blob: 29eac468125ed7b239adeb911ceb70ce78ae98e3 [file] [log] [blame]
/*
*
* Copyright (c) 2014-2023 The Khronos Group Inc.
* Copyright (c) 2014-2023 Valve Corporation
* Copyright (c) 2014-2023 LunarG, Inc.
* Copyright (C) 2015 Google Inc.
*
* Licensed under the Apache License, Version 2.0 (the "License");
* you may not use this file except in compliance with the License.
* You may obtain a copy of the License at
*
* http://www.apache.org/licenses/LICENSE-2.0
*
* Unless required by applicable law or agreed to in writing, software
* distributed under the License is distributed on an "AS IS" BASIS,
* WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
* See the License for the specific language governing permissions and
* limitations under the License.
*
* Author: Jon Ashburn <jon@lunarg.com>
* Author: Courtney Goeltzenleuchter <courtney@LunarG.com>
* Author: Mark Young <marky@lunarg.com>
* Author: Lenny Komow <lenny@lunarg.com>
* Author: Charles Giessen <charles@lunarg.com>
*
*/
#include "loader.h"
#include <fcntl.h>
#include <ctype.h>
#include <inttypes.h>
#include <stdio.h>
#include <stdlib.h>
#include <stdarg.h>
#include <stdbool.h>
#include <string.h>
#include <stddef.h>
#if defined(__APPLE__)
#include <CoreFoundation/CoreFoundation.h>
#include <sys/param.h>
#endif
#include <sys/types.h>
#if defined(_WIN32)
#include "dirent_on_windows.h"
#elif COMMON_UNIX_PLATFORMS
#include <dirent.h>
#else
#warning dirent.h not available on this platform
#endif // _WIN32
#include "allocation.h"
#include "cJSON.h"
#include "debug_utils.h"
#include "loader_environment.h"
#include "gpa_helper.h"
#include "log.h"
#include "unknown_function_handling.h"
#include "vk_loader_platform.h"
#include "wsi.h"
#if defined(WIN32)
#include "loader_windows.h"
#endif
#if defined(LOADER_ENABLE_LINUX_SORT)
// This header is currently only used when sorting Linux devices, so don't include it otherwise.
#include "loader_linux.h"
#endif // LOADER_ENABLE_LINUX_SORT
#if defined(__Fuchsia__)
#include "loader_fuchsia.h"
#endif
// Generated file containing all the extension data
#include "vk_loader_extensions.c"
struct loader_struct loader = {0};
struct activated_layer_info {
char *name;
char *manifest;
char *library;
bool is_implicit;
char *disable_env;
};
// thread safety lock for accessing global data structures such as "loader"
// all entrypoints on the instance chain need to be locked except GPA
// additionally CreateDevice and DestroyDevice needs to be locked
loader_platform_thread_mutex loader_lock;
loader_platform_thread_mutex loader_preload_icd_lock;
loader_platform_thread_mutex loader_global_instance_list_lock;
// A list of ICDs that gets initialized when the loader does its global initialization. This list should never be used by anything
// other than EnumerateInstanceExtensionProperties(), vkDestroyInstance, and loader_release(). This list does not change
// functionality, but the fact that the libraries already been loaded causes any call that needs to load ICD libraries to speed up
// significantly. This can have a huge impact when making repeated calls to vkEnumerateInstanceExtensionProperties and
// vkCreateInstance.
struct loader_icd_tramp_list scanned_icds;
// controls whether loader_platform_close_library() closes the libraries or not - controlled by an environment
// variables - this is just the definition of the variable, usage is in vk_loader_platform.h
bool loader_disable_dynamic_library_unloading;
LOADER_PLATFORM_THREAD_ONCE_DECLARATION(once_init);
// Creates loader_api_version struct that contains the major and minor fields, setting patch to 0
loader_api_version loader_make_version(uint32_t version) {
loader_api_version out_version;
out_version.major = VK_API_VERSION_MAJOR(version);
out_version.minor = VK_API_VERSION_MINOR(version);
out_version.patch = 0;
return out_version;
}
// Creates loader_api_version struct containing the major, minor, and patch fields
loader_api_version loader_make_full_version(uint32_t version) {
loader_api_version out_version;
out_version.major = VK_API_VERSION_MAJOR(version);
out_version.minor = VK_API_VERSION_MINOR(version);
out_version.patch = VK_API_VERSION_PATCH(version);
return out_version;
}
loader_api_version loader_combine_version(uint32_t major, uint32_t minor, uint32_t patch) {
loader_api_version out_version;
out_version.major = (uint16_t)major;
out_version.minor = (uint16_t)minor;
out_version.patch = (uint16_t)patch;
return out_version;
}
// Helper macros for determining if a version is valid or not
bool loader_check_version_meets_required(loader_api_version required, loader_api_version version) {
// major version is satisfied
return (version.major > required.major) ||
// major version is equal, minor version is patch version is greater to minimum minor
(version.major == required.major && version.minor > required.minor) ||
// major and minor version are equal, patch version is greater or equal to minimum patch
(version.major == required.major && version.minor == required.minor && version.patch >= required.patch);
}
// Wrapper around opendir so that the dirent_on_windows gets the instance it needs
// while linux opendir & readdir does not
DIR *loader_opendir(const struct loader_instance *instance, const char *name) {
#if defined(_WIN32)
return opendir(instance ? &instance->alloc_callbacks : NULL, name);
#elif COMMON_UNIX_PLATFORMS
(void)instance;
return opendir(name);
#else
#warning dirent.h - opendir not available on this platform
#endif // _WIN32
}
int loader_closedir(const struct loader_instance *instance, DIR *dir) {
#if defined(_WIN32)
return closedir(instance ? &instance->alloc_callbacks : NULL, dir);
#elif COMMON_UNIX_PLATFORMS
(void)instance;
return closedir(dir);
#else
#warning dirent.h - closedir not available on this platform
#endif // _WIN32
}
bool is_json(const char *path, size_t len) {
if (len < 5) {
return false;
}
return !strncmp(path, ".json", 5);
}
// Handle error from to library loading
void loader_handle_load_library_error(const struct loader_instance *inst, const char *filename,
enum loader_layer_library_status *lib_status) {
const char *error_message = loader_platform_open_library_error(filename);
// If the error is due to incompatible architecture (eg 32 bit vs 64 bit), report it with INFO level
// Discussed in Github issue 262 & 644
// "wrong ELF class" is a linux error, " with error 193" is a windows error
VkFlags err_flag = VULKAN_LOADER_ERROR_BIT;
if (strstr(error_message, "wrong ELF class:") != NULL || strstr(error_message, " with error 193") != NULL) {
err_flag = VULKAN_LOADER_INFO_BIT;
if (NULL != lib_status) {
*lib_status = LOADER_LAYER_LIB_ERROR_WRONG_BIT_TYPE;
}
}
// Check if the error is due to lack of memory
// "with error 8" is the windows error code for OOM cases, aka ERROR_NOT_ENOUGH_MEMORY
// Linux doesn't have such a nice error message - only if there are reported issues should this be called
else if (strstr(error_message, " with error 8") != NULL) {
if (NULL != lib_status) {
*lib_status = LOADER_LAYER_LIB_ERROR_OUT_OF_MEMORY;
}
} else if (NULL != lib_status) {
*lib_status = LOADER_LAYER_LIB_ERROR_FAILED_TO_LOAD;
}
loader_log(inst, err_flag, 0, error_message);
}
VKAPI_ATTR VkResult VKAPI_CALL vkSetInstanceDispatch(VkInstance instance, void *object) {
struct loader_instance *inst = loader_get_instance(instance);
if (!inst) {
loader_log(inst, VULKAN_LOADER_ERROR_BIT, 0, "vkSetInstanceDispatch: Can not retrieve Instance dispatch table.");
return VK_ERROR_INITIALIZATION_FAILED;
}
loader_set_dispatch(object, inst->disp);
return VK_SUCCESS;
}
VKAPI_ATTR VkResult VKAPI_CALL vkSetDeviceDispatch(VkDevice device, void *object) {
struct loader_device *dev;
struct loader_icd_term *icd_term = loader_get_icd_and_device(device, &dev, NULL);
if (NULL == icd_term || NULL == dev) {
return VK_ERROR_INITIALIZATION_FAILED;
}
loader_set_dispatch(object, &dev->loader_dispatch);
return VK_SUCCESS;
}
void loader_free_layer_properties(const struct loader_instance *inst, struct loader_layer_properties *layer_properties) {
loader_instance_heap_free(inst, layer_properties->manifest_file_name);
loader_instance_heap_free(inst, layer_properties->lib_name);
loader_instance_heap_free(inst, layer_properties->functions.str_gipa);
loader_instance_heap_free(inst, layer_properties->functions.str_gdpa);
loader_instance_heap_free(inst, layer_properties->functions.str_negotiate_interface);
loader_destroy_generic_list(inst, (struct loader_generic_list *)&layer_properties->instance_extension_list);
if (layer_properties->device_extension_list.capacity > 0 && NULL != layer_properties->device_extension_list.list) {
for (uint32_t i = 0; i < layer_properties->device_extension_list.count; i++) {
free_string_list(inst, &layer_properties->device_extension_list.list[i].entrypoints);
}
}
loader_destroy_generic_list(inst, (struct loader_generic_list *)&layer_properties->device_extension_list);
loader_instance_heap_free(inst, layer_properties->disable_env_var.name);
loader_instance_heap_free(inst, layer_properties->disable_env_var.value);
loader_instance_heap_free(inst, layer_properties->enable_env_var.name);
loader_instance_heap_free(inst, layer_properties->enable_env_var.value);
free_string_list(inst, &layer_properties->component_layer_names);
loader_instance_heap_free(inst, layer_properties->pre_instance_functions.enumerate_instance_extension_properties);
loader_instance_heap_free(inst, layer_properties->pre_instance_functions.enumerate_instance_layer_properties);
loader_instance_heap_free(inst, layer_properties->pre_instance_functions.enumerate_instance_version);
free_string_list(inst, &layer_properties->override_paths);
free_string_list(inst, &layer_properties->blacklist_layer_names);
free_string_list(inst, &layer_properties->app_key_paths);
// Make sure to clear out the removed layer, in case new layers are added in the previous location
memset(layer_properties, 0, sizeof(struct loader_layer_properties));
}
VkResult loader_init_library_list(struct loader_layer_list *instance_layers, loader_platform_dl_handle **libs) {
if (instance_layers->count > 0) {
*libs = loader_calloc(NULL, sizeof(loader_platform_dl_handle) * instance_layers->count, VK_SYSTEM_ALLOCATION_SCOPE_COMMAND);
if (*libs == NULL) {
return VK_ERROR_OUT_OF_HOST_MEMORY;
}
}
return VK_SUCCESS;
}
VkResult loader_copy_to_new_str(const struct loader_instance *inst, const char *source_str, char **dest_str) {
assert(source_str && dest_str);
size_t str_len = strlen(source_str) + 1;
*dest_str = loader_instance_heap_calloc(inst, str_len, VK_SYSTEM_ALLOCATION_SCOPE_INSTANCE);
if (NULL == *dest_str) return VK_ERROR_OUT_OF_HOST_MEMORY;
loader_strncpy(*dest_str, str_len, source_str, str_len);
(*dest_str)[str_len - 1] = 0;
return VK_SUCCESS;
}
VkResult create_string_list(const struct loader_instance *inst, uint32_t allocated_count, struct loader_string_list *string_list) {
assert(string_list);
string_list->list = loader_instance_heap_calloc(inst, sizeof(char *) * allocated_count, VK_SYSTEM_ALLOCATION_SCOPE_INSTANCE);
if (NULL == string_list->list) {
return VK_ERROR_OUT_OF_HOST_MEMORY;
}
string_list->allocated_count = allocated_count;
string_list->count = 0;
return VK_SUCCESS;
}
VkResult append_str_to_string_list(const struct loader_instance *inst, struct loader_string_list *string_list, char *str) {
assert(string_list && str);
if (string_list->allocated_count == 0) {
string_list->allocated_count = 32;
string_list->list =
loader_instance_heap_calloc(inst, sizeof(char *) * string_list->allocated_count, VK_SYSTEM_ALLOCATION_SCOPE_INSTANCE);
if (NULL == string_list->list) {
return VK_ERROR_OUT_OF_HOST_MEMORY;
}
} else if (string_list->count + 1 > string_list->allocated_count) {
uint32_t new_allocated_count = string_list->allocated_count * 2;
string_list->list = loader_instance_heap_realloc(inst, string_list->list, sizeof(char *) * string_list->allocated_count,
sizeof(char *) * new_allocated_count, VK_SYSTEM_ALLOCATION_SCOPE_INSTANCE);
if (NULL == string_list->list) {
return VK_ERROR_OUT_OF_HOST_MEMORY;
}
// Null out the new space
memset(string_list->list + string_list->allocated_count, 0, string_list->allocated_count);
string_list->allocated_count *= 2;
}
string_list->list[string_list->count++] = str;
return VK_SUCCESS;
}
VkResult copy_str_to_string_list(const struct loader_instance *inst, struct loader_string_list *string_list, const char *str,
size_t str_len) {
assert(string_list && str);
char *new_str = loader_instance_heap_calloc(inst, sizeof(char *) * str_len + 1, VK_SYSTEM_ALLOCATION_SCOPE_INSTANCE);
if (NULL == new_str) {
return VK_ERROR_OUT_OF_HOST_MEMORY;
}
loader_strncpy(new_str, sizeof(char *) * str_len + 1, str, str_len);
new_str[str_len] = '\0';
VkResult res = append_str_to_string_list(inst, string_list, new_str);
if (res != VK_SUCCESS) {
// Cleanup new_str if the append failed - as append_str_to_string_list takes ownership but not if the function fails
loader_instance_heap_free(inst, new_str);
}
return res;
}
void free_string_list(const struct loader_instance *inst, struct loader_string_list *string_list) {
assert(string_list);
if (string_list->list) {
for (uint32_t i = 0; i < string_list->count; i++) {
loader_instance_heap_free(inst, string_list->list[i]);
string_list->list[i] = NULL;
}
loader_instance_heap_free(inst, string_list->list);
string_list->list = NULL;
}
string_list->count = 0;
string_list->allocated_count = 0;
}
// Given string of three part form "maj.min.pat" convert to a vulkan version number.
