizationState->depthBiasSlopeFactor == 0.0f) && VendorCheckEnabled(kBPVendorArm)) {
skip |= LogPerformanceWarning(
device, kVUID_BestPractices_CreatePipelines_DepthBias_Zero,
"%s Performance Warning: This vkCreateGraphicsPipelines call is created with depthBiasEnable set to true "
"and both depthBiasConstantFactor and depthBiasSlopeFactor are set to 0. This can cause reduced "
"efficiency during rasterization. Consider disabling depthBias or increasing either "
"depthBiasConstantFactor or depthBiasSlopeFactor.",
VendorSpecificTag(kBPVendorArm));
}
skip |= VendorCheckEnabled(kBPVendorArm) && ValidateMultisampledBlendingArm(createInfoCount, pCreateInfos);
}
if (VendorCheckEnabled(kBPVendorAMD) || VendorCheckEnabled(kBPVendorNVIDIA)) {
auto prev_pipeline = pipeline_cache_.load();
if (pipelineCache && prev_pipeline && pipelineCache != prev_pipeline) {
skip |= LogPerformanceWarning(device, kVUID_BestPractices_CreatePipelines_MultiplePipelineCaches,
"%s %s Performance Warning: A second pipeline cache is in use. "
"Consider using only one pipeline cache to improve cache hit rate.",
VendorSpecificTag(kBPVendorAMD), VendorSpecificTag(kBPVendorNVIDIA));
}
}
if (VendorCheckEnabled(kBPVendorAMD)) {
if (num_pso_ > kMaxRecommendedNumberOfPSOAMD) {
skip |=
LogPerformanceWarning(device, kVUID_BestPractices_CreatePipelines_TooManyPipelines,
"%s Performance warning: Too many pipelines created, consider consolidation",
VendorSpecificTag(kBPVendorAMD));
}
if (pCreateInfos->pInputAssemblyState && pCreateInfos->pInputAssemblyState->primitiveRestartEnable) {
skip |= LogPerformanceWarning(device, kVUID_BestPractices_CreatePipelines_AvoidPrimitiveRestart,
"%s Performance warning: Use of primitive restart is not recommended",
VendorSpecificTag(kBPVendorAMD));
}
// TODO: this might be too aggressive of a check
if (pCreateInfos->pDynamicState && pCreateInfos->pDynamicState->dynamicStateCount > kDynamicStatesWarningLimitAMD) {
skip |= LogPerformanceWarning(device, kVUID_BestPractices_CreatePipelines_MinimizeNumDynamicStates,
"%s Performance warning: Dynamic States usage incurs a performance cost. Ensure that they are truly needed",
VendorSpecificTag(kBPVendorAMD));
}
}
return skip;
}
static std::vector<bp_state::AttachmentInfo> GetAttachmentAccess(const safe_VkGraphicsPipelineCreateInfo& create_info,
std::shared_ptr<const RENDER_PASS_STATE>& rp) {
std::vector<bp_state::AttachmentInfo> result;
if (!rp || rp->UsesDynamicRendering()) {
return result;
}
const auto& subpass = rp->createInfo.pSubpasses[create_info.subpass];
// NOTE: see PIPELINE_LAYOUT and safe_VkGraphicsPipelineCreateInfo constructors. pColorBlendState and pDepthStencilState
// are only non-null if they are enabled.
if (create_info.pColorBlendState) {
// According to spec, pColorBlendState must be ignored if subpass does not have color attachments.
uint32_t num_color_attachments = std::min(subpass.colorAttachmentCount, create_info.pColorBlendState->attachmentCount);
for (uint32_t j = 0; j < num_color_attachments; j++) {
if (create_info.pColorBlendState->pAttachments[j].colorWriteMask != 0) {
uint32_t attachment = subpass.pColorAttachments[j].attachment;
if (attachment != VK_ATTACHMENT_UNUSED) {
result.push_back({attachment, VK_IMAGE_ASPECT_COLOR_BIT});
}
}
}
}
if (create_info.pDepthStencilState &&
(create_info.pDepthStencilState->depthTestEnable || create_info.pDepthStencilState->depthBoundsTestEnable ||
create_info.pDepthStencilState->stencilTestEnable)) {
uint32_t attachment = subpass.pDepthStencilAttachment ? subpass.pDepthStencilAttachment->attachment : VK_ATTACHMENT_UNUSED;
if (attachment != VK_ATTACHMENT_UNUSED) {
VkImageAspectFlags aspects = 0;
if (create_info.pDepthStencilState->depthTestEnable || create_info.pDepthStencilState->depthBoundsTestEnable) {
aspects |= VK_IMAGE_ASPECT_DEPTH_BIT;
}
if (create_info.pDepthStencilState->stencilTestEnable) {
aspects |= VK_IMAGE_ASPECT_STENCIL_BIT;
}
result.push_back({attachment, aspects});
}
}
return result;
}
bp_state::Pipeline::Pipeline(const ValidationStateTracker* state_data, const VkGraphicsPipelineCreateInfo* pCreateInfo,
std::shared_ptr<const RENDER_PASS_STATE>&& rpstate,
std::shared_ptr<const PIPELINE_LAYOUT_STATE>&& layout)
: PIPELINE_STATE(state_data, pCreateInfo, std::move(rpstate), std::move(layout)),
access_framebuffer_attachments(GetAttachmentAccess(create_info.graphics, rp_state)) {}
std::shared_ptr<PIPELINE_STATE> BestPractices::CreateGraphicsPipelineState(
const VkGraphicsPipelineCreateInfo* pCreateInfo, std::shared_ptr<const RENDER_PASS_STATE>&& render_pass,
std::shared_ptr<const PIPELINE_LAYOUT_STATE>&& layout) const {
return std::static_pointer_cast<PIPELINE_STATE>(
std::make_shared<bp_state::Pipeline>(this, pCreateInfo, std::move(render_pass), std::move(layout)));
}
void BestPractices::ManualPostCallRecordCreateGraphicsPipelines(VkDevice device, VkPipelineCache pipelineCache, uint32_t count,
const VkGraphicsPipelineCreateInfo* pCreateInfos,
const VkAllocationCallbacks* pAllocator, VkPipeline* pPipelines,
VkResult result, void* cgpl_state_data) {
// AMD best practice
pipeline_cache_ = pipelineCache;
}
bool BestPractices::PreCallValidateCreateComputePipelines(VkDevice device, VkPipelineCache pipelineCache, uint32_t createInfoCount,
const VkComputePipelineCreateInfo* pCreateInfos,
const VkAllocationCallbacks* pAllocator, VkPipeline* pPipelines,
void* ccpl_state_data) const {
bool skip = StateTracker::PreCallValidateCreateComputePipelines(device, pipelineCache, createInfoCount, pCreateInfos,
pAllocator, pPipelines, ccpl_state_data);
if ((createInfoCount > 1) && (!pipelineCache)) {
skip |= LogPerformanceWarning(
device, kVUID_BestPractices_CreatePipelines_MultiplePipelines,
"Performance Warning: This vkCreateComputePipelines call is creating multiple pipelines but is not using a "
"pipeline cache, which may help with performance");
}
if (VendorCheckEnabled(kBPVendorAMD)) {
auto prev_pipeline = pipeline_cache_.load();
if (pipelineCache && prev_pipeline && pipelineCache != prev_pipeline) {
skip |= LogPerformanceWarning(
device, kVUID_BestPractices_CreatePipelines_MultiplePipelines,
"%s Performance Warning: A second pipeline cache is in use. Consider using only one pipeline cache to "
"improve cache hit rate",
VendorSpecificTag(kBPVendorAMD));
}
}
for (uint32_t i = 0; i < createInfoCount; i++) {
const VkComputePipelineCreateInfo& createInfo = pCreateInfos[i];
if (VendorCheckEnabled(kBPVendorArm)) {
skip |= ValidateCreateComputePipelineArm(createInfo);
}
if (IsExtEnabled(device_extensions.vk_khr_maintenance4)) {
auto module_state = Get<SHADER_MODULE_STATE>(createInfo.stage.module);
for (const Instruction* inst : module_state->GetBuiltinDecorationList()) {
if (inst->GetBuiltIn() == spv::BuiltInWorkgroupSize) {
skip |= LogWarning(device, kVUID_BestPractices_SpirvDeprecated_WorkgroupSize,
"vkCreateComputePipelines(): pCreateInfos[ %" PRIu32
"] is using the Workgroup built-in which SPIR-V 1.6 deprecated. The VK_KHR_maintenance4 "
"extension exposes a new LocalSizeId execution mode that should be used instead.",
i);
}
}
}
}
return skip;
}
bool BestPractices::ValidateCreateComputePipelineArm(const VkComputePipelineCreateInfo& createInfo) const {
bool skip = false;
auto module_state = Get<SHADER_MODULE_STATE>(createInfo.stage.module);
// Generate warnings about work group sizes based on active resources.
auto entrypoint_optional = module_state->FindEntrypoint(createInfo.stage.pName, createInfo.stage.stage);
if (!entrypoint_optional) return false;
const Instruction& entrypoint = *entrypoint_optional;
uint32_t x = 1, y = 1, z = 1;
module_state->FindLocalSize(entrypoint, x, y, z);
uint32_t thread_count = x * y * z;
// Generate a priori warnings about work group sizes.
if (thread_count > kMaxEfficientWorkGroupThreadCountArm) {
skip |= LogPerformanceWarning(
device, kVUID_BestPractices_CreateComputePipelines_ComputeWorkGroupSize,
"%s vkCreateComputePipelines(): compute shader with work group dimensions (%u, %u, "
"%u) (%u threads total), has more threads than advised in a single work group. It is advised to use work "
"groups with less than %u threads, especially when using barrier() or shared memory.",
VendorSpecificTag(kBPVendorArm), x, y, z, thread_count, kMaxEfficientWorkGroupThreadCountArm);
}
if (thread_count == 1 || ((x > 1) && (x & (kThreadGroupDispatchCountAlignmentArm - 1))) ||
((y > 1) && (y & (kThreadGroupDispatchCountAlignmentArm - 1))) ||
((z > 1) && (z & (kThreadGroupDispatchCountAlignmentArm - 1)))) {
skip |= LogPerformanceWarning(device, kVUID_BestPractices_CreateComputePipelines_ComputeThreadGroupAlignment,
"%s vkCreateComputePipelines(): compute shader with work group dimensions (%u, "
"%u, %u) is not aligned to %u "
"threads. On Arm Mali architectures, not aligning work group sizes to %u may "
"leave threads idle on the shader "
"core.",
VendorSpecificTag(kBPVendorArm), x, y, z, kThreadGroupDispatchCountAlignmentArm,
kThreadGroupDispatchCountAlignmentArm);
}
auto accessible_ids = module_state->MarkAccessibleIds(entrypoint_optional);
auto descriptor_uses = module_state->CollectInterfaceByDescriptorSlot(accessible_ids);
unsigned dimensions = 0;
if (x > 1) dimensions++;
if (y > 1) dimensions++;
if (z > 1) dimensions++;
// Here the dimension will really depend on the dispatch grid, but assume it's 1D.
dimensions = std::max(dimensions, 1u);
// If we're accessing images, we almost certainly want to have a 2D workgroup for cache reasons.
// There are some false positives here. We could simply have a shader that does this within a 1D grid,
// or we may have a linearly tiled image, but these cases are quite unlikely in practice.
bool accesses_2d = false;
for (const auto& usage : descriptor_uses) {
auto dim = module_state->GetShaderResourceDimensionality(usage.second);
if (dim < 0) continue;
auto spvdim = spv::Dim(dim);
if (spvdim != spv::Dim1D && spvdim != spv::DimBuffer) accesses_2d = true;
}
if (accesses_2d && dimensions < 2) {
LogPerformanceWarning(device, kVUID_BestPractices_CreateComputePipelines_ComputeSpatialLocality,
"%s vkCreateComputePipelines(): compute shader has work group dimensions (%u, %u, %u), which "
"suggests a 1D dispatch, but the shader is accessing 2D or 3D images. The shader may be "
"exhibiting poor spatial locality with respect to one or more shader resources.",
VendorSpecificTag(kBPVendorArm), x, y, z);
}
return skip;
}
bool BestPractices::CheckPipelineStageFlags(const std::string& api_name, VkPipelineStageFlags flags) const {
bool skip = false;
if (flags & VK_PIPELINE_STAGE_ALL_GRAPHICS_BIT) {
skip |= LogWarning(device, kVUID_BestPractices_PipelineStageFlags,
"You are using VK_PIPELINE_STAGE_ALL_GRAPHICS_BIT when %s is called\n", api_name.c_str());
} else if (flags & VK_PIPELINE_STAGE_ALL_COMMANDS_BIT) {
skip |= LogWarning(device, kVUID_BestPractices_PipelineStageFlags,
"You are using VK_PIPELINE_STAGE_ALL_COMMANDS_BIT when %s is called\n", api_name.c_str());
}
return skip;
}
bool BestPractices::CheckPipelineStageFlags(const std::string& api_name, VkPipelineStageFlags2KHR flags) const {
bool skip = false;
if (flags & VK_PIPELINE_STAGE_2_ALL_GRAPHICS_BIT_KHR) {
skip |= LogWarning(device, kVUID_BestPractices_PipelineStageFlags,
"You are using VK_PIPELINE_STAGE_2_ALL_GRAPHICS_BIT_KHR when %s is called\n", api_name.c_str());
} else if (flags & VK_PIPELINE_STAGE_2_ALL_COMMANDS_BIT_KHR) {
skip |= LogWarning(device, kVUID_BestPractices_PipelineStageFlags,
"You are using VK_PIPELINE_STAGE_2_ALL_COMMANDS_BIT_KHR when %s is called\n", api_name.c_str());
}
return skip;
}
bool BestPractices::CheckDependencyInfo(const std::string& api_name, const VkDependencyInfoKHR& dep_info) const {
bool skip = false;
auto stage_masks = sync_utils::GetGlobalStageMasks(dep_info);
skip |= CheckPipelineStageFlags(api_name, stage_masks.src);
skip |= CheckPipelineStageFlags(api_name, stage_masks.dst);
for (uint32_t i = 0; i < dep_info.imageMemoryBarrierCount; ++i) {
skip |= ValidateImageMemoryBarrier(
api_name, dep_info.pImageMemoryBarriers[i].oldLayout, dep_info.pImageMemoryBarriers[i].newLayout,
dep_info.pImageMemoryBarriers[i].srcAccessMask, dep_info.pImageMemoryBarriers[i].dstAccessMask,
dep_info.pImageMemoryBarriers[i].subresourceRange.aspectMask);
}
return skip;
}
void BestPractices::ManualPostCallRecordQueuePresentKHR(VkQueue queue, const VkPresentInfoKHR* pPresentInfo, VkResult result) {
for (uint32_t i = 0; i < pPresentInfo->swapchainCount; ++i) {
auto swapchains_result = pPresentInfo->pResults ? pPresentInfo->pResults[i] : result;
if (swapchains_result == VK_SUBOPTIMAL_KHR) {
LogPerformanceWarning(
pPresentInfo->pSwapchains[i], kVUID_BestPractices_SuboptimalSwapchain,
"vkQueuePresentKHR: %s :VK_SUBOPTIMAL_KHR was returned. VK_SUBOPTIMAL_KHR - Presentation will still succeed, "
"subject to the window resize behavior, but the swapchain is no longer configured optimally for the surface it "
"targets. Applications should query updated surface information and recreate their swapchain at the next "
"convenient opportunity.",
report_data->FormatHandle(pPresentInfo->pSwapchains[i]).c_str());
}
}
// AMD best practice
// end-of-frame cleanup
num_queue_submissions_ = 0;
num_barriers_objects_ = 0;
ClearPipelinesUsedInFrame();
}
bool BestPractices::PreCallValidateQueueSubmit(VkQueue queue, uint32_t submitCount, const VkSubmitInfo* pSubmits,
VkFence fence) const {
bool skip = false;
for (uint32_t submit = 0; submit < submitCount; submit++) {
for (uint32_t semaphore = 0; semaphore < pSubmits[submit].waitSemaphoreCount; semaphore++) {
skip |= CheckPipelineStageFlags("vkQueueSubmit", pSubmits[submit].pWaitDstStageMask[semaphore]);
}
if (pSubmits[submit].signalSemaphoreCount == 0 && pSubmits[submit].pSignalSemaphores != nullptr) {
skip |=
LogWarning(device, kVUID_BestPractices_SemaphoreCount,
"pSubmits[%" PRIu32 "].pSignalSemaphores is set, but pSubmits[%" PRIu32 "].signalSemaphoreCount is 0.",
submit, submit);
}
if (pSubmits[submit].waitSemaphoreCount == 0 && pSubmits[submit].pWaitSemaphores != nullptr) {
skip |= LogWarning(device, kVUID_BestPractices_SemaphoreCount,
"pSubmits[%" PRIu32 "].pWaitSemaphores is set, but pSubmits[%" PRIu32 "].waitSemaphoreCount is 0.",
submit, submit);
}
}
return skip;
}
bool BestPractices::PreCallValidateQueueSubmit2KHR(VkQueue queue, uint32_t submitCount, const VkSubmitInfo2KHR* pSubmits,
VkFence fence) const {
bool skip = false;
for (uint32_t submit = 0; submit < submitCount; submit++) {
for (uint32_t semaphore = 0; semaphore < pSubmits[submit].waitSemaphoreInfoCount; semaphore++) {
skip |= CheckPipelineStageFlags("vkQueueSubmit2KHR", pSubmits[submit].pWaitSemaphoreInfos[semaphore].stageMask);
}
}
return skip;
}
bool BestPractices::PreCallValidateQueueSubmit2(VkQueue queue, uint32_t submitCount, const VkSubmitInfo2* pSubmits,
VkFence fence) const {
bool skip = false;
for (uint32_t submit = 0; submit < submitCount; submit++) {
for (uint32_t semaphore = 0; semaphore < pSubmits[submit].waitSemaphoreInfoCount; semaphore++) {
skip |= CheckPipelineStageFlags("vkQueueSubmit2", pSubmits[submit].pWaitSemaphoreInfos[semaphore].stageMask);
}
}
return skip;
}
bool BestPractices::PreCallValidateCreateCommandPool(VkDevice device, const VkCommandPoolCreateInfo* pCreateInfo,
const VkAllocationCallbacks* pAllocator, VkCommandPool* pCommandPool) const {
bool skip = false;
if (pCreateInfo->flags & VK_COMMAND_POOL_CREATE_RESET_COMMAND_BUFFER_BIT) {
skip |= LogPerformanceWarning(
device, kVUID_BestPractices_CreateCommandPool_CommandBufferReset,
"vkCreateCommandPool(): VK_COMMAND_POOL_CREATE_RESET_COMMAND_BUFFER_BIT is set. Consider resetting entire "
"pool instead.");
}
return skip;
}
void BestPractices::PreCallRecordBeginCommandBuffer(VkCommandBuffer commandBuffer,
const VkCommandBufferBeginInfo* pBeginInfo) {
StateTracker::PreCallRecordBeginCommandBuffer(commandBuffer, pBeginInfo);
auto cb = GetWrite<bp_state::CommandBuffer>(commandBuffer);
if (!cb) return;
cb->num_submits = 0;
cb->is_one_time_submit = (pBeginInfo->flags & VK_COMMAND_BUFFER_USAGE_ONE_TIME_SUBMIT_BIT) != 0;
}
bool BestPractices::PreCallValidateBeginCommandBuffer(VkCommandBuffer commandBuffer,
const VkCommandBufferBeginInfo* pBeginInfo) const {
bool skip = false;
if (pBeginInfo->flags & VK_COMMAND_BUFFER_USAGE_SIMULTANEOUS_USE_BIT) {
skip |= LogPerformanceWarning(device, kVUID_BestPractices_BeginCommandBuffer_SimultaneousUse,
"vkBeginCommandBuffer(): VK_COMMAND_BUFFER_USAGE_SIMULTANEOUS_USE_BIT is set.");
}
if (VendorCheckEnabled(kBPVendorArm)) {
if (!(pBeginInfo->flags & VK_COMMAND_BUFFER_USAGE_ONE_TIME_SUBMIT_BIT)) {
skip |= LogPerformanceWarning(device, kVUID_BestPractices_BeginCommandBuffer_OneTimeSubmit,
"%s vkBeginCommandBuffer(): VK_COMMAND_BUFFER_USAGE_ONE_TIME_SUBMIT_BIT is not set. "
"For best performance on Mali GPUs, consider setting ONE_TIME_SUBMIT by default.",
VendorSpecificTag(kBPVendorArm));
}
}
if (VendorCheckEnabled(kBPVendorNVIDIA)) {
auto cb = GetRead<bp_state::CommandBuffer>(commandBuffer);
if (cb->num_submits == 1 && !cb->is_one_time_submit) {
skip |= LogPerformanceWarning(device, kVUID_BestPractices_BeginCommandBuffer_OneTimeSubmit,
"%s vkBeginCommandBuffer(): VK_COMMAND_BUFFER_USAGE_ONE_TIME_SUBMIT_BIT was not set "
"and the command buffer has only been submitted once. "
"For best performance on NVIDIA GPUs, use ONE_TIME_SUBMIT.",
VendorSpecificTag(kBPVendorNVIDIA));
}
}
return skip;
}
bool BestPractices::PreCallValidateCmdSetEvent(VkCommandBuffer commandBuffer, VkEvent event, VkPipelineStageFlags stageMask) const {
bool skip = false;
skip |= CheckPipelineStageFlags("vkCmdSetEvent", stageMask);
return skip;
}
bool BestPractices::PreCallValidateCmdSetEvent2KHR(VkCommandBuffer commandBuffer, VkEvent event,
const VkDependencyInfoKHR* pDependencyInfo) const {
return CheckDependencyInfo("vkCmdSetEvent2KHR", *pDependencyInfo);
}
bool BestPractices::PreCallValidateCmdSetEvent2(VkCommandBuffer commandBuffer, VkEvent event,
const VkDependencyInfo* pDependencyInfo) const {
return CheckDependencyInfo("vkCmdSetEvent2", *pDependencyInfo);
}
bool BestPractices::PreCallValidateCmdResetEvent(VkCommandBuffer commandBuffer, VkEvent event,
VkPipelineStageFlags stageMask) const {
bool skip = false;
skip |= CheckPipelineStageFlags("vkCmdResetEvent", stageMask);
return skip;
}
bool BestPractices::PreCallValidateCmdResetEvent2KHR(VkCommandBuffer commandBuffer, VkEvent event,
VkPipelineStageFlags2KHR stageMask) const {
bool skip = false;
skip |= CheckPipelineStageFlags("vkCmdResetEvent2KHR", stageMask);
return skip;
}
bool BestPractices::PreCallValidateCmdResetEvent2(VkCommandBuffer commandBuffer, VkEvent event,
VkPipelineStageFlags2 stageMask) const {
bool skip = false;
skip |= CheckPipelineStageFlags("vkCmdResetEvent2", stageMask);
return skip;
}
bool BestPractices::PreCallValidateCmdWaitEvents(VkCommandBuffer commandBuffer, uint32_t eventCount, const VkEvent* pEvents,
VkPipelineStageFlags srcStageMask, VkPipelineStageFlags dstStageMask,
uint32_t memoryBarrierCount, const VkMemoryBarrier* pMemoryBarriers,
uint32_t bufferMemoryBarrierCount,
const VkBufferMemoryBarrier* pBufferMemoryBarriers,
uint32_t imageMemoryBarrierCount,
const VkImageMemoryBarrier* pImageMemoryBarriers) const {
bool skip = false;
skip |= CheckPipelineStageFlags("vkCmdWaitEvents", srcStageMask);
skip |= CheckPipelineStageFlags("vkCmdWaitEvents", dstStageMask);
return skip;
}
bool BestPractices::PreCallValidateCmdWaitEvents2KHR(VkCommandBuffer commandBuffer, uint32_t eventCount, const VkEvent* pEvents,
const VkDependencyInfoKHR* pDependencyInfos) const {
bool skip = false;
for (uint32_t i = 0; i < eventCount; i++) {
skip = CheckDependencyInfo("vkCmdWaitEvents2KHR", pDependencyInfos[i]);
}
return skip;
}
bool BestPractices::PreCallValidateCmdWaitEvents2(VkCommandBuffer commandBuffer, uint32_t eventCount, const VkEvent* pEvents,
const VkDependencyInfo* pDependencyInfos) const {
bool skip = false;
for (uint32_t i = 0; i < eventCount; i++) {
skip = CheckDependencyInfo("vkCmdWaitEvents2", pDependencyInfos[i]);
}
return skip;
}
bool BestPractices::ValidateAccessLayoutCombination(const std::string& api_name, VkAccessFlags2 access, VkImageLayout layout,
VkImageAspectFlags aspect) const {
bool skip = false;
const VkAccessFlags all = VK_ACCESS_FLAG_BITS_MAX_ENUM;
bool none_allowed = false;
VkAccessFlags allowed = 0;
// Combinations taken from https://github.com/KhronosGroup/Vulkan-ValidationLayers/issues/2918
switch (layout) {
case VK_IMAGE_LAYOUT_UNDEFINED:
allowed = all;
none_allowed = true;
break;
case VK_IMAGE_LAYOUT_GENERAL:
allowed = all;
break;
case VK_IMAGE_LAYOUT_COLOR_ATTACHMENT_OPTIMAL:
allowed = VK_ACCESS_COLOR_ATTACHMENT_READ_BIT | VK_ACCESS_COLOR_ATTACHMENT_WRITE_BIT |
VK_ACCESS_COLOR_ATTACHMENT_READ_NONCOHERENT_BIT_EXT;
break;
case VK_IMAGE_LAYOUT_DEPTH_STENCIL_ATTACHMENT_OPTIMAL:
allowed = VK_ACCESS_DEPTH_STENCIL_ATTACHMENT_READ_BIT | VK_ACCESS_DEPTH_STENCIL_ATTACHMENT_WRITE_BIT;
break;
case VK_IMAGE_LAYOUT_DEPTH_STENCIL_READ_ONLY_OPTIMAL:
allowed = VK_ACCESS_SHADER_READ_BIT | VK_ACCESS_DEPTH_STENCIL_ATTACHMENT_READ_BIT;
break;
case VK_IMAGE_LAYOUT_SHADER_READ_ONLY_OPTIMAL:
allowed = VK_ACCESS_INPUT_ATTACHMENT_READ_BIT | VK_ACCESS_SHADER_READ_BIT;
break;
case VK_IMAGE_LAYOUT_TRANSFER_SRC_OPTIMAL:
allowed = VK_ACCESS_TRANSFER_READ_BIT;
break;
case VK_IMAGE_LAYOUT_TRANSFER_DST_OPTIMAL:
allowed = VK_ACCESS_TRANSFER_WRITE_BIT;
break;
case VK_IMAGE_LAYOUT_PREINITIALIZED:
allowed = VK_ACCESS_HOST_WRITE_BIT;
break;
case VK_IMAGE_LAYOUT_DEPTH_READ_ONLY_STENCIL_ATTACHMENT_OPTIMAL:
if (aspect & VK_IMAGE_ASPECT_DEPTH_BIT) {
allowed |= VK_ACCESS_SHADER_READ_BIT | VK_ACCESS_DEPTH_STENCIL_ATTACHMENT_READ_BIT;
}
if (aspect & VK_IMAGE_ASPECT_STENCIL_BIT) {
allowed |= VK_ACCESS_DEPTH_STENCIL_ATTACHMENT_READ_BIT | VK_ACCESS_DEPTH_STENCIL_ATTACHMENT_WRITE_BIT;
}
break;
case VK_IMAGE_LAYOUT_DEPTH_ATTACHMENT_STENCIL_READ_ONLY_OPTIMAL:
if (aspect & VK_IMAGE_ASPECT_DEPTH_BIT) {
allowed |= VK_ACCESS_DEPTH_STENCIL_ATTACHMENT_READ_BIT | VK_ACCESS_DEPTH_STENCIL_ATTACHMENT_WRITE_BIT;
}
if (aspect & VK_IMAGE_ASPECT_STENCIL_BIT) {
allowed |= VK_ACCESS_SHADER_READ_BIT | VK_ACCESS_DEPTH_STENCIL_ATTACHMENT_READ_BIT;
}
break;
case VK_IMAGE_LAYOUT_DEPTH_ATTACHMENT_OPTIMAL:
allowed = VK_ACCESS_DEPTH_STENCIL_ATTACHMENT_READ_BIT | VK_ACCESS_DEPTH_STENCIL_ATTACHMENT_WRITE_BIT;
break;
case VK_IMAGE_LAYOUT_DEPTH_READ_ONLY_OPTIMAL:
allowed = VK_ACCESS_SHADER_READ_BIT | VK_ACCESS_DEPTH_STENCIL_ATTACHMENT_READ_BIT;
break;
case VK_IMAGE_LAYOUT_STENCIL_ATTACHMENT_OPTIMAL:
allowed = VK_ACCESS_DEPTH_STENCIL_ATTACHMENT_READ_BIT | VK_ACCESS_DEPTH_STENCIL_ATTACHMENT_WRITE_BIT;
break;
case VK_IMAGE_LAYOUT_STENCIL_READ_ONLY_OPTIMAL:
allowed = VK_ACCESS_SHADER_READ_BIT | VK_ACCESS_DEPTH_STENCIL_ATTACHMENT_READ_BIT;
break;
case VK_IMAGE_LAYOUT_PRESENT_SRC_KHR:
allowed = VK_ACCESS_NONE;
break;
case VK_IMAGE_LAYOUT_SHARED_PRESENT_KHR:
allowed = all;
none_allowed = true;
break;
case VK_IMAGE_LAYOUT_SHADING_RATE_OPTIMAL_NV:
allowed = VK_ACCESS_SHADING_RATE_IMAGE_READ_BIT_NV;
break;
case VK_IMAGE_LAYOUT_FRAGMENT_DENSITY_MAP_OPTIMAL_EXT:
allowed = VK_ACCESS_FRAGMENT_DENSITY_MAP_READ_BIT_EXT;
break;
default:
// If a new layout is added, will need to manually add it
return false;
}
if (access == 0 && !none_allowed) {
skip |= LogWarning(device, kVUID_BestPractices_ImageBarrierAccessLayout,
"%s: accessMask is VK_ACCESS_NONE, but for layout %s expected accessMask are %s.", api_name.c_str(),
string_VkImageLayout(layout), string_VkAccessFlags2(allowed).c_str());
} else if ((allowed | access) != allowed) {
skip |=
LogWarning(device, kVUID_BestPractices_ImageBarrierAccessLayout,
"%s: accessMask is %s, but for layout %s expected accessMask are %s.", string_VkAccessFlags2(access).c_str(),
api_name.c_str(), string_VkImageLayout(layout), string_VkAccessFlags2(allowed).c_str());
}
return skip;
}
bool BestPractices::ValidateImageMemoryBarrier(const std::string& api_name, VkImageLayout oldLayout, VkImageLayout newLayout,
VkAccessFlags2 srcAccessMask, VkAccessFlags2 dstAccessMask,
VkImageAspectFlags aspectMask) const {
bool skip = false;
if (oldLayout == VK_IMAGE_LAYOUT_UNDEFINED && IsImageLayoutReadOnly(newLayout)) {
skip |= LogWarning(device, kVUID_BestPractices_TransitionUndefinedToReadOnly,
"VkImageMemoryBarrier is being submitted with oldLayout VK_IMAGE_LAYOUT_UNDEFINED and the contents "
"may be discarded, but the newLayout is %s, which is read only.",
string_VkImageLayout(newLayout));
}
skip |= ValidateAccessLayoutCombination(api_name, srcAccessMask, oldLayout, aspectMask);
skip |= ValidateAccessLayoutCombination(api_name, dstAccessMask, newLayout, aspectMask);
return skip;
}
bool BestPractices::PreCallValidateCmdPipelineBarrier(VkCommandBuffer commandBuffer, VkPipelineStageFlags srcStageMask,
VkPipelineStageFlags dstStageMask, VkDependencyFlags dependencyFlags,
uint32_t memoryBarrierCount, const VkMemoryBarrier* pMemoryBarriers,
uint32_t bufferMemoryBarrierCount,
const VkBufferMemoryBarrier* pBufferMemoryBarriers,
uint32_t imageMemoryBarrierCount,
const VkImageMemoryBarrier* pImageMemoryBarriers) const {
bool skip = false;
skip |= CheckPipelineStageFlags("vkCmdPipelineBarrier", srcStageMask);
skip |= CheckPipelineStageFlags("vkCmdPipelineBarrier", dstStageMask);
for (uint32_t i = 0; i < imageMemoryBarrierCount; ++i) {
skip |=
ValidateImageMemoryBarrier("vkCmdPipelineBarrier", pImageMemoryBarriers[i].oldLayout, pImageMemoryBarriers[i].newLayout,
pImageMemoryBarriers[i].srcAccessMask, pImageMemoryBarriers[i].dstAccessMask,
pImageMemoryBarriers[i].subresourceRange.aspectMask);
}
if (VendorCheckEnabled(kBPVendorAMD)) {
auto num = num_barriers_objects_.load();
if (num + imageMemoryBarrierCount + bufferMemoryBarrierCount > kMaxRecommendedBarriersSizeAMD) {
skip |= LogPerformanceWarning(device, kVUID_BestPractices_CmdBuffer_highBarrierCount,
"%s Performance warning: In this frame, %" PRIu32
" barriers were already submitted. Barriers have a high cost and can "
"stall the GPU. "
"Consider consolidating and re-organizing the frame to use fewer barriers.",
VendorSpecificTag(kBPVendorAMD), num);
}
}
if (VendorCheckEnabled(kBPVendorAMD) || VendorCheckEnabled(kBPVendorNVIDIA)) {
static constexpr std::array<VkImageLayout, 3> read_layouts = {
VK_IMAGE_LAYOUT_DEPTH_STENCIL_READ_ONLY_OPTIMAL,
VK_IMAGE_LAYOUT_SHADER_READ_ONLY_OPTIMAL,
VK_IMAGE_LAYOUT_TRANSFER_SRC_OPTIMAL,
};
for (uint32_t i = 0; i < imageMemoryBarrierCount; i++) {
// read to read barriers
const auto &image_barrier = pImageMemoryBarriers[i];
bool old_is_read_layout = std::find(read_layouts.begin(), read_layouts.end(), image_barrier.oldLayout) != read_layouts.end();
bool new_is_read_layout = std::find(read_layouts.begin(), read_layouts.end(), image_barrier.newLayout) != read_layouts.end();
if (old_is_read_layout && new_is_read_layout) {
skip |= LogPerformanceWarning(device, kVUID_BestPractices_PipelineBarrier_readToReadBarrier,
"%s %s Performance warning: Don't issue read-to-read barriers. "
"Get the resource in the right state the first time you use it.",
VendorSpecificTag(kBPVendorAMD), VendorSpecificTag(kBPVendorNVIDIA));
}
// general with no storage
if (VendorCheckEnabled(kBPVendorAMD) && image_barrier.newLayout == VK_IMAGE_LAYOUT_GENERAL) {
auto image_state = Get<IMAGE_STATE>(pImageMemoryBarriers[i].image);
if (!(image_state->createInfo.usage & VK_IMAGE_USAGE_STORAGE_BIT)) {
skip |= LogPerformanceWarning(device, kVUID_BestPractices_vkImage_AvoidGeneral,
"%s Performance warning: VK_IMAGE_LAYOUT_GENERAL should only be used with "
"VK_IMAGE_USAGE_STORAGE_BIT images.",
VendorSpecificTag(kBPVendorAMD));
}
}
}
}
for (uint32_t i = 0; i < imageMemoryBarrierCount; ++i) {
skip |= ValidateCmdPipelineBarrierImageBarrier(commandBuffer, pImageMemoryBarriers[i]);
}
return skip;
}
bool BestPractices::PreCallValidateCmdPipelineBarrier2KHR(VkCommandBuffer commandBuffer,
const VkDependencyInfoKHR* pDependencyInfo) const {
bool skip = false;
skip |= CheckDependencyInfo("vkCmdPipelineBarrier2KHR", *pDependencyInfo);
for (uint32_t i = 0; i < pDependencyInfo->imageMemoryBarrierCount; ++i) {
skip |= ValidateCmdPipelineBarrierImageBarrier(commandBuffer, pDependencyInfo->pImageMemoryBarriers[i]);
}
return skip;
}
bool BestPractices::PreCallValidateCmdPipelineBarrier2(VkCommandBuffer commandBuffer,
const VkDependencyInfo* pDependencyInfo) const {
bool skip = false;
skip |= CheckDependencyInfo("vkCmdPipelineBarrier2", *pDependencyInfo);
for (uint32_t i = 0; i < pDependencyInfo->imageMemoryBarrierCount; ++i) {
skip |= ValidateCmdPipelineBarrierImageBarrier(commandBuffer, pDependencyInfo->pImageMemoryBarriers[i]);
}
return skip;
}
template <typename ImageMemoryBarrier>
bool BestPractices::ValidateCmdPipelineBarrierImageBarrier(VkCommandBuffer commandBuffer,
const ImageMemoryBarrier& barrier) const {
bool skip = false;
const auto cmd_state = GetRead<bp_state::CommandBuffer>(commandBuffer);
assert(cmd_state);
if (VendorCheckEnabled(kBPVendorNVIDIA)) {
if (barrier.oldLayout == VK_IMAGE_LAYOUT_UNDEFINED && barrier.newLayout != VK_IMAGE_LAYOUT_UNDEFINED) {
skip |= ValidateZcull(*cmd_state, barrier.image, barrier.subresourceRange);
}
}
return skip;
}
bool BestPractices::PreCallValidateCmdWriteTimestamp(VkCommandBuffer commandBuffer, VkPipelineStageFlagBits pipelineStage,
VkQueryPool queryPool, uint32_t query) const {
bool skip = false;
skip |= CheckPipelineStageFlags("vkCmdWriteTimestamp", static_cast<VkPipelineStageFlags>(pipelineStage));
return skip;
}
bool BestPractices::PreCallValidateCmdWriteTimestamp2KHR(VkCommandBuffer commandBuffer, VkPipelineStageFlags2KHR pipelineStage,
VkQueryPool queryPool, uint32_t query) const {
bool skip = false;
skip |= CheckPipelineStageFlags("vkCmdWriteTimestamp2KHR", pipelineStage);
return skip;
}
bool BestPractices::PreCallValidateCmdWriteTimestamp2(VkCommandBuffer commandBuffer, VkPipelineStageFlags2 pipelineStage,
VkQueryPool queryPool, uint32_t query) const {
bool skip = false;
skip |= CheckPipelineStageFlags("vkCmdWriteTimestamp2", pipelineStage);
return skip;
}
void BestPractices::PreCallRecordCmdBindPipeline(VkCommandBuffer commandBuffer, VkPipelineBindPoint pipelineBindPoint,
VkPipeline pipeline) {
StateTracker::PreCallRecordCmdBindPipeline(commandBuffer, pipelineBindPoint, pipeline);
auto pipeline_info = Get<PIPELINE_STATE>(pipeline);
auto cb = GetWrite<bp_state::CommandBuffer>(commandBuffer);
assert(pipeline_info);
assert(cb);
if (pipelineBindPoint == VK_PIPELINE_BIND_POINT_GRAPHICS && VendorCheckEnabled(kBPVendorNVIDIA)) {
using TessGeometryMeshState = bp_state::CommandBufferStateNV::TessGeometryMesh::State;
auto& tgm = cb->nv.tess_geometry_mesh;
// Make sure the message is only signaled once per command buffer
tgm.threshold_signaled = tgm.num_switches >= kNumBindPipelineTessGeometryMeshSwitchesThresholdNVIDIA;
// Track pipeline switches with tessellation, geometry, and/or mesh shaders enabled, and disabled
auto tgm_stages = VK_SHADER_STAGE_TESSELLATION_CONTROL_BIT | VK_SHADER_STAGE_TESSELLATION_EVALUATION_BIT |
VK_SHADER_STAGE_GEOMETRY_BIT | VK_SHADER_STAGE_TASK_BIT_NV | VK_SHADER_STAGE_MESH_BIT_NV;
auto new_tgm_state = (pipeline_info->active_shaders & tgm_stages) != 0
? TessGeometryMeshState::Enabled
: TessGeometryMeshState::Disabled;
if (tgm.state != new_tgm_state && tgm.state != TessGeometryMeshState::Unknown) {
tgm.num_switches++;
}
tgm.state = new_tgm_state;
// Track depthTestEnable and depthCompareOp
auto &pipeline_create_info = pipeline_info->GetCreateInfo<VkGraphicsPipelineCreateInfo>();
auto depth_stencil_state = pipeline_create_info.pDepthStencilState;
auto dynamic_state = pipeline_create_info.pDynamicState;
if (depth_stencil_state && dynamic_state) {
auto dynamic_state_begin = dynamic_state->pDynamicStates;
auto dynamic_state_end = dynamic_state->pDynamicStates + dynamic_state->dynamicStateCount;
bool dynamic_depth_test_enable = std::find(dynamic_state_begin, dynamic_state_end, VK_DYNAMIC_STATE_DEPTH_TEST_ENABLE) != dynamic_state_end;
bool dynamic_depth_func = std::find(dynamic_state_begin, dynamic_state_end, VK_DYNAMIC_STATE_DEPTH_COMPARE_OP) != dynamic_state_end;
if (!dynamic_depth_test_enable) {
RecordSetDepthTestState(*cb, cb->nv.depth_compare_op, depth_stencil_state->depthTestEnable != VK_FALSE);
}
if (!dynamic_depth_func) {
RecordSetDepthTestState(*cb, depth_stencil_state->depthCompareOp, cb->nv.depth_test_enable);
}
}
}
}
void BestPractices::PostCallRecordCmdBindPipeline(VkCommandBuffer commandBuffer, VkPipelineBindPoint pipelineBindPoint,
VkPipeline pipeline) {
StateTracker::PostCallRecordCmdBindPipeline(commandBuffer, pipelineBindPoint, pipeline);
// AMD best practice
PipelineUsedInFrame(pipeline);
if (pipelineBindPoint == VK_PIPELINE_BIND_POINT_GRAPHICS) {
auto pipeline_state = Get<bp_state::Pipeline>(pipeline);
// check for depth/blend state tracking
if (pipeline_state) {
auto cb_node = GetWrite<bp_state::CommandBuffer>(commandBuffer);
assert(cb_node);
auto& render_pass_state = cb_node->render_pass_state;
render_pass_state.nextDrawTouchesAttachments = pipeline_state->access_framebuffer_attachments;
render_pass_state.drawTouchAttachments = true;
const auto* blend_state = pipeline_state->ColorBlendState();
const auto* stencil_state = pipeline_state->DepthStencilState();
if (blend_state) {
// assume the pipeline is depth-only unless any of the attachments have color writes enabled
render_pass_state.depthOnly = true;
for (size_t i = 0; i < blend_state->attachmentCount; i++) {
if (blend_state->pAttachments[i].colorWriteMask != 0) {
render_pass_state.depthOnly = false;
}
}
}
// check for depth value usage
render_pass_state.depthEqualComparison = false;
if (stencil_state && stencil_state->depthTestEnable) {
switch (stencil_state->depthCompareOp) {
case VK_COMPARE_OP_EQUAL:
case VK_COMPARE_OP_GREATER_OR_EQUAL:
case VK_COMPARE_OP_LESS_OR_EQUAL:
render_pass_state.depthEqualComparison = true;
break;
default:
break;
}
}
}
}
}
void BestPractices::PreCallRecordCmdSetDepthCompareOp(VkCommandBuffer commandBuffer, VkCompareOp depthCompareOp) {
StateTracker::PreCallRecordCmdSetDepthCompareOp(commandBuffer, depthCompareOp);
auto cb = GetWrite<bp_state::CommandBuffer>(commandBuffer);
assert(cb);
if (VendorCheckEnabled(kBPVendorNVIDIA)) {
RecordSetDepthTestState(*cb, depthCompareOp, cb->nv.depth_test_enable);
}
}
void BestPractices::PreCallRecordCmdSetDepthCompareOpEXT(VkCommandBuffer commandBuffer, VkCompareOp depthCompareOp) {
StateTracker::PreCallRecordCmdSetDepthCompareOpEXT(commandBuffer, depthCompareOp);
auto cb = GetWrite<bp_state::CommandBuffer>(commandBuffer);
assert(cb);
if (VendorCheckEnabled(kBPVendorNVIDIA)) {
RecordSetDepthTestState(*cb, depthCompareOp, cb->nv.depth_test_enable);
}
}
void BestPractices::PreCallRecordCmdSetDepthTestEnable(VkCommandBuffer commandBuffer, VkBool32 depthTestEnable) {
StateTracker::PreCallRecordCmdSetDepthTestEnable(commandBuffer, depthTestEnable);
auto cb = GetWrite<bp_state::CommandBuffer>(commandBuffer);
assert(cb);
if (VendorCheckEnabled(kBPVendorNVIDIA)) {
RecordSetDepthTestState(*cb, cb->nv.depth_compare_op, depthTestEnable != VK_FALSE);
}
}
void BestPractices::PreCallRecordCmdSetDepthTestEnableEXT(VkCommandBuffer commandBuffer, VkBool32 depthTestEnable) {
StateTracker::PreCallRecordCmdSetDepthTestEnableEXT(commandBuffer, depthTestEnable);
auto cb = GetWrite<bp_state::CommandBuffer>(commandBuffer);
assert(cb);
if (VendorCheckEnabled(kBPVendorNVIDIA)) {
RecordSetDepthTestState(*cb, cb->nv.depth_compare_op, depthTestEnable != VK_FALSE);
}
}
void BestPractices::RecordSetDepthTestState(bp_state::CommandBuffer& cmd_state, VkCompareOp new_depth_compare_op, bool new_depth_test_enable) {
assert(VendorCheckEnabled(kBPVendorNVIDIA));
if (cmd_state.nv.depth_compare_op != new_depth_compare_op) {
switch (new_depth_compare_op) {
case VK_COMPARE_OP_LESS:
case VK_COMPARE_OP_LESS_OR_EQUAL:
cmd_state.nv.zcull_direction = bp_state::CommandBufferStateNV::ZcullDirection::Less;
break;
case VK_COMPARE_OP_GREATER:
case VK_COMPARE_OP_GREATER_OR_EQUAL:
cmd_state.nv.zcull_direction = bp_state::CommandBufferStateNV::ZcullDirection::Greater;
break;
default:
// The other ops carry over the previous state.
break;
}
}
cmd_state.nv.depth_compare_op = new_depth_compare_op;
cmd_state.nv.depth_test_enable = new_depth_test_enable;
}
void BestPractices::RecordCmdBeginRenderingCommon(VkCommandBuffer commandBuffer) {
auto cmd_state = GetWrite<bp_state::CommandBuffer>(commandBuffer);
assert(cmd_state);
auto rp = cmd_state->activeRenderPass.get();
assert(rp);
if (VendorCheckEnabled(kBPVendorNVIDIA)) {
std::shared_ptr<IMAGE_VIEW_STATE> depth_image_view_shared_ptr;
IMAGE_VIEW_STATE* depth_image_view = nullptr;
layer_data::optional<VkAttachmentLoadOp> load_op;
if (rp->use_dynamic_rendering || rp->use_dynamic_rendering_inherited) {
const auto depth_attachment = rp->dynamic_rendering_begin_rendering_info.pDepthAttachment;
if (depth_attachment) {
load_op.emplace(depth_attachment->loadOp);
depth_image_view_shared_ptr = Get<IMAGE_VIEW_STATE>(depth_attachment->imageView);
depth_image_view = depth_image_view_shared_ptr.get();
}
for (uint32_t i = 0; i < rp->dynamic_rendering_begin_rendering_info.colorAttachmentCount; ++i) {
const auto& color_attachment = rp->dynamic_rendering_begin_rendering_info.pColorAttachments[i];
if (color_attachment.loadOp == VK_ATTACHMENT_LOAD_OP_CLEAR) {
const VkFormat format = Get<IMAGE_VIEW_STATE>(color_attachment.imageView)->create_info.format;
RecordClearColor(format, color_attachment.clearValue.color);
}
}
} else {
if (rp->createInfo.pAttachments) {
if (rp->createInfo.subpassCount > 0) {
const auto depth_attachment = rp->createInfo.pSubpasses[0].pDepthStencilAttachment;
if (depth_attachment) {
const uint32_t attachment_index = depth_attachment->attachment;
if (attachment_index != VK_ATTACHMENT_UNUSED) {
load_op.emplace(rp->createInfo.pAttachments[attachment_index].loadOp);
depth_image_view = (*cmd_state->active_attachments)[attachment_index];
}
}
}
for (uint32_t i = 0; i < cmd_state->activeRenderPassBeginInfo.clearValueCount; ++i) {
const auto& attachment = rp->createInfo.pAttachments[i];
if (attachment.loadOp == VK_ATTACHMENT_LOAD_OP_CLEAR) {
const auto& clear_color = cmd_state->activeRenderPassBeginInfo.pClearValues[i].color;
RecordClearColor(attachment.format, clear_color);
}
}
}
}
if (depth_image_view && (depth_image_view->create_info.subresourceRange.aspectMask & VK_IMAGE_ASPECT_DEPTH_BIT) != 0U) {
const VkImage depth_image = depth_image_view->image_state->image();
const VkImageSubresourceRange& subresource_range = depth_image_view->create_info.subresourceRange;
RecordBindZcullScope(*cmd_state, depth_image, subresource_range);
} else {
RecordUnbindZcullScope(*cmd_state);
}
if (load_op) {
if (*load_op == VK_ATTACHMENT_LOAD_OP_CLEAR || *load_op == VK_ATTACHMENT_LOAD_OP_DONT_CARE) {
RecordResetScopeZcullDirection(*cmd_state);
}
}
}
}
void BestPractices::RecordCmdEndRenderingCommon(VkCommandBuffer commandBuffer) {
auto cmd_state = GetWrite<bp_state::CommandBuffer>(commandBuffer);
assert(cmd_state);
auto rp = cmd_state->activeRenderPass.get();
assert(rp);
if (VendorCheckEnabled(kBPVendorNVIDIA)) {
layer_data::optional<VkAttachmentStoreOp> store_op;
if (rp->use_dynamic_rendering || rp->use_dynamic_rendering_inherited) {
const auto depth_attachment = rp->dynamic_rendering_begin_rendering_info.pDepthAttachment;
if (depth_attachment) {
store_op.emplace(depth_attachment->storeOp);
}
} else {
if (rp->createInfo.subpassCount > 0) {
const uint32_t last_subpass = rp->createInfo.subpassCount - 1;
const auto depth_attachment = rp->createInfo.pSubpasses[last_subpass].pDepthStencilAttachment;
if (depth_attachment) {
const uint32_t attachment = depth_attachment->attachment;
if (attachment != VK_ATTACHMENT_UNUSED) {
store_op.emplace(rp->createInfo.pAttachments[attachment].storeOp);
}
}
}
}
if (store_op) {
if (*store_op == VK_ATTACHMENT_STORE_OP_DONT_CARE || *store_op == VK_ATTACHMENT_STORE_OP_NONE) {
RecordResetScopeZcullDirection(*cmd_state);
}
}
RecordUnbindZcullScope(*cmd_state);
}
}
void BestPractices::RecordBindZcullScope(bp_state::CommandBuffer& cmd_state, VkImage depth_attachment, const VkImageSubresourceRange& subresource_range) {
assert(VendorCheckEnabled(kBPVendorNVIDIA));
if (depth_attachment == VK_NULL_HANDLE) {
cmd_state.nv.zcull_scope = {};
return;
}
assert((subresource_range.aspectMask & VK_IMAGE_ASPECT_DEPTH_BIT) != 0U);
auto image_state = Get<IMAGE_STATE>(depth_attachment);
assert(image_state);
const uint32_t mip_levels = image_state->createInfo.mipLevels;
const uint32_t array_layers = image_state->createInfo.arrayLayers;
auto& tree = cmd_state.nv.zcull_per_image[depth_attachment];
if (tree.states.empty()) {
tree.mip_levels = mip_levels;
tree.array_layers = array_layers;
tree.states.resize(array_layers * mip_levels);
}
cmd_state.nv.zcull_scope.image = depth_attachment;
cmd_state.nv.zcull_scope.range = subresource_range;
cmd_state.nv.zcull_scope.tree = &tree;
}
void BestPractices::RecordUnbindZcullScope(bp_state::CommandBuffer& cmd_state) {
assert(VendorCheckEnabled(kBPVendorNVIDIA));
RecordBindZcullScope(cmd_state, VK_NULL_HANDLE, VkImageSubresourceRange{});
}
void BestPractices::RecordResetScopeZcullDirection(bp_state::CommandBuffer& cmd_state) {
assert(VendorCheckEnabled(kBPVendorNVIDIA));
auto& scope = cmd_state.nv.zcull_scope;
RecordResetZcullDirection(cmd_state, scope.image, scope.range);
}
template <typename Func>
static void ForEachSubresource(const IMAGE_STATE& image, const VkImageSubresourceRange& range, Func&& func)
{
const uint32_t layerCount =
(range.layerCount == VK_REMAINING_ARRAY_LAYERS) ? (image.full_range.layerCount - range.baseArrayLayer) : range.layerCount;
const uint32_t levelCount =
(range.levelCount == VK_REMAINING_MIP_LEVELS) ? (image.full_range.levelCount - range.baseMipLevel) : range.levelCount;
for (uint32_t i = 0; i < layerCount; ++i) {
const uint32_t layer = range.baseArrayLayer + i;
for (uint32_t j = 0; j < levelCount; ++j) {
const uint32_t level = range.baseMipLevel + j;
func(layer, level);
}
}
}
void BestPractices::RecordResetZcullDirection(bp_state::CommandBuffer& cmd_state, VkImage depth_image,
const VkImageSubresourceRange& subresource_range) {
assert(VendorCheckEnabled(kBPVendorNVIDIA));
RecordSetZcullDirection(cmd_state, depth_image, subresource_range, bp_state::CommandBufferStateNV::ZcullDirection::Unknown);
const auto image_it = cmd_state.nv.zcull_per_image.find(depth_image);
if (image_it == cmd_state.nv.zcull_per_image.end()) {
return;
}
auto& tree = image_it->second;
auto image = Get<IMAGE_STATE>(depth_image);
if (!image) return;
ForEachSubresource(*image, subresource_range, [&tree](uint32_t layer, uint32_t level) {
auto& subresource = tree.GetState(layer, level);
subresource.num_less_draws = 0;
subresource.num_greater_draws = 0;
});
}
void BestPractices::RecordSetScopeZcullDirection(bp_state::CommandBuffer& cmd_state, bp_state::CommandBufferStateNV::ZcullDirection mode) {
assert(VendorCheckEnabled(kBPVendorNVIDIA));
auto& scope = cmd_state.nv.zcull_scope;
RecordSetZcullDirection(cmd_state, scope.image, scope.range, mode);
}
void BestPractices::RecordSetZcullDirection(bp_state::CommandBuffer& cmd_state, VkImage depth_image,
const VkImageSubresourceRange& subresource_range,
bp_state::CommandBufferStateNV::ZcullDirection mode) {
assert(VendorCheckEnabled(kBPVendorNVIDIA));
const auto image_it = cmd_state.nv.zcull_per_image.find(depth_image);
if (image_it == cmd_state.nv.zcull_per_image.end()) {
return;
}
auto& tree = image_it->second;
auto image = Get<IMAGE_STATE>(depth_image);
if (!image) return;
ForEachSubresource(*image, subresource_range, [&tree, &cmd_state](uint32_t layer, uint32_t level) {
tree.GetState(layer, level).direction = cmd_state.nv.zcull_direction;
});
}
void BestPractices::RecordZcullDraw(bp_state::CommandBuffer& cmd_state) {
assert(VendorCheckEnabled(kBPVendorNVIDIA));
// Add one draw to each subresource depending on the current Z-cull direction
auto& scope = cmd_state.nv.zcull_scope;
auto image = Get<IMAGE_STATE>(scope.image);
if (!image) return;
ForEachSubresource(*image, scope.range, [&scope](uint32_t layer, uint32_t level) {
auto& subresource = scope.tree->GetState(layer, level);
switch (subresource.direction) {
case bp_state::CommandBufferStateNV::ZcullDirection::Unknown:
// Unreachable
assert(0);
break;
case bp_state::CommandBufferStateNV::ZcullDirection::Less:
++subresource.num_less_draws;
break;
case bp_state::CommandBufferStateNV::ZcullDirection::Greater:
++subresource.num_greater_draws;
break;
}
});
}
bool BestPractices::ValidateZcullScope(const bp_state::CommandBuffer& cmd_state) const {
assert(VendorCheckEnabled(kBPVendorNVIDIA));
bool skip = false;
if (cmd_state.nv.depth_test_enable) {
auto& scope = cmd_state.nv.zcull_scope;
skip |= ValidateZcull(cmd_state, scope.image, scope.range);
}
return skip;
}
bool BestPractices::ValidateZcull(const bp_state::CommandBuffer& cmd_state, VkImage image,
const VkImageSubresourceRange& subresource_range) const {
bool skip = false;
const char* good_mode = nullptr;
const char* bad_mode = nullptr;
bool is_balanced = false;
const auto image_it = cmd_state.nv.zcull_per_image.find(image);
if (image_it == cmd_state.nv.zcull_per_image.end()) {
return skip;
}
const auto& tree = image_it->second;
auto image_state = Get<IMAGE_STATE>(image);
if (!image_state) {
return skip;
}
ForEachSubresource(*image_state, subresource_range, [&](uint32_t layer, uint32_t level) {
if (is_balanced) {
return;
}
const auto& resource = tree.GetState(layer, level);
const uint64_t num_draws = resource.num_less_draws + resource.num_greater_draws;
if (num_draws == 0) {
return;
}
const uint64_t less_ratio = (resource.num_less_draws * 100) / num_draws;
const uint64_t greater_ratio = (resource.num_greater_draws * 100) / num_draws;
if ((less_ratio > kZcullDirectionBalanceRatioNVIDIA) && (greater_ratio > kZcullDirectionBalanceRatioNVIDIA)) {
is_balanced = true;
if (greater_ratio > less_ratio) {
good_mode = "GREATER";
bad_mode = "LESS";
} else {
good_mode = "LESS";
bad_mode = "GREATER";
}
}
});
if (is_balanced) {
skip |= LogPerformanceWarning(
cmd_state.commandBuffer(), kVUID_BestPractices_Zcull_LessGreaterRatio,
"%s Depth attachment %s is primarily rendered with depth compare op %s, but some draws use %s. "
"Z-cull is disabled for the least used direction, which harms depth testing performance. "
"The Z-cull direction can be reset by clearing the depth attachment, transitioning from VK_IMAGE_LAYOUT_UNDEFINED, "
"using VK_ATTACHMENT_LOAD_OP_DONT_CARE, or using VK_ATTACHMENT_STORE_OP_DONT_CARE.",
VendorSpecificTag(kBPVendorNVIDIA), report_data->FormatHandle(cmd_state.nv.zcull_scope.image).c_str(), good_mode,
bad_mode);
}
return skip;
}
static std::array<uint32_t, 4> GetRawClearColor(VkFormat format, const VkClearColorValue& clear_value) {
std::array<uint32_t, 4> raw_color{};
std::copy_n(clear_value.uint32, raw_color.size(), raw_color.data());
// Zero out unused components to avoid polluting the cache with garbage
if (!FormatHasRed(format)) raw_color[0] = 0;
if (!FormatHasGreen(format)) raw_color[1] = 0;
if (!FormatHasBlue(format)) raw_color[2] = 0;
if (!FormatHasAlpha(format)) raw_color[3] = 0;
return raw_color;
}
static bool IsClearColorZeroOrOne(VkFormat format, const std::array<uint32_t, 4> clear_color) {
static_assert(sizeof(float) == sizeof(uint32_t), "Mismatching float <-> uint32 sizes");
const float one = 1.0f;
const float zero = 0.0f;
uint32_t raw_one{};
uint32_t raw_zero{};
memcpy(&raw_one, &one, sizeof(one));
memcpy(&raw_zero, &zero, sizeof(zero));
const bool is_one = (!FormatHasRed(format) || (clear_color[0] == raw_one)) &&
(!FormatHasGreen(format) || (clear_color[1] == raw_one)) &&
(!FormatHasBlue(format) || (clear_color[2] == raw_one)) &&
(!FormatHasAlpha(format) || (clear_color[3] == raw_one));
const bool is_zero = (!FormatHasRed(format) || (clear_color[0] == raw_zero)) &&
(!FormatHasGreen(format) || (clear_color[1] == raw_zero)) &&
(!FormatHasBlue(format) || (clear_color[2] == raw_zero)) &&
(!FormatHasAlpha(format) || (clear_color[3] == raw_zero));
return is_one || is_zero;
}
static std::string MakeCompressedFormatListNVIDIA() {
std::string format_list;
for (VkFormat compressed_format : kCustomClearColorCompressedFormatsNVIDIA) {
if (compressed_format == kCustomClearColorCompressedFormatsNVIDIA.back()) {
format_list += "or ";
}
format_list += string_VkFormat(compressed_format);
if (compressed_format != kCustomClearColorCompressedFormatsNVIDIA.back()) {
format_list += ", ";
}
}
return format_list;
}
void BestPractices::RecordClearColor(VkFormat format, const VkClearColorValue& clear_value) {
assert(VendorCheckEnabled(kBPVendorNVIDIA));
const std::array<uint32_t, 4> raw_color = GetRawClearColor(format, clear_value);
if (IsClearColorZeroOrOne(format, raw_color)) {
// These colors are always compressed
return;
}
const auto it = std::find(kCustomClearColorCompressedFormatsNVIDIA.begin(), kCustomClearColorCompressedFormatsNVIDIA.end(), format);
if (it == kCustomClearColorCompressedFormatsNVIDIA.end()) {
// The format cannot be compressed with a custom color
return;
}
// Record custom clear color
WriteLockGuard guard{clear_colors_lock_};
if (clear_colors_.size() < kMaxRecommendedNumberOfClearColorsNVIDIA) {
clear_colors_.insert(raw_color);
}
}
bool BestPractices::ValidateClearColor(VkCommandBuffer commandBuffer, VkFormat format, const VkClearColorValue& clear_value) const {
assert(VendorCheckEnabled(kBPVendorNVIDIA));
bool skip = false;
const std::array<uint32_t, 4> raw_color = GetRawClearColor(format, clear_value);
if (IsClearColorZeroOrOne(format, raw_color)) {
return skip;
}
const auto it = std::find(kCustomClearColorCompressedFormatsNVIDIA.begin(), kCustomClearColorCompressedFormatsNVIDIA.end(), format);
if (it == kCustomClearColorCompressedFormatsNVIDIA.end()) {
// The format is not compressible
static const std::string format_list = MakeCompressedFormatListNVIDIA();
skip |= LogPerformanceWarning(commandBuffer, kVUID_BestPractices_ClearColor_NotCompressed,
"%s Clearing image with format %s without a 1.0f or 0.0f clear color. "
"The clear will not get compressed in the GPU, harming performance. "
"This can be fixed using a clear color of VkClearColorValue{0.0f, 0.0f, 0.0f, 0.0f}, or "
"VkClearColorValue{1.0f, 1.0f, 1.0f, 1.0f}. Alternatively, use %s.",
VendorSpecificTag(kBPVendorNVIDIA), string_VkFormat(format), format_list.c_str());
} else {
// The format is compressible
bool registered = false;
{
ReadLockGuard guard{clear_colors_lock_};
registered = clear_colors_.find(raw_color) != clear_colors_.end();
if (!registered) {
// If it's not in the list, it might be new. Check if there's still space for new entries.