// Also can understand four part form "variant.major.minor.patch" if provided.
uint32_t loader_parse_version_string(char *vers_str) {
uint32_t variant = 0, major = 0, minor = 0, patch = 0;
char *vers_tok;
char *context = NULL;
if (!vers_str) {
return 0;
}
vers_tok = thread_safe_strtok(vers_str, ".\"\n\r", &context);
if (NULL != vers_tok) {
major = (uint16_t)atoi(vers_tok);
vers_tok = thread_safe_strtok(NULL, ".\"\n\r", &context);
if (NULL != vers_tok) {
minor = (uint16_t)atoi(vers_tok);
vers_tok = thread_safe_strtok(NULL, ".\"\n\r", &context);
if (NULL != vers_tok) {
patch = (uint16_t)atoi(vers_tok);
vers_tok = thread_safe_strtok(NULL, ".\"\n\r", &context);
// check that we are using a 4 part version string
if (NULL != vers_tok) {
// if we are, move the values over into the correct place
variant = major;
major = minor;
minor = patch;
patch = (uint16_t)atoi(vers_tok);
}
}
}
}
return VK_MAKE_API_VERSION(variant, major, minor, patch);
}
bool compare_vk_extension_properties(const VkExtensionProperties *op1, const VkExtensionProperties *op2) {
return strcmp(op1->extensionName, op2->extensionName) == 0 ? true : false;
}
// Search the given ext_array for an extension matching the given vk_ext_prop
bool has_vk_extension_property_array(const VkExtensionProperties *vk_ext_prop, const uint32_t count,
const VkExtensionProperties *ext_array) {
for (uint32_t i = 0; i < count; i++) {
if (compare_vk_extension_properties(vk_ext_prop, &ext_array[i])) return true;
}
return false;
}
// Search the given ext_list for an extension matching the given vk_ext_prop
bool has_vk_extension_property(const VkExtensionProperties *vk_ext_prop, const struct loader_extension_list *ext_list) {
for (uint32_t i = 0; i < ext_list->count; i++) {
if (compare_vk_extension_properties(&ext_list->list[i], vk_ext_prop)) return true;
}
return false;
}
// Search the given ext_list for a device extension matching the given ext_prop
bool has_vk_dev_ext_property(const VkExtensionProperties *ext_prop, const struct loader_device_extension_list *ext_list) {
for (uint32_t i = 0; i < ext_list->count; i++) {
if (compare_vk_extension_properties(&ext_list->list[i].props, ext_prop)) return true;
}
return false;
}
VkResult loader_append_layer_property(const struct loader_instance *inst, struct loader_layer_list *layer_list,
struct loader_layer_properties *layer_property) {
VkResult res = VK_SUCCESS;
if (layer_list->capacity == 0) {
res = loader_init_generic_list(inst, (struct loader_generic_list *)layer_list, sizeof(struct loader_layer_properties));
if (VK_SUCCESS != res) {
goto out;
}
}
// Ensure enough room to add an entry
if ((layer_list->count + 1) * sizeof(struct loader_layer_properties) > layer_list->capacity) {
void *new_ptr = loader_instance_heap_realloc(inst, layer_list->list, layer_list->capacity, layer_list->capacity * 2,
VK_SYSTEM_ALLOCATION_SCOPE_INSTANCE);
if (NULL == new_ptr) {
loader_log(inst, VULKAN_LOADER_ERROR_BIT, 0, "loader_append_layer_property: realloc failed for layer list");
res = VK_ERROR_OUT_OF_HOST_MEMORY;
goto out;
}
layer_list->list = new_ptr;
memset((uint8_t *)layer_list->list + layer_list->capacity, 0, layer_list->capacity);
layer_list->capacity *= 2;
}
memcpy(&layer_list->list[layer_list->count], layer_property, sizeof(struct loader_layer_properties));
layer_list->count++;
memset(layer_property, 0, sizeof(struct loader_layer_properties));
out:
if (res != VK_SUCCESS) {
loader_free_layer_properties(inst, layer_property);
}
return res;
}
// Search the given layer list for a layer property matching the given layer name
struct loader_layer_properties *loader_find_layer_property(const char *name, const struct loader_layer_list *layer_list) {
for (uint32_t i = 0; i < layer_list->count; i++) {
const VkLayerProperties *item = &layer_list->list[i].info;
if (strcmp(name, item->layerName) == 0) return &layer_list->list[i];
}
return NULL;
}
struct loader_layer_properties *loader_find_pointer_layer_property(const char *name,
const struct loader_pointer_layer_list *layer_list) {
for (uint32_t i = 0; i < layer_list->count; i++) {
const VkLayerProperties *item = &layer_list->list[i]->info;
if (strcmp(name, item->layerName) == 0) return layer_list->list[i];
}
return NULL;
}
// Search the given layer list for a layer matching the given layer name
bool loader_find_layer_name_in_list(const char *name, const struct loader_pointer_layer_list *layer_list) {
if (NULL == layer_list) {
return false;
}
if (NULL != loader_find_pointer_layer_property(name, layer_list)) {
return true;
}
return false;
}
// Search the given meta-layer's component list for a layer matching the given layer name
bool loader_find_layer_name_in_meta_layer(const struct loader_instance *inst, const char *layer_name,
struct loader_layer_list *layer_list, struct loader_layer_properties *meta_layer_props) {
for (uint32_t comp_layer = 0; comp_layer < meta_layer_props->component_layer_names.count; comp_layer++) {
if (!strcmp(meta_layer_props->component_layer_names.list[comp_layer], layer_name)) {
return true;
}
struct loader_layer_properties *comp_layer_props =
loader_find_layer_property(meta_layer_props->component_layer_names.list[comp_layer], layer_list);
if (comp_layer_props->type_flags & VK_LAYER_TYPE_FLAG_META_LAYER) {
return loader_find_layer_name_in_meta_layer(inst, layer_name, layer_list, comp_layer_props);
}
}
return false;
}
// Search the override layer's blacklist for a layer matching the given layer name
bool loader_find_layer_name_in_blacklist(const char *layer_name, struct loader_layer_properties *meta_layer_props) {
for (uint32_t black_layer = 0; black_layer < meta_layer_props->blacklist_layer_names.count; ++black_layer) {
if (!strcmp(meta_layer_props->blacklist_layer_names.list[black_layer], layer_name)) {
return true;
}
}
return false;
}
// Remove all layer properties entries from the list
void loader_delete_layer_list_and_properties(const struct loader_instance *inst, struct loader_layer_list *layer_list) {
uint32_t i;
if (!layer_list) return;
for (i = 0; i < layer_list->count; i++) {
if (layer_list->list[i].lib_handle) {
loader_platform_close_library(layer_list->list[i].lib_handle);
loader_log(inst, VULKAN_LOADER_DEBUG_BIT | VULKAN_LOADER_LAYER_BIT, 0, "Unloading layer library %s",
layer_list->list[i].lib_name);
layer_list->list[i].lib_handle = NULL;
}
loader_free_layer_properties(inst, &(layer_list->list[i]));
}
layer_list->count = 0;
if (layer_list->capacity > 0) {
layer_list->capacity = 0;
loader_instance_heap_free(inst, layer_list->list);
}
}
void loader_remove_layer_in_list(const struct loader_instance *inst, struct loader_layer_list *layer_list,
uint32_t layer_to_remove) {
if (layer_list == NULL || layer_to_remove >= layer_list->count) {
return;
}
loader_free_layer_properties(inst, &(layer_list->list[layer_to_remove]));
// Remove the current invalid meta-layer from the layer list. Use memmove since we are
// overlapping the source and destination addresses.
memmove(&layer_list->list[layer_to_remove], &layer_list->list[layer_to_remove + 1],
sizeof(struct loader_layer_properties) * (layer_list->count - 1 - layer_to_remove));
// Decrement the count (because we now have one less) and decrement the loop index since we need to
// re-check this index.
layer_list->count--;
}
// Remove all layers in the layer list that are blacklisted by the override layer.