registered = clear_colors_.size() < kMaxRecommendedNumberOfClearColorsNVIDIA;
}
}
if (!registered) {
std::string clear_color_str;
if (FormatIsUINT(format)) {
clear_color_str = std::to_string(clear_value.uint32[0]) + ", " + std::to_string(clear_value.uint32[1]) + ", " +
std::to_string(clear_value.uint32[2]) + ", " + std::to_string(clear_value.uint32[3]);
} else if (FormatIsSINT(format)) {
clear_color_str = std::to_string(clear_value.int32[0]) + ", " + std::to_string(clear_value.int32[1]) + ", " +
std::to_string(clear_value.int32[2]) + ", " + std::to_string(clear_value.int32[3]);
} else {
clear_color_str = std::to_string(clear_value.float32[0]) + ", " + std::to_string(clear_value.float32[1]) + ", " +
std::to_string(clear_value.float32[2]) + ", " + std::to_string(clear_value.float32[3]);
}
skip |= LogPerformanceWarning(
commandBuffer, kVUID_BestPractices_ClearColor_NotCompressed,
"%s Clearing image with unregistered VkClearColorValue{%s}. "
"This clear will not get compressed in the GPU, harming performance. "
"The clear color is not registered because too many unique colors have been used. "
"Select a discrete set of clear colors and stick to those. "
"VkClearColorValue{0, 0, 0, 0} and VkClearColorValue{1.0f, 1.0f, 1.0f, 1.0f} are always registered.",
VendorSpecificTag(kBPVendorNVIDIA), clear_color_str.c_str());
}
}
return skip;
}
static inline bool RenderPassUsesAttachmentAsResolve(const safe_VkRenderPassCreateInfo2& createInfo, uint32_t attachment) {
for (uint32_t subpass = 0; subpass < createInfo.subpassCount; subpass++) {
const auto& subpass_info = createInfo.pSubpasses[subpass];
if (subpass_info.pResolveAttachments) {
for (uint32_t i = 0; i < subpass_info.colorAttachmentCount; i++) {
if (subpass_info.pResolveAttachments[i].attachment == attachment) return true;
}
}
}
return false;
}
static inline bool RenderPassUsesAttachmentOnTile(const safe_VkRenderPassCreateInfo2& createInfo, uint32_t attachment) {
for (uint32_t subpass = 0; subpass < createInfo.subpassCount; subpass++) {
const auto& subpass_info = createInfo.pSubpasses[subpass];
// If an attachment is ever used as a color attachment,
// resolve attachment or depth stencil attachment,
// it needs to exist on tile at some point.
for (uint32_t i = 0; i < subpass_info.colorAttachmentCount; i++) {
if (subpass_info.pColorAttachments[i].attachment == attachment) return true;
}
if (subpass_info.pResolveAttachments) {
for (uint32_t i = 0; i < subpass_info.colorAttachmentCount; i++) {
if (subpass_info.pResolveAttachments[i].attachment == attachment) return true;
}
}
if (subpass_info.pDepthStencilAttachment && subpass_info.pDepthStencilAttachment->attachment == attachment) return true;
}
return false;
}
static inline bool RenderPassUsesAttachmentAsImageOnly(const safe_VkRenderPassCreateInfo2& createInfo, uint32_t attachment) {
if (RenderPassUsesAttachmentOnTile(createInfo, attachment)) {
return false;
}
for (uint32_t subpass = 0; subpass < createInfo.subpassCount; subpass++) {
const auto& subpassInfo = createInfo.pSubpasses[subpass];
for (uint32_t i = 0; i < subpassInfo.inputAttachmentCount; i++) {
if (subpassInfo.pInputAttachments[i].attachment == attachment) {
return true;
}
}
}
return false;
}
bool BestPractices::ValidateCmdBeginRenderPass(VkCommandBuffer commandBuffer, RenderPassCreateVersion rp_version,
const VkRenderPassBeginInfo* pRenderPassBegin) const {
bool skip = false;
if (!pRenderPassBegin) {
return skip;
}
if (pRenderPassBegin->renderArea.extent.width == 0 || pRenderPassBegin->renderArea.extent.height == 0) {
skip |= LogWarning(device, kVUID_BestPractices_BeginRenderPass_ZeroSizeRenderArea,
"This render pass has a zero-size render area. It cannot write to any attachments, "
"and can only be used for side effects such as layout transitions.");
}
auto rp_state = Get<RENDER_PASS_STATE>(pRenderPassBegin->renderPass);
if (rp_state) {
if (rp_state->createInfo.flags & VK_FRAMEBUFFER_CREATE_IMAGELESS_BIT) {
const VkRenderPassAttachmentBeginInfo* rpabi = LvlFindInChain<VkRenderPassAttachmentBeginInfo>(pRenderPassBegin->pNext);
if (rpabi) {
skip = ValidateAttachments(rp_state->createInfo.ptr(), rpabi->attachmentCount, rpabi->pAttachments);
}
}
// Check if any attachments have LOAD operation on them
for (uint32_t att = 0; att < rp_state->createInfo.attachmentCount; att++) {
const auto& attachment = rp_state->createInfo.pAttachments[att];
bool attachment_has_readback = false;
if (!FormatIsStencilOnly(attachment.format) && attachment.loadOp == VK_ATTACHMENT_LOAD_OP_LOAD) {
attachment_has_readback = true;
}
if (FormatHasStencil(attachment.format) && attachment.stencilLoadOp == VK_ATTACHMENT_LOAD_OP_LOAD) {
attachment_has_readback = true;
}
bool attachment_needs_readback = false;
// Check if the attachment is actually used in any subpass on-tile
if (attachment_has_readback && RenderPassUsesAttachmentOnTile(rp_state->createInfo, att)) {
attachment_needs_readback = true;
}
// Using LOAD_OP_LOAD is expensive on tiled GPUs, so flag it as a potential improvement
if (attachment_needs_readback && (VendorCheckEnabled(kBPVendorArm) || VendorCheckEnabled(kBPVendorIMG))) {
skip |=
LogPerformanceWarning(device, kVUID_BestPractices_BeginRenderPass_AttachmentNeedsReadback,
"%s %s: Attachment #%u in render pass has begun with VK_ATTACHMENT_LOAD_OP_LOAD.\n"
"Submitting this renderpass will cause the driver to inject a readback of the attachment "
"which will copy in total %u pixels (renderArea = "
"{ %" PRId32 ", %" PRId32 ", %" PRIu32 ", %" PRIu32 " }) to the tile buffer.",
VendorSpecificTag(kBPVendorArm), VendorSpecificTag(kBPVendorIMG), att,
pRenderPassBegin->renderArea.extent.width * pRenderPassBegin->renderArea.extent.height,
pRenderPassBegin->renderArea.offset.x, pRenderPassBegin->renderArea.offset.y,
pRenderPassBegin->renderArea.extent.width, pRenderPassBegin->renderArea.extent.height);
}
}
// Check if renderpass has at least one VK_ATTACHMENT_LOAD_OP_CLEAR
bool clearing = false;
for (uint32_t att = 0; att < rp_state->createInfo.attachmentCount; att++) {
const auto& attachment = rp_state->createInfo.pAttachments[att];
if (attachment.loadOp == VK_ATTACHMENT_LOAD_OP_CLEAR) {
clearing = true;
break;
}
}
// Check if there are ClearValues passed to BeginRenderPass even though no attachments will be cleared
if (!clearing && pRenderPassBegin->clearValueCount > 0) {
// Flag as warning because nothing will happen per spec, and pClearValues will be ignored
skip |= LogWarning(
device, kVUID_BestPractices_ClearValueWithoutLoadOpClear,
"This render pass does not have VkRenderPassCreateInfo.pAttachments->loadOp == VK_ATTACHMENT_LOAD_OP_CLEAR "
"but VkRenderPassBeginInfo.clearValueCount > 0. VkRenderPassBeginInfo.pClearValues will be ignored and no "
"attachments will be cleared.");
}
// Check if there are more clearValues than attachments
if(pRenderPassBegin->clearValueCount > rp_state->createInfo.attachmentCount) {
// Flag as warning because the overflowing clearValues will be ignored and could even be undefined on certain platforms.
// This could signal a bug and there seems to be no reason for this to happen on purpose.
skip |= LogWarning(
device, kVUID_BestPractices_ClearValueCountHigherThanAttachmentCount,
"This render pass has VkRenderPassBeginInfo.clearValueCount > VkRenderPassCreateInfo.attachmentCount "
"(%" PRIu32 " > %" PRIu32 ") and as such the clearValues that do not have a corresponding attachment will be ignored.",
pRenderPassBegin->clearValueCount, rp_state->createInfo.attachmentCount);
}
if (VendorCheckEnabled(kBPVendorNVIDIA) && rp_state->createInfo.pAttachments) {
for (uint32_t i = 0; i < pRenderPassBegin->clearValueCount; ++i) {
const auto& attachment = rp_state->createInfo.pAttachments[i];
if (attachment.loadOp == VK_ATTACHMENT_LOAD_OP_CLEAR) {
const auto& clear_color = pRenderPassBegin->pClearValues[i].color;
skip |= ValidateClearColor(commandBuffer, attachment.format, clear_color);
}
}
}
}
return skip;
}
bool BestPractices::ValidateCmdBeginRendering(VkCommandBuffer commandBuffer, const VkRenderingInfo* pRenderingInfo) const {
bool skip = false;
auto cmd_state = Get<bp_state::CommandBuffer>(commandBuffer);
assert(cmd_state);
if (VendorCheckEnabled(kBPVendorNVIDIA)) {
for (uint32_t i = 0; i < pRenderingInfo->colorAttachmentCount; ++i) {
const auto& color_attachment = pRenderingInfo->pColorAttachments[i];
if (color_attachment.loadOp == VK_ATTACHMENT_LOAD_OP_CLEAR) {
const VkFormat format = Get<IMAGE_VIEW_STATE>(color_attachment.imageView)->create_info.format;
skip |= ValidateClearColor(commandBuffer, format, color_attachment.clearValue.color);
}
}
}
return skip;
}
void BestPractices::QueueValidateImageView(QueueCallbacks &funcs, const char* function_name,
IMAGE_VIEW_STATE* view, IMAGE_SUBRESOURCE_USAGE_BP usage) {
if (view) {
auto image_state = std::static_pointer_cast<bp_state::Image>(view->image_state);
QueueValidateImage(funcs, function_name, image_state, usage, view->normalized_subresource_range);
}
}
void BestPractices::QueueValidateImage(QueueCallbacks& funcs, const char* function_name, std::shared_ptr<bp_state::Image>& state,
IMAGE_SUBRESOURCE_USAGE_BP usage, const VkImageSubresourceRange& subresource_range) {
// If we're viewing a 3D slice, ignore base array layer.
// The entire 3D subresource is accessed as one atomic unit.
const uint32_t base_array_layer = state->createInfo.imageType == VK_IMAGE_TYPE_3D ? 0 : subresource_range.baseArrayLayer;
const uint32_t max_layers = state->createInfo.arrayLayers - base_array_layer;
const uint32_t array_layers = std::min(subresource_range.layerCount, max_layers);
const uint32_t max_levels = state->createInfo.mipLevels - subresource_range.baseMipLevel;
const uint32_t mip_levels = std::min(state->createInfo.mipLevels, max_levels);
for (uint32_t layer = 0; layer < array_layers; layer++) {
for (uint32_t level = 0; level < mip_levels; level++) {
QueueValidateImage(funcs, function_name, state, usage, layer + base_array_layer,
level + subresource_range.baseMipLevel);
}
}
}
void BestPractices::QueueValidateImage(QueueCallbacks& funcs, const char* function_name, std::shared_ptr<bp_state::Image>& state,
IMAGE_SUBRESOURCE_USAGE_BP usage, const VkImageSubresourceLayers& subresource_layers) {
const uint32_t max_layers = state->createInfo.arrayLayers - subresource_layers.baseArrayLayer;
const uint32_t array_layers = std::min(subresource_layers.layerCount, max_layers);
for (uint32_t layer = 0; layer < array_layers; layer++) {
QueueValidateImage(funcs, function_name, state, usage, layer + subresource_layers.baseArrayLayer, subresource_layers.mipLevel);
}
}
void BestPractices::QueueValidateImage(QueueCallbacks& funcs, const char* function_name, std::shared_ptr<bp_state::Image>& state,
IMAGE_SUBRESOURCE_USAGE_BP usage, uint32_t array_layer, uint32_t mip_level) {
funcs.push_back([this, function_name, state, usage, array_layer, mip_level](
const ValidationStateTracker& vst, const QUEUE_STATE& qs, const CMD_BUFFER_STATE& cbs) -> bool {
ValidateImageInQueue(qs, cbs, function_name, *state, usage, array_layer, mip_level);
return false;
});
}
void BestPractices::ValidateImageInQueueArmImg(const char* function_name, const bp_state::Image& image,
IMAGE_SUBRESOURCE_USAGE_BP last_usage, IMAGE_SUBRESOURCE_USAGE_BP usage,
uint32_t array_layer, uint32_t mip_level) {
// Swapchain images are implicitly read so clear after store is expected.
if (usage == IMAGE_SUBRESOURCE_USAGE_BP::RENDER_PASS_CLEARED && last_usage == IMAGE_SUBRESOURCE_USAGE_BP::RENDER_PASS_STORED &&
!image.IsSwapchainImage()) {
LogPerformanceWarning(
device, kVUID_BestPractices_RenderPass_RedundantStore,
"%s %s: %s Subresource (arrayLayer: %u, mipLevel: %u) of image was cleared as part of LOAD_OP_CLEAR, but last time "
"image was used, it was written to with STORE_OP_STORE. "
"Storing to the image is probably redundant in this case, and wastes bandwidth on tile-based "
"architectures.",
function_name, VendorSpecificTag(kBPVendorArm), VendorSpecificTag(kBPVendorIMG), array_layer, mip_level);
} else if (usage == IMAGE_SUBRESOURCE_USAGE_BP::RENDER_PASS_CLEARED && last_usage == IMAGE_SUBRESOURCE_USAGE_BP::CLEARED) {
LogPerformanceWarning(
device, kVUID_BestPractices_RenderPass_RedundantClear,
"%s %s: %s Subresource (arrayLayer: %u, mipLevel: %u) of image was cleared as part of LOAD_OP_CLEAR, but last time "
"image was used, it was written to with vkCmdClear*Image(). "
"Clearing the image with vkCmdClear*Image() is probably redundant in this case, and wastes bandwidth on "
"tile-based architectures.",
function_name, VendorSpecificTag(kBPVendorArm), VendorSpecificTag(kBPVendorIMG), array_layer, mip_level);
} else if (usage == IMAGE_SUBRESOURCE_USAGE_BP::RENDER_PASS_READ_TO_TILE &&
(last_usage == IMAGE_SUBRESOURCE_USAGE_BP::BLIT_WRITE || last_usage == IMAGE_SUBRESOURCE_USAGE_BP::CLEARED ||
last_usage == IMAGE_SUBRESOURCE_USAGE_BP::COPY_WRITE || last_usage == IMAGE_SUBRESOURCE_USAGE_BP::RESOLVE_WRITE)) {
const char *last_cmd = nullptr;
const char *vuid = nullptr;
const char *suggestion = nullptr;
switch (last_usage) {
case IMAGE_SUBRESOURCE_USAGE_BP::BLIT_WRITE:
vuid = kVUID_BestPractices_RenderPass_BlitImage_LoadOpLoad;
last_cmd = "vkCmdBlitImage";
suggestion =
"The blit is probably redundant in this case, and wastes bandwidth on tile-based architectures. "
"Rather than blitting, just render the source image in a fragment shader in this render pass, "
"which avoids the memory roundtrip.";
break;
case IMAGE_SUBRESOURCE_USAGE_BP::CLEARED:
vuid = kVUID_BestPractices_RenderPass_InefficientClear;
last_cmd = "vkCmdClear*Image";
suggestion =
"Clearing the image with vkCmdClear*Image() is probably redundant in this case, and wastes bandwidth on "
"tile-based architectures. "
"Use LOAD_OP_CLEAR instead to clear the image for free.";
break;
case IMAGE_SUBRESOURCE_USAGE_BP::COPY_WRITE:
vuid = kVUID_BestPractices_RenderPass_CopyImage_LoadOpLoad;
last_cmd = "vkCmdCopy*Image";
suggestion =
"The copy is probably redundant in this case, and wastes bandwidth on tile-based architectures. "
"Rather than copying, just render the source image in a fragment shader in this render pass, "
"which avoids the memory roundtrip.";
break;
case IMAGE_SUBRESOURCE_USAGE_BP::RESOLVE_WRITE:
vuid = kVUID_BestPractices_RenderPass_ResolveImage_LoadOpLoad;
last_cmd = "vkCmdResolveImage";
suggestion =
"The resolve is probably redundant in this case, and wastes a lot of bandwidth on tile-based architectures. "
"Rather than resolving, and then loading, try to keep rendering in the same render pass, "
"which avoids the memory roundtrip.";
break;
default:
break;
}
LogPerformanceWarning(
device, vuid,
"%s %s: %s Subresource (arrayLayer: %u, mipLevel: %u) of image was loaded to tile as part of LOAD_OP_LOAD, but last "
"time image was used, it was written to with %s. %s",
function_name, VendorSpecificTag(kBPVendorArm), VendorSpecificTag(kBPVendorIMG), array_layer, mip_level, last_cmd,
suggestion);
}
}
void BestPractices::ValidateImageInQueue(const QUEUE_STATE& qs, const CMD_BUFFER_STATE& cbs, const char* function_name,
bp_state::Image& state, IMAGE_SUBRESOURCE_USAGE_BP usage, uint32_t array_layer,
uint32_t mip_level) {
auto queue_family = qs.queueFamilyIndex;
auto last_usage = state.UpdateUsage(array_layer, mip_level, usage, queue_family);
// Concurrent sharing usage of image with exclusive sharing mode
if (state.createInfo.sharingMode == VK_SHARING_MODE_EXCLUSIVE && last_usage.queue_family_index != queue_family) {
// if UNDEFINED then first use/acquisition of subresource
if (last_usage.type != IMAGE_SUBRESOURCE_USAGE_BP::UNDEFINED) {
// If usage might read from the subresource, as contents are undefined
// so write only is fine
if (usage == IMAGE_SUBRESOURCE_USAGE_BP::RENDER_PASS_READ_TO_TILE || usage == IMAGE_SUBRESOURCE_USAGE_BP::BLIT_READ ||
usage == IMAGE_SUBRESOURCE_USAGE_BP::COPY_READ || usage == IMAGE_SUBRESOURCE_USAGE_BP::DESCRIPTOR_ACCESS ||
usage == IMAGE_SUBRESOURCE_USAGE_BP::RESOLVE_READ) {
LogWarning(
state.image(), kVUID_BestPractices_ConcurrentUsageOfExclusiveImage,
"%s : Subresource (arrayLayer: %" PRIu32 ", mipLevel: %" PRIu32
") of image is used on queue family index %" PRIu32
" after being used on "
"queue family index %" PRIu32
", "
"but has VK_SHARING_MODE_EXCLUSIVE, and has not been acquired and released with a ownership transfer operation",
function_name, array_layer, mip_level, queue_family, last_usage.queue_family_index);
}
}
}
// When image was discarded with StoreOpDontCare but is now being read with LoadOpLoad
if (last_usage.type == IMAGE_SUBRESOURCE_USAGE_BP::RENDER_PASS_DISCARDED &&
usage == IMAGE_SUBRESOURCE_USAGE_BP::RENDER_PASS_READ_TO_TILE) {
LogWarning(device, kVUID_BestPractices_StoreOpDontCareThenLoadOpLoad,
"Trying to load an attachment with LOAD_OP_LOAD that was previously stored with STORE_OP_DONT_CARE. This may "
"result in undefined behaviour.");
}
if (VendorCheckEnabled(kBPVendorArm) || VendorCheckEnabled(kBPVendorIMG)) {
ValidateImageInQueueArmImg(function_name, state, last_usage.type, usage, array_layer, mip_level);
}
}
void BestPractices::AddDeferredQueueOperations(bp_state::CommandBuffer& cb) {
cb.queue_submit_functions.insert(cb.queue_submit_functions.end(), cb.queue_submit_functions_after_render_pass.begin(),
cb.queue_submit_functions_after_render_pass.end());
cb.queue_submit_functions_after_render_pass.clear();
}
void BestPractices::PreCallRecordCmdEndRenderPass(VkCommandBuffer commandBuffer) {
RecordCmdEndRenderingCommon(commandBuffer);
ValidationStateTracker::PreCallRecordCmdEndRenderPass(commandBuffer);
auto cb_node = GetWrite<bp_state::CommandBuffer>(commandBuffer);
if (cb_node) {
AddDeferredQueueOperations(*cb_node);
}
}
void BestPractices::PreCallRecordCmdEndRenderPass2(VkCommandBuffer commandBuffer, const VkSubpassEndInfo *pSubpassInfo) {
RecordCmdEndRenderingCommon(commandBuffer);
ValidationStateTracker::PreCallRecordCmdEndRenderPass2(commandBuffer, pSubpassInfo);
auto cb_node = GetWrite<bp_state::CommandBuffer>(commandBuffer);
if (cb_node) {
AddDeferredQueueOperations(*cb_node);
}
}
void BestPractices::PreCallRecordCmdEndRenderPass2KHR(VkCommandBuffer commandBuffer, const VkSubpassEndInfoKHR *pSubpassInfo) {
RecordCmdEndRenderingCommon(commandBuffer);
ValidationStateTracker::PreCallRecordCmdEndRenderPass2KHR(commandBuffer, pSubpassInfo);
auto cb_node = GetWrite<bp_state::CommandBuffer>(commandBuffer);
if (cb_node) {
AddDeferredQueueOperations(*cb_node);
}
}
void BestPractices::PreCallRecordCmdEndRendering(VkCommandBuffer commandBuffer) {
RecordCmdEndRenderingCommon(commandBuffer);
ValidationStateTracker::PreCallRecordCmdEndRendering(commandBuffer);
}
void BestPractices::PreCallRecordCmdEndRenderingKHR(VkCommandBuffer commandBuffer) {
RecordCmdEndRenderingCommon(commandBuffer);
ValidationStateTracker::PreCallRecordCmdEndRenderingKHR(commandBuffer);
}
void BestPractices::PreCallRecordCmdBeginRenderPass(VkCommandBuffer commandBuffer,
const VkRenderPassBeginInfo* pRenderPassBegin,
VkSubpassContents contents) {
ValidationStateTracker::PreCallRecordCmdBeginRenderPass(commandBuffer, pRenderPassBegin, contents);
RecordCmdBeginRenderingCommon(commandBuffer);
RecordCmdBeginRenderPass(commandBuffer, pRenderPassBegin);
}
void BestPractices::PreCallRecordCmdBeginRenderPass2(VkCommandBuffer commandBuffer,
const VkRenderPassBeginInfo* pRenderPassBegin,
const VkSubpassBeginInfo* pSubpassBeginInfo) {
ValidationStateTracker::PreCallRecordCmdBeginRenderPass2(commandBuffer, pRenderPassBegin, pSubpassBeginInfo);
RecordCmdBeginRenderingCommon(commandBuffer);
RecordCmdBeginRenderPass(commandBuffer, pRenderPassBegin);
}
void BestPractices::PreCallRecordCmdBeginRenderPass2KHR(VkCommandBuffer commandBuffer,
const VkRenderPassBeginInfo* pRenderPassBegin,
const VkSubpassBeginInfo* pSubpassBeginInfo) {
ValidationStateTracker::PreCallRecordCmdBeginRenderPass2KHR(commandBuffer, pRenderPassBegin, pSubpassBeginInfo);
RecordCmdBeginRenderingCommon(commandBuffer);
RecordCmdBeginRenderPass(commandBuffer, pRenderPassBegin);
}
void BestPractices::PreCallRecordCmdBeginRendering(VkCommandBuffer commandBuffer, const VkRenderingInfo* pRenderingInfo) {
ValidationStateTracker::PreCallRecordCmdBeginRendering(commandBuffer, pRenderingInfo);
RecordCmdBeginRenderingCommon(commandBuffer);
}
void BestPractices::PreCallRecordCmdBeginRenderingKHR(VkCommandBuffer commandBuffer, const VkRenderingInfo* pRenderingInfo) {
ValidationStateTracker::PreCallRecordCmdBeginRenderingKHR(commandBuffer, pRenderingInfo);
RecordCmdBeginRenderingCommon(commandBuffer);
}
void BestPractices::PostCallRecordCmdNextSubpass(VkCommandBuffer commandBuffer, VkSubpassContents contents) {
ValidationStateTracker::PostCallRecordCmdNextSubpass(commandBuffer, contents);
auto cmd_state = GetWrite<bp_state::CommandBuffer>(commandBuffer);
auto rp = cmd_state->activeRenderPass.get();
assert(rp);
if (VendorCheckEnabled(kBPVendorNVIDIA)) {
IMAGE_VIEW_STATE* depth_image_view = nullptr;
const auto depth_attachment = rp->createInfo.pSubpasses[cmd_state->activeSubpass].pDepthStencilAttachment;
if (depth_attachment) {
const uint32_t attachment_index = depth_attachment->attachment;
if (attachment_index != VK_ATTACHMENT_UNUSED) {
depth_image_view = (*cmd_state->active_attachments)[attachment_index];
}
}
if (depth_image_view && (depth_image_view->create_info.subresourceRange.aspectMask & VK_IMAGE_ASPECT_DEPTH_BIT) != 0U) {
const VkImage depth_image = depth_image_view->image_state->image();
const VkImageSubresourceRange& subresource_range = depth_image_view->create_info.subresourceRange;
RecordBindZcullScope(*cmd_state, depth_image, subresource_range);
} else {
RecordUnbindZcullScope(*cmd_state);
}
}
}
void BestPractices::RecordCmdBeginRenderPass(VkCommandBuffer commandBuffer, const VkRenderPassBeginInfo* pRenderPassBegin) {
if (!pRenderPassBegin) {
return;
}
auto cb = GetWrite<bp_state::CommandBuffer>(commandBuffer);
auto rp_state = Get<RENDER_PASS_STATE>(pRenderPassBegin->renderPass);
if (rp_state) {
// Check load ops
for (uint32_t att = 0; att < rp_state->createInfo.attachmentCount; att++) {
const auto& attachment = rp_state->createInfo.pAttachments[att];
if (!RenderPassUsesAttachmentAsImageOnly(rp_state->createInfo, att) &&
!RenderPassUsesAttachmentOnTile(rp_state->createInfo, att)) {
continue;
}
// If renderpass doesn't load attachment, no need to validate image in queue
if ((!FormatIsStencilOnly(attachment.format) && attachment.loadOp == VK_ATTACHMENT_LOAD_OP_NONE_EXT) ||
(FormatHasStencil(attachment.format) && attachment.stencilLoadOp == VK_ATTACHMENT_LOAD_OP_NONE_EXT)) {
continue;
}
IMAGE_SUBRESOURCE_USAGE_BP usage = IMAGE_SUBRESOURCE_USAGE_BP::UNDEFINED;
if ((!FormatIsStencilOnly(attachment.format) && attachment.loadOp == VK_ATTACHMENT_LOAD_OP_LOAD) ||
(FormatHasStencil(attachment.format) && attachment.stencilLoadOp == VK_ATTACHMENT_LOAD_OP_LOAD)) {
usage = IMAGE_SUBRESOURCE_USAGE_BP::RENDER_PASS_READ_TO_TILE;
} else if ((!FormatIsStencilOnly(attachment.format) && attachment.loadOp == VK_ATTACHMENT_LOAD_OP_CLEAR) ||
(FormatHasStencil(attachment.format) && attachment.stencilLoadOp == VK_ATTACHMENT_LOAD_OP_CLEAR)) {
usage = IMAGE_SUBRESOURCE_USAGE_BP::RENDER_PASS_CLEARED;
} else if (RenderPassUsesAttachmentAsImageOnly(rp_state->createInfo, att)) {
usage = IMAGE_SUBRESOURCE_USAGE_BP::DESCRIPTOR_ACCESS;
}
auto framebuffer = Get<FRAMEBUFFER_STATE>(pRenderPassBegin->framebuffer);
std::shared_ptr<IMAGE_VIEW_STATE> image_view = nullptr;
if (framebuffer->createInfo.flags & VK_FRAMEBUFFER_CREATE_IMAGELESS_BIT) {
const VkRenderPassAttachmentBeginInfo* rpabi = LvlFindInChain<VkRenderPassAttachmentBeginInfo>(pRenderPassBegin->pNext);
if (rpabi) {
image_view = Get<IMAGE_VIEW_STATE>(rpabi->pAttachments[att]);
}
} else {
image_view = Get<IMAGE_VIEW_STATE>(framebuffer->createInfo.pAttachments[att]);
}
QueueValidateImageView(cb->queue_submit_functions, "vkCmdBeginRenderPass()", image_view.get(), usage);
}
// Check store ops
for (uint32_t att = 0; att < rp_state->createInfo.attachmentCount; att++) {
const auto& attachment = rp_state->createInfo.pAttachments[att];
if (!RenderPassUsesAttachmentOnTile(rp_state->createInfo, att)) {
continue;
}
// If renderpass doesn't store attachment, no need to validate image in queue
if ((!FormatIsStencilOnly(attachment.format) && attachment.storeOp == VK_ATTACHMENT_STORE_OP_NONE) ||
(FormatHasStencil(attachment.format) && attachment.stencilStoreOp == VK_ATTACHMENT_STORE_OP_NONE)) {
continue;
}
IMAGE_SUBRESOURCE_USAGE_BP usage = IMAGE_SUBRESOURCE_USAGE_BP::RENDER_PASS_DISCARDED;
if ((!FormatIsStencilOnly(attachment.format) && attachment.storeOp == VK_ATTACHMENT_STORE_OP_STORE) ||
(FormatHasStencil(attachment.format) && attachment.stencilStoreOp == VK_ATTACHMENT_STORE_OP_STORE)) {
usage = IMAGE_SUBRESOURCE_USAGE_BP::RENDER_PASS_STORED;
}
auto framebuffer = Get<FRAMEBUFFER_STATE>(pRenderPassBegin->framebuffer);
std::shared_ptr<IMAGE_VIEW_STATE> image_view;
if (framebuffer->createInfo.flags & VK_FRAMEBUFFER_CREATE_IMAGELESS_BIT) {
const VkRenderPassAttachmentBeginInfo* rpabi = LvlFindInChain<VkRenderPassAttachmentBeginInfo>(pRenderPassBegin->pNext);
if (rpabi) {
image_view = Get<IMAGE_VIEW_STATE>(rpabi->pAttachments[att]);
}
} else {
image_view = Get<IMAGE_VIEW_STATE>(framebuffer->createInfo.pAttachments[att]);
}
QueueValidateImageView(cb->queue_submit_functions_after_render_pass, "vkCmdEndRenderPass()", image_view.get(), usage);
}
}
}
bool BestPractices::PreCallValidateCmdBeginRenderPass(VkCommandBuffer commandBuffer, const VkRenderPassBeginInfo* pRenderPassBegin,
VkSubpassContents contents) const {
bool skip = StateTracker::PreCallValidateCmdBeginRenderPass(commandBuffer, pRenderPassBegin, contents);
skip |= ValidateCmdBeginRenderPass(commandBuffer, RENDER_PASS_VERSION_1, pRenderPassBegin);
return skip;
}
bool BestPractices::PreCallValidateCmdBeginRenderPass2KHR(VkCommandBuffer commandBuffer,
const VkRenderPassBeginInfo* pRenderPassBegin,
const VkSubpassBeginInfo* pSubpassBeginInfo) const {
bool skip = StateTracker::PreCallValidateCmdBeginRenderPass2KHR(commandBuffer, pRenderPassBegin, pSubpassBeginInfo);
skip |= ValidateCmdBeginRenderPass(commandBuffer, RENDER_PASS_VERSION_2, pRenderPassBegin);
return skip;
}
bool BestPractices::PreCallValidateCmdBeginRenderPass2(VkCommandBuffer commandBuffer, const VkRenderPassBeginInfo* pRenderPassBegin,
const VkSubpassBeginInfo* pSubpassBeginInfo) const {
bool skip = StateTracker::PreCallValidateCmdBeginRenderPass2(commandBuffer, pRenderPassBegin, pSubpassBeginInfo);
skip |= ValidateCmdBeginRenderPass(commandBuffer, RENDER_PASS_VERSION_2, pRenderPassBegin);
return skip;
}
bool BestPractices::PreCallValidateCmdBeginRendering(VkCommandBuffer commandBuffer, const VkRenderingInfo* pRenderingInfo) const {
bool skip = StateTracker::PreCallValidateCmdBeginRendering(commandBuffer, pRenderingInfo);
skip |= ValidateCmdBeginRendering(commandBuffer, pRenderingInfo);
return skip;
}
bool BestPractices::PreCallValidateCmdBeginRenderingKHR(VkCommandBuffer commandBuffer, const VkRenderingInfo* pRenderingInfo) const {
bool skip = StateTracker::PreCallValidateCmdBeginRenderingKHR(commandBuffer, pRenderingInfo);
skip |= ValidateCmdBeginRendering(commandBuffer, pRenderingInfo);
return skip;
}
void BestPractices::RecordCmdBeginRenderPass(VkCommandBuffer commandBuffer, RenderPassCreateVersion rp_version,
const VkRenderPassBeginInfo* pRenderPassBegin) {
// Reset the renderpass state
auto cb = GetWrite<bp_state::CommandBuffer>(commandBuffer);
// TODO - move this logic to the Render Pass state as cb->has_draw_cmd should stay true for lifetime of command buffer
cb->has_draw_cmd = false;
assert(cb);
auto& render_pass_state = cb->render_pass_state;
render_pass_state.touchesAttachments.clear();
render_pass_state.earlyClearAttachments.clear();
render_pass_state.numDrawCallsDepthOnly = 0;
render_pass_state.numDrawCallsDepthEqualCompare = 0;
render_pass_state.colorAttachment = false;
render_pass_state.depthAttachment = false;
render_pass_state.drawTouchAttachments = true;
// Don't reset state related to pipeline state.
// Reset NV state
cb->nv = {};
auto rp_state = Get<RENDER_PASS_STATE>(pRenderPassBegin->renderPass);
// track depth / color attachment usage within the renderpass
for (size_t i = 0; i < rp_state->createInfo.subpassCount; i++) {
// record if depth/color attachments are in use for this renderpass
if (rp_state->createInfo.pSubpasses[i].pDepthStencilAttachment != nullptr) render_pass_state.depthAttachment = true;
if (rp_state->createInfo.pSubpasses[i].colorAttachmentCount > 0) render_pass_state.colorAttachment = true;
}
}
void BestPractices::PostCallRecordCmdBeginRenderPass(VkCommandBuffer commandBuffer, const VkRenderPassBeginInfo* pRenderPassBegin,
VkSubpassContents contents) {
StateTracker::PostCallRecordCmdBeginRenderPass(commandBuffer, pRenderPassBegin, contents);
RecordCmdBeginRenderPass(commandBuffer, RENDER_PASS_VERSION_1, pRenderPassBegin);
}
void BestPractices::PostCallRecordCmdBeginRenderPass2(VkCommandBuffer commandBuffer, const VkRenderPassBeginInfo* pRenderPassBegin,
const VkSubpassBeginInfo* pSubpassBeginInfo) {
StateTracker::PostCallRecordCmdBeginRenderPass2(commandBuffer, pRenderPassBegin, pSubpassBeginInfo);
RecordCmdBeginRenderPass(commandBuffer, RENDER_PASS_VERSION_2, pRenderPassBegin);
}
void BestPractices::PostCallRecordCmdBeginRenderPass2KHR(VkCommandBuffer commandBuffer,
const VkRenderPassBeginInfo* pRenderPassBegin,
const VkSubpassBeginInfo* pSubpassBeginInfo) {
StateTracker::PostCallRecordCmdBeginRenderPass2KHR(commandBuffer, pRenderPassBegin, pSubpassBeginInfo);
RecordCmdBeginRenderPass(commandBuffer, RENDER_PASS_VERSION_2, pRenderPassBegin);
}
// Generic function to handle validation for all CmdDraw* type functions
bool BestPractices::ValidateCmdDrawType(VkCommandBuffer cmd_buffer, const char* caller) const {
bool skip = false;
const auto cb_state = GetRead<bp_state::CommandBuffer>(cmd_buffer);
if (cb_state) {
const auto lv_bind_point = ConvertToLvlBindPoint(VK_PIPELINE_BIND_POINT_GRAPHICS);
const auto* pipeline_state = cb_state->lastBound[lv_bind_point].pipeline_state;
const auto& current_vtx_bfr_binding_info = cb_state->current_vertex_buffer_binding_info.vertex_buffer_bindings;
// Verify vertex binding
if (pipeline_state && pipeline_state->vertex_input_state &&
pipeline_state->vertex_input_state->binding_descriptions.size() <= 0) {
if ((!current_vtx_bfr_binding_info.empty()) && (!cb_state->vertex_buffer_used)) {
skip |= LogPerformanceWarning(cb_state->commandBuffer(), kVUID_BestPractices_DrawState_VtxIndexOutOfBounds,
"Vertex buffers are bound to %s but no vertex buffers are attached to %s.",
report_data->FormatHandle(cb_state->commandBuffer()).c_str(),
report_data->FormatHandle(pipeline_state->pipeline()).c_str());
}
}
const auto* pipe = cb_state->GetCurrentPipeline(VK_PIPELINE_BIND_POINT_GRAPHICS);
if (pipe) {
const auto& rp_state = pipe->RenderPassState();
if (rp_state) {
for (uint32_t i = 0; i < rp_state->createInfo.subpassCount; ++i) {
const auto& subpass = rp_state->createInfo.pSubpasses[i];
const auto* ds_state = pipe->DepthStencilState();
const uint32_t depth_stencil_attachment =
GetSubpassDepthStencilAttachmentIndex(ds_state, subpass.pDepthStencilAttachment);
const auto* raster_state = pipe->RasterizationState();
if ((depth_stencil_attachment == VK_ATTACHMENT_UNUSED) && raster_state &&
raster_state->depthBiasEnable == VK_TRUE) {
skip |= LogWarning(cb_state->commandBuffer(), kVUID_BestPractices_DepthBiasNoAttachment,
"%s: depthBiasEnable == VK_TRUE without a depth-stencil attachment.", caller);
}
}
}
}
}
return skip;
}
void BestPractices::RecordCmdDrawType(VkCommandBuffer cmd_buffer, uint32_t draw_count, const char* caller) {
auto cb_node = GetWrite<bp_state::CommandBuffer>(cmd_buffer);
assert(cb_node);
if (VendorCheckEnabled(kBPVendorArm)) {
RecordCmdDrawTypeArm(*cb_node, draw_count, caller);
}
if (VendorCheckEnabled(kBPVendorNVIDIA)) {
RecordCmdDrawTypeNVIDIA(*cb_node);
}
if (cb_node->render_pass_state.drawTouchAttachments) {
for (auto& touch : cb_node->render_pass_state.nextDrawTouchesAttachments) {
RecordAttachmentAccess(*cb_node, touch.framebufferAttachment, touch.aspects);
}
// No need to touch the same attachments over and over.
cb_node->render_pass_state.drawTouchAttachments = false;
}
}
void BestPractices::RecordCmdDrawTypeArm(bp_state::CommandBuffer& cb_node, uint32_t draw_count, const char* caller) {
auto& render_pass_state = cb_node.render_pass_state;
// Each TBDR vendor requires a depth pre-pass draw call to have a minimum number of vertices/indices before it counts towards
// depth prepass warnings First find the lowest enabled draw count
uint32_t lowestEnabledMinDrawCount = 0;
lowestEnabledMinDrawCount = VendorCheckEnabled(kBPVendorArm) * kDepthPrePassMinDrawCountArm;
if (VendorCheckEnabled(kBPVendorIMG) && kDepthPrePassMinDrawCountIMG < lowestEnabledMinDrawCount)
lowestEnabledMinDrawCount = kDepthPrePassMinDrawCountIMG;
if (draw_count >= lowestEnabledMinDrawCount) {
if (render_pass_state.depthOnly) render_pass_state.numDrawCallsDepthOnly++;
if (render_pass_state.depthEqualComparison) render_pass_state.numDrawCallsDepthEqualCompare++;
}
}
void BestPractices::RecordCmdDrawTypeNVIDIA(bp_state::CommandBuffer& cmd_state) {
assert(VendorCheckEnabled(kBPVendorNVIDIA));
if (cmd_state.nv.depth_test_enable && cmd_state.nv.zcull_direction != bp_state::CommandBufferStateNV::ZcullDirection::Unknown) {
RecordSetScopeZcullDirection(cmd_state, cmd_state.nv.zcull_direction);
RecordZcullDraw(cmd_state);
}
}
bool BestPractices::PreCallValidateCmdDraw(VkCommandBuffer commandBuffer, uint32_t vertexCount, uint32_t instanceCount,
uint32_t firstVertex, uint32_t firstInstance) const {
bool skip = false;
if (instanceCount == 0) {
skip |= LogWarning(device, kVUID_BestPractices_CmdDraw_InstanceCountZero,
"Warning: You are calling vkCmdDraw() with an instanceCount of Zero.");
}
skip |= ValidateCmdDrawType(commandBuffer, "vkCmdDraw()");
return skip;
}
void BestPractices::PostCallRecordCmdDraw(VkCommandBuffer commandBuffer, uint32_t vertexCount, uint32_t instanceCount,
uint32_t firstVertex, uint32_t firstInstance) {
StateTracker::PostCallRecordCmdDraw(commandBuffer, vertexCount, instanceCount, firstVertex, firstInstance);
RecordCmdDrawType(commandBuffer, vertexCount * instanceCount, "vkCmdDraw()");
}
bool BestPractices::PreCallValidateCmdDrawIndexed(VkCommandBuffer commandBuffer, uint32_t indexCount, uint32_t instanceCount,
uint32_t firstIndex, int32_t vertexOffset, uint32_t firstInstance) const {
bool skip = false;
if (instanceCount == 0) {
skip |= LogWarning(device, kVUID_BestPractices_CmdDraw_InstanceCountZero,
"Warning: You are calling vkCmdDrawIndexed() with an instanceCount of Zero.");
}
skip |= ValidateCmdDrawType(commandBuffer, "vkCmdDrawIndexed()");
// Check if we reached the limit for small indexed draw calls.
// Note that we cannot update the draw call count here, so we do it in PreCallRecordCmdDrawIndexed.
const auto cmd_state = GetRead<bp_state::CommandBuffer>(commandBuffer);
if ((indexCount * instanceCount) <= kSmallIndexedDrawcallIndices &&
(cmd_state->small_indexed_draw_call_count == kMaxSmallIndexedDrawcalls - 1) &&
(VendorCheckEnabled(kBPVendorArm) || VendorCheckEnabled(kBPVendorIMG))) {
skip |= LogPerformanceWarning(device, kVUID_BestPractices_CmdDrawIndexed_ManySmallIndexedDrawcalls,
"%s %s: The command buffer contains many small indexed drawcalls "
"(at least %u drawcalls with less than %u indices each). This may cause pipeline bubbles. "
"You can try batching drawcalls or instancing when applicable.",
VendorSpecificTag(kBPVendorArm), VendorSpecificTag(kBPVendorIMG), kMaxSmallIndexedDrawcalls,
kSmallIndexedDrawcallIndices);
}
if (VendorCheckEnabled(kBPVendorArm)) {
ValidateIndexBufferArm(*cmd_state, indexCount, instanceCount, firstIndex, vertexOffset, firstInstance);
}
return skip;
}
bool BestPractices::ValidateIndexBufferArm(const bp_state::CommandBuffer& cmd_state, uint32_t indexCount, uint32_t instanceCount,
uint32_t firstIndex, int32_t vertexOffset, uint32_t firstInstance) const {
bool skip = false;
// check for sparse/underutilised index buffer, and post-transform cache thrashing
const auto* ib_state = cmd_state.index_buffer_binding.buffer_state.get();
if (ib_state == nullptr || cmd_state.index_buffer_binding.buffer_state->Destroyed()) return skip;
const VkIndexType ib_type = cmd_state.index_buffer_binding.index_type;
const auto& ib_mem_state = *ib_state->MemState();
const VkDeviceSize ib_mem_offset = ib_mem_state.mapped_range.offset;
const void* ib_mem = ib_mem_state.p_driver_data;
bool primitive_restart_enable = false;
const auto lv_bind_point = ConvertToLvlBindPoint(VK_PIPELINE_BIND_POINT_GRAPHICS);
const auto& pipeline_binding_iter = cmd_state.lastBound[lv_bind_point];
const auto* pipeline_state = pipeline_binding_iter.pipeline_state;
const auto* ia_state = pipeline_state ? pipeline_state->InputAssemblyState() : nullptr;
if (ia_state) {
primitive_restart_enable = ia_state->primitiveRestartEnable == VK_TRUE;
}
// no point checking index buffer if the memory is nonexistant/unmapped, or if there is no graphics pipeline bound to this CB
if (ib_mem && pipeline_binding_iter.IsUsing()) {
const uint32_t scan_stride = GetIndexAlignment(ib_type);
const uint8_t* scan_begin = static_cast<const uint8_t*>(ib_mem) + ib_mem_offset + firstIndex * scan_stride;
const uint8_t* scan_end = scan_begin + indexCount * scan_stride;
// Min and max are important to track for some Mali architectures. In older Mali devices without IDVS, all
// vertices corresponding to indices between the minimum and maximum may be loaded, and possibly shaded,
// irrespective of whether or not they're part of the draw call.
// start with minimum as 0xFFFFFFFF and adjust to indices in the buffer
uint32_t min_index = ~0u;
// start with maximum as 0 and adjust to indices in the buffer
uint32_t max_index = 0u;
// first scan-through, we're looking to simulate a model LRU post-transform cache, estimating the number of vertices shaded
// for the given index buffer
uint32_t vertex_shade_count = 0;
PostTransformLRUCacheModel post_transform_cache;
// The size of the cache being modelled positively correlates with how much behaviour it can capture about
// arbitrary ground-truth hardware/architecture cache behaviour. I.e. it's a good solution when we don't know the
// target architecture.
// However, modelling a post-transform cache with more than 32 elements gives diminishing returns in practice.
// http://eelpi.gotdns.org/papers/fast_vert_cache_opt.html
post_transform_cache.resize(32);
for (const uint8_t* scan_ptr = scan_begin; scan_ptr < scan_end; scan_ptr += scan_stride) {
uint32_t scan_index;
uint32_t primitive_restart_value;
if (ib_type == VK_INDEX_TYPE_UINT8_EXT) {
scan_index = *reinterpret_cast<const uint8_t*>(scan_ptr);
primitive_restart_value = 0xFF;
} else if (ib_type == VK_INDEX_TYPE_UINT16) {
scan_index = *reinterpret_cast<const uint16_t*>(scan_ptr);
primitive_restart_value = 0xFFFF;
} else {
scan_index = *reinterpret_cast<const uint32_t*>(scan_ptr);
primitive_restart_value = 0xFFFFFFFF;
}
max_index = std::max(max_index, scan_index);
min_index = std::min(min_index, scan_index);
if (!primitive_restart_enable || scan_index != primitive_restart_value) {
bool in_cache = post_transform_cache.query_cache(scan_index);
// if the shaded vertex corresponding to the index is not in the PT-cache, we need to shade again
if (!in_cache) vertex_shade_count++;
}
}
// if the max and min values were not set, then we either have no indices, or all primitive restarts, exit...
// if the max and min are the same, then it implies all the indices are the same, then we don't need to do anything
if (max_index < min_index || max_index == min_index) return skip;
if (max_index - min_index >= indexCount) {
skip |=
LogPerformanceWarning(device, kVUID_BestPractices_CmdDrawIndexed_SparseIndexBuffer,
"%s The indices which were specified for the draw call only utilise approximately %.02f%% of "
"index buffer value range. Arm Mali architectures before G71 do not have IDVS (Index-Driven "
"Vertex Shading), meaning all vertices corresponding to indices between the minimum and "
"maximum would be loaded, and possibly shaded, whether or not they are used.",
VendorSpecificTag(kBPVendorArm),
(static_cast<float>(indexCount) / static_cast<float>(max_index - min_index)) * 100.0f);
return skip;
}
// use a dynamic vector of bitsets as a memory-compact representation of which indices are included in the draw call
// each bit of the n-th bucket contains the inclusion information for indices (n*n_buckets) to ((n+1)*n_buckets)
const size_t refs_per_bucket = 64;
std::vector<std::bitset<refs_per_bucket>> vertex_reference_buckets;
const uint32_t n_indices = max_index - min_index + 1;
const uint32_t n_buckets = (n_indices / static_cast<uint32_t>(refs_per_bucket)) +
((n_indices % static_cast<uint32_t>(refs_per_bucket)) != 0 ? 1 : 0);
// there needs to be at least one bitset to store a set of indices smaller than n_buckets
vertex_reference_buckets.resize(std::max(1u, n_buckets));
// To avoid using too much memory, we run over the indices again.