// NOTE: This should only be called if an override layer is found and not expired.
void loader_remove_layers_in_blacklist(const struct loader_instance *inst, struct loader_layer_list *layer_list) {
struct loader_layer_properties *override_prop = loader_find_layer_property(VK_OVERRIDE_LAYER_NAME, layer_list);
if (NULL == override_prop) {
return;
}
for (int32_t j = 0; j < (int32_t)(layer_list->count); j++) {
struct loader_layer_properties cur_layer_prop = layer_list->list[j];
const char *cur_layer_name = &cur_layer_prop.info.layerName[0];
// Skip the override layer itself.
if (!strcmp(VK_OVERRIDE_LAYER_NAME, cur_layer_name)) {
continue;
}
// If found in the override layer's blacklist, remove it
if (loader_find_layer_name_in_blacklist(cur_layer_name, override_prop)) {
loader_log(inst, VULKAN_LOADER_DEBUG_BIT, 0,
"loader_remove_layers_in_blacklist: Override layer is active and layer %s is in the blacklist inside of it. "
"Removing that layer from current layer list.",
cur_layer_name);
loader_remove_layer_in_list(inst, layer_list, j);
j--;
// Re-do the query for the override layer
override_prop = loader_find_layer_property(VK_OVERRIDE_LAYER_NAME, layer_list);
}
}
}
// Remove all layers in the layer list that are not found inside any implicit meta-layers.
void loader_remove_layers_not_in_implicit_meta_layers(const struct loader_instance *inst, struct loader_layer_list *layer_list) {
int32_t i;
int32_t j;
int32_t layer_count = (int32_t)(layer_list->count);
for (i = 0; i < layer_count; i++) {
layer_list->list[i].keep = false;
}
for (i = 0; i < layer_count; i++) {
struct loader_layer_properties *cur_layer_prop = &layer_list->list[i];
if (0 == (cur_layer_prop->type_flags & VK_LAYER_TYPE_FLAG_EXPLICIT_LAYER)) {
cur_layer_prop->keep = true;
continue;
}
for (j = 0; j < layer_count; j++) {
struct loader_layer_properties *layer_to_check = &layer_list->list[j];
if (i == j) {
continue;
}
if (layer_to_check->type_flags & VK_LAYER_TYPE_FLAG_META_LAYER) {
// For all layers found in this meta layer, we want to keep them as well.
if (loader_find_layer_name_in_meta_layer(inst, cur_layer_prop->info.layerName, layer_list, layer_to_check)) {
cur_layer_prop->keep = true;
}
}
}
}
// Remove any layers we don't want to keep (Don't use layer_count here as we need it to be
// dynamically updated if we delete a layer property in the list).
for (i = 0; i < (int32_t)(layer_list->count); i++) {
struct loader_layer_properties *cur_layer_prop = &layer_list->list[i];
if (!cur_layer_prop->keep) {
loader_log(
inst, VULKAN_LOADER_DEBUG_BIT, 0,
"loader_remove_layers_not_in_implicit_meta_layers : Implicit meta-layers are active, and layer %s is not list "
"inside of any. So removing layer from current layer list.",
cur_layer_prop->info.layerName);
loader_remove_layer_in_list(inst, layer_list, i);
i--;
}
}
}
VkResult loader_add_instance_extensions(const struct loader_instance *inst,
const PFN_vkEnumerateInstanceExtensionProperties fp_get_props, const char *lib_name,
struct loader_extension_list *ext_list) {
uint32_t i, count = 0;
VkExtensionProperties *ext_props;
VkResult res = VK_SUCCESS;
if (!fp_get_props) {
// No EnumerateInstanceExtensionProperties defined
goto out;
}
// Make sure we never call ourself by accident, this should never happen outside of error paths
if (fp_get_props == vkEnumerateInstanceExtensionProperties) {
loader_log(inst, VULKAN_LOADER_ERROR_BIT, 0,
"loader_add_instance_extensions: %s's vkEnumerateInstanceExtensionProperties points to the loader, this would "
"lead to infinite recursion.",
lib_name);
goto out;
}
res = fp_get_props(NULL, &count, NULL);
if (res != VK_SUCCESS) {
loader_log(inst, VULKAN_LOADER_ERROR_BIT, 0,
"loader_add_instance_extensions: Error getting Instance extension count from %s", lib_name);
goto out;
}
if (count == 0) {
// No ExtensionProperties to report
goto out;
}
ext_props = loader_stack_alloc(count * sizeof(VkExtensionProperties));
if (NULL == ext_props) {
res = VK_ERROR_OUT_OF_HOST_MEMORY;
goto out;
}
res = fp_get_props(NULL, &count, ext_props);
if (res != VK_SUCCESS) {
loader_log(inst, VULKAN_LOADER_ERROR_BIT, 0, "loader_add_instance_extensions: Error getting Instance extensions from %s",
lib_name);
goto out;
}
for (i = 0; i < count; i++) {
bool ext_unsupported = wsi_unsupported_instance_extension(&ext_props[i]);
if (!ext_unsupported) {
res = loader_add_to_ext_list(inst, ext_list, 1, &ext_props[i]);
if (res != VK_SUCCESS) {
goto out;
}
}
}
out:
return res;
}
VkResult loader_add_device_extensions(const struct loader_instance *inst,
PFN_vkEnumerateDeviceExtensionProperties fpEnumerateDeviceExtensionProperties,
VkPhysicalDevice physical_device, const char *lib_name,
struct loader_extension_list *ext_list) {
uint32_t i = 0, count = 0;
VkResult res = VK_SUCCESS;
VkExtensionProperties *ext_props = NULL;
res = fpEnumerateDeviceExtensionProperties(physical_device, NULL, &count, NULL);
if (res != VK_SUCCESS) {
loader_log(inst, VULKAN_LOADER_ERROR_BIT, 0,
"loader_add_device_extensions: Error getting physical device extension info count from library %s", lib_name);
return res;
}
if (count > 0) {
ext_props = loader_stack_alloc(count * sizeof(VkExtensionProperties));
if (!ext_props) {
loader_log(inst, VULKAN_LOADER_ERROR_BIT, 0,
"loader_add_device_extensions: Failed to allocate space for device extension properties from library %s.",
lib_name);
return VK_ERROR_OUT_OF_HOST_MEMORY;
}
res = fpEnumerateDeviceExtensionProperties(physical_device, NULL, &count, ext_props);
if (res != VK_SUCCESS) {
return res;
}
for (i = 0; i < count; i++) {
res = loader_add_to_ext_list(inst, ext_list, 1, &ext_props[i]);
if (res != VK_SUCCESS) {
return res;
}
}
}
return VK_SUCCESS;
}
VkResult loader_init_generic_list(const struct loader_instance *inst, struct loader_generic_list *list_info, size_t element_size) {
size_t capacity = 32 * element_size;
list_info->count = 0;
list_info->capacity = 0;
list_info->list = loader_instance_heap_calloc(inst, capacity, VK_SYSTEM_ALLOCATION_SCOPE_INSTANCE);
if (list_info->list == NULL) {
loader_log(inst, VULKAN_LOADER_ERROR_BIT, 0, "loader_init_generic_list: Failed to allocate space for generic list");
return VK_ERROR_OUT_OF_HOST_MEMORY;
}
list_info->capacity = capacity;
return VK_SUCCESS;
}
void loader_destroy_generic_list(const struct loader_instance *inst, struct loader_generic_list *list) {
loader_instance_heap_free(inst, list->list);
list->count = 0;
list->capacity = 0;
list->list = NULL;
}
// Append non-duplicate extension properties defined in props to the given ext_list.
// Return - Vk_SUCCESS on success
VkResult loader_add_to_ext_list(const struct loader_instance *inst, struct loader_extension_list *ext_list,
uint32_t prop_list_count, const VkExtensionProperties *props) {
if (ext_list->list == NULL || ext_list->capacity == 0) {
VkResult res = loader_init_generic_list(inst, (struct loader_generic_list *)ext_list, sizeof(VkExtensionProperties));
if (VK_SUCCESS != res) {
return res;
}
}
for (uint32_t i = 0; i < prop_list_count; i++) {
const VkExtensionProperties *cur_ext = &props[i];
// look for duplicates
if (has_vk_extension_property(cur_ext, ext_list)) {
continue;
}
// add to list at end
// check for enough capacity
if (ext_list->count * sizeof(VkExtensionProperties) >= ext_list->capacity) {
void *new_ptr = loader_instance_heap_realloc(inst, ext_list->list, ext_list->capacity, ext_list->capacity * 2,
VK_SYSTEM_ALLOCATION_SCOPE_INSTANCE);
if (new_ptr == NULL) {
loader_log(inst, VULKAN_LOADER_ERROR_BIT, 0,
"loader_add_to_ext_list: Failed to reallocate space for extension list");
return VK_ERROR_OUT_OF_HOST_MEMORY;
}
ext_list->list = new_ptr;
// double capacity
ext_list->capacity *= 2;
}
memcpy(&ext_list->list[ext_list->count], cur_ext, sizeof(VkExtensionProperties));
ext_list->count++;
}
return VK_SUCCESS;
}
// Append one extension property defined in props with entrypoints defined in entries to the given
// ext_list. Do not append if a duplicate.
// If this is a duplicate, this function free's the passed in entries - as in it takes ownership over that list (if it is not
// NULL) Return - Vk_SUCCESS on success
VkResult loader_add_to_dev_ext_list(const struct loader_instance *inst, struct loader_device_extension_list *ext_list,
const VkExtensionProperties *props, struct loader_string_list *entrys) {
VkResult res = VK_SUCCESS;
bool should_free_entrys = true;
if (ext_list->list == NULL || ext_list->capacity == 0) {
res = loader_init_generic_list(inst, (struct loader_generic_list *)ext_list, sizeof(struct loader_dev_ext_props));
if (VK_SUCCESS != res) {
goto out;
}
}
// look for duplicates
if (has_vk_dev_ext_property(props, ext_list)) {
goto out;
}
uint32_t idx = ext_list->count;
// add to list at end
// check for enough capacity
if (idx * sizeof(struct loader_dev_ext_props) >= ext_list->capacity) {
void *new_ptr = loader_instance_heap_realloc(inst, ext_list->list, ext_list->capacity, ext_list->capacity * 2,
VK_SYSTEM_ALLOCATION_SCOPE_INSTANCE);
if (NULL == new_ptr) {
loader_log(inst, VULKAN_LOADER_ERROR_BIT, 0,
"loader_add_to_dev_ext_list: Failed to reallocate space for device extension list");
res = VK_ERROR_OUT_OF_HOST_MEMORY;
goto out;
}
ext_list->list = new_ptr;
// double capacity
ext_list->capacity *= 2;
}
memcpy(&ext_list->list[idx].props, props, sizeof(*props));
if (entrys) {
ext_list->list[idx].entrypoints = *entrys;
should_free_entrys = false;
}
ext_list->count++;
out:
if (NULL != entrys && should_free_entrys) {
free_string_list(inst, entrys);
}
return res;
}
// Create storage for pointers to loader_layer_properties
bool loader_init_pointer_layer_list(const struct loader_instance *inst, struct loader_pointer_layer_list *list) {
list->capacity = 32 * sizeof(void *);
list->list = loader_instance_heap_calloc(inst, list->capacity, VK_SYSTEM_ALLOCATION_SCOPE_INSTANCE);
if (list->list == NULL) {
return false;
}
list->count = 0;
return true;
}
// Search the given array of layer names for an entry matching the given VkLayerProperties
bool loader_names_array_has_layer_property(const VkLayerProperties *vk_layer_prop, uint32_t layer_info_count,
struct activated_layer_info *layer_info) {
for (uint32_t i = 0; i < layer_info_count; i++) {
if (strcmp(vk_layer_prop->layerName, layer_info[i].name) == 0) {
return true;
}
}
return false;
}
void loader_destroy_pointer_layer_list(const struct loader_instance *inst, struct loader_pointer_layer_list *layer_list) {
loader_instance_heap_free(inst, layer_list->list);
layer_list->count = 0;
layer_list->capacity = 0;
layer_list->list = NULL;
}
// Append layer properties defined in prop_list to the given layer_info list
VkResult loader_add_layer_properties_to_list(const struct loader_instance *inst, struct loader_pointer_layer_list *list,
struct loader_layer_properties *props) {
if (list->list == NULL || list->capacity == 0) {
if (!loader_init_pointer_layer_list(inst, list)) {
return VK_ERROR_OUT_OF_HOST_MEMORY;
}
}
// Check for enough capacity
if (((list->count + 1) * sizeof(struct loader_layer_properties)) >= list->capacity) {
size_t new_capacity = list->capacity * 2;
void *new_ptr =
loader_instance_heap_realloc(inst, list->list, list->capacity, new_capacity, VK_SYSTEM_ALLOCATION_SCOPE_INSTANCE);
if (NULL == new_ptr) {
loader_log(inst, VULKAN_LOADER_ERROR_BIT, 0,
"loader_add_layer_properties_to_list: Realloc failed for when attempting to add new layer");
return VK_ERROR_OUT_OF_HOST_MEMORY;
}
list->list = new_ptr;
list->capacity = new_capacity;
}
list->list[list->count++] = props;
return VK_SUCCESS;
}
// Determine if the provided explicit layer should be available by querying the appropriate environmental variables.
bool loader_layer_is_available(const struct loader_instance *inst, const struct loader_envvar_all_filters *filters,
const struct loader_layer_properties *prop) {
bool available = true;
bool is_implicit = (0 == (prop->type_flags & VK_LAYER_TYPE_FLAG_EXPLICIT_LAYER));
bool disabled_by_type =
(is_implicit) ? (filters->disable_filter.disable_all_implicit) : (filters->disable_filter.disable_all_explicit);
if ((filters->disable_filter.disable_all || disabled_by_type ||
check_name_matches_filter_environment_var(prop->info.layerName, &filters->disable_filter.additional_filters)) &&
!check_name_matches_filter_environment_var(prop->info.layerName, &filters->allow_filter)) {
available = false;
}
if (check_name_matches_filter_environment_var(prop->info.layerName, &filters->enable_filter)) {
available = true;
} else if (!available) {
loader_log(inst, VULKAN_LOADER_WARN_BIT | VULKAN_LOADER_LAYER_BIT, 0,
"Layer \"%s\" forced disabled because name matches filter of env var \'%s\'.", prop->info.layerName,
VK_LAYERS_DISABLE_ENV_VAR);
}
return available;
}
// Search the given search_list for any layers in the props list. Add these to the
// output layer_list.
VkResult loader_add_layer_names_to_list(const struct loader_instance *inst, const struct loader_envvar_all_filters *filters,
struct loader_pointer_layer_list *output_list,
struct loader_pointer_layer_list *expanded_output_list, uint32_t name_count,
const char *const *names, const struct loader_layer_list *source_list) {
VkResult err = VK_SUCCESS;
for (uint32_t i = 0; i < name_count; i++) {
const char *source_name = names[i];
struct loader_layer_properties *layer_prop = loader_find_layer_property(source_name, source_list);
if (NULL == layer_prop) {
loader_log(inst, VULKAN_LOADER_ERROR_BIT | VULKAN_LOADER_LAYER_BIT, 0,
"loader_add_layer_names_to_list: Unable to find layer \"%s\"", source_name);
err = VK_ERROR_LAYER_NOT_PRESENT;
continue;
}
// Make sure the layer isn't already in the output_list, skip adding it if it is.
if (loader_find_layer_name_in_list(source_name, output_list)) {
continue;
}
if (!loader_layer_is_available(inst, filters, layer_prop)) {
continue;
}
// If not a meta-layer, simply add it.
if (0 == (layer_prop->type_flags & VK_LAYER_TYPE_FLAG_META_LAYER)) {
err = loader_add_layer_properties_to_list(inst, output_list, layer_prop);
if (err == VK_ERROR_OUT_OF_HOST_MEMORY) return err;
err = loader_add_layer_properties_to_list(inst, expanded_output_list, layer_prop);
if (err == VK_ERROR_OUT_OF_HOST_MEMORY) return err;
} else {
err = loader_add_meta_layer(inst, filters, layer_prop, output_list, expanded_output_list, source_list, NULL);
if (err == VK_ERROR_OUT_OF_HOST_MEMORY) return err;
}
}
return err;
}
// Determine if the provided implicit layer should be enabled by querying the appropriate environmental variables.
// For an implicit layer, at least a disable environment variable is required.
bool loader_implicit_layer_is_enabled(const struct loader_instance *inst, const struct loader_envvar_all_filters *filters,
const struct loader_layer_properties *prop) {
bool enable = false;
bool forced_disabled = false;
bool forced_enabled = false;
if ((filters->disable_filter.disable_all || filters->disable_filter.disable_all_implicit ||
check_name_matches_filter_environment_var(prop->info.layerName, &filters->disable_filter.additional_filters)) &&
!check_name_matches_filter_environment_var(prop->info.layerName, &filters->allow_filter)) {
forced_disabled = true;
}
if (check_name_matches_filter_environment_var(prop->info.layerName, &filters->enable_filter)) {
forced_enabled = true;
}
// If no enable_environment variable is specified, this implicit layer is always be enabled by default.
if (NULL == prop->enable_env_var.name) {
enable = true;
} else {
char *env_value = loader_getenv(prop->enable_env_var.name, inst);
if (env_value && !strcmp(prop->enable_env_var.value, env_value)) {
enable = true;
}
// Otherwise, only enable this layer if the enable environment variable is defined
loader_free_getenv(env_value, inst);
}
if (forced_enabled) {
// Only report a message that we've forced on a layer if it wouldn't have been enabled
// normally.
if (!enable) {
enable = true;
loader_log(inst, VULKAN_LOADER_WARN_BIT | VULKAN_LOADER_LAYER_BIT, 0,
"Implicit layer \"%s\" forced enabled due to env var \'%s\'.", prop->info.layerName,
VK_LAYERS_ENABLE_ENV_VAR);
}
} else if (enable && forced_disabled) {
enable = false;
// Report a message that we've forced off a layer if it would have been enabled normally.
loader_log(inst, VULKAN_LOADER_WARN_BIT | VULKAN_LOADER_LAYER_BIT, 0,
"Implicit layer \"%s\" forced disabled because name matches filter of env var \'%s\'.", prop->info.layerName,
VK_LAYERS_DISABLE_ENV_VAR);
return enable;
}
// The disable_environment has priority over everything else. If it is defined, the layer is always
// disabled.
if (NULL != prop->disable_env_var.name) {
char *env_value = loader_getenv(prop->disable_env_var.name, inst);
if (NULL != env_value) {
enable = false;
}
loader_free_getenv(env_value, inst);
} else if ((prop->type_flags & VK_LAYER_TYPE_FLAG_EXPLICIT_LAYER) == 0) {
loader_log(inst, VULKAN_LOADER_WARN_BIT | VULKAN_LOADER_LAYER_BIT, 0,
"Implicit layer \"%s\" missing disabled environment variable!", prop->info.layerName, VK_LAYERS_DISABLE_ENV_VAR);
}
// Enable this layer if it is included in the override layer
if (inst != NULL && inst->override_layer_present) {
struct loader_layer_properties *override = NULL;
for (uint32_t i = 0; i < inst->instance_layer_list.count; ++i) {
if (strcmp(inst->instance_layer_list.list[i].info.layerName, VK_OVERRIDE_LAYER_NAME) == 0) {
override = &inst->instance_layer_list.list[i];
break;
}
}
if (override != NULL) {
for (uint32_t i = 0; i < override->component_layer_names.count; ++i) {
if (strcmp(override->component_layer_names.list[i], prop->info.layerName) == 0) {
enable = true;
break;
}
}
}
}
return enable;
}
// Check the individual implicit layer for the enable/disable environment variable settings. Only add it after
// every check has passed indicating it should be used, including making sure a layer of the same name hasn't already been
// added.
VkResult loader_add_implicit_layer(const struct loader_instance *inst, struct loader_layer_properties *prop,
const struct loader_envvar_all_filters *filters, struct loader_pointer_layer_list *target_list,
struct loader_pointer_layer_list *expanded_target_list,
const struct loader_layer_list *source_list) {
VkResult result = VK_SUCCESS;
if (loader_implicit_layer_is_enabled(inst, filters, prop)) {
if (0 == (prop->type_flags & VK_LAYER_TYPE_FLAG_META_LAYER)) {
// Make sure the layer isn't already in the output_list, skip adding it if it is.
if (loader_find_layer_name_in_list(&prop->info.layerName[0], target_list)) {
return result;
}
result = loader_add_layer_properties_to_list(inst, target_list, prop);
if (result == VK_ERROR_OUT_OF_HOST_MEMORY) return result;
if (NULL != expanded_target_list) {
result = loader_add_layer_properties_to_list(inst, expanded_target_list, prop);
}
} else {
result = loader_add_meta_layer(inst, filters, prop, target_list, expanded_target_list, source_list, NULL);
}
}
return result;
}
// Add the component layers of a meta-layer to the active list of layers
VkResult loader_add_meta_layer(const struct loader_instance *inst, const struct loader_envvar_all_filters *filters,
struct loader_layer_properties *prop, struct loader_pointer_layer_list *target_list,
struct loader_pointer_layer_list *expanded_target_list, const struct loader_layer_list *source_list,
bool *out_found_all_component_layers) {
VkResult result = VK_SUCCESS;
bool found_all_component_layers = true;
// We need to add all the individual component layers
loader_api_version meta_layer_api_version = loader_make_version(prop->info.specVersion);
for (uint32_t comp_layer = 0; comp_layer < prop->component_layer_names.count; comp_layer++) {
struct loader_layer_properties *search_prop =
loader_find_layer_property(prop->component_layer_names.list[comp_layer], source_list);
if (search_prop != NULL) {
loader_api_version search_prop_version = loader_make_version(prop->info.specVersion);
if (!loader_check_version_meets_required(meta_layer_api_version, search_prop_version)) {
loader_log(inst, VULKAN_LOADER_WARN_BIT | VULKAN_LOADER_LAYER_BIT, 0,
"Meta-layer \"%s\" API version %u.%u, component layer \"%s\" version %u.%u, may have "
"incompatibilities (Policy #LLP_LAYER_8)!",
prop->info.layerName, meta_layer_api_version.major, meta_layer_api_version.minor,
search_prop->info.layerName, search_prop_version.major, search_prop_version.minor);
}
if (!loader_layer_is_available(inst, filters, search_prop)) {
loader_log(inst, VULKAN_LOADER_WARN_BIT | VULKAN_LOADER_LAYER_BIT, 0,
"Meta Layer \"%s\" component layer \"%s\" disabled.", prop->info.layerName, search_prop->info.layerName);
continue;
}
// If the component layer is itself an implicit layer, we need to do the implicit layer enable
// checks
if (0 == (search_prop->type_flags & VK_LAYER_TYPE_FLAG_EXPLICIT_LAYER)) {
result = loader_add_implicit_layer(inst, search_prop, filters, target_list, expanded_target_list, source_list);
if (result == VK_ERROR_OUT_OF_HOST_MEMORY) return result;
} else {
if (0 != (search_prop->type_flags & VK_LAYER_TYPE_FLAG_META_LAYER)) {
bool found_layers_in_component_meta_layer = true;
result = loader_add_meta_layer(inst, filters, search_prop, target_list, expanded_target_list, source_list,
&found_layers_in_component_meta_layer);
if (result == VK_ERROR_OUT_OF_HOST_MEMORY) return result;
if (!found_layers_in_component_meta_layer) found_all_component_layers = false;
} else if (!loader_find_layer_name_in_list(&search_prop->info.layerName[0], target_list)) {
// Make sure the layer isn't already in the output_list, skip adding it if it is.