// Knowing the size from the last scan allows us to record index usage with bitsets
for (const uint8_t* scan_ptr = scan_begin; scan_ptr < scan_end; scan_ptr += scan_stride) {
uint32_t scan_index;
if (ib_type == VK_INDEX_TYPE_UINT8_EXT) {
scan_index = *reinterpret_cast<const uint8_t*>(scan_ptr);
} else if (ib_type == VK_INDEX_TYPE_UINT16) {
scan_index = *reinterpret_cast<const uint16_t*>(scan_ptr);
} else {
scan_index = *reinterpret_cast<const uint32_t*>(scan_ptr);
}
// keep track of the set of all indices used to reference vertices in the draw call
size_t index_offset = scan_index - min_index;
size_t bitset_bucket_index = index_offset / refs_per_bucket;
uint64_t used_indices = 1ull << ((index_offset % refs_per_bucket) & 0xFFFFFFFFu);
vertex_reference_buckets[bitset_bucket_index] |= used_indices;
}
uint32_t vertex_reference_count = 0;
for (const auto& bitset : vertex_reference_buckets) {
vertex_reference_count += static_cast<uint32_t>(bitset.count());
}
// low index buffer utilization implies that: of the vertices available to the draw call, not all are utilized
float utilization = static_cast<float>(vertex_reference_count) / static_cast<float>(max_index - min_index + 1);
// low hit rate (high miss rate) implies the order of indices in the draw call may be possible to improve
float cache_hit_rate = static_cast<float>(vertex_reference_count) / static_cast<float>(vertex_shade_count);
if (utilization < 0.5f) {
skip |= LogPerformanceWarning(device, kVUID_BestPractices_CmdDrawIndexed_SparseIndexBuffer,
"%s The indices which were specified for the draw call only utilise approximately "
"%.02f%% of the bound vertex buffer.",
VendorSpecificTag(kBPVendorArm), utilization);
}
if (cache_hit_rate <= 0.5f) {
skip |=
LogPerformanceWarning(device, kVUID_BestPractices_CmdDrawIndexed_PostTransformCacheThrashing,
"%s The indices which were specified for the draw call are estimated to cause thrashing of "
"the post-transform vertex cache, with a hit-rate of %.02f%%. "
"I.e. the ordering of the index buffer may not make optimal use of indices associated with "
"recently shaded vertices.",
VendorSpecificTag(kBPVendorArm), cache_hit_rate * 100.0f);
}
}
return skip;
}
bool BestPractices::PreCallValidateCmdExecuteCommands(VkCommandBuffer commandBuffer, uint32_t commandBufferCount,
const VkCommandBuffer* pCommandBuffers) const {
bool skip = false;
const auto primary = GetRead<bp_state::CommandBuffer>(commandBuffer);
for (uint32_t i = 0; i < commandBufferCount; i++) {
const auto secondary_cb = GetRead<bp_state::CommandBuffer>(pCommandBuffers[i]);
if (secondary_cb == nullptr) {
continue;
}
const auto& secondary = secondary_cb->render_pass_state;
for (auto& clear : secondary.earlyClearAttachments) {
if (ClearAttachmentsIsFullClear(*primary, uint32_t(clear.rects.size()), clear.rects.data())) {
skip |= ValidateClearAttachment(*primary, clear.framebufferAttachment, clear.colorAttachment, clear.aspects, true);
}
}
}
if (VendorCheckEnabled(kBPVendorAMD)) {
if (commandBufferCount > 0) {
skip |= LogPerformanceWarning(device, kVUID_BestPractices_CmdBuffer_AvoidSecondaryCmdBuffers,
"%s Performance warning: Use of secondary command buffers is not recommended. ",
VendorSpecificTag(kBPVendorAMD));
}
}
return skip;
}
void BestPractices::PreCallRecordCmdExecuteCommands(VkCommandBuffer commandBuffer, uint32_t commandBufferCount,
const VkCommandBuffer* pCommandBuffers) {
ValidationStateTracker::PreCallRecordCmdExecuteCommands(commandBuffer, commandBufferCount, pCommandBuffers);
auto primary = GetWrite<bp_state::CommandBuffer>(commandBuffer);
if (!primary) {
return;
}
for (uint32_t i = 0; i < commandBufferCount; i++) {
auto secondary = GetWrite<bp_state::CommandBuffer>(pCommandBuffers[i]);
if (!secondary) {
continue;
}
for (auto& early_clear : secondary->render_pass_state.earlyClearAttachments) {
if (ClearAttachmentsIsFullClear(*primary, uint32_t(early_clear.rects.size()), early_clear.rects.data())) {
RecordAttachmentClearAttachments(*primary, early_clear.framebufferAttachment, early_clear.colorAttachment,
early_clear.aspects, uint32_t(early_clear.rects.size()), early_clear.rects.data());
} else {
RecordAttachmentAccess(*primary, early_clear.framebufferAttachment, early_clear.aspects);
}
}
for (auto& touch : secondary->render_pass_state.touchesAttachments) {
RecordAttachmentAccess(*primary, touch.framebufferAttachment, touch.aspects);
}
primary->render_pass_state.numDrawCallsDepthEqualCompare += secondary->render_pass_state.numDrawCallsDepthEqualCompare;
primary->render_pass_state.numDrawCallsDepthOnly += secondary->render_pass_state.numDrawCallsDepthOnly;
}
}
bool BestPractices::PreCallValidateCmdBuildAccelerationStructureNV(VkCommandBuffer commandBuffer,
const VkAccelerationStructureInfoNV* pInfo,
VkBuffer instanceData, VkDeviceSize instanceOffset,
VkBool32 update, VkAccelerationStructureNV dst,
VkAccelerationStructureNV src, VkBuffer scratch,
VkDeviceSize scratchOffset) const {
return ValidateBuildAccelerationStructure(commandBuffer);
}
bool BestPractices::PreCallValidateCmdBuildAccelerationStructuresIndirectKHR(
VkCommandBuffer commandBuffer, uint32_t infoCount, const VkAccelerationStructureBuildGeometryInfoKHR* pInfos,
const VkDeviceAddress* pIndirectDeviceAddresses, const uint32_t* pIndirectStrides,
const uint32_t* const* ppMaxPrimitiveCounts) const {
return ValidateBuildAccelerationStructure(commandBuffer);
}
bool BestPractices::PreCallValidateCmdBuildAccelerationStructuresKHR(
VkCommandBuffer commandBuffer, uint32_t infoCount, const VkAccelerationStructureBuildGeometryInfoKHR* pInfos,
const VkAccelerationStructureBuildRangeInfoKHR* const* ppBuildRangeInfos) const {
return ValidateBuildAccelerationStructure(commandBuffer);
}
bool BestPractices::ValidateBuildAccelerationStructure(VkCommandBuffer commandBuffer) const {
bool skip = false;
auto cb_node = GetRead<bp_state::CommandBuffer>(commandBuffer);
assert(cb_node);
if (VendorCheckEnabled(kBPVendorNVIDIA)) {
if ((cb_node->GetQueueFlags() & VK_QUEUE_GRAPHICS_BIT) != 0) {
skip |= LogPerformanceWarning(commandBuffer, kVUID_BestPractices_AccelerationStructure_NotAsync,
"%s Performance warning: Prefer building acceleration structures on an asynchronous "
"compute queue, instead of using the universal graphics queue.",
VendorSpecificTag(kBPVendorNVIDIA));
}
}
return skip;
}
bool BestPractices::ValidateBindMemory(VkDevice device, VkDeviceMemory memory) const {
bool skip = false;
if (VendorCheckEnabled(kBPVendorNVIDIA) && device_extensions.vk_ext_pageable_device_local_memory) {
auto mem_info = std::static_pointer_cast<const bp_state::DeviceMemory>(Get<DEVICE_MEMORY_STATE>(memory));
if (!mem_info->dynamic_priority) {
skip |=
LogPerformanceWarning(device, kVUID_BestPractices_BindMemory_NoPriority,
"%s Use vkSetDeviceMemoryPriorityEXT to provide the OS with information on which allocations "
"should stay in memory and which should be demoted first when video memory is limited. The "
"highest priority should be given to GPU-written resources like color attachments, depth "
"attachments, storage images, and buffers written from the GPU.",
VendorSpecificTag(kBPVendorNVIDIA));
}
}
return skip;
}
void BestPractices::RecordAttachmentAccess(bp_state::CommandBuffer& cb_state, uint32_t fb_attachment, VkImageAspectFlags aspects) {
auto& state = cb_state.render_pass_state;
// Called when we have a partial clear attachment, or a normal draw call which accesses an attachment.
auto itr =
std::find_if(state.touchesAttachments.begin(), state.touchesAttachments.end(),
[fb_attachment](const bp_state::AttachmentInfo& info) { return info.framebufferAttachment == fb_attachment; });
if (itr != state.touchesAttachments.end()) {
itr->aspects |= aspects;
} else {
state.touchesAttachments.push_back({ fb_attachment, aspects });
}
}
void BestPractices::RecordAttachmentClearAttachments(bp_state::CommandBuffer& cmd_state, uint32_t fb_attachment,
uint32_t color_attachment, VkImageAspectFlags aspects, uint32_t rectCount,
const VkClearRect* pRects) {
auto& state = cmd_state.render_pass_state;
// If we observe a full clear before any other access to a frame buffer attachment,
// we have candidate for redundant clear attachments.
auto itr =
std::find_if(state.touchesAttachments.begin(), state.touchesAttachments.end(),
[fb_attachment](const bp_state::AttachmentInfo& info) { return info.framebufferAttachment == fb_attachment; });
uint32_t new_aspects = aspects;
if (itr != state.touchesAttachments.end()) {
new_aspects = aspects & ~itr->aspects;
itr->aspects |= aspects;
} else {
state.touchesAttachments.push_back({ fb_attachment, aspects });
}
if (new_aspects == 0) {
return;
}
if (cmd_state.createInfo.level == VK_COMMAND_BUFFER_LEVEL_SECONDARY) {
// The first command might be a clear, but might not be the first in the render pass, defer any checks until
// CmdExecuteCommands.
state.earlyClearAttachments.push_back({ fb_attachment, color_attachment, new_aspects,
std::vector<VkClearRect>{pRects, pRects + rectCount} });
}
}
void BestPractices::PreCallRecordCmdClearAttachments(VkCommandBuffer commandBuffer,
uint32_t attachmentCount, const VkClearAttachment* pClearAttachments,
uint32_t rectCount, const VkClearRect* pRects) {
ValidationStateTracker::PreCallRecordCmdClearAttachments(commandBuffer, attachmentCount, pClearAttachments, rectCount, pRects);
auto cmd_state = GetWrite<bp_state::CommandBuffer>(commandBuffer);
auto* rp_state = cmd_state->activeRenderPass.get();
auto* fb_state = cmd_state->activeFramebuffer.get();
bool is_secondary = cmd_state->createInfo.level == VK_COMMAND_BUFFER_LEVEL_SECONDARY;
if (rectCount == 0 || !rp_state) {
return;
}
if (!is_secondary && !fb_state && !rp_state->use_dynamic_rendering && !rp_state->use_dynamic_rendering_inherited) {
return;
}
// If we have a rect which covers the entire frame buffer, we have a LOAD_OP_CLEAR-like command.
const bool full_clear = ClearAttachmentsIsFullClear(*cmd_state, rectCount, pRects);
if (rp_state->UsesDynamicRendering()) {
if (VendorCheckEnabled(kBPVendorNVIDIA)) {
auto pColorAttachments = rp_state->dynamic_rendering_begin_rendering_info.pColorAttachments;
for (uint32_t i = 0; i < attachmentCount; i++) {
auto& clear_attachment = pClearAttachments[i];
if (clear_attachment.aspectMask & (VK_IMAGE_ASPECT_DEPTH_BIT | VK_IMAGE_ASPECT_STENCIL_BIT)) {
RecordResetScopeZcullDirection(*cmd_state);
}
if ((clear_attachment.aspectMask & VK_IMAGE_ASPECT_COLOR_BIT) &&
clear_attachment.colorAttachment != VK_ATTACHMENT_UNUSED &&
pColorAttachments) {
const auto& attachment = pColorAttachments[clear_attachment.colorAttachment];
if (attachment.imageView) {
auto image_view_state = Get<IMAGE_VIEW_STATE>(attachment.imageView);
const VkFormat format = image_view_state->create_info.format;
RecordClearColor(format, clear_attachment.clearValue.color);
}
}
}
}
// TODO: Implement other best practices for dynamic rendering
} else {
auto& subpass = rp_state->createInfo.pSubpasses[cmd_state->activeSubpass];
for (uint32_t i = 0; i < attachmentCount; i++) {
auto& attachment = pClearAttachments[i];
uint32_t fb_attachment = VK_ATTACHMENT_UNUSED;
VkImageAspectFlags aspects = attachment.aspectMask;
if (aspects & VK_IMAGE_ASPECT_DEPTH_BIT) {
if (VendorCheckEnabled(kBPVendorNVIDIA)) {
RecordResetScopeZcullDirection(*cmd_state);
}
}
if (aspects & (VK_IMAGE_ASPECT_DEPTH_BIT | VK_IMAGE_ASPECT_STENCIL_BIT)) {
if (subpass.pDepthStencilAttachment) {
fb_attachment = subpass.pDepthStencilAttachment->attachment;
}
} else if (aspects & VK_IMAGE_ASPECT_COLOR_BIT) {
fb_attachment = subpass.pColorAttachments[attachment.colorAttachment].attachment;
}
if (fb_attachment != VK_ATTACHMENT_UNUSED) {
if (full_clear) {
RecordAttachmentClearAttachments(*cmd_state, fb_attachment, attachment.colorAttachment,
aspects, rectCount, pRects);
} else {
RecordAttachmentAccess(*cmd_state, fb_attachment, aspects);
}
if (VendorCheckEnabled(kBPVendorNVIDIA)) {
const VkFormat format = rp_state->createInfo.pAttachments[fb_attachment].format;
RecordClearColor(format, attachment.clearValue.color);
}
}
}
}
}
void BestPractices::PreCallRecordCmdDrawIndexed(VkCommandBuffer commandBuffer, uint32_t indexCount, uint32_t instanceCount,
uint32_t firstIndex, int32_t vertexOffset, uint32_t firstInstance) {
ValidationStateTracker::PreCallRecordCmdDrawIndexed(commandBuffer, indexCount, instanceCount, firstIndex, vertexOffset,
firstInstance);
auto cmd_state = GetWrite<bp_state::CommandBuffer>(commandBuffer);
if ((indexCount * instanceCount) <= kSmallIndexedDrawcallIndices) {
cmd_state->small_indexed_draw_call_count++;
}
ValidateBoundDescriptorSets(*cmd_state, VK_PIPELINE_BIND_POINT_GRAPHICS, "vkCmdDrawIndexed()");
}
void BestPractices::PostCallRecordCmdDrawIndexed(VkCommandBuffer commandBuffer, uint32_t indexCount, uint32_t instanceCount,
uint32_t firstIndex, int32_t vertexOffset, uint32_t firstInstance) {
StateTracker::PostCallRecordCmdDrawIndexed(commandBuffer, indexCount, instanceCount, firstIndex, vertexOffset, firstInstance);
RecordCmdDrawType(commandBuffer, indexCount * instanceCount, "vkCmdDrawIndexed()");
}
bool BestPractices::PreCallValidateCmdDrawIndirect(VkCommandBuffer commandBuffer, VkBuffer buffer, VkDeviceSize offset,
uint32_t drawCount, uint32_t stride) const {
bool skip = false;
if (drawCount == 0) {
skip |= LogWarning(device, kVUID_BestPractices_CmdDraw_DrawCountZero,
"Warning: You are calling vkCmdDrawIndirect() with a drawCount of Zero.");
}
skip |= ValidateCmdDrawType(commandBuffer, "vkCmdDrawIndirect()");
return skip;
}
void BestPractices::PostCallRecordCmdDrawIndirect(VkCommandBuffer commandBuffer, VkBuffer buffer, VkDeviceSize offset,
uint32_t count, uint32_t stride) {
StateTracker::PostCallRecordCmdDrawIndirect(commandBuffer, buffer, offset, count, stride);
RecordCmdDrawType(commandBuffer, count, "vkCmdDrawIndirect()");
}
bool BestPractices::PreCallValidateCmdDrawIndexedIndirect(VkCommandBuffer commandBuffer, VkBuffer buffer, VkDeviceSize offset,
uint32_t drawCount, uint32_t stride) const {
bool skip = false;
if (drawCount == 0) {
skip |= LogWarning(device, kVUID_BestPractices_CmdDraw_DrawCountZero,
"Warning: You are calling vkCmdDrawIndexedIndirect() with a drawCount of Zero.");
}
skip |= ValidateCmdDrawType(commandBuffer, "vkCmdDrawIndexedIndirect()");
return skip;
}
void BestPractices::PostCallRecordCmdDrawIndexedIndirect(VkCommandBuffer commandBuffer, VkBuffer buffer, VkDeviceSize offset,
uint32_t count, uint32_t stride) {
StateTracker::PostCallRecordCmdDrawIndexedIndirect(commandBuffer, buffer, offset, count, stride);
RecordCmdDrawType(commandBuffer, count, "vkCmdDrawIndexedIndirect()");
}
bool BestPractices::PreCallValidateCmdDrawIndexedIndirectCount(VkCommandBuffer commandBuffer, VkBuffer buffer, VkDeviceSize offset,
VkBuffer countBuffer, VkDeviceSize countBufferOffset,
uint32_t maxDrawCount, uint32_t stride) const {
bool skip = ValidateCmdDrawType(commandBuffer, "vkCmdDrawIndexedIndirectCount()");
return skip;
}
void BestPractices::PostCallRecordCmdDrawIndexedIndirectCount(VkCommandBuffer commandBuffer, VkBuffer buffer, VkDeviceSize offset,
VkBuffer countBuffer, VkDeviceSize countBufferOffset,
uint32_t maxDrawCount, uint32_t stride) {
StateTracker::PostCallRecordCmdDrawIndexedIndirectCount(commandBuffer, buffer, offset, countBuffer, countBufferOffset,
maxDrawCount, stride);
RecordCmdDrawType(commandBuffer, 0, "vkCmdDrawIndexedIndirectCount()");
}
bool BestPractices::PreCallValidateCmdDrawIndexedIndirectCountAMD(VkCommandBuffer commandBuffer, VkBuffer buffer,
VkDeviceSize offset, VkBuffer countBuffer,
VkDeviceSize countBufferOffset, uint32_t maxDrawCount,
uint32_t stride) const {
bool skip = ValidateCmdDrawType(commandBuffer, "vkCmdDrawIndexedIndirectCountAMD");
return skip;
}
void BestPractices::PostCallRecordCmdDrawIndexedIndirectCountAMD(VkCommandBuffer commandBuffer, VkBuffer buffer,
VkDeviceSize offset, VkBuffer countBuffer,
VkDeviceSize countBufferOffset, uint32_t maxDrawCount,
uint32_t stride) {
StateTracker::PostCallRecordCmdDrawIndexedIndirectCountAMD(commandBuffer, buffer, offset, countBuffer, countBufferOffset,
maxDrawCount, stride);
RecordCmdDrawType(commandBuffer, 0, "vkCmdDrawIndexedIndirectCountAMD()");
}
bool BestPractices::PreCallValidateCmdDrawIndexedIndirectCountKHR(VkCommandBuffer commandBuffer, VkBuffer buffer,
VkDeviceSize offset, VkBuffer countBuffer,
VkDeviceSize countBufferOffset, uint32_t maxDrawCount,
uint32_t stride) const {
bool skip = ValidateCmdDrawType(commandBuffer, "vkCmdDrawIndexedIndirectCountKHR");
return skip;
}
void BestPractices::PostCallRecordCmdDrawIndexedIndirectCountKHR(VkCommandBuffer commandBuffer, VkBuffer buffer,
VkDeviceSize offset, VkBuffer countBuffer,
VkDeviceSize countBufferOffset, uint32_t maxDrawCount,
uint32_t stride) {
StateTracker::PostCallRecordCmdDrawIndexedIndirectCountKHR(commandBuffer, buffer, offset, countBuffer, countBufferOffset,
maxDrawCount, stride);
RecordCmdDrawType(commandBuffer, 0, "vkCmdDrawIndexedIndirectCountKHR()");
}
bool BestPractices::PreCallValidateCmdDrawIndirectByteCountEXT(VkCommandBuffer commandBuffer, uint32_t instanceCount,
uint32_t firstInstance, VkBuffer counterBuffer,
VkDeviceSize counterBufferOffset, uint32_t counterOffset,
uint32_t vertexStride) const {
bool skip = ValidateCmdDrawType(commandBuffer, "vkCmdDrawIndirectByteCountEXT");
return skip;
}
void BestPractices::PostCallRecordCmdDrawIndirectByteCountEXT(VkCommandBuffer commandBuffer, uint32_t instanceCount,
uint32_t firstInstance, VkBuffer counterBuffer,
VkDeviceSize counterBufferOffset, uint32_t counterOffset,
uint32_t vertexStride) {
StateTracker::PostCallRecordCmdDrawIndirectByteCountEXT(commandBuffer, instanceCount, firstInstance, counterBuffer,
counterBufferOffset, counterOffset, vertexStride);
RecordCmdDrawType(commandBuffer, 0, "vkCmdDrawIndirectByteCountEXT()");
}
bool BestPractices::PreCallValidateCmdDrawIndirectCount(VkCommandBuffer commandBuffer, VkBuffer buffer, VkDeviceSize offset,
VkBuffer countBuffer, VkDeviceSize countBufferOffset, uint32_t maxDrawCount,
uint32_t stride) const {
bool skip = ValidateCmdDrawType(commandBuffer, "vkCmdDrawIndirectCount");
return skip;
}
void BestPractices::PostCallRecordCmdDrawIndirectCount(VkCommandBuffer commandBuffer, VkBuffer buffer, VkDeviceSize offset,
VkBuffer countBuffer, VkDeviceSize countBufferOffset, uint32_t maxDrawCount,
uint32_t stride) {
StateTracker::PostCallRecordCmdDrawIndirectCount(commandBuffer, buffer, offset, countBuffer, countBufferOffset, maxDrawCount,
stride);
RecordCmdDrawType(commandBuffer, 0, "vkCmdDrawIndirectCount()");
}
bool BestPractices::PreCallValidateCmdDrawIndirectCountAMD(VkCommandBuffer commandBuffer, VkBuffer buffer, VkDeviceSize offset,
VkBuffer countBuffer, VkDeviceSize countBufferOffset,
uint32_t maxDrawCount, uint32_t stride) const {
bool skip = ValidateCmdDrawType(commandBuffer, "vkCmdDrawIndirectCountAMD");
return skip;
}
void BestPractices::PostCallRecordCmdDrawIndirectCountAMD(VkCommandBuffer commandBuffer, VkBuffer buffer, VkDeviceSize offset,
VkBuffer countBuffer, VkDeviceSize countBufferOffset,
uint32_t maxDrawCount, uint32_t stride) {
StateTracker::PostCallRecordCmdDrawIndirectCountAMD(commandBuffer, buffer, offset, countBuffer, countBufferOffset, maxDrawCount,
stride);
RecordCmdDrawType(commandBuffer, 0, "vkCmdDrawIndirectCountAMD()");
}
bool BestPractices::PreCallValidateCmdDrawIndirectCountKHR(VkCommandBuffer commandBuffer, VkBuffer buffer, VkDeviceSize offset,
VkBuffer countBuffer, VkDeviceSize countBufferOffset,
uint32_t maxDrawCount, uint32_t stride) const {
bool skip = ValidateCmdDrawType(commandBuffer, "vkCmdDrawIndirectCountKHR");
return skip;
}
void BestPractices::PostCallRecordCmdDrawIndirectCountKHR(VkCommandBuffer commandBuffer, VkBuffer buffer, VkDeviceSize offset,
VkBuffer countBuffer, VkDeviceSize countBufferOffset,
uint32_t maxDrawCount, uint32_t stride) {
StateTracker::PostCallRecordCmdDrawIndirectCountKHR(commandBuffer, buffer, offset, countBuffer, countBufferOffset, maxDrawCount,
stride);
RecordCmdDrawType(commandBuffer, 0, "vkCmdDrawIndirectCountKHR()");
}
bool BestPractices::PreCallValidateCmdDrawMeshTasksIndirectCountNV(VkCommandBuffer commandBuffer, VkBuffer buffer,
VkDeviceSize offset, VkBuffer countBuffer,
VkDeviceSize countBufferOffset, uint32_t maxDrawCount,
uint32_t stride) const {
bool skip = ValidateCmdDrawType(commandBuffer, "vkCmdDrawMeshTasksIndirectCountNV");
return skip;
}
void BestPractices::PostCallRecordCmdDrawMeshTasksIndirectCountNV(VkCommandBuffer commandBuffer, VkBuffer buffer,
VkDeviceSize offset, VkBuffer countBuffer,
VkDeviceSize countBufferOffset, uint32_t maxDrawCount,
uint32_t stride) {
StateTracker::PostCallRecordCmdDrawMeshTasksIndirectCountNV(commandBuffer, buffer, offset, countBuffer, countBufferOffset,
maxDrawCount, stride);
RecordCmdDrawType(commandBuffer, 0, "vkCmdDrawMeshTasksIndirectCountNV()");
}
bool BestPractices::PreCallValidateCmdDrawMeshTasksIndirectNV(VkCommandBuffer commandBuffer, VkBuffer buffer, VkDeviceSize offset,
uint32_t drawCount, uint32_t stride) const {
bool skip = ValidateCmdDrawType(commandBuffer, "vkCmdDrawMeshTasksIndirectNV");
return skip;
}
void BestPractices::PostCallRecordCmdDrawMeshTasksIndirectNV(VkCommandBuffer commandBuffer, VkBuffer buffer, VkDeviceSize offset,
uint32_t drawCount, uint32_t stride) {
StateTracker::PostCallRecordCmdDrawMeshTasksIndirectNV(commandBuffer, buffer, offset, drawCount, stride);
RecordCmdDrawType(commandBuffer, 0, "vkCmdDrawMeshTasksIndirectNV()");
}
bool BestPractices::PreCallValidateCmdDrawMeshTasksNV(VkCommandBuffer commandBuffer, uint32_t taskCount, uint32_t firstTask) const {
bool skip = ValidateCmdDrawType(commandBuffer, "vkCmdDrawMeshTasksNV");
return skip;
}
void BestPractices::PostCallRecordCmdDrawMeshTasksNV(VkCommandBuffer commandBuffer, uint32_t taskCount, uint32_t firstTask) {
StateTracker::PostCallRecordCmdDrawMeshTasksNV(commandBuffer, taskCount, firstTask);
RecordCmdDrawType(commandBuffer, 0, "vkCmdDrawMeshTasksNV()");
}
bool BestPractices::PreCallValidateCmdDrawMultiIndexedEXT(VkCommandBuffer commandBuffer, uint32_t drawCount,
const VkMultiDrawIndexedInfoEXT* pIndexInfo, uint32_t instanceCount,
uint32_t firstInstance, uint32_t stride,
const int32_t* pVertexOffset) const {
bool skip = ValidateCmdDrawType(commandBuffer, "vkCmdDrawMultiIndexedEXT");
return skip;
}
void BestPractices::PostCallRecordCmdDrawMultiIndexedEXT(VkCommandBuffer commandBuffer, uint32_t drawCount,
const VkMultiDrawIndexedInfoEXT* pIndexInfo, uint32_t instanceCount,
uint32_t firstInstance, uint32_t stride, const int32_t* pVertexOffset) {
StateTracker::PostCallRecordCmdDrawMultiIndexedEXT(commandBuffer, drawCount, pIndexInfo, instanceCount, firstInstance, stride,
pVertexOffset);
uint32_t count = 0;
for (uint32_t i = 0; i < drawCount; ++i) {
count += pIndexInfo[i].indexCount;
}
RecordCmdDrawType(commandBuffer, count, "vkCmdDrawMultiIndexedEXT()");
}
bool BestPractices::PreCallValidateCmdDrawMultiEXT(VkCommandBuffer commandBuffer, uint32_t drawCount, const VkMultiDrawInfoEXT* pVertexInfo,
uint32_t instanceCount, uint32_t firstInstance, uint32_t stride) const {
bool skip = ValidateCmdDrawType(commandBuffer, "vkCmdDrawMultiEXT");
return skip;
}
void BestPractices::PostCallRecordCmdDrawMultiEXT(VkCommandBuffer commandBuffer, uint32_t drawCount,
const VkMultiDrawInfoEXT* pVertexInfo, uint32_t instanceCount,
uint32_t firstInstance, uint32_t stride) {
StateTracker::PostCallRecordCmdDrawMultiEXT(commandBuffer, drawCount, pVertexInfo, instanceCount, firstInstance, stride);
uint32_t count = 0;
for (uint32_t i = 0; i < drawCount; ++i) {
count += pVertexInfo[i].vertexCount;
}
RecordCmdDrawType(commandBuffer, count, "vkCmdDrawMultiEXT()");
}
void BestPractices::ValidateBoundDescriptorSets(bp_state::CommandBuffer& cb_state, VkPipelineBindPoint bind_point,
const char* function_name) {
auto lvl_bind_point = ConvertToLvlBindPoint(bind_point);
auto& state = cb_state.lastBound[lvl_bind_point];
for (auto descriptor_set : state.per_set) {
if (!descriptor_set.bound_descriptor_set) continue;
for (const auto& binding : *descriptor_set.bound_descriptor_set) {
// For bindless scenarios, we should not attempt to track descriptor set state.