result = loader_add_layer_properties_to_list(inst, target_list, search_prop);
if (result == VK_ERROR_OUT_OF_HOST_MEMORY) return result;
if (NULL != expanded_target_list) {
result = loader_add_layer_properties_to_list(inst, expanded_target_list, search_prop);
if (result == VK_ERROR_OUT_OF_HOST_MEMORY) return result;
}
}
}
} else {
loader_log(inst, VULKAN_LOADER_WARN_BIT | VULKAN_LOADER_LAYER_BIT, 0,
"Failed to find layer name \"%s\" component layer \"%s\" to activate (Policy #LLP_LAYER_7)",
prop->component_layer_names.list[comp_layer], prop->component_layer_names.list[comp_layer]);
found_all_component_layers = false;
}
}
// Add this layer to the overall target list (not the expanded one)
if (found_all_component_layers) {
result = loader_add_layer_properties_to_list(inst, target_list, prop);
if (result == VK_ERROR_OUT_OF_HOST_MEMORY) return result;
// Write the result to out_found_all_component_layers in case this function is being recursed
if (out_found_all_component_layers) *out_found_all_component_layers = found_all_component_layers;
}
return result;
}
VkExtensionProperties *get_extension_property(const char *name, const struct loader_extension_list *list) {
for (uint32_t i = 0; i < list->count; i++) {
if (strcmp(name, list->list[i].extensionName) == 0) return &list->list[i];
}
return NULL;
}
VkExtensionProperties *get_dev_extension_property(const char *name, const struct loader_device_extension_list *list) {
for (uint32_t i = 0; i < list->count; i++) {
if (strcmp(name, list->list[i].props.extensionName) == 0) return &list->list[i].props;
}
return NULL;
}
// For Instance extensions implemented within the loader (i.e. DEBUG_REPORT
// the extension must provide two entry points for the loader to use:
// - "trampoline" entry point - this is the address returned by GetProcAddr
// and will always do what's necessary to support a
// global call.
// - "terminator" function - this function will be put at the end of the
// instance chain and will contain the necessary logic
// to call / process the extension for the appropriate
// ICDs that are available.
// There is no generic mechanism for including these functions, the references
// must be placed into the appropriate loader entry points.
// GetInstanceProcAddr: call extension GetInstanceProcAddr to check for GetProcAddr
// requests
// loader_coalesce_extensions(void) - add extension records to the list of global
// extension available to the app.
// instance_disp - add function pointer for terminator function
// to this array.
// The extension itself should be in a separate file that will be linked directly
// with the loader.
VkResult loader_get_icd_loader_instance_extensions(const struct loader_instance *inst, struct loader_icd_tramp_list *icd_tramp_list,
struct loader_extension_list *inst_exts) {
struct loader_extension_list icd_exts;
VkResult res = VK_SUCCESS;
char *env_value;
bool filter_extensions = true;
// Check if a user wants to disable the instance extension filtering behavior
env_value = loader_getenv("VK_LOADER_DISABLE_INST_EXT_FILTER", inst);
if (NULL != env_value && atoi(env_value) != 0) {
filter_extensions = false;
}
loader_free_getenv(env_value, inst);
// traverse scanned icd list adding non-duplicate extensions to the list
for (uint32_t i = 0; i < icd_tramp_list->count; i++) {
res = loader_init_generic_list(inst, (struct loader_generic_list *)&icd_exts, sizeof(VkExtensionProperties));
if (VK_SUCCESS != res) {
goto out;
}
res = loader_add_instance_extensions(inst, icd_tramp_list->scanned_list[i].EnumerateInstanceExtensionProperties,
icd_tramp_list->scanned_list[i].lib_name, &icd_exts);
if (VK_SUCCESS == res) {
if (filter_extensions) {
// Remove any extensions not recognized by the loader
for (int32_t j = 0; j < (int32_t)icd_exts.count; j++) {
// See if the extension is in the list of supported extensions
bool found = false;
for (uint32_t k = 0; LOADER_INSTANCE_EXTENSIONS[k] != NULL; k++) {
if (strcmp(icd_exts.list[j].extensionName, LOADER_INSTANCE_EXTENSIONS[k]) == 0) {
found = true;
break;
}
}
// If it isn't in the list, remove it
if (!found) {
for (uint32_t k = j + 1; k < icd_exts.count; k++) {
icd_exts.list[k - 1] = icd_exts.list[k];
}
--icd_exts.count;
--j;
}
}
}
res = loader_add_to_ext_list(inst, inst_exts, icd_exts.count, icd_exts.list);
}
loader_destroy_generic_list(inst, (struct loader_generic_list *)&icd_exts);
if (VK_SUCCESS != res) {
goto out;
}
};
// Traverse loader's extensions, adding non-duplicate extensions to the list
res = add_debug_extensions_to_ext_list(inst, inst_exts);
if (res == VK_ERROR_OUT_OF_HOST_MEMORY) {
goto out;
}
const VkExtensionProperties portability_enumeration_extension_info[] = {
{VK_KHR_PORTABILITY_ENUMERATION_EXTENSION_NAME, VK_KHR_PORTABILITY_ENUMERATION_SPEC_VERSION}};
// Add VK_KHR_portability_subset
res = loader_add_to_ext_list(inst, inst_exts, sizeof(portability_enumeration_extension_info) / sizeof(VkExtensionProperties),
portability_enumeration_extension_info);
if (res == VK_ERROR_OUT_OF_HOST_MEMORY) {
goto out;
}
const VkExtensionProperties direct_driver_loading_extension_info[] = {
{VK_LUNARG_DIRECT_DRIVER_LOADING_EXTENSION_NAME, VK_LUNARG_DIRECT_DRIVER_LOADING_SPEC_VERSION}};
// Add VK_LUNARG_direct_driver_loading
res = loader_add_to_ext_list(inst, inst_exts, sizeof(direct_driver_loading_extension_info) / sizeof(VkExtensionProperties),
direct_driver_loading_extension_info);
if (res == VK_ERROR_OUT_OF_HOST_MEMORY) {
goto out;
}
out:
return res;
}
struct loader_icd_term *loader_get_icd_and_device(const void *device, struct loader_device **found_dev, uint32_t *icd_index) {
VkLayerDispatchTable *dispatch_table_device = loader_get_dispatch(device);
if (NULL == dispatch_table_device) {
*found_dev = NULL;
return NULL;
}
loader_platform_thread_lock_mutex(&loader_global_instance_list_lock);
*found_dev = NULL;
for (struct loader_instance *inst = loader.instances; inst; inst = inst->next) {
uint32_t index = 0;
for (struct loader_icd_term *icd_term = inst->icd_terms; icd_term; icd_term = icd_term->next) {
for (struct loader_device *dev = icd_term->logical_device_list; dev; dev = dev->next) {
// Value comparison of device prevents object wrapping by layers
if (loader_get_dispatch(dev->icd_device) == dispatch_table_device ||
(dev->chain_device != VK_NULL_HANDLE && loader_get_dispatch(dev->chain_device) == dispatch_table_device)) {
*found_dev = dev;
if (NULL != icd_index) {
*icd_index = index;
}
loader_platform_thread_unlock_mutex(&loader_global_instance_list_lock);
return icd_term;
}
}
index++;
}
}
loader_platform_thread_unlock_mutex(&loader_global_instance_list_lock);
return NULL;
}
void loader_destroy_logical_device(struct loader_device *dev, const VkAllocationCallbacks *pAllocator) {
if (pAllocator) {
dev->alloc_callbacks = *pAllocator;
}
loader_device_heap_free(dev, dev);
}
struct loader_device *loader_create_logical_device(const struct loader_instance *inst, const VkAllocationCallbacks *pAllocator) {
struct loader_device *new_dev;
new_dev = loader_calloc(pAllocator, sizeof(struct loader_device), VK_SYSTEM_ALLOCATION_SCOPE_DEVICE);
if (!new_dev) {
loader_log(inst, VULKAN_LOADER_ERROR_BIT, 0, "loader_create_logical_device: Failed to alloc struct loader_device");
return NULL;
}
new_dev->loader_dispatch.core_dispatch.magic = DEVICE_DISP_TABLE_MAGIC_NUMBER;
if (pAllocator) {
new_dev->alloc_callbacks = *pAllocator;
}
return new_dev;
}
void loader_add_logical_device(struct loader_icd_term *icd_term, struct loader_device *dev) {
dev->next = icd_term->logical_device_list;
icd_term->logical_device_list = dev;
}
void loader_remove_logical_device(struct loader_icd_term *icd_term, struct loader_device *found_dev,
const VkAllocationCallbacks *pAllocator) {
struct loader_device *dev, *prev_dev;
if (!icd_term || !found_dev) return;
prev_dev = NULL;
dev = icd_term->logical_device_list;
while (dev && dev != found_dev) {
prev_dev = dev;
dev = dev->next;
}
if (prev_dev)
prev_dev->next = found_dev->next;
else
icd_term->logical_device_list = found_dev->next;
loader_destroy_logical_device(found_dev, pAllocator);
}
void loader_icd_destroy(struct loader_instance *ptr_inst, struct loader_icd_term *icd_term,
const VkAllocationCallbacks *pAllocator) {
ptr_inst->total_icd_count--;
for (struct loader_device *dev = icd_term->logical_device_list; dev;) {
struct loader_device *next_dev = dev->next;
loader_destroy_logical_device(dev, pAllocator);
dev = next_dev;
}
loader_instance_heap_free(ptr_inst, icd_term);
}
struct loader_icd_term *loader_icd_add(struct loader_instance *ptr_inst, const struct loader_scanned_icd *scanned_icd) {
struct loader_icd_term *icd_term;
icd_term = loader_instance_heap_calloc(ptr_inst, sizeof(struct loader_icd_term), VK_SYSTEM_ALLOCATION_SCOPE_INSTANCE);
if (!icd_term) {
return NULL;
}
icd_term->scanned_icd = scanned_icd;
icd_term->this_instance = ptr_inst;
// Prepend to the list
icd_term->next = ptr_inst->icd_terms;
ptr_inst->icd_terms = icd_term;
ptr_inst->total_icd_count++;
return icd_term;
}
// Determine the ICD interface version to use.
// @param icd
// @param pVersion Output parameter indicating which version to use or 0 if
// the negotiation API is not supported by the ICD
// @return bool indicating true if the selected interface version is supported
// by the loader, false indicates the version is not supported
bool loader_get_icd_interface_version(PFN_vkNegotiateLoaderICDInterfaceVersion fp_negotiate_icd_version, uint32_t *pVersion) {
if (fp_negotiate_icd_version == NULL) {
// ICD does not support the negotiation API, it supports version 0 or 1
// calling code must determine if it is version 0 or 1
*pVersion = 0;
} else {
// ICD supports the negotiation API, so call it with the loader's
// latest version supported
*pVersion = CURRENT_LOADER_ICD_INTERFACE_VERSION;
VkResult result = fp_negotiate_icd_version(pVersion);
if (result == VK_ERROR_INCOMPATIBLE_DRIVER) {
// ICD no longer supports the loader's latest interface version so
// fail loading the ICD
return false;
}
}
#if MIN_SUPPORTED_LOADER_ICD_INTERFACE_VERSION > 0
if (*pVersion < MIN_SUPPORTED_LOADER_ICD_INTERFACE_VERSION) {
// Loader no longer supports the ICD's latest interface version so fail
// loading the ICD
return false;
}
#endif
return true;
}
void loader_scanned_icd_clear(const struct loader_instance *inst, struct loader_icd_tramp_list *icd_tramp_list) {
if (0 != icd_tramp_list->capacity && icd_tramp_list->scanned_list) {
for (uint32_t i = 0; i < icd_tramp_list->count; i++) {
if (icd_tramp_list->scanned_list[i].handle) {
loader_platform_close_library(icd_tramp_list->scanned_list[i].handle);
icd_tramp_list->scanned_list[i].handle = NULL;
}
loader_instance_heap_free(inst, icd_tramp_list->scanned_list[i].lib_name);
}
loader_instance_heap_free(inst, icd_tramp_list->scanned_list);
}
icd_tramp_list->capacity = 0;
icd_tramp_list->count = 0;
icd_tramp_list->scanned_list = NULL;
}
VkResult loader_scanned_icd_init(const struct loader_instance *inst, struct loader_icd_tramp_list *icd_tramp_list) {
VkResult res = VK_SUCCESS;
loader_scanned_icd_clear(inst, icd_tramp_list);
icd_tramp_list->capacity = 8 * sizeof(struct loader_scanned_icd);
icd_tramp_list->scanned_list = loader_instance_heap_alloc(inst, icd_tramp_list->capacity, VK_SYSTEM_ALLOCATION_SCOPE_INSTANCE);
if (NULL == icd_tramp_list->scanned_list) {
loader_log(inst, VULKAN_LOADER_ERROR_BIT, 0,
"loader_scanned_icd_init: Realloc failed for layer list when attempting to add new layer");
res = VK_ERROR_OUT_OF_HOST_MEMORY;
}
return res;
}
VkResult loader_add_direct_driver(const struct loader_instance *inst, uint32_t index,
const VkDirectDriverLoadingInfoLUNARG *pDriver, struct loader_icd_tramp_list *icd_tramp_list) {
// Assume pDriver is valid, since there is no real way to check it. Calling code should make sure the pointer to the array
// of VkDirectDriverLoadingInfoLUNARG structures is non-null.
if (NULL == pDriver->pfnGetInstanceProcAddr) {
loader_log(
inst, VULKAN_LOADER_ERROR_BIT | VULKAN_LOADER_DRIVER_BIT, 0,
"loader_add_direct_driver: VkDirectDriverLoadingInfoLUNARG structure at index %d contains a NULL pointer for the "
"pfnGetInstanceProcAddr member, skipping.",
index);
return VK_ERROR_INITIALIZATION_FAILED;
}
PFN_vkGetInstanceProcAddr fp_get_proc_addr = pDriver->pfnGetInstanceProcAddr;
PFN_vkCreateInstance fp_create_inst = NULL;
PFN_vkEnumerateInstanceExtensionProperties fp_get_inst_ext_props = NULL;
PFN_GetPhysicalDeviceProcAddr fp_get_phys_dev_proc_addr = NULL;
PFN_vkNegotiateLoaderICDInterfaceVersion fp_negotiate_icd_version = NULL;
#if defined(VK_USE_PLATFORM_WIN32_KHR)
PFN_vk_icdEnumerateAdapterPhysicalDevices fp_enum_dxgi_adapter_phys_devs = NULL;
#endif
struct loader_scanned_icd *new_scanned_icd;
uint32_t interface_version = 0;
// Try to get the negotiate ICD interface version function
fp_negotiate_icd_version = (PFN_vk_icdNegotiateLoaderICDInterfaceVersion)pDriver->pfnGetInstanceProcAddr(
NULL, "vk_icdNegotiateLoaderICDInterfaceVersion");
if (NULL == fp_negotiate_icd_version) {
loader_log(inst, VULKAN_LOADER_ERROR_BIT | VULKAN_LOADER_DRIVER_BIT, 0,
"loader_add_direct_driver: Could not get 'vk_icdNegotiateLoaderICDInterfaceVersion' from "
"VkDirectDriverLoadingInfoLUNARG structure at "
"index %d, skipping.",
index);
return VK_ERROR_INITIALIZATION_FAILED;
}
if (!loader_get_icd_interface_version(fp_negotiate_icd_version, &interface_version)) {
loader_log(
inst, VULKAN_LOADER_ERROR_BIT | VULKAN_LOADER_DRIVER_BIT, 0,
"loader_add_direct_driver: VkDirectDriverLoadingInfoLUNARG structure at index %d supports interface version %d, "
"which is incompatible with the Loader Driver Interface version that supports the VK_LUNARG_direct_driver_loading "
"extension, skipping.",
index, interface_version);
return VK_ERROR_INITIALIZATION_FAILED;
}
if (interface_version < 7) {
loader_log(
inst, VULKAN_LOADER_ERROR_BIT | VULKAN_LOADER_DRIVER_BIT, 0,
"loader_add_direct_driver: VkDirectDriverLoadingInfoLUNARG structure at index %d supports interface version %d, "
"which is incompatible with the Loader Driver Interface version that supports the VK_LUNARG_direct_driver_loading "
"extension, skipping.",
index, interface_version);
return VK_ERROR_INITIALIZATION_FAILED;
}
fp_create_inst = (PFN_vkCreateInstance)pDriver->pfnGetInstanceProcAddr(NULL, "vkCreateInstance");
if (NULL == fp_create_inst) {
loader_log(inst, VULKAN_LOADER_ERROR_BIT | VULKAN_LOADER_DRIVER_BIT, 0,
"loader_add_direct_driver: Could not get 'vkCreateInstance' from VkDirectDriverLoadingInfoLUNARG structure at "
"index %d, skipping.",
index);
return VK_ERROR_INITIALIZATION_FAILED;
}
fp_get_inst_ext_props =
(PFN_vkEnumerateInstanceExtensionProperties)pDriver->pfnGetInstanceProcAddr(NULL, "vkEnumerateInstanceExtensionProperties");
if (NULL == fp_get_inst_ext_props) {
loader_log(inst, VULKAN_LOADER_ERROR_BIT | VULKAN_LOADER_DRIVER_BIT, 0,
"loader_add_direct_driver: Could not get 'vkEnumerateInstanceExtensionProperties' from "
"VkDirectDriverLoadingInfoLUNARG structure at index %d, skipping.",
index);
return VK_ERROR_INITIALIZATION_FAILED;
}
fp_get_phys_dev_proc_addr =
(PFN_vk_icdGetPhysicalDeviceProcAddr)pDriver->pfnGetInstanceProcAddr(NULL, "vk_icdGetPhysicalDeviceProcAddr");
#if defined(VK_USE_PLATFORM_WIN32_KHR)
// Query "vk_icdEnumerateAdapterPhysicalDevices" with vk_icdGetInstanceProcAddr if the library reports interface version
// 7 or greater, otherwise fallback to loading it from the platform dynamic linker
fp_enum_dxgi_adapter_phys_devs =
(PFN_vk_icdEnumerateAdapterPhysicalDevices)pDriver->pfnGetInstanceProcAddr(NULL, "vk_icdEnumerateAdapterPhysicalDevices");
#endif
// check for enough capacity
if ((icd_tramp_list->count * sizeof(struct loader_scanned_icd)) >= icd_tramp_list->capacity) {
void *new_ptr = loader_instance_heap_realloc(inst, icd_tramp_list->scanned_list, icd_tramp_list->capacity,
icd_tramp_list->capacity * 2, VK_SYSTEM_ALLOCATION_SCOPE_INSTANCE);
if (NULL == new_ptr) {
loader_log(inst, VULKAN_LOADER_ERROR_BIT, 0,
"loader_add_direct_driver: Realloc failed on icd library list for ICD index %u", index);
return VK_ERROR_OUT_OF_HOST_MEMORY;
}
icd_tramp_list->scanned_list = new_ptr;
// double capacity
icd_tramp_list->capacity *= 2;
}
// Driver must be 1.1 to support version 7
uint32_t api_version = VK_API_VERSION_1_1;
PFN_vkEnumerateInstanceVersion icd_enumerate_instance_version =
(PFN_vkEnumerateInstanceVersion)pDriver->pfnGetInstanceProcAddr(NULL, "vkEnumerateInstanceVersion");
if (icd_enumerate_instance_version) {
VkResult res = icd_enumerate_instance_version(&api_version);
if (res != VK_SUCCESS) {
return res;
}
}
new_scanned_icd = &(icd_tramp_list->scanned_list[icd_tramp_list->count]);
new_scanned_icd->handle = NULL;
new_scanned_icd->api_version = api_version;
new_scanned_icd->GetInstanceProcAddr = fp_get_proc_addr;
new_scanned_icd->GetPhysicalDeviceProcAddr = fp_get_phys_dev_proc_addr;
new_scanned_icd->EnumerateInstanceExtensionProperties = fp_get_inst_ext_props;
new_scanned_icd->CreateInstance = fp_create_inst;
#if defined(VK_USE_PLATFORM_WIN32_KHR)
new_scanned_icd->EnumerateAdapterPhysicalDevices = fp_enum_dxgi_adapter_phys_devs;
#endif
new_scanned_icd->interface_version = interface_version;
new_scanned_icd->lib_name = NULL;
icd_tramp_list->count++;
loader_log(inst, VULKAN_LOADER_INFO_BIT | VULKAN_LOADER_DRIVER_BIT, 0,
"loader_add_direct_driver: Adding driver found in index %d of "
"VkDirectDriverLoadingListLUNARG::pDrivers structure. pfnGetInstanceProcAddr was set to %p",
index, pDriver->pfnGetInstanceProcAddr);
return VK_SUCCESS;
}
// Search through VkInstanceCreateInfo's pNext chain for any drivers from the direct driver loading extension and load them.