// It is highly uncertain which resources are actually bound.
// Resources which are written to such a descriptor should be marked as indeterminate w.r.t. state.
if (binding->binding_flags & (VK_DESCRIPTOR_BINDING_PARTIALLY_BOUND_BIT | VK_DESCRIPTOR_BINDING_UPDATE_AFTER_BIND_BIT |
VK_DESCRIPTOR_BINDING_UPDATE_UNUSED_WHILE_PENDING_BIT)) {
continue;
}
for (uint32_t i = 0; i < binding->count; ++i) {
VkImageView image_view{VK_NULL_HANDLE};
auto descriptor = binding->GetDescriptor(i);
if (!descriptor) {
continue;
}
switch (descriptor->GetClass()) {
case cvdescriptorset::DescriptorClass::Image: {
if (const auto image_descriptor = static_cast<const cvdescriptorset::ImageDescriptor*>(descriptor)) {
image_view = image_descriptor->GetImageView();
}
break;
}
case cvdescriptorset::DescriptorClass::ImageSampler: {
if (const auto image_sampler_descriptor =
static_cast<const cvdescriptorset::ImageSamplerDescriptor*>(descriptor)) {
image_view = image_sampler_descriptor->GetImageView();
}
break;
}
default:
break;
}
if (image_view) {
auto image_view_state = Get<IMAGE_VIEW_STATE>(image_view);
QueueValidateImageView(cb_state.queue_submit_functions, function_name, image_view_state.get(),
IMAGE_SUBRESOURCE_USAGE_BP::DESCRIPTOR_ACCESS);
}
}
}
}
}
void BestPractices::PreCallRecordCmdDraw(VkCommandBuffer commandBuffer, uint32_t vertexCount, uint32_t instanceCount,
uint32_t firstVertex, uint32_t firstInstance) {
const auto cb_node = GetWrite<bp_state::CommandBuffer>(commandBuffer);
ValidateBoundDescriptorSets(*cb_node, VK_PIPELINE_BIND_POINT_GRAPHICS, "vkCmdDraw()");
}
void BestPractices::PreCallRecordCmdDrawIndirect(VkCommandBuffer commandBuffer, VkBuffer buffer, VkDeviceSize offset,
uint32_t drawCount, uint32_t stride) {
const auto cb_node = GetWrite<bp_state::CommandBuffer>(commandBuffer);
ValidateBoundDescriptorSets(*cb_node, VK_PIPELINE_BIND_POINT_GRAPHICS, "vkCmdDrawIndirect()");
}
void BestPractices::PreCallRecordCmdDrawIndexedIndirect(VkCommandBuffer commandBuffer, VkBuffer buffer, VkDeviceSize offset,
uint32_t drawCount, uint32_t stride) {
const auto cb_node = GetWrite<bp_state::CommandBuffer>(commandBuffer);
ValidateBoundDescriptorSets(*cb_node, VK_PIPELINE_BIND_POINT_GRAPHICS, "vkCmdDrawIndexedIndirect()");
}
bool BestPractices::PreCallValidateCmdDispatch(VkCommandBuffer commandBuffer, uint32_t groupCountX, uint32_t groupCountY,
uint32_t groupCountZ) const {
bool skip = false;
if ((groupCountX == 0) || (groupCountY == 0) || (groupCountZ == 0)) {
skip |= LogWarning(device, kVUID_BestPractices_CmdDispatch_GroupCountZero,
"Warning: You are calling vkCmdDispatch() while one or more groupCounts are zero (groupCountX = %" PRIu32
", groupCountY = %" PRIu32 ", groupCountZ = %" PRIu32 ").",
groupCountX, groupCountY, groupCountZ);
}
return skip;
}
bool BestPractices::PreCallValidateCmdEndRenderPass2(VkCommandBuffer commandBuffer, const VkSubpassEndInfo* pSubpassEndInfo) const {
bool skip = false;
skip |= StateTracker::PreCallValidateCmdEndRenderPass2(commandBuffer, pSubpassEndInfo);
skip |= ValidateCmdEndRenderPass(commandBuffer);
if (VendorCheckEnabled(kBPVendorNVIDIA)) {
const auto cmd_state = GetRead<bp_state::CommandBuffer>(commandBuffer);
assert(cmd_state);
skip |= ValidateZcullScope(*cmd_state);
}
return skip;
}
bool BestPractices::PreCallValidateCmdEndRenderPass2KHR(VkCommandBuffer commandBuffer, const VkSubpassEndInfo* pSubpassEndInfo) const {
bool skip = false;
skip |= StateTracker::PreCallValidateCmdEndRenderPass2KHR(commandBuffer, pSubpassEndInfo);
skip |= ValidateCmdEndRenderPass(commandBuffer);
if (VendorCheckEnabled(kBPVendorNVIDIA)) {
const auto cmd_state = GetRead<bp_state::CommandBuffer>(commandBuffer);
assert(cmd_state);
skip |= ValidateZcullScope(*cmd_state);
}
return skip;
}
bool BestPractices::PreCallValidateCmdEndRenderPass(VkCommandBuffer commandBuffer) const {
bool skip = false;
skip |= StateTracker::PreCallValidateCmdEndRenderPass(commandBuffer);
skip |= ValidateCmdEndRenderPass(commandBuffer);
if (VendorCheckEnabled(kBPVendorNVIDIA)) {
const auto cmd_state = GetRead<bp_state::CommandBuffer>(commandBuffer);
assert(cmd_state);
skip |= ValidateZcullScope(*cmd_state);
}
return skip;
}
bool BestPractices::PreCallValidateCmdEndRendering(VkCommandBuffer commandBuffer) const {
bool skip = false;
skip |= StateTracker::PreCallValidateCmdEndRendering(commandBuffer);
if (VendorCheckEnabled(kBPVendorNVIDIA)) {
const auto cmd_state = GetRead<bp_state::CommandBuffer>(commandBuffer);
assert(cmd_state);
skip |= ValidateZcullScope(*cmd_state);
}
return skip;
}
bool BestPractices::PreCallValidateCmdEndRenderingKHR(VkCommandBuffer commandBuffer) const {
bool skip = false;
skip |= StateTracker::PreCallValidateCmdEndRenderingKHR(commandBuffer);
if (VendorCheckEnabled(kBPVendorNVIDIA)) {
const auto cmd_state = GetRead<bp_state::CommandBuffer>(commandBuffer);
assert(cmd_state);
skip |= ValidateZcullScope(*cmd_state);
}
return skip;
}
bool BestPractices::ValidateCmdEndRenderPass(VkCommandBuffer commandBuffer) const {
bool skip = false;
const auto cmd = GetRead<bp_state::CommandBuffer>(commandBuffer);
if (cmd == nullptr) return skip;
auto &render_pass_state = cmd->render_pass_state;
// Does the number of draw calls classified as depth only surpass the vendor limit for a specified vendor
bool depth_only_arm = render_pass_state.numDrawCallsDepthEqualCompare >= kDepthPrePassNumDrawCallsArm &&
render_pass_state.numDrawCallsDepthOnly >= kDepthPrePassNumDrawCallsArm;
bool depth_only_img = render_pass_state.numDrawCallsDepthEqualCompare >= kDepthPrePassNumDrawCallsIMG &&
render_pass_state.numDrawCallsDepthOnly >= kDepthPrePassNumDrawCallsIMG;
// Only send the warning when the vendor is enabled and a depth prepass is detected
bool uses_depth =
(render_pass_state.depthAttachment || render_pass_state.colorAttachment) &&
((depth_only_arm && VendorCheckEnabled(kBPVendorArm)) || (depth_only_img && VendorCheckEnabled(kBPVendorIMG)));
if (uses_depth) {
skip |= LogPerformanceWarning(
device, kVUID_BestPractices_EndRenderPass_DepthPrePassUsage,
"%s %s: Depth pre-passes may be in use. In general, this is not recommended in tile-based deferred "
"renderering architectures; such as those in Arm Mali or PowerVR GPUs. Since they can remove geometry "
"hidden by other opaque geometry. Mali has Forward Pixel Killing (FPK), PowerVR has Hiden Surface "
"Remover (HSR) in which case, using depth pre-passes for hidden surface removal may worsen performance.",
VendorSpecificTag(kBPVendorArm), VendorSpecificTag(kBPVendorIMG));
}
RENDER_PASS_STATE* rp = cmd->activeRenderPass.get();
if ((VendorCheckEnabled(kBPVendorArm) || VendorCheckEnabled(kBPVendorIMG)) && rp) {
// If we use an attachment on-tile, we should access it in some way. Otherwise,
// it is redundant to have it be part of the render pass.
// Only consider it redundant if it will actually consume bandwidth, i.e.
// LOAD_OP_LOAD is used or STORE_OP_STORE. CLEAR -> DONT_CARE is benign,
// as is using pure input attachments.
// CLEAR -> STORE might be considered a "useful" thing to do, but
// the optimal thing to do is to defer the clear until you're actually
// going to render to the image.
uint32_t num_attachments = rp->createInfo.attachmentCount;
for (uint32_t i = 0; i < num_attachments; i++) {
if (!RenderPassUsesAttachmentOnTile(rp->createInfo, i) ||
RenderPassUsesAttachmentAsResolve(rp->createInfo, i)) {
continue;
}
auto& attachment = rp->createInfo.pAttachments[i];
VkImageAspectFlags bandwidth_aspects = 0;
if (!FormatIsStencilOnly(attachment.format) &&
(attachment.loadOp == VK_ATTACHMENT_LOAD_OP_LOAD ||
attachment.storeOp == VK_ATTACHMENT_STORE_OP_STORE)) {
if (FormatHasDepth(attachment.format)) {
bandwidth_aspects |= VK_IMAGE_ASPECT_DEPTH_BIT;
} else {
bandwidth_aspects |= VK_IMAGE_ASPECT_COLOR_BIT;
}
}
if (FormatHasStencil(attachment.format) &&
(attachment.stencilLoadOp == VK_ATTACHMENT_LOAD_OP_LOAD ||
attachment.stencilStoreOp == VK_ATTACHMENT_STORE_OP_STORE)) {
bandwidth_aspects |= VK_IMAGE_ASPECT_STENCIL_BIT;
}
if (!bandwidth_aspects) {
continue;
}
auto itr = std::find_if(render_pass_state.touchesAttachments.begin(), render_pass_state.touchesAttachments.end(),
[i](const bp_state::AttachmentInfo& info) { return info.framebufferAttachment == i; });
uint32_t untouched_aspects = bandwidth_aspects;
if (itr != render_pass_state.touchesAttachments.end()) {
untouched_aspects &= ~itr->aspects;
}
if (untouched_aspects) {
skip |= LogPerformanceWarning(
device, kVUID_BestPractices_EndRenderPass_RedundantAttachmentOnTile,
"%s %s: Render pass was ended, but attachment #%u (format: %u, untouched aspects 0x%x) "
"was never accessed by a pipeline or clear command. "
"On tile-based architectures, LOAD_OP_LOAD and STORE_OP_STORE consume bandwidth and should not be part of the "
"render pass if the attachments are not intended to be accessed.",
VendorSpecificTag(kBPVendorArm), VendorSpecificTag(kBPVendorIMG), i, attachment.format, untouched_aspects);
}
}
}
return skip;
}
void BestPractices::PreCallRecordCmdDispatch(VkCommandBuffer commandBuffer, uint32_t x, uint32_t y, uint32_t z) {
const auto cb_node = GetWrite<bp_state::CommandBuffer>(commandBuffer);
ValidateBoundDescriptorSets(*cb_node, VK_PIPELINE_BIND_POINT_COMPUTE, "vkCmdDispatch()");
}
void BestPractices::PreCallRecordCmdDispatchIndirect(VkCommandBuffer commandBuffer, VkBuffer buffer, VkDeviceSize offset) {
const auto cb_node = GetWrite<bp_state::CommandBuffer>(commandBuffer);
ValidateBoundDescriptorSets(*cb_node, VK_PIPELINE_BIND_POINT_COMPUTE, "vkCmdDispatchIndirect()");
}
bool BestPractices::ValidateGetPhysicalDeviceDisplayPlanePropertiesKHRQuery(VkPhysicalDevice physicalDevice,
const char* api_name) const {
bool skip = false;
const auto bp_pd_state = Get<bp_state::PhysicalDevice>(physicalDevice);
if (bp_pd_state) {
if (bp_pd_state->vkGetPhysicalDeviceDisplayPlanePropertiesKHRState == UNCALLED) {
skip |= LogWarning(physicalDevice, kVUID_BestPractices_DisplayPlane_PropertiesNotCalled,
"Potential problem with calling %s() without first retrieving properties from "
"vkGetPhysicalDeviceDisplayPlanePropertiesKHR or vkGetPhysicalDeviceDisplayPlaneProperties2KHR.",
api_name);
}
}
return skip;
}
bool BestPractices::PreCallValidateGetDisplayPlaneSupportedDisplaysKHR(VkPhysicalDevice physicalDevice, uint32_t planeIndex,
uint32_t* pDisplayCount, VkDisplayKHR* pDisplays) const {
bool skip = false;
skip |= ValidateGetPhysicalDeviceDisplayPlanePropertiesKHRQuery(physicalDevice, "vkGetDisplayPlaneSupportedDisplaysKHR");
return skip;
}
bool BestPractices::PreCallValidateGetDisplayPlaneCapabilitiesKHR(VkPhysicalDevice physicalDevice, VkDisplayModeKHR mode,
uint32_t planeIndex,
VkDisplayPlaneCapabilitiesKHR* pCapabilities) const {
bool skip = false;
skip |= ValidateGetPhysicalDeviceDisplayPlanePropertiesKHRQuery(physicalDevice, "vkGetDisplayPlaneCapabilitiesKHR");
return skip;
}
bool BestPractices::PreCallValidateGetDisplayPlaneCapabilities2KHR(VkPhysicalDevice physicalDevice,
const VkDisplayPlaneInfo2KHR* pDisplayPlaneInfo,
VkDisplayPlaneCapabilities2KHR* pCapabilities) const {
bool skip = false;
skip |= ValidateGetPhysicalDeviceDisplayPlanePropertiesKHRQuery(physicalDevice, "vkGetDisplayPlaneCapabilities2KHR");
return skip;
}
bool BestPractices::PreCallValidateGetSwapchainImagesKHR(VkDevice device, VkSwapchainKHR swapchain, uint32_t* pSwapchainImageCount,
VkImage* pSwapchainImages) const {
bool skip = false;
auto swapchain_state = Get<bp_state::Swapchain>(swapchain);
if (swapchain_state && pSwapchainImages) {
// Compare the preliminary value of *pSwapchainImageCount with the value this time:
if (swapchain_state->vkGetSwapchainImagesKHRState == UNCALLED) {
skip |=
LogWarning(device, kVUID_Core_Swapchain_PriorCount,
"vkGetSwapchainImagesKHR() called with non-NULL pSwapchainImageCount; but no prior positive value has "
"been seen for pSwapchainImages.");
}
if (*pSwapchainImageCount > swapchain_state->get_swapchain_image_count) {
skip |= LogWarning(
device, kVUID_BestPractices_Swapchain_InvalidCount,
"vkGetSwapchainImagesKHR() called with non-NULL pSwapchainImages, and with pSwapchainImageCount set to a "
"value (%" PRId32 ") that is greater than the value (%" PRId32 ") that was returned when pSwapchainImages was NULL.",
*pSwapchainImageCount, swapchain_state->get_swapchain_image_count);
}
}
return skip;
}
// Common function to handle validation for GetPhysicalDeviceQueueFamilyProperties & 2KHR version
bool BestPractices::ValidateCommonGetPhysicalDeviceQueueFamilyProperties(const PHYSICAL_DEVICE_STATE* bp_pd_state,
uint32_t requested_queue_family_property_count,
const CALL_STATE call_state,
const char* caller_name) const {
bool skip = false;
// Verify that for each physical device, this command is called first with NULL pQueueFamilyProperties in order to get count
if (UNCALLED == call_state) {
skip |= LogWarning(
bp_pd_state->Handle(), kVUID_Core_DevLimit_MissingQueryCount,
"%s is called with non-NULL pQueueFamilyProperties before obtaining pQueueFamilyPropertyCount. It is "
"recommended "
"to first call %s with NULL pQueueFamilyProperties in order to obtain the maximal pQueueFamilyPropertyCount.",
caller_name, caller_name);
// Then verify that pCount that is passed in on second call matches what was returned
} else if (bp_pd_state->queue_family_known_count != requested_queue_family_property_count) {
skip |= LogWarning(bp_pd_state->Handle(), kVUID_Core_DevLimit_CountMismatch,
"%s is called with non-NULL pQueueFamilyProperties and pQueueFamilyPropertyCount value %" PRIu32
", but the largest previously returned pQueueFamilyPropertyCount for this physicalDevice is %" PRIu32
". It is recommended to instead receive all the properties by calling %s with "
"pQueueFamilyPropertyCount that was "
"previously obtained by calling %s with NULL pQueueFamilyProperties.",
caller_name, requested_queue_family_property_count, bp_pd_state->queue_family_known_count, caller_name,
caller_name);
}
return skip;
}
bool BestPractices::PreCallValidateBindAccelerationStructureMemoryNV(
VkDevice device, uint32_t bindInfoCount, const VkBindAccelerationStructureMemoryInfoNV* pBindInfos) const {
bool skip = false;
for (uint32_t i = 0; i < bindInfoCount; i++) {
auto as_state = Get<ACCELERATION_STRUCTURE_STATE>(pBindInfos[i].accelerationStructure);
if (!as_state->memory_requirements_checked) {
// There's not an explicit requirement in the spec to call vkGetImageMemoryRequirements() prior to calling
// BindAccelerationStructureMemoryNV but it's implied in that memory being bound must conform with
// VkAccelerationStructureMemoryRequirementsInfoNV from vkGetAccelerationStructureMemoryRequirementsNV
skip |= LogWarning(
device, kVUID_BestPractices_BindAccelNV_NoMemReqQuery,
"vkBindAccelerationStructureMemoryNV(): "
"Binding memory to %s but vkGetAccelerationStructureMemoryRequirementsNV() has not been called on that structure.",
report_data->FormatHandle(pBindInfos[i].accelerationStructure).c_str());
}
}
return skip;
}
bool BestPractices::PreCallValidateGetPhysicalDeviceQueueFamilyProperties(VkPhysicalDevice physicalDevice,
uint32_t* pQueueFamilyPropertyCount,
VkQueueFamilyProperties* pQueueFamilyProperties) const {
const auto bp_pd_state = Get<bp_state::PhysicalDevice>(physicalDevice);
if (pQueueFamilyProperties && bp_pd_state) {
return ValidateCommonGetPhysicalDeviceQueueFamilyProperties(bp_pd_state.get(), *pQueueFamilyPropertyCount,
bp_pd_state->vkGetPhysicalDeviceQueueFamilyPropertiesState,
"vkGetPhysicalDeviceQueueFamilyProperties()");
}
return false;
}
bool BestPractices::PreCallValidateGetPhysicalDeviceQueueFamilyProperties2(VkPhysicalDevice physicalDevice,
uint32_t* pQueueFamilyPropertyCount,
VkQueueFamilyProperties2* pQueueFamilyProperties) const {
const auto bp_pd_state = Get<bp_state::PhysicalDevice>(physicalDevice);
if (pQueueFamilyProperties && bp_pd_state) {
return ValidateCommonGetPhysicalDeviceQueueFamilyProperties(bp_pd_state.get(), *pQueueFamilyPropertyCount,
bp_pd_state->vkGetPhysicalDeviceQueueFamilyProperties2State,
"vkGetPhysicalDeviceQueueFamilyProperties2()");
}
return false;
}
bool BestPractices::PreCallValidateGetPhysicalDeviceQueueFamilyProperties2KHR(
VkPhysicalDevice physicalDevice, uint32_t* pQueueFamilyPropertyCount, VkQueueFamilyProperties2* pQueueFamilyProperties) const {
const auto bp_pd_state = Get<bp_state::PhysicalDevice>(physicalDevice);
if (pQueueFamilyProperties && bp_pd_state) {
return ValidateCommonGetPhysicalDeviceQueueFamilyProperties(bp_pd_state.get(), *pQueueFamilyPropertyCount,
bp_pd_state->vkGetPhysicalDeviceQueueFamilyProperties2KHRState,
"vkGetPhysicalDeviceQueueFamilyProperties2KHR()");
}
return false;
}
bool BestPractices::PreCallValidateGetPhysicalDeviceSurfaceFormatsKHR(VkPhysicalDevice physicalDevice, VkSurfaceKHR surface,
uint32_t* pSurfaceFormatCount,
VkSurfaceFormatKHR* pSurfaceFormats) const {
if (!pSurfaceFormats) return false;
const auto bp_pd_state = Get<bp_state::PhysicalDevice>(physicalDevice);
const auto& call_state = bp_pd_state->vkGetPhysicalDeviceSurfaceFormatsKHRState;
bool skip = false;
if (call_state == UNCALLED) {
// Since we haven't recorded a preliminary value of *pSurfaceFormatCount, that likely means that the application didn't
// previously call this function with a NULL value of pSurfaceFormats:
skip |= LogWarning(physicalDevice, kVUID_Core_DevLimit_MustQueryCount,
"vkGetPhysicalDeviceSurfaceFormatsKHR() called with non-NULL pSurfaceFormatCount; but no prior "
"positive value has been seen for pSurfaceFormats.");
} else {
if (*pSurfaceFormatCount > bp_pd_state->surface_formats_count) {
skip |= LogWarning(physicalDevice, kVUID_Core_DevLimit_CountMismatch,
"vkGetPhysicalDeviceSurfaceFormatsKHR() called with non-NULL pSurfaceFormatCount, and with "
"pSurfaceFormats set to a value (%u) that is greater than the value (%u) that was returned "
"when pSurfaceFormatCount was NULL.",
*pSurfaceFormatCount, bp_pd_state->surface_formats_count);
}
}
return skip;
}
bool BestPractices::PreCallValidateQueueBindSparse(VkQueue queue, uint32_t bindInfoCount, const VkBindSparseInfo* pBindInfo,
VkFence fence) const {
bool skip = false;
for (uint32_t bind_idx = 0; bind_idx < bindInfoCount; bind_idx++) {
const VkBindSparseInfo& bind_info = pBindInfo[bind_idx];
// Store sparse binding image_state and after binding is complete make sure that any requiring metadata have it bound
layer_data::unordered_set<const IMAGE_STATE*> sparse_images;
// Track images getting metadata bound by this call in a set, it'll be recorded into the image_state
// in RecordQueueBindSparse.
layer_data::unordered_set<const IMAGE_STATE*> sparse_images_with_metadata;
// If we're binding sparse image memory make sure reqs were queried and note if metadata is required and bound
for (uint32_t i = 0; i < bind_info.imageBindCount; ++i) {
const auto& image_bind = bind_info.pImageBinds[i];
auto image_state = Get<IMAGE_STATE>(image_bind.image);
if (!image_state) {
continue; // Param/Object validation should report image_bind.image handles being invalid, so just skip here.
}
sparse_images.insert(image_state.get());
if (image_state->createInfo.flags & VK_IMAGE_CREATE_SPARSE_RESIDENCY_BIT) {
if (!image_state->get_sparse_reqs_called || image_state->sparse_requirements.empty()) {
// For now just warning if sparse image binding occurs without calling to get reqs first
skip |= LogWarning(image_state->image(), kVUID_Core_MemTrack_InvalidState,
"vkQueueBindSparse(): Binding sparse memory to %s without first calling "
"vkGetImageSparseMemoryRequirements[2KHR]() to retrieve requirements.",
report_data->FormatHandle(image_state->image()).c_str());
}
}
if (!image_state->memory_requirements_checked[0]) {
// For now just warning if sparse image binding occurs without calling to get reqs first
skip |= LogWarning(image_state->image(), kVUID_Core_MemTrack_InvalidState,
"vkQueueBindSparse(): Binding sparse memory to %s without first calling "
"vkGetImageMemoryRequirements() to retrieve requirements.",
report_data->FormatHandle(image_state->image()).c_str());
}
}
for (uint32_t i = 0; i < bind_info.imageOpaqueBindCount; ++i) {
const auto& image_opaque_bind = bind_info.pImageOpaqueBinds[i];
auto image_state = Get<IMAGE_STATE>(bind_info.pImageOpaqueBinds[i].image);
if (!image_state) {
continue; // Param/Object validation should report image_bind.image handles being invalid, so just skip here.
}
sparse_images.insert(image_state.get());
if (image_state->createInfo.flags & VK_IMAGE_CREATE_SPARSE_RESIDENCY_BIT) {
if (!image_state->get_sparse_reqs_called || image_state->sparse_requirements.empty()) {
// For now just warning if sparse image binding occurs without calling to get reqs first
skip |= LogWarning(image_state->image(), kVUID_Core_MemTrack_InvalidState,
"vkQueueBindSparse(): Binding opaque sparse memory to %s without first calling "
"vkGetImageSparseMemoryRequirements[2KHR]() to retrieve requirements.",
report_data->FormatHandle(image_state->image()).c_str());
}
}
if (!image_state->memory_requirements_checked[0]) {
// For now just warning if sparse image binding occurs without calling to get reqs first
skip |= LogWarning(image_state->image(), kVUID_Core_MemTrack_InvalidState,
"vkQueueBindSparse(): Binding opaque sparse memory to %s without first calling "
"vkGetImageMemoryRequirements() to retrieve requirements.",
report_data->FormatHandle(image_state->image()).c_str());
}
for (uint32_t j = 0; j < image_opaque_bind.bindCount; ++j) {
if (image_opaque_bind.pBinds[j].flags & VK_SPARSE_MEMORY_BIND_METADATA_BIT) {
sparse_images_with_metadata.insert(image_state.get());
}
}
}
for (const auto& sparse_image_state : sparse_images) {
if (sparse_image_state->sparse_metadata_required && !sparse_image_state->sparse_metadata_bound &&
sparse_images_with_metadata.find(sparse_image_state) == sparse_images_with_metadata.end()) {
// Warn if sparse image binding metadata required for image with sparse binding, but metadata not bound
skip |= LogWarning(sparse_image_state->image(), kVUID_Core_MemTrack_InvalidState,
"vkQueueBindSparse(): Binding sparse memory to %s which requires a metadata aspect but no "
"binding with VK_SPARSE_MEMORY_BIND_METADATA_BIT set was made.",
report_data->FormatHandle(sparse_image_state->image()).c_str());
}
}
}
if (VendorCheckEnabled(kBPVendorNVIDIA)) {
auto queue_state = Get<QUEUE_STATE>(queue);
if (queue_state && queue_state->queueFamilyProperties.queueFlags != (VK_QUEUE_TRANSFER_BIT | VK_QUEUE_SPARSE_BINDING_BIT)) {
skip |= LogPerformanceWarning(queue, kVUID_BestPractices_QueueBindSparse_NotAsync,
"vkQueueBindSparse() issued on queue %s. All binds should happen on an asynchronous copy "
"queue to hide the OS scheduling and submit costs.",
report_data->FormatHandle(queue).c_str());
}
}
return skip;
}
void BestPractices::ManualPostCallRecordQueueBindSparse(VkQueue queue, uint32_t bindInfoCount, const VkBindSparseInfo* pBindInfo,
VkFence fence, VkResult result) {
if (result != VK_SUCCESS) {
return;
}
for (uint32_t bind_idx = 0; bind_idx < bindInfoCount; bind_idx++) {
const VkBindSparseInfo& bind_info = pBindInfo[bind_idx];
for (uint32_t i = 0; i < bind_info.imageOpaqueBindCount; ++i) {
const auto& image_opaque_bind = bind_info.pImageOpaqueBinds[i];
auto image_state = Get<IMAGE_STATE>(bind_info.pImageOpaqueBinds[i].image);
if (!image_state) {
continue; // Param/Object validation should report image_bind.image handles being invalid, so just skip here.