VkResult loader_scan_for_direct_drivers(const struct loader_instance *inst, const VkInstanceCreateInfo *pCreateInfo,
struct loader_icd_tramp_list *icd_tramp_list, bool *direct_driver_loading_exclusive_mode) {
if (NULL == pCreateInfo) {
// Don't do this logic unless we are being called from vkCreateInstance, when pCreateInfo will be non-null
return VK_SUCCESS;
}
bool direct_driver_loading_enabled = false;
// Try to if VK_LUNARG_direct_driver_loading is enabled and if we are using it exclusively
// Skip this step if inst is NULL, aka when this function is being called before instance creation
if (inst != NULL && pCreateInfo->ppEnabledExtensionNames && pCreateInfo->enabledExtensionCount > 0) {
// Look through the enabled extension list, make sure VK_LUNARG_direct_driver_loading is present
for (uint32_t i = 0; i < pCreateInfo->enabledExtensionCount; i++) {
if (strcmp(pCreateInfo->ppEnabledExtensionNames[i], VK_LUNARG_DIRECT_DRIVER_LOADING_EXTENSION_NAME) == 0) {
direct_driver_loading_enabled = true;
break;
}
}
}
const VkDirectDriverLoadingListLUNARG *ddl_list = NULL;
// Find the VkDirectDriverLoadingListLUNARG struct in the pNext chain of vkInstanceCreateInfo
const VkBaseOutStructure *chain = pCreateInfo->pNext;
while (chain) {
if (chain->sType == VK_STRUCTURE_TYPE_DIRECT_DRIVER_LOADING_LIST_LUNARG) {
ddl_list = (VkDirectDriverLoadingListLUNARG *)chain;
break;
}
chain = (const VkBaseOutStructure *)chain->pNext;
}
if (NULL == ddl_list) {
if (direct_driver_loading_enabled) {
loader_log(inst, VULKAN_LOADER_WARN_BIT | VULKAN_LOADER_DRIVER_BIT, 0,
"loader_scan_for_direct_drivers: The VK_LUNARG_direct_driver_loading extension was enabled but the "
"pNext chain of "
"VkInstanceCreateInfo did not contain the "
"VkDirectDriverLoadingListLUNARG structure.");
}
// Always want to exit early if there was no VkDirectDriverLoadingListLUNARG in the pNext chain
return VK_SUCCESS;
}
if (!direct_driver_loading_enabled) {
loader_log(inst, VULKAN_LOADER_WARN_BIT | VULKAN_LOADER_DRIVER_BIT, 0,
"loader_scan_for_direct_drivers: The pNext chain of VkInstanceCreateInfo contained the "
"VkDirectDriverLoadingListLUNARG structure, but the VK_LUNARG_direct_driver_loading extension was "
"not enabled.");
return VK_SUCCESS;
}
// If we are using exclusive mode, skip looking for any more drivers from system or environment variables
if (ddl_list->mode == VK_DIRECT_DRIVER_LOADING_MODE_EXCLUSIVE_LUNARG) {
*direct_driver_loading_exclusive_mode = true;
loader_log(inst, VULKAN_LOADER_INFO_BIT | VULKAN_LOADER_DRIVER_BIT, 0,
"loader_scan_for_direct_drivers: The VK_LUNARG_direct_driver_loading extension is active and specified "
"VK_DIRECT_DRIVER_LOADING_MODE_EXCLUSIVE_LUNARG, skipping system and environment "
"variable driver search mechanisms.");
}
if (NULL == ddl_list->pDrivers) {
loader_log(inst, VULKAN_LOADER_WARN_BIT | VULKAN_LOADER_DRIVER_BIT, 0,
"loader_scan_for_direct_drivers: The VkDirectDriverLoadingListLUNARG structure in the pNext chain of "
"VkInstanceCreateInfo has a NULL pDrivers member.");
return VK_SUCCESS;
}
if (ddl_list->driverCount == 0) {
loader_log(inst, VULKAN_LOADER_WARN_BIT | VULKAN_LOADER_DRIVER_BIT, 0,
"loader_scan_for_direct_drivers: The VkDirectDriverLoadingListLUNARG structure in the pNext chain of "
"VkInstanceCreateInfo has a non-null pDrivers member but a driverCount member with a value "
"of zero.");
return VK_SUCCESS;
}
// Go through all VkDirectDriverLoadingInfoLUNARG entries and add each driver
// Because icd_tramp's are prepended, this will result in the drivers appearing at the end
for (uint32_t i = 0; i < ddl_list->driverCount; i++) {
VkResult res = loader_add_direct_driver(inst, i, &ddl_list->pDrivers[i], icd_tramp_list);
if (res == VK_ERROR_OUT_OF_HOST_MEMORY) {
return res;
}
}
return VK_SUCCESS;
}
VkResult loader_scanned_icd_add(const struct loader_instance *inst, struct loader_icd_tramp_list *icd_tramp_list,
const char *filename, uint32_t api_version, enum loader_layer_library_status *lib_status) {
loader_platform_dl_handle handle = NULL;
PFN_vkCreateInstance fp_create_inst = NULL;
PFN_vkEnumerateInstanceExtensionProperties fp_get_inst_ext_props = NULL;
PFN_vkGetInstanceProcAddr fp_get_proc_addr = NULL;
PFN_GetPhysicalDeviceProcAddr fp_get_phys_dev_proc_addr = NULL;
PFN_vkNegotiateLoaderICDInterfaceVersion fp_negotiate_icd_version = NULL;
#if defined(VK_USE_PLATFORM_WIN32_KHR)
PFN_vk_icdEnumerateAdapterPhysicalDevices fp_enum_dxgi_adapter_phys_devs = NULL;
#endif
struct loader_scanned_icd *new_scanned_icd = NULL;
uint32_t interface_vers;
VkResult res = VK_SUCCESS;
// This shouldn't happen, but the check is necessary because dlopen returns a handle to the main program when
// filename is NULL
if (filename == NULL) {
loader_log(inst, VULKAN_LOADER_ERROR_BIT, 0, "loader_scanned_icd_add: A NULL filename was used, skipping this ICD",
filename);
res = VK_ERROR_INCOMPATIBLE_DRIVER;
goto out;
}
// TODO implement smarter opening/closing of libraries. For now this
// function leaves libraries open and the scanned_icd_clear closes them
#if defined(__Fuchsia__)
handle = loader_platform_open_driver(filename);
#else
handle = loader_platform_open_library(filename);
#endif
if (NULL == handle) {
loader_handle_load_library_error(inst, filename, lib_status);
if (lib_status && *lib_status == LOADER_LAYER_LIB_ERROR_OUT_OF_MEMORY) {
res = VK_ERROR_OUT_OF_HOST_MEMORY;
} else {
res = VK_ERROR_INCOMPATIBLE_DRIVER;
}
goto out;
}
#if defined(__Fuchsia__)
loader_initialize_icd_services(handle);
#endif
// Get and settle on an ICD interface version
// Try to load the driver's exported vk_icdNegotiateLoaderICDInterfaceVersion
fp_negotiate_icd_version = loader_platform_get_proc_address(handle, "vk_icdNegotiateLoaderICDInterfaceVersion");
// If it isn't exported, we are dealing with either a v0, v1, or a v7 and up driver
if (NULL == fp_negotiate_icd_version) {
// Try to load the driver's exported vk_icdGetInstanceProcAddr - if this is a v7 or up driver, we can use it to get
// the driver's vk_icdNegotiateLoaderICDInterfaceVersion function
fp_get_proc_addr = loader_platform_get_proc_address(handle, "vk_icdGetInstanceProcAddr");
// If we successfully loaded vk_icdGetInstanceProcAddr, try to get vk_icdNegotiateLoaderICDInterfaceVersion
if (fp_get_proc_addr) {
fp_negotiate_icd_version =
(PFN_vk_icdNegotiateLoaderICDInterfaceVersion)fp_get_proc_addr(NULL, "vk_icdNegotiateLoaderICDInterfaceVersion");
}
}
// Try to negotiate the Loader and Driver Interface Versions
// loader_get_icd_interface_version will check if fp_negotiate_icd_version is NULL, so we don't have to.
// If it *is* NULL, that means this driver uses interface version 0 or 1
if (!loader_get_icd_interface_version(fp_negotiate_icd_version, &interface_vers)) {
loader_log(inst, VULKAN_LOADER_ERROR_BIT, 0,
"loader_scanned_icd_add: ICD %s doesn't support interface version compatible with loader, skip this ICD.",
filename);
goto out;
}
// If we didn't already query vk_icdGetInstanceProcAddr, try now
if (NULL == fp_get_proc_addr) {
fp_get_proc_addr = loader_platform_get_proc_address(handle, "vk_icdGetInstanceProcAddr");
}
// If vk_icdGetInstanceProcAddr is NULL, this ICD is using version 0 and so we should respond accordingly.
if (NULL == fp_get_proc_addr) {
// Exporting vk_icdNegotiateLoaderICDInterfaceVersion but not vk_icdGetInstanceProcAddr violates Version 2's
// requirements, as for Version 2 to be supported Version 1 must also be supported
if (interface_vers != 0) {
loader_log(inst, VULKAN_LOADER_ERROR_BIT, 0,
"loader_scanned_icd_add: ICD %s reports an interface version of %d but doesn't export "
"vk_icdGetInstanceProcAddr, skip this ICD.",
filename, interface_vers);
goto out;
}
// Use deprecated interface from version 0
fp_get_proc_addr = loader_platform_get_proc_address(handle, "vkGetInstanceProcAddr");
if (NULL == fp_get_proc_addr) {
loader_log(inst, VULKAN_LOADER_ERROR_BIT, 0,
"loader_scanned_icd_add: Attempt to retrieve either \'vkGetInstanceProcAddr\' or "
"\'vk_icdGetInstanceProcAddr\' from ICD %s failed.",
filename);
goto out;
} else {
loader_log(inst, VULKAN_LOADER_WARN_BIT, 0,
"loader_scanned_icd_add: Using deprecated ICD interface of \'vkGetInstanceProcAddr\' instead of "
"\'vk_icdGetInstanceProcAddr\' for ICD %s",
filename);
}
fp_create_inst = loader_platform_get_proc_address(handle, "vkCreateInstance");
if (NULL == fp_create_inst) {
loader_log(inst, VULKAN_LOADER_ERROR_BIT, 0,
"loader_scanned_icd_add: Failed querying \'vkCreateInstance\' via dlsym/loadlibrary for ICD %s", filename);
goto out;
}
fp_get_inst_ext_props = loader_platform_get_proc_address(handle, "vkEnumerateInstanceExtensionProperties");
if (NULL == fp_get_inst_ext_props) {
loader_log(inst, VULKAN_LOADER_ERROR_BIT, 0,
"loader_scanned_icd_add: Could not get \'vkEnumerateInstanceExtensionProperties\' via dlsym/loadlibrary "
"for ICD %s",
filename);
goto out;
}
} else {
// vk_icdGetInstanceProcAddr was successfully found, we can assume the version is at least one
// If vk_icdNegotiateLoaderICDInterfaceVersion was also found, interface_vers must be 2 or greater, so this check is
// fine
if (interface_vers == 0) {
interface_vers = 1;
}
fp_create_inst = (PFN_vkCreateInstance)fp_get_proc_addr(NULL, "vkCreateInstance");
if (NULL == fp_create_inst) {
loader_log(inst, VULKAN_LOADER_ERROR_BIT, 0,
"loader_scanned_icd_add: Could not get \'vkCreateInstance\' via \'vk_icdGetInstanceProcAddr\' for ICD %s",
filename);
goto out;
}
fp_get_inst_ext_props =
(PFN_vkEnumerateInstanceExtensionProperties)fp_get_proc_addr(NULL, "vkEnumerateInstanceExtensionProperties");
if (NULL == fp_get_inst_ext_props) {
loader_log(inst, VULKAN_LOADER_ERROR_BIT, 0,
"loader_scanned_icd_add: Could not get \'vkEnumerateInstanceExtensionProperties\' via "
"\'vk_icdGetInstanceProcAddr\' for ICD %s",
filename);
goto out;
}
// Query "vk_icdGetPhysicalDeviceProcAddr" with vk_icdGetInstanceProcAddr if the library reports interface version 7 or
// greater, otherwise fallback to loading it from the platform dynamic linker
if (interface_vers >= 7) {
fp_get_phys_dev_proc_addr =
(PFN_vk_icdGetPhysicalDeviceProcAddr)fp_get_proc_addr(NULL, "vk_icdGetPhysicalDeviceProcAddr");
}
if (NULL == fp_get_phys_dev_proc_addr && interface_vers >= 3) {
fp_get_phys_dev_proc_addr = loader_platform_get_proc_address(handle, "vk_icdGetPhysicalDeviceProcAddr");
}
#if defined(VK_USE_PLATFORM_WIN32_KHR)
// Query "vk_icdEnumerateAdapterPhysicalDevices" with vk_icdGetInstanceProcAddr if the library reports interface version
// 7 or greater, otherwise fallback to loading it from the platform dynamic linker
if (interface_vers >= 7) {
fp_enum_dxgi_adapter_phys_devs =
(PFN_vk_icdEnumerateAdapterPhysicalDevices)fp_get_proc_addr(NULL, "vk_icdEnumerateAdapterPhysicalDevices");
}
if (NULL == fp_enum_dxgi_adapter_phys_devs && interface_vers >= 6) {
fp_enum_dxgi_adapter_phys_devs = loader_platform_get_proc_address(handle, "vk_icdEnumerateAdapterPhysicalDevices");
}
#endif
}
// check for enough capacity
if ((icd_tramp_list->count * sizeof(struct loader_scanned_icd)) >= icd_tramp_list->capacity) {
void *new_ptr = loader_instance_heap_realloc(inst, icd_tramp_list->scanned_list, icd_tramp_list->capacity,
icd_tramp_list->capacity * 2, VK_SYSTEM_ALLOCATION_SCOPE_INSTANCE);
if (NULL == new_ptr) {
res = VK_ERROR_OUT_OF_HOST_MEMORY;
loader_log(inst, VULKAN_LOADER_ERROR_BIT, 0, "loader_scanned_icd_add: Realloc failed on icd library list for ICD %s",
filename);
goto out;
}
icd_tramp_list->scanned_list = new_ptr;
// double capacity
icd_tramp_list->capacity *= 2;
}
loader_api_version api_version_struct = loader_make_version(api_version);
if (interface_vers <= 4 && loader_check_version_meets_required(LOADER_VERSION_1_1_0, api_version_struct)) {
loader_log(inst, VULKAN_LOADER_WARN_BIT, 0,
"loader_scanned_icd_add: Driver %s supports Vulkan %u.%u, but only supports loader interface version %u."