}
for (uint32_t j = 0; j < image_opaque_bind.bindCount; ++j) {
if (image_opaque_bind.pBinds[j].flags & VK_SPARSE_MEMORY_BIND_METADATA_BIT) {
image_state->sparse_metadata_bound = true;
}
}
}
}
}
bool BestPractices::ClearAttachmentsIsFullClear(const bp_state::CommandBuffer& cmd, uint32_t rectCount,
const VkClearRect* pRects) const {
if (cmd.createInfo.level == VK_COMMAND_BUFFER_LEVEL_SECONDARY) {
// We don't know the accurate render area in a secondary,
// so assume we clear the entire frame buffer.
// This is resolved in CmdExecuteCommands where we can check if the clear is a full clear.
return true;
}
// If we have a rect which covers the entire frame buffer, we have a LOAD_OP_CLEAR-like command.
for (uint32_t i = 0; i < rectCount; i++) {
auto& rect = pRects[i];
auto& render_area = cmd.activeRenderPassBeginInfo.renderArea;
if (rect.rect.extent.width == render_area.extent.width && rect.rect.extent.height == render_area.extent.height) {
return true;
}
}
return false;
}
bool BestPractices::ValidateClearAttachment(const bp_state::CommandBuffer& cmd, uint32_t fb_attachment, uint32_t color_attachment,
VkImageAspectFlags aspects, bool secondary) const {
const RENDER_PASS_STATE* rp = cmd.activeRenderPass.get();
bool skip = false;
if (!rp || fb_attachment == VK_ATTACHMENT_UNUSED) {
return skip;
}
const auto& rp_state = cmd.render_pass_state;
auto attachment_itr =
std::find_if(rp_state.touchesAttachments.begin(), rp_state.touchesAttachments.end(),
[fb_attachment](const bp_state::AttachmentInfo& info) { return info.framebufferAttachment == fb_attachment; });
// Only report aspects which haven't been touched yet.
VkImageAspectFlags new_aspects = aspects;
if (attachment_itr != rp_state.touchesAttachments.end()) {
new_aspects &= ~attachment_itr->aspects;
}
// Warn if this is issued prior to Draw Cmd and clearing the entire attachment
if (!cmd.has_draw_cmd) {
skip |= LogPerformanceWarning(
cmd.Handle(), kVUID_BestPractices_DrawState_ClearCmdBeforeDraw,
"vkCmdClearAttachments() issued on %s prior to any Draw Cmds in current render pass. It is recommended you "
"use RenderPass LOAD_OP_CLEAR on attachments instead.",
report_data->FormatHandle(cmd.Handle()).c_str());
}
if ((new_aspects & VK_IMAGE_ASPECT_COLOR_BIT) &&
rp->createInfo.pAttachments[fb_attachment].loadOp == VK_ATTACHMENT_LOAD_OP_LOAD) {
skip |= LogPerformanceWarning(
device, kVUID_BestPractices_ClearAttachments_ClearAfterLoad,
"%svkCmdClearAttachments() issued on %s for color attachment #%u in this subpass, "
"but LOAD_OP_LOAD was used. If you need to clear the framebuffer, always use LOAD_OP_CLEAR as "
"it is more efficient.",
secondary ? "vkCmdExecuteCommands(): " : "", report_data->FormatHandle(cmd.Handle()).c_str(), color_attachment);
}
if ((new_aspects & VK_IMAGE_ASPECT_DEPTH_BIT) &&
rp->createInfo.pAttachments[fb_attachment].loadOp == VK_ATTACHMENT_LOAD_OP_LOAD) {
skip |=
LogPerformanceWarning(device, kVUID_BestPractices_ClearAttachments_ClearAfterLoad,
"%svkCmdClearAttachments() issued on %s for the depth attachment in this subpass, "
"but LOAD_OP_LOAD was used. If you need to clear the framebuffer, always use LOAD_OP_CLEAR as "
"it is more efficient.",
secondary ? "vkCmdExecuteCommands(): " : "", report_data->FormatHandle(cmd.Handle()).c_str());
if (VendorCheckEnabled(kBPVendorNVIDIA)) {
const auto cmd_state = GetRead<bp_state::CommandBuffer>(cmd.commandBuffer());
assert(cmd_state);
skip |= ValidateZcullScope(*cmd_state);
}
}
if ((new_aspects & VK_IMAGE_ASPECT_STENCIL_BIT) &&
rp->createInfo.pAttachments[fb_attachment].stencilLoadOp == VK_ATTACHMENT_LOAD_OP_LOAD) {
skip |=
LogPerformanceWarning(device, kVUID_BestPractices_ClearAttachments_ClearAfterLoad,
"%svkCmdClearAttachments() issued on %s for the stencil attachment in this subpass, "
"but LOAD_OP_LOAD was used. If you need to clear the framebuffer, always use LOAD_OP_CLEAR as "
"it is more efficient.",
secondary ? "vkCmdExecuteCommands(): " : "", report_data->FormatHandle(cmd.Handle()).c_str());
}
return skip;
}
bool BestPractices::PreCallValidateCmdClearAttachments(VkCommandBuffer commandBuffer, uint32_t attachmentCount,
const VkClearAttachment* pAttachments, uint32_t rectCount,
const VkClearRect* pRects) const {
bool skip = false;
const auto cb_node = GetRead<bp_state::CommandBuffer>(commandBuffer);
if (!cb_node) return skip;
if (cb_node->createInfo.level == VK_COMMAND_BUFFER_LEVEL_SECONDARY) {
// Defer checks to ExecuteCommands.
return skip;
}
// Only care about full clears, partial clears might have legitimate uses.
const bool is_full_clear = ClearAttachmentsIsFullClear(*cb_node, rectCount, pRects);
// Check for uses of ClearAttachments along with LOAD_OP_LOAD,
// as it can be more efficient to just use LOAD_OP_CLEAR
const RENDER_PASS_STATE* rp = cb_node->activeRenderPass.get();
if (rp) {
if (rp->use_dynamic_rendering || rp->use_dynamic_rendering_inherited) {
const auto pColorAttachments = rp->dynamic_rendering_begin_rendering_info.pColorAttachments;
if (VendorCheckEnabled(kBPVendorNVIDIA)) {
for (uint32_t i = 0; i < attachmentCount; i++) {
const auto& attachment = pAttachments[i];
if (attachment.aspectMask & VK_IMAGE_ASPECT_DEPTH_BIT) {
skip |= ValidateZcullScope(*cb_node);
}
if ((attachment.aspectMask & VK_IMAGE_ASPECT_COLOR_BIT) && attachment.colorAttachment != VK_ATTACHMENT_UNUSED) {
const auto& color_attachment = pColorAttachments[attachment.colorAttachment];
if (color_attachment.imageView) {
auto image_view_state = Get<IMAGE_VIEW_STATE>(color_attachment.imageView);
const VkFormat format = image_view_state->create_info.format;
skip |= ValidateClearColor(commandBuffer, format, attachment.clearValue.color);
}
}
}
}
if (is_full_clear) {
// TODO: Implement ValidateClearAttachment for dynamic rendering
}
} else {
const auto& subpass = rp->createInfo.pSubpasses[cb_node->activeSubpass];
if (is_full_clear) {
for (uint32_t i = 0; i < attachmentCount; i++) {
const auto& attachment = pAttachments[i];
if (attachment.aspectMask & VK_IMAGE_ASPECT_COLOR_BIT) {
uint32_t color_attachment = attachment.colorAttachment;
uint32_t fb_attachment = subpass.pColorAttachments[color_attachment].attachment;
skip |= ValidateClearAttachment(*cb_node, fb_attachment, color_attachment, attachment.aspectMask, false);
}
if (subpass.pDepthStencilAttachment &&
(attachment.aspectMask & (VK_IMAGE_ASPECT_DEPTH_BIT | VK_IMAGE_ASPECT_STENCIL_BIT))) {
uint32_t fb_attachment = subpass.pDepthStencilAttachment->attachment;
skip |= ValidateClearAttachment(*cb_node, fb_attachment, VK_ATTACHMENT_UNUSED, attachment.aspectMask, false);
}
}
}
if (VendorCheckEnabled(kBPVendorNVIDIA) && rp->createInfo.pAttachments) {
for (uint32_t attachment_idx = 0; attachment_idx < attachmentCount; ++attachment_idx) {
const auto& attachment = pAttachments[attachment_idx];
if (attachment.aspectMask & VK_IMAGE_ASPECT_COLOR_BIT) {
const uint32_t fb_attachment = subpass.pColorAttachments[attachment.colorAttachment].attachment;
if (fb_attachment != VK_ATTACHMENT_UNUSED) {
const VkFormat format = rp->createInfo.pAttachments[fb_attachment].format;
skip |= ValidateClearColor(commandBuffer, format, attachment.clearValue.color);
}
}
}
}
}
}
if (VendorCheckEnabled(kBPVendorAMD)) {
for (uint32_t attachment_idx = 0; attachment_idx < attachmentCount; attachment_idx++) {
if (pAttachments[attachment_idx].aspectMask == VK_IMAGE_ASPECT_COLOR_BIT) {
bool black_check = false;
black_check |= pAttachments[attachment_idx].clearValue.color.float32[0] != 0.0f;
black_check |= pAttachments[attachment_idx].clearValue.color.float32[1] != 0.0f;
black_check |= pAttachments[attachment_idx].clearValue.color.float32[2] != 0.0f;
black_check |= pAttachments[attachment_idx].clearValue.color.float32[3] != 0.0f &&
pAttachments[attachment_idx].clearValue.color.float32[3] != 1.0f;
bool white_check = false;
white_check |= pAttachments[attachment_idx].clearValue.color.float32[0] != 1.0f;
white_check |= pAttachments[attachment_idx].clearValue.color.float32[1] != 1.0f;
white_check |= pAttachments[attachment_idx].clearValue.color.float32[2] != 1.0f;
white_check |= pAttachments[attachment_idx].clearValue.color.float32[3] != 0.0f &&
pAttachments[attachment_idx].clearValue.color.float32[3] != 1.0f;
if (black_check && white_check) {
skip |= LogPerformanceWarning(device, kVUID_BestPractices_ClearAttachment_FastClearValues,
"%s Performance warning: vkCmdClearAttachments() clear value for color attachment %" PRId32 " is not a fast clear value."
"Consider changing to one of the following:"
"RGBA(0, 0, 0, 0) "
"RGBA(0, 0, 0, 1) "
"RGBA(1, 1, 1, 0) "
"RGBA(1, 1, 1, 1)",
VendorSpecificTag(kBPVendorAMD), attachment_idx);
}
} else {
if ((pAttachments[attachment_idx].clearValue.depthStencil.depth != 0 &&
pAttachments[attachment_idx].clearValue.depthStencil.depth != 1) &&
pAttachments[attachment_idx].clearValue.depthStencil.stencil != 0) {
skip |= LogPerformanceWarning(device, kVUID_BestPractices_ClearAttachment_FastClearValues,
"%s Performance warning: vkCmdClearAttachments() clear value for depth/stencil "
"attachment %" PRId32 " is not a fast clear value."
"Consider changing to one of the following:"
"D=0.0f, S=0"
"D=1.0f, S=0",
VendorSpecificTag(kBPVendorAMD), attachment_idx);
}
}
}
}
return skip;
}
bool BestPractices::PreCallValidateCmdResolveImage(VkCommandBuffer commandBuffer, VkImage srcImage, VkImageLayout srcImageLayout,
VkImage dstImage, VkImageLayout dstImageLayout, uint32_t regionCount,
const VkImageResolve* pRegions) const {
bool skip = false;
skip |= VendorCheckEnabled(kBPVendorArm) &&
LogPerformanceWarning(device, kVUID_BestPractices_CmdResolveImage_ResolvingImage,
"%s Attempting to use vkCmdResolveImage to resolve a multisampled image. "
"This is a very slow and extremely bandwidth intensive path. "
"You should always resolve multisampled images on-tile with pResolveAttachments in VkRenderPass.",
VendorSpecificTag(kBPVendorArm));
return skip;
}
bool BestPractices::PreCallValidateCmdResolveImage2KHR(VkCommandBuffer commandBuffer,
const VkResolveImageInfo2KHR* pResolveImageInfo) const {
bool skip = false;
skip |= VendorCheckEnabled(kBPVendorArm) &&
LogPerformanceWarning(device, kVUID_BestPractices_CmdResolveImage2KHR_ResolvingImage,
"%s Attempting to use vkCmdResolveImage2KHR to resolve a multisampled image. "
"This is a very slow and extremely bandwidth intensive path. "
"You should always resolve multisampled images on-tile with pResolveAttachments in VkRenderPass.",
VendorSpecificTag(kBPVendorArm));
return skip;
}
bool BestPractices::PreCallValidateCmdResolveImage2(VkCommandBuffer commandBuffer,
const VkResolveImageInfo2* pResolveImageInfo) const {
bool skip = false;
skip |= VendorCheckEnabled(kBPVendorArm) &&
LogPerformanceWarning(device, kVUID_BestPractices_CmdResolveImage2_ResolvingImage,
"%s Attempting to use vkCmdResolveImage2 to resolve a multisampled image. "
"This is a very slow and extremely bandwidth intensive path. "
"You should always resolve multisampled images on-tile with pResolveAttachments in VkRenderPass.",
VendorSpecificTag(kBPVendorArm));
return skip;
}
void BestPractices::PreCallRecordCmdResolveImage(VkCommandBuffer commandBuffer, VkImage srcImage, VkImageLayout srcImageLayout,
VkImage dstImage, VkImageLayout dstImageLayout, uint32_t regionCount,
const VkImageResolve* pRegions) {
auto cb = GetWrite<bp_state::CommandBuffer>(commandBuffer);
auto &funcs = cb->queue_submit_functions;
auto src = Get<bp_state::Image>(srcImage);
auto dst = Get<bp_state::Image>(dstImage);
for (uint32_t i = 0; i < regionCount; i++) {
QueueValidateImage(funcs, "vkCmdResolveImage()", src, IMAGE_SUBRESOURCE_USAGE_BP::RESOLVE_READ, pRegions[i].srcSubresource);
QueueValidateImage(funcs, "vkCmdResolveImage()", dst, IMAGE_SUBRESOURCE_USAGE_BP::RESOLVE_WRITE, pRegions[i].dstSubresource);
}
}
void BestPractices::PreCallRecordCmdResolveImage2KHR(VkCommandBuffer commandBuffer,
const VkResolveImageInfo2KHR* pResolveImageInfo) {
auto cb = GetWrite<bp_state::CommandBuffer>(commandBuffer);
auto &funcs = cb->queue_submit_functions;
auto src = Get<bp_state::Image>(pResolveImageInfo->srcImage);
auto dst = Get<bp_state::Image>(pResolveImageInfo->dstImage);
uint32_t regionCount = pResolveImageInfo->regionCount;
for (uint32_t i = 0; i < regionCount; i++) {
QueueValidateImage(funcs, "vkCmdResolveImage2KHR()", src, IMAGE_SUBRESOURCE_USAGE_BP::RESOLVE_READ, pResolveImageInfo->pRegions[i].srcSubresource);
QueueValidateImage(funcs, "vkCmdResolveImage2KHR()", dst, IMAGE_SUBRESOURCE_USAGE_BP::RESOLVE_WRITE, pResolveImageInfo->pRegions[i].dstSubresource);
}
}
void BestPractices::PreCallRecordCmdResolveImage2(VkCommandBuffer commandBuffer,
const VkResolveImageInfo2* pResolveImageInfo) {
auto cb = GetWrite<bp_state::CommandBuffer>(commandBuffer);
auto& funcs = cb->queue_submit_functions;
auto src = Get<bp_state::Image>(pResolveImageInfo->srcImage);
auto dst = Get<bp_state::Image>(pResolveImageInfo->dstImage);
uint32_t regionCount = pResolveImageInfo->regionCount;
for (uint32_t i = 0; i < regionCount; i++) {
QueueValidateImage(funcs, "vkCmdResolveImage2()", src, IMAGE_SUBRESOURCE_USAGE_BP::RESOLVE_READ,
pResolveImageInfo->pRegions[i].srcSubresource);
QueueValidateImage(funcs, "vkCmdResolveImage2()", dst, IMAGE_SUBRESOURCE_USAGE_BP::RESOLVE_WRITE,
pResolveImageInfo->pRegions[i].dstSubresource);
}
}
void BestPractices::PreCallRecordCmdClearColorImage(VkCommandBuffer commandBuffer, VkImage image, VkImageLayout imageLayout,
const VkClearColorValue* pColor, uint32_t rangeCount,
const VkImageSubresourceRange* pRanges) {
auto cb = GetWrite<bp_state::CommandBuffer>(commandBuffer);
auto &funcs = cb->queue_submit_functions;
auto dst = Get<bp_state::Image>(image);
for (uint32_t i = 0; i < rangeCount; i++) {
QueueValidateImage(funcs, "vkCmdClearColorImage()", dst, IMAGE_SUBRESOURCE_USAGE_BP::CLEARED, pRanges[i]);
}
if (VendorCheckEnabled(kBPVendorNVIDIA)) {
RecordClearColor(dst->createInfo.format, *pColor);
}
}
void BestPractices::PreCallRecordCmdClearDepthStencilImage(VkCommandBuffer commandBuffer, VkImage image, VkImageLayout imageLayout,
const VkClearDepthStencilValue* pDepthStencil, uint32_t rangeCount,
const VkImageSubresourceRange* pRanges) {
ValidationStateTracker::PreCallRecordCmdClearDepthStencilImage(commandBuffer, image, imageLayout, pDepthStencil, rangeCount,
pRanges);
auto cb = GetWrite<bp_state::CommandBuffer>(commandBuffer);
auto &funcs = cb->queue_submit_functions;
auto dst = Get<bp_state::Image>(image);
for (uint32_t i = 0; i < rangeCount; i++) {
QueueValidateImage(funcs, "vkCmdClearDepthStencilImage()", dst, IMAGE_SUBRESOURCE_USAGE_BP::CLEARED, pRanges[i]);
}
if (VendorCheckEnabled(kBPVendorNVIDIA)) {
for (uint32_t i = 0; i < rangeCount; i++) {
RecordResetZcullDirection(*cb, image, pRanges[i]);
}
}
}
void BestPractices::PreCallRecordCmdCopyImage(VkCommandBuffer commandBuffer, VkImage srcImage, VkImageLayout srcImageLayout,
VkImage dstImage, VkImageLayout dstImageLayout, uint32_t regionCount,
const VkImageCopy* pRegions) {
ValidationStateTracker::PreCallRecordCmdCopyImage(commandBuffer, srcImage, srcImageLayout, dstImage, dstImageLayout,
regionCount, pRegions);
auto cb = GetWrite<bp_state::CommandBuffer>(commandBuffer);
auto &funcs = cb->queue_submit_functions;
auto src = Get<bp_state::Image>(srcImage);
auto dst = Get<bp_state::Image>(dstImage);
for (uint32_t i = 0; i < regionCount; i++) {
QueueValidateImage(funcs, "vkCmdCopyImage()", src, IMAGE_SUBRESOURCE_USAGE_BP::COPY_READ, pRegions[i].srcSubresource);
QueueValidateImage(funcs, "vkCmdCopyImage()", dst, IMAGE_SUBRESOURCE_USAGE_BP::COPY_WRITE, pRegions[i].dstSubresource);
}
}
void BestPractices::PreCallRecordCmdCopyBufferToImage(VkCommandBuffer commandBuffer, VkBuffer srcBuffer, VkImage dstImage,
VkImageLayout dstImageLayout, uint32_t regionCount,
const VkBufferImageCopy* pRegions) {
auto cb = GetWrite<bp_state::CommandBuffer>(commandBuffer);
auto &funcs = cb->queue_submit_functions;
auto dst = Get<bp_state::Image>(dstImage);
for (uint32_t i = 0; i < regionCount; i++) {
QueueValidateImage(funcs, "vkCmdCopyBufferToImage()", dst, IMAGE_SUBRESOURCE_USAGE_BP::COPY_WRITE, pRegions[i].imageSubresource);
}
}
void BestPractices::PreCallRecordCmdCopyImageToBuffer(VkCommandBuffer commandBuffer, VkImage srcImage, VkImageLayout srcImageLayout,
VkBuffer dstBuffer, uint32_t regionCount, const VkBufferImageCopy* pRegions) {
auto cb = GetWrite<bp_state::CommandBuffer>(commandBuffer);
auto &funcs = cb->queue_submit_functions;
auto src = Get<bp_state::Image>(srcImage);
for (uint32_t i = 0; i < regionCount; i++) {
QueueValidateImage(funcs, "vkCmdCopyImageToBuffer()", src, IMAGE_SUBRESOURCE_USAGE_BP::COPY_READ, pRegions[i].imageSubresource);
}
}
void BestPractices::PreCallRecordCmdBlitImage(VkCommandBuffer commandBuffer, VkImage srcImage, VkImageLayout srcImageLayout,
VkImage dstImage, VkImageLayout dstImageLayout, uint32_t regionCount,
const VkImageBlit* pRegions, VkFilter filter) {
auto cb = GetWrite<bp_state::CommandBuffer>(commandBuffer);
auto &funcs = cb->queue_submit_functions;
auto src = Get<bp_state::Image>(srcImage);
auto dst = Get<bp_state::Image>(dstImage);
for (uint32_t i = 0; i < regionCount; i++) {
QueueValidateImage(funcs, "vkCmdBlitImage()", src, IMAGE_SUBRESOURCE_USAGE_BP::BLIT_READ, pRegions[i].srcSubresource);
QueueValidateImage(funcs, "vkCmdBlitImage()", dst, IMAGE_SUBRESOURCE_USAGE_BP::BLIT_WRITE, pRegions[i].dstSubresource);
}
}
bool BestPractices::PreCallValidateCreateSampler(VkDevice device, const VkSamplerCreateInfo* pCreateInfo,
const VkAllocationCallbacks* pAllocator, VkSampler* pSampler) const {
bool skip = false;
if (VendorCheckEnabled(kBPVendorArm)) {
if ((pCreateInfo->addressModeU != pCreateInfo->addressModeV) || (pCreateInfo->addressModeV != pCreateInfo->addressModeW)) {
skip |= LogPerformanceWarning(
device, kVUID_BestPractices_CreateSampler_DifferentWrappingModes,
"%s Creating a sampler object with wrapping modes which do not match (U = %u, V = %u, W = %u). "
"This may cause reduced performance even if only U (1D image) or U/V wrapping modes (2D "
"image) are actually used. If you need different wrapping modes, disregard this warning.",
VendorSpecificTag(kBPVendorArm), pCreateInfo->addressModeU, pCreateInfo->addressModeV, pCreateInfo->addressModeW);
}
if ((pCreateInfo->minLod != 0.0f) || (pCreateInfo->maxLod < VK_LOD_CLAMP_NONE)) {
skip |= LogPerformanceWarning(
device, kVUID_BestPractices_CreateSampler_LodClamping,
"%s Creating a sampler object with LOD clamping (minLod = %f, maxLod = %f). This may cause reduced performance. "
"Instead of clamping LOD in the sampler, consider using an VkImageView which restricts the mip-levels, set minLod "
"to 0.0, and maxLod to VK_LOD_CLAMP_NONE.",
VendorSpecificTag(kBPVendorArm), pCreateInfo->minLod, pCreateInfo->maxLod);
}
if (pCreateInfo->mipLodBias != 0.0f) {
skip |=
LogPerformanceWarning(device, kVUID_BestPractices_CreateSampler_LodBias,
"%s Creating a sampler object with LOD bias != 0.0 (%f). This will lead to less efficient "
"descriptors being created and may cause reduced performance.",
VendorSpecificTag(kBPVendorArm), pCreateInfo->mipLodBias);
}
if ((pCreateInfo->addressModeU == VK_SAMPLER_ADDRESS_MODE_CLAMP_TO_BORDER ||
pCreateInfo->addressModeV == VK_SAMPLER_ADDRESS_MODE_CLAMP_TO_BORDER ||
pCreateInfo->addressModeW == VK_SAMPLER_ADDRESS_MODE_CLAMP_TO_BORDER) &&
(pCreateInfo->borderColor != VK_BORDER_COLOR_FLOAT_TRANSPARENT_BLACK)) {
skip |= LogPerformanceWarning(
device, kVUID_BestPractices_CreateSampler_BorderClampColor,
"%s Creating a sampler object with border clamping and borderColor != VK_BORDER_COLOR_FLOAT_TRANSPARENT_BLACK. "
"This will lead to less efficient descriptors being created and may cause reduced performance. "
"If possible, use VK_BORDER_COLOR_FLOAT_TRANSPARENT_BLACK as the border color.",
VendorSpecificTag(kBPVendorArm));
}
if (pCreateInfo->unnormalizedCoordinates) {
skip |= LogPerformanceWarning(
device, kVUID_BestPractices_CreateSampler_UnnormalizedCoordinates,
"%s Creating a sampler object with unnormalized coordinates. This will lead to less efficient "
"descriptors being created and may cause reduced performance.",
VendorSpecificTag(kBPVendorArm));
}
if (pCreateInfo->anisotropyEnable) {
skip |= LogPerformanceWarning(
device, kVUID_BestPractices_CreateSampler_Anisotropy,
"%s Creating a sampler object with anisotropy. This will lead to less efficient descriptors being created "
"and may cause reduced performance.",
VendorSpecificTag(kBPVendorArm));
}
}
return skip;
}
void BestPractices::PreCallRecordCreateGraphicsPipelines(VkDevice device, VkPipelineCache pipelineCache, uint32_t createInfoCount,
const VkGraphicsPipelineCreateInfo* pCreateInfos,
const VkAllocationCallbacks* pAllocator, VkPipeline* pPipelines,
void* cgpl_state) {
ValidationStateTracker::PreCallRecordCreateGraphicsPipelines(device, pipelineCache, createInfoCount, pCreateInfos, pAllocator,
pPipelines);
// AMD best practice
num_pso_ += createInfoCount;
}
bool BestPractices::PreCallValidateUpdateDescriptorSets(VkDevice device, uint32_t descriptorWriteCount,
const VkWriteDescriptorSet* pDescriptorWrites, uint32_t descriptorCopyCount,
const VkCopyDescriptorSet* pDescriptorCopies) const {
bool skip = false;
if (VendorCheckEnabled(kBPVendorAMD)) {
if (descriptorCopyCount > 0) {
skip |= LogPerformanceWarning(device, kVUID_BestPractices_UpdateDescriptors_AvoidCopyingDescriptors,
"%s Performance warning: copying descriptor sets is not recommended",
VendorSpecificTag(kBPVendorAMD));
}
}
return skip;
}
bool BestPractices::PreCallValidateCreateDescriptorUpdateTemplate(VkDevice device,
const VkDescriptorUpdateTemplateCreateInfo* pCreateInfo,
const VkAllocationCallbacks* pAllocator,
VkDescriptorUpdateTemplate* pDescriptorUpdateTemplate) const {
bool skip = false;
if (VendorCheckEnabled(kBPVendorAMD)) {
skip |= LogPerformanceWarning(device, kVUID_BestPractices_UpdateDescriptors_PreferNonTemplate,
"%s Performance warning: using DescriptorSetWithTemplate is not recommended. Prefer using "
"vkUpdateDescriptorSet instead",
VendorSpecificTag(kBPVendorAMD));
}
return skip;
}
bool BestPractices::PreCallValidateCmdClearColorImage(VkCommandBuffer commandBuffer, VkImage image, VkImageLayout imageLayout,
const VkClearColorValue* pColor, uint32_t rangeCount,
const VkImageSubresourceRange* pRanges) const {
bool skip = false;
auto dst = Get<bp_state::Image>(image);
if (VendorCheckEnabled(kBPVendorAMD)) {
skip |= LogPerformanceWarning(
device, kVUID_BestPractices_ClearAttachment_ClearImage,
"%s Performance warning: using vkCmdClearColorImage is not recommended. Prefer using LOAD_OP_CLEAR or "
"vkCmdClearAttachments instead",
VendorSpecificTag(kBPVendorAMD));
}
if (VendorCheckEnabled(kBPVendorNVIDIA)) {
skip |= ValidateClearColor(commandBuffer, dst->createInfo.format, *pColor);
}
return skip;
}
bool BestPractices::PreCallValidateCmdClearDepthStencilImage(VkCommandBuffer commandBuffer, VkImage image,
VkImageLayout imageLayout,
const VkClearDepthStencilValue* pDepthStencil, uint32_t rangeCount,
const VkImageSubresourceRange* pRanges) const {
bool skip = false;
if (VendorCheckEnabled(kBPVendorAMD)) {
skip |= LogPerformanceWarning(
device, kVUID_BestPractices_ClearAttachment_ClearImage,
"%s Performance warning: using vkCmdClearDepthStencilImage is not recommended. Prefer using LOAD_OP_CLEAR or "
"vkCmdClearAttachments instead",
VendorSpecificTag(kBPVendorAMD));
}
const auto cmd_state = GetRead<bp_state::CommandBuffer>(commandBuffer);
assert(cmd_state);
if (VendorCheckEnabled(kBPVendorNVIDIA)) {
for (uint32_t i = 0; i < rangeCount; i++) {
skip |= ValidateZcull(*cmd_state, image, pRanges[i]);
}
}
return skip;
}
bool BestPractices::PreCallValidateCreatePipelineLayout(VkDevice device, const VkPipelineLayoutCreateInfo* pCreateInfo,
const VkAllocationCallbacks* pAllocator,
VkPipelineLayout* pPipelineLayout) const {
bool skip = false;
if (VendorCheckEnabled(kBPVendorAMD)) {
uint32_t descriptor_size = enabled_features.core.robustBufferAccess ? 4 : 2;
// Descriptor sets cost 1 DWORD each.
// Dynamic buffers cost 2 DWORDs each when robust buffer access is OFF.
// Dynamic buffers cost 4 DWORDs each when robust buffer access is ON.
// Push constants cost 1 DWORD per 4 bytes in the Push constant range.
uint32_t pipeline_size = pCreateInfo->setLayoutCount; // in DWORDS
for (uint32_t i = 0; i < pCreateInfo->setLayoutCount; i++) {
auto descriptor_set_layout_state = Get<cvdescriptorset::DescriptorSetLayout>(pCreateInfo->pSetLayouts[i]);
pipeline_size += descriptor_set_layout_state->GetDynamicDescriptorCount() * descriptor_size;
}
for (uint32_t i = 0; i < pCreateInfo->pushConstantRangeCount; i++) {
pipeline_size += pCreateInfo->pPushConstantRanges[i].size / 4;
}
if (pipeline_size > kPipelineLayoutSizeWarningLimitAMD) {
skip |= LogPerformanceWarning(device, kVUID_BestPractices_CreatePipelinesLayout_KeepLayoutSmall,
"%s Performance warning: pipeline layout size is too large. Prefer smaller pipeline layouts."
"Descriptor sets cost 1 DWORD each. "
"Dynamic buffers cost 2 DWORDs each when robust buffer access is OFF. "
"Dynamic buffers cost 4 DWORDs each when robust buffer access is ON. "
"Push constants cost 1 DWORD per 4 bytes in the Push constant range. ",
VendorSpecificTag(kBPVendorAMD));
}
}
if (VendorCheckEnabled(kBPVendorNVIDIA)) {
bool has_separate_sampler = false;
size_t fast_space_usage = 0;
for (uint32_t i = 0; i < pCreateInfo->setLayoutCount; ++i) {
auto descriptor_set_layout_state = Get<cvdescriptorset::DescriptorSetLayout>(pCreateInfo->pSetLayouts[i]);
for (const auto& binding : descriptor_set_layout_state->GetBindings()) {
if (binding.descriptorType == VK_DESCRIPTOR_TYPE_SAMPLER) {
has_separate_sampler = true;
}
if ((descriptor_set_layout_state->GetCreateFlags() & VK_DESCRIPTOR_SET_LAYOUT_CREATE_UPDATE_AFTER_BIND_POOL_BIT) == 0U) {
size_t descriptor_type_size = 0;
switch (binding.descriptorType) {
case VK_DESCRIPTOR_TYPE_SAMPLER:
case VK_DESCRIPTOR_TYPE_COMBINED_IMAGE_SAMPLER:
case VK_DESCRIPTOR_TYPE_SAMPLED_IMAGE:
case VK_DESCRIPTOR_TYPE_STORAGE_IMAGE:
case VK_DESCRIPTOR_TYPE_UNIFORM_TEXEL_BUFFER:
case VK_DESCRIPTOR_TYPE_STORAGE_TEXEL_BUFFER:
case VK_DESCRIPTOR_TYPE_INPUT_ATTACHMENT:
descriptor_type_size = 4;
break;
case VK_DESCRIPTOR_TYPE_UNIFORM_BUFFER:
case VK_DESCRIPTOR_TYPE_UNIFORM_BUFFER_DYNAMIC:
case VK_DESCRIPTOR_TYPE_ACCELERATION_STRUCTURE_KHR:
case VK_DESCRIPTOR_TYPE_ACCELERATION_STRUCTURE_NV:
descriptor_type_size = 8;
break;
case VK_DESCRIPTOR_TYPE_STORAGE_BUFFER:
case VK_DESCRIPTOR_TYPE_STORAGE_BUFFER_DYNAMIC:
case VK_DESCRIPTOR_TYPE_MUTABLE_EXT:
descriptor_type_size = 16;
break;
case VK_DESCRIPTOR_TYPE_INLINE_UNIFORM_BLOCK:
descriptor_type_size = 1;
default:
// Unknown type.
break;
}
size_t descriptor_size = descriptor_type_size * binding.descriptorCount;
fast_space_usage += descriptor_size;
}
}
}
if (has_separate_sampler) {
skip |= LogPerformanceWarning(
device, kVUID_BestPractices_CreatePipelineLayout_SeparateSampler,
"%s Consider using combined image samplers instead of separate samplers for marginally better performance.",
VendorSpecificTag(kBPVendorNVIDIA));
}
if (fast_space_usage > kPipelineLayoutFastDescriptorSpaceNVIDIA) {
skip |= LogPerformanceWarning(
device, kVUID_BestPractices_CreatePipelinesLayout_LargePipelineLayout,
"%s Pipeline layout size is too large, prefer using pipeline-specific descriptor set layouts. "
"Aim for consuming less than %" PRIu32 " bytes to allow fast reads for all non-bindless descriptors. "
"Samplers, textures, texel buffers, and combined image samplers consume 4 bytes each. "
"Uniform buffers and acceleration structures consume 8 bytes. "
"Storage buffers consume 16 bytes. "
"Push constants do not consume space.",
VendorSpecificTag(kBPVendorNVIDIA), kPipelineLayoutFastDescriptorSpaceNVIDIA);
}
}
return skip;
}
bool BestPractices::PreCallValidateCmdCopyImage(VkCommandBuffer commandBuffer, VkImage srcImage, VkImageLayout srcImageLayout,
VkImage dstImage, VkImageLayout dstImageLayout, uint32_t regionCount,
const VkImageCopy* pRegions) const {
bool skip = false;
std::stringstream src_image_hex;
std::stringstream dst_image_hex;
src_image_hex << "0x" << std::hex << HandleToUint64(srcImage);
dst_image_hex << "0x" << std::hex << HandleToUint64(dstImage);
if (VendorCheckEnabled(kBPVendorAMD)) {
auto src_state = Get<IMAGE_STATE>(srcImage);
auto dst_state = Get<IMAGE_STATE>(dstImage);
if (src_state && dst_state) {
VkImageTiling src_Tiling = src_state->createInfo.tiling;
VkImageTiling dst_Tiling = dst_state->createInfo.tiling;
if (src_Tiling != dst_Tiling && (src_Tiling == VK_IMAGE_TILING_LINEAR || dst_Tiling == VK_IMAGE_TILING_LINEAR)) {
skip |=
LogPerformanceWarning(device, kVUID_BestPractices_vkImage_AvoidImageToImageCopy,
"%s Performance warning: image %s and image %s have differing tilings. Use buffer to "
"image (vkCmdCopyImageToBuffer) "
"and image to buffer (vkCmdCopyBufferToImage) copies instead of image to image "
"copies when converting between linear and optimal images",
VendorSpecificTag(kBPVendorAMD), src_image_hex.str().c_str(), dst_image_hex.str().c_str());
}
}
}
return skip;
}
bool BestPractices::PreCallValidateCmdBindPipeline(VkCommandBuffer commandBuffer, VkPipelineBindPoint pipelineBindPoint,
VkPipeline pipeline) const {
bool skip = false;
auto cb = Get<bp_state::CommandBuffer>(commandBuffer);
if (VendorCheckEnabled(kBPVendorAMD) || VendorCheckEnabled(kBPVendorNVIDIA)) {
if (IsPipelineUsedInFrame(pipeline)) {
skip |= LogPerformanceWarning(device, kVUID_BestPractices_Pipeline_SortAndBind,
"%s %s Performance warning: Pipeline %s was bound twice in the frame. "
"Keep pipeline state changes to a minimum, for example, by sorting draw calls by pipeline.",
VendorSpecificTag(kBPVendorAMD), VendorSpecificTag(kBPVendorNVIDIA),
report_data->FormatHandle(pipeline).c_str());
}
}
if (VendorCheckEnabled(kBPVendorNVIDIA)) {
const auto& tgm = cb->nv.tess_geometry_mesh;
if (tgm.num_switches >= kNumBindPipelineTessGeometryMeshSwitchesThresholdNVIDIA && !tgm.threshold_signaled) {
LogPerformanceWarning(commandBuffer, kVUID_BestPractices_BindPipeline_SwitchTessGeometryMesh,
"%s Avoid switching between pipelines with and without tessellation, geometry, task, "
"and/or mesh shaders. Group draw calls using these shader stages together.",
VendorSpecificTag(kBPVendorNVIDIA));
// Do not set 'skip' so the number of switches gets properly counted after the message.
}
}
return skip;
}
void BestPractices::ManualPostCallRecordQueueSubmit(VkQueue queue, uint32_t submitCount, const VkSubmitInfo* pSubmits,
VkFence fence, VkResult result) {
// AMD best practice
num_queue_submissions_ += submitCount;
}
bool BestPractices::PreCallValidateQueuePresentKHR(VkQueue queue, const VkPresentInfoKHR* pPresentInfo) const {
bool skip = false;
if (VendorCheckEnabled(kBPVendorAMD) || VendorCheckEnabled(kBPVendorNVIDIA)) {
auto num = num_queue_submissions_.load();
if (num > kNumberOfSubmissionWarningLimitAMD) {
skip |= LogPerformanceWarning(device, kVUID_BestPractices_Submission_ReduceNumberOfSubmissions,
"%s %s Performance warning: command buffers submitted %" PRId32
" times this frame. Submitting command buffers has a CPU "
"and GPU overhead. Submit fewer times to incur less overhead.",
VendorSpecificTag(kBPVendorAMD), VendorSpecificTag(kBPVendorNVIDIA), num);
}
}
return skip;
}
void BestPractices::PostCallRecordCmdPipelineBarrier(VkCommandBuffer commandBuffer, VkPipelineStageFlags srcStageMask,
VkPipelineStageFlags dstStageMask, VkDependencyFlags dependencyFlags,
uint32_t memoryBarrierCount, const VkMemoryBarrier* pMemoryBarriers,
uint32_t bufferMemoryBarrierCount,
const VkBufferMemoryBarrier* pBufferMemoryBarriers,
uint32_t imageMemoryBarrierCount,
const VkImageMemoryBarrier* pImageMemoryBarriers) {
ValidationStateTracker::PostCallRecordCmdPipelineBarrier(commandBuffer, srcStageMask, dstStageMask, dependencyFlags,
memoryBarrierCount, pMemoryBarriers, bufferMemoryBarrierCount,
pBufferMemoryBarriers, imageMemoryBarrierCount, pImageMemoryBarriers);
num_barriers_objects_ += (memoryBarrierCount + imageMemoryBarrierCount + bufferMemoryBarrierCount);
for (uint32_t i = 0; i < imageMemoryBarrierCount; ++i) {
RecordCmdPipelineBarrierImageBarrier(commandBuffer, pImageMemoryBarriers[i]);
}
}
void BestPractices::PostCallRecordCmdPipelineBarrier2(VkCommandBuffer commandBuffer, const VkDependencyInfo *pDependencyInfo) {
ValidationStateTracker::PostCallRecordCmdPipelineBarrier2(commandBuffer, pDependencyInfo);
for (uint32_t i = 0; i < pDependencyInfo->imageMemoryBarrierCount; ++i) {
RecordCmdPipelineBarrierImageBarrier(commandBuffer, pDependencyInfo->pImageMemoryBarriers[i]);
}
}
void BestPractices::PostCallRecordCmdPipelineBarrier2KHR(VkCommandBuffer commandBuffer, const VkDependencyInfo *pDependencyInfo) {
ValidationStateTracker::PostCallRecordCmdPipelineBarrier2KHR(commandBuffer, pDependencyInfo);
for (uint32_t i = 0; i < pDependencyInfo->imageMemoryBarrierCount; ++i) {
RecordCmdPipelineBarrierImageBarrier(commandBuffer, pDependencyInfo->pImageMemoryBarriers[i]);
}
}
template <typename ImageMemoryBarrier>
void BestPractices::RecordCmdPipelineBarrierImageBarrier(VkCommandBuffer commandBuffer, const ImageMemoryBarrier& barrier) {
auto cb = Get<bp_state::CommandBuffer>(commandBuffer);
assert(cb);
// Is a queue ownership acquisition barrier
if (barrier.srcQueueFamilyIndex != barrier.dstQueueFamilyIndex &&
barrier.dstQueueFamilyIndex == cb->command_pool->queueFamilyIndex) {
auto image = Get<bp_state::Image>(barrier.image);
auto subresource_range = barrier.subresourceRange;
cb->queue_submit_functions.push_back([image, subresource_range](const ValidationStateTracker& vst, const QUEUE_STATE& qs,
const CMD_BUFFER_STATE& cbs) -> bool {
ForEachSubresource(*image, subresource_range, [&](uint32_t layer, uint32_t level) {
// Update queue family index without changing usage, signifying a correct queue family transfer
image->UpdateUsage(layer, level, image->GetUsageType(layer, level), qs.queueFamilyIndex);
});
return false;
});
}
if (VendorCheckEnabled(kBPVendorNVIDIA)) {
RecordResetZcullDirection(*cb, barrier.image, barrier.subresourceRange);
}
}
bool BestPractices::PreCallValidateCreateSemaphore(VkDevice device, const VkSemaphoreCreateInfo* pCreateInfo,
const VkAllocationCallbacks* pAllocator, VkSemaphore* pSemaphore) const {
bool skip = false;
if (VendorCheckEnabled(kBPVendorAMD) || VendorCheckEnabled(kBPVendorNVIDIA)) {
if (Count<SEMAPHORE_STATE>() > kMaxRecommendedSemaphoreObjectsSizeAMD) {
skip |= LogPerformanceWarning(device, kVUID_BestPractices_SyncObjects_HighNumberOfSemaphores,
"%s %s Performance warning: High number of vkSemaphore objects created. "
"Minimize the amount of queue synchronization that is used. "
"Semaphores and fences have overhead. Each fence has a CPU and GPU cost with it.",
VendorSpecificTag(kBPVendorAMD), VendorSpecificTag(kBPVendorNVIDIA));
}
}
return skip;
}
bool BestPractices::PreCallValidateCreateFence(VkDevice device, const VkFenceCreateInfo* pCreateInfo,
const VkAllocationCallbacks* pAllocator, VkFence* pFence) const {
bool skip = false;
if (VendorCheckEnabled(kBPVendorAMD) || VendorCheckEnabled(kBPVendorNVIDIA)) {
if (Count<FENCE_STATE>() > kMaxRecommendedFenceObjectsSizeAMD) {
skip |= LogPerformanceWarning(device, kVUID_BestPractices_SyncObjects_HighNumberOfFences,
"%s %s Performance warning: High number of VkFence objects created."
"Minimize the amount of CPU-GPU synchronization that is used. "
"Semaphores and fences have overhead. Each fence has a CPU and GPU cost with it.",
VendorSpecificTag(kBPVendorAMD), VendorSpecificTag(kBPVendorNVIDIA));
}
}
return skip;
}
void BestPractices::PostTransformLRUCacheModel::resize(size_t size) { _entries.resize(size); }
bool BestPractices::PostTransformLRUCacheModel::query_cache(uint32_t value) {
// look for a cache hit
auto hit = std::find_if(_entries.begin(), _entries.end(), [value](const CacheEntry& entry) { return entry.value == value; });
if (hit != _entries.end()) {
// mark the cache hit as being most recently used
hit->age = iteration++;
return true;
}
// if there's no cache hit, we need to model the entry being inserted into the cache
CacheEntry new_entry = {value, iteration};
if (iteration < static_cast<uint32_t>(std::distance(_entries.begin(), _entries.end()))) {
// if there is still space left in the cache, use the next available slot
*(_entries.begin() + iteration) = new_entry;
} else {
// otherwise replace the least recently used cache entry
auto lru = std::min_element(_entries.begin(), hit, [](const CacheEntry& a, const CacheEntry& b) { return a.age < b.age; });
*lru = new_entry;
}
iteration++;
return false;
}
bool BestPractices::PreCallValidateAcquireNextImageKHR(VkDevice device, VkSwapchainKHR swapchain, uint64_t timeout,
VkSemaphore semaphore, VkFence fence, uint32_t* pImageIndex) const {
auto swapchain_data = Get<SWAPCHAIN_NODE>(swapchain);
bool skip = false;
if (swapchain_data && swapchain_data->images.size() == 0) {
skip |= LogWarning(swapchain, kVUID_Core_DrawState_SwapchainImagesNotFound,
"vkAcquireNextImageKHR: No images found to acquire from. Application probably did not call "
"vkGetSwapchainImagesKHR after swapchain creation.");
}
return skip;
}
void BestPractices::CommonPostCallRecordGetPhysicalDeviceQueueFamilyProperties(CALL_STATE& call_state, bool no_pointer) {
if (no_pointer) {
if (UNCALLED == call_state) {
call_state = QUERY_COUNT;
}
} else { // Save queue family properties
call_state = QUERY_DETAILS;
}
}
void BestPractices::PostCallRecordGetPhysicalDeviceQueueFamilyProperties(VkPhysicalDevice physicalDevice,
uint32_t* pQueueFamilyPropertyCount,
VkQueueFamilyProperties* pQueueFamilyProperties) {
ValidationStateTracker::PostCallRecordGetPhysicalDeviceQueueFamilyProperties(physicalDevice, pQueueFamilyPropertyCount,
pQueueFamilyProperties);
auto bp_pd_state = Get<bp_state::PhysicalDevice>(physicalDevice);
if (bp_pd_state) {
CommonPostCallRecordGetPhysicalDeviceQueueFamilyProperties(bp_pd_state->vkGetPhysicalDeviceQueueFamilyPropertiesState,
nullptr == pQueueFamilyProperties);
}
}
void BestPractices::PostCallRecordGetPhysicalDeviceQueueFamilyProperties2(VkPhysicalDevice physicalDevice,
uint32_t* pQueueFamilyPropertyCount,
VkQueueFamilyProperties2* pQueueFamilyProperties) {
ValidationStateTracker::PostCallRecordGetPhysicalDeviceQueueFamilyProperties2(physicalDevice, pQueueFamilyPropertyCount,
pQueueFamilyProperties);
auto bp_pd_state = Get<bp_state::PhysicalDevice>(physicalDevice);
if (bp_pd_state) {
CommonPostCallRecordGetPhysicalDeviceQueueFamilyProperties(bp_pd_state->vkGetPhysicalDeviceQueueFamilyProperties2State,
nullptr == pQueueFamilyProperties);
}
}
void BestPractices::PostCallRecordGetPhysicalDeviceQueueFamilyProperties2KHR(VkPhysicalDevice physicalDevice,
uint32_t* pQueueFamilyPropertyCount,
VkQueueFamilyProperties2* pQueueFamilyProperties) {
ValidationStateTracker::PostCallRecordGetPhysicalDeviceQueueFamilyProperties2KHR(physicalDevice, pQueueFamilyPropertyCount,
pQueueFamilyProperties);
auto bp_pd_state = Get<bp_state::PhysicalDevice>(physicalDevice);
if (bp_pd_state) {
CommonPostCallRecordGetPhysicalDeviceQueueFamilyProperties(bp_pd_state->vkGetPhysicalDeviceQueueFamilyProperties2KHRState,
nullptr == pQueueFamilyProperties);
}
}
void BestPractices::PostCallRecordGetPhysicalDeviceFeatures(VkPhysicalDevice physicalDevice, VkPhysicalDeviceFeatures* pFeatures) {
ValidationStateTracker::PostCallRecordGetPhysicalDeviceFeatures(physicalDevice, pFeatures);
auto bp_pd_state = Get<bp_state::PhysicalDevice>(physicalDevice);
if (bp_pd_state) {
bp_pd_state->vkGetPhysicalDeviceFeaturesState = QUERY_DETAILS;
}
}
void BestPractices::PostCallRecordGetPhysicalDeviceFeatures2(VkPhysicalDevice physicalDevice,
VkPhysicalDeviceFeatures2* pFeatures) {
ValidationStateTracker::PostCallRecordGetPhysicalDeviceFeatures2(physicalDevice, pFeatures);
auto bp_pd_state = Get<bp_state::PhysicalDevice>(physicalDevice);
if (bp_pd_state) {
bp_pd_state->vkGetPhysicalDeviceFeaturesState = QUERY_DETAILS;
}
}
void BestPractices::PostCallRecordGetPhysicalDeviceFeatures2KHR(VkPhysicalDevice physicalDevice,
VkPhysicalDeviceFeatures2* pFeatures) {
ValidationStateTracker::PostCallRecordGetPhysicalDeviceFeatures2KHR(physicalDevice, pFeatures);
auto bp_pd_state = Get<bp_state::PhysicalDevice>(physicalDevice);
if (bp_pd_state) {
bp_pd_state->vkGetPhysicalDeviceFeaturesState = QUERY_DETAILS;
}
}
void BestPractices::ManualPostCallRecordGetPhysicalDeviceSurfaceCapabilitiesKHR(VkPhysicalDevice physicalDevice,
VkSurfaceKHR surface,
VkSurfaceCapabilitiesKHR* pSurfaceCapabilities,
VkResult result) {
auto bp_pd_state = Get<bp_state::PhysicalDevice>(physicalDevice);
if (bp_pd_state) {
bp_pd_state->vkGetPhysicalDeviceSurfaceCapabilitiesKHRState = QUERY_DETAILS;
}
}
void BestPractices::ManualPostCallRecordGetPhysicalDeviceSurfaceCapabilities2KHR(
VkPhysicalDevice physicalDevice, const VkPhysicalDeviceSurfaceInfo2KHR* pSurfaceInfo,
VkSurfaceCapabilities2KHR* pSurfaceCapabilities, VkResult result) {
auto bp_pd_state = Get<bp_state::PhysicalDevice>(physicalDevice);
if (bp_pd_state) {
bp_pd_state->vkGetPhysicalDeviceSurfaceCapabilitiesKHRState = QUERY_DETAILS;
}
}
void BestPractices::ManualPostCallRecordGetPhysicalDeviceSurfaceCapabilities2EXT(VkPhysicalDevice physicalDevice,
VkSurfaceKHR surface,
VkSurfaceCapabilities2EXT* pSurfaceCapabilities,
VkResult result) {
auto bp_pd_state = Get<bp_state::PhysicalDevice>(physicalDevice);
if (bp_pd_state) {
bp_pd_state->vkGetPhysicalDeviceSurfaceCapabilitiesKHRState = QUERY_DETAILS;
}
}
void BestPractices::ManualPostCallRecordGetPhysicalDeviceSurfacePresentModesKHR(VkPhysicalDevice physicalDevice,
VkSurfaceKHR surface, uint32_t* pPresentModeCount,
VkPresentModeKHR* pPresentModes, VkResult result) {
auto bp_pd_data = Get<bp_state::PhysicalDevice>(physicalDevice);
if (bp_pd_data) {
auto& call_state = bp_pd_data->vkGetPhysicalDeviceSurfacePresentModesKHRState;
if (*pPresentModeCount) {
if (call_state < QUERY_COUNT) {
call_state = QUERY_COUNT;
}
}
if (pPresentModes) {
if (call_state < QUERY_DETAILS) {
call_state = QUERY_DETAILS;
}
}
}
}
void BestPractices::ManualPostCallRecordGetPhysicalDeviceSurfaceFormatsKHR(VkPhysicalDevice physicalDevice, VkSurfaceKHR surface,
uint32_t* pSurfaceFormatCount,
VkSurfaceFormatKHR* pSurfaceFormats, VkResult result) {
auto bp_pd_data = Get<bp_state::PhysicalDevice>(physicalDevice);
if (bp_pd_data) {
auto& call_state = bp_pd_data->vkGetPhysicalDeviceSurfaceFormatsKHRState;
if (*pSurfaceFormatCount) {
if (call_state < QUERY_COUNT) {
call_state = QUERY_COUNT;
}
bp_pd_data->surface_formats_count = *pSurfaceFormatCount;
}
if (pSurfaceFormats) {
if (call_state < QUERY_DETAILS) {
call_state = QUERY_DETAILS;
}
}
}
}
void BestPractices::ManualPostCallRecordGetPhysicalDeviceSurfaceFormats2KHR(VkPhysicalDevice physicalDevice,
const VkPhysicalDeviceSurfaceInfo2KHR* pSurfaceInfo,
uint32_t* pSurfaceFormatCount,
VkSurfaceFormat2KHR* pSurfaceFormats, VkResult result) {
auto bp_pd_data = Get<bp_state::PhysicalDevice>(physicalDevice);
if (bp_pd_data) {
if (*pSurfaceFormatCount) {
if (bp_pd_data->vkGetPhysicalDeviceSurfaceFormatsKHRState < QUERY_COUNT) {
bp_pd_data->vkGetPhysicalDeviceSurfaceFormatsKHRState = QUERY_COUNT;
}
bp_pd_data->surface_formats_count = *pSurfaceFormatCount;
}
if (pSurfaceFormats) {
if (bp_pd_data->vkGetPhysicalDeviceSurfaceFormatsKHRState < QUERY_DETAILS) {
bp_pd_data->vkGetPhysicalDeviceSurfaceFormatsKHRState = QUERY_DETAILS;
}
}
}
}
void BestPractices::ManualPostCallRecordGetPhysicalDeviceDisplayPlanePropertiesKHR(VkPhysicalDevice physicalDevice,
uint32_t* pPropertyCount,
VkDisplayPlanePropertiesKHR* pProperties,
VkResult result) {
auto bp_pd_data = Get<bp_state::PhysicalDevice>(physicalDevice);
if (bp_pd_data) {
if (*pPropertyCount) {
if (bp_pd_data->vkGetPhysicalDeviceDisplayPlanePropertiesKHRState < QUERY_COUNT) {
bp_pd_data->vkGetPhysicalDeviceDisplayPlanePropertiesKHRState = QUERY_COUNT;
}
}
if (pProperties) {
if (bp_pd_data->vkGetPhysicalDeviceDisplayPlanePropertiesKHRState < QUERY_DETAILS) {
bp_pd_data->vkGetPhysicalDeviceDisplayPlanePropertiesKHRState = QUERY_DETAILS;
}
}
}
}
void BestPractices::ManualPostCallRecordGetSwapchainImagesKHR(VkDevice device, VkSwapchainKHR swapchain,
uint32_t* pSwapchainImageCount, VkImage* pSwapchainImages,
VkResult result) {
auto swapchain_state = Get<bp_state::Swapchain>(swapchain);
if (swapchain_state && (pSwapchainImages || *pSwapchainImageCount)) {
if (swapchain_state->vkGetSwapchainImagesKHRState < QUERY_DETAILS) {
swapchain_state->vkGetSwapchainImagesKHRState = QUERY_DETAILS;
}
}
}
void BestPractices::PreCallRecordQueueSubmit(VkQueue queue, uint32_t submitCount, const VkSubmitInfo* pSubmits, VkFence fence) {
ValidationStateTracker::PreCallRecordQueueSubmit(queue, submitCount, pSubmits, fence);
auto queue_state = Get<QUEUE_STATE>(queue);
for (uint32_t submit = 0; submit < submitCount; submit++) {
const auto& submit_info = pSubmits[submit];
for (uint32_t cb_index = 0; cb_index < submit_info.commandBufferCount; cb_index++) {
auto cb = GetWrite<bp_state::CommandBuffer>(submit_info.pCommandBuffers[cb_index]);
for (auto &func : cb->queue_submit_functions) {
func(*this, *queue_state, *cb);
}
cb->num_submits++;
}
}
}