" Interface version 5 or newer required to support this version of Vulkan (Policy #LDP_DRIVER_7)",
filename, api_version_struct.major, api_version_struct.minor, interface_vers);
}
new_scanned_icd = &(icd_tramp_list->scanned_list[icd_tramp_list->count]);
new_scanned_icd->handle = handle;
new_scanned_icd->api_version = api_version;
new_scanned_icd->GetInstanceProcAddr = fp_get_proc_addr;
new_scanned_icd->GetPhysicalDeviceProcAddr = fp_get_phys_dev_proc_addr;
new_scanned_icd->EnumerateInstanceExtensionProperties = fp_get_inst_ext_props;
new_scanned_icd->CreateInstance = fp_create_inst;
#if defined(VK_USE_PLATFORM_WIN32_KHR)
new_scanned_icd->EnumerateAdapterPhysicalDevices = fp_enum_dxgi_adapter_phys_devs;
#endif
new_scanned_icd->interface_version = interface_vers;
res = loader_copy_to_new_str(inst, filename, &new_scanned_icd->lib_name);
if (VK_ERROR_OUT_OF_HOST_MEMORY == res) {
loader_log(inst, VULKAN_LOADER_ERROR_BIT, 0, "loader_scanned_icd_add: Out of memory can't add ICD %s", filename);
goto out;
}
icd_tramp_list->count++;
out:
return res;
}
void loader_initialize(void) {
// initialize mutexes
loader_platform_thread_create_mutex(&loader_lock);
loader_platform_thread_create_mutex(&loader_preload_icd_lock);
loader_platform_thread_create_mutex(&loader_global_instance_list_lock);
init_global_loader_settings();
// initialize logging
loader_init_global_debug_level();
#if defined(_WIN32)
windows_initialization();
#endif
#if defined(__Fuchsia__)
fuchsia_initialize();
#endif
loader_api_version version = loader_make_full_version(VK_HEADER_VERSION_COMPLETE);
loader_log(NULL, VULKAN_LOADER_INFO_BIT, 0, "Vulkan Loader Version %d.%d.%d", version.major, version.minor, version.patch);
#if defined(GIT_BRANCH_NAME) && defined(GIT_TAG_INFO)
loader_log(NULL, VULKAN_LOADER_INFO_BIT, 0, "[Vulkan Loader Git - Tag: " GIT_BRANCH_NAME ", Branch/Commit: " GIT_TAG_INFO "]");
#endif
char *loader_disable_dynamic_library_unloading_env_var = loader_getenv("VK_LOADER_DISABLE_DYNAMIC_LIBRARY_UNLOADING", NULL);
if (loader_disable_dynamic_library_unloading_env_var &&
0 == strncmp(loader_disable_dynamic_library_unloading_env_var, "1", 2)) {
loader_disable_dynamic_library_unloading = true;
loader_log(NULL, VULKAN_LOADER_WARN_BIT, 0, "Vulkan Loader: library unloading is disabled");
} else {
loader_disable_dynamic_library_unloading = false;
}
loader_free_getenv(loader_disable_dynamic_library_unloading_env_var, NULL);
#if defined(LOADER_USE_UNSAFE_FILE_SEARCH)
loader_log(NULL, VULKAN_LOADER_WARN_BIT, 0, "Vulkan Loader: unsafe searching is enabled");
#endif
}
void loader_release() {
// Guarantee release of the preloaded ICD libraries. This may have already been called in vkDestroyInstance.
loader_unload_preloaded_icds();
#if defined(__Fuchsia__)
fuchsia_teardown();
#endif
// release mutexes
teardown_global_loader_settings();
loader_platform_thread_delete_mutex(&loader_lock);
loader_platform_thread_delete_mutex(&loader_preload_icd_lock);
loader_platform_thread_delete_mutex(&loader_global_instance_list_lock);
}
// Preload the ICD libraries that are likely to be needed so we don't repeatedly load/unload them later
void loader_preload_icds(void) {
loader_platform_thread_lock_mutex(&loader_preload_icd_lock);
// Already preloaded, skip loading again.
if (scanned_icds.scanned_list != NULL) {
loader_platform_thread_unlock_mutex(&loader_preload_icd_lock);
return;
}
VkResult result = loader_icd_scan(NULL, &scanned_icds, NULL, NULL);
if (result != VK_SUCCESS) {
loader_scanned_icd_clear(NULL, &scanned_icds);
}
loader_platform_thread_unlock_mutex(&loader_preload_icd_lock);
}
// Release the ICD libraries that were preloaded
void loader_unload_preloaded_icds(void) {
loader_platform_thread_lock_mutex(&loader_preload_icd_lock);
loader_scanned_icd_clear(NULL, &scanned_icds);
loader_platform_thread_unlock_mutex(&loader_preload_icd_lock);
}
#if !defined(_WIN32)
__attribute__((constructor)) void loader_init_library(void) { loader_initialize(); }
__attribute__((destructor)) void loader_free_library(void) { loader_release(); }
#endif
// Get next file or dirname given a string list or registry key path
//
// \returns
// A pointer to first char in the next path.
// The next path (or NULL) in the list is returned in next_path.
// Note: input string is modified in some cases. PASS IN A COPY!
char *loader_get_next_path(char *path) {
uint32_t len;
char *next;
if (path == NULL) return NULL;
next = strchr(path, PATH_SEPARATOR);
if (next == NULL) {
len = (uint32_t)strlen(path);
next = path + len;
} else {
*next = '\0';
next++;
}
return next;
}
/* Processes a json manifest's library_path and the location of the json manifest to create the path of the library
* The output is stored in out_fullpath by allocating a string - so its the caller's repsonsibility to free it
* The output is the combination of the base path of manifest_file_path concatenated with library path
* If library_path is an absolute path, we do not prepend the base path of manifest_file_path
*
* This function takes ownership of library_path - caller does not need to worry about freeing it.
*/
VkResult combine_manifest_directory_and_library_path(const struct loader_instance *inst, char *library_path,
const char *manifest_file_path, char **out_fullpath) {
assert(library_path && manifest_file_path && out_fullpath);
if (loader_platform_is_path_absolute(library_path)) {
*out_fullpath = library_path;
return VK_SUCCESS;
}
VkResult res = VK_SUCCESS;
size_t library_path_len = strlen(library_path);
size_t manifest_file_path_str_len = strlen(manifest_file_path);
bool library_path_contains_directory_symbol = false;
for (size_t i = 0; i < library_path_len; i++) {
if (library_path[i] == DIRECTORY_SYMBOL) {
library_path_contains_directory_symbol = true;
break;
}
}
// Means that the library_path is neither absolute nor relative - thus we should not modify it at all
if (!library_path_contains_directory_symbol) {
*out_fullpath = library_path;
return VK_SUCCESS;
}
// must include both a directory symbol and the null terminator
size_t new_str_len = library_path_len + manifest_file_path_str_len + 1 + 1;
*out_fullpath = loader_instance_heap_calloc(inst, new_str_len, VK_SYSTEM_ALLOCATION_SCOPE_INSTANCE);
if (NULL == *out_fullpath) {
res = VK_ERROR_OUT_OF_HOST_MEMORY;
goto out;
}
size_t cur_loc_in_out_fullpath = 0;
// look for the last occurance of DIRECTORY_SYMBOL in manifest_file_path
size_t last_directory_symbol = 0;
bool found_directory_symbol = false;
for (size_t i = 0; i < manifest_file_path_str_len; i++) {
if (manifest_file_path[i] == DIRECTORY_SYMBOL) {
last_directory_symbol = i + 1; // we want to include the symbol
found_directory_symbol = true;
// dont break because we want to find the last occurance
}
}
// Add manifest_file_path up to the last directory symbol
if (found_directory_symbol) {
loader_strncpy(*out_fullpath, new_str_len, manifest_file_path, last_directory_symbol);
cur_loc_in_out_fullpath += last_directory_symbol;
}
loader_strncpy(&(*out_fullpath)[cur_loc_in_out_fullpath], new_str_len - cur_loc_in_out_fullpath, library_path,
library_path_len);
cur_loc_in_out_fullpath += library_path_len + 1;
(*out_fullpath)[cur_loc_in_out_fullpath] = '\0';
out:
loader_instance_heap_free(inst, library_path);
return res;
}
// Given a filename (file) and a list of paths (in_dirs), try to find an existing
// file in the paths. If filename already is a path then no searching in the given paths.
//
// @return - A string in out_fullpath of either the full path or file.
void loader_get_fullpath(const char *file, const char *in_dirs, size_t out_size, char *out_fullpath) {
if (!loader_platform_is_path(file) && *in_dirs) {
size_t dirs_copy_len = strlen(in_dirs) + 1;
char *dirs_copy = loader_stack_alloc(dirs_copy_len);
loader_strncpy(dirs_copy, dirs_copy_len, in_dirs, dirs_copy_len);
// find if file exists after prepending paths in given list
// for (dir = dirs_copy; *dir && (next_dir = loader_get_next_path(dir)); dir = next_dir) {
char *dir = dirs_copy;
char *next_dir = loader_get_next_path(dir);
while (*dir && next_dir) {
int path_concat_ret = snprintf(out_fullpath, out_size, "%s%c%s", dir, DIRECTORY_SYMBOL, file);
if (path_concat_ret < 0) {
continue;
}
if (loader_platform_file_exists(out_fullpath)) {
return;
}
dir = next_dir;
next_dir = loader_get_next_path(dir);
}
}
(void)snprintf(out_fullpath, out_size, "%s", file);
}
// Verify that all component layers in a meta-layer are valid.
bool verify_meta_layer_component_layers(const struct loader_instance *inst, struct loader_layer_properties *prop,
struct loader_layer_list *instance_layers) {
loader_api_version meta_layer_version = loader_make_version(prop->info.specVersion);
for (uint32_t comp_layer = 0; comp_layer < prop->component_layer_names.count; comp_layer++) {
struct loader_layer_properties *comp_prop =
loader_find_layer_property(prop->component_layer_names.list[comp_layer], instance_layers);
if (comp_prop == NULL) {
loader_log(inst, VULKAN_LOADER_WARN_BIT, 0,
"verify_meta_layer_component_layers: Meta-layer %s can't find component layer %s at index %d."
" Skipping this layer.",
prop->info.layerName, prop->component_layer_names.list[comp_layer], comp_layer);
return false;
}
// Check the version of each layer, they need to be at least MAJOR and MINOR
loader_api_version comp_prop_version = loader_make_version(comp_prop->info.specVersion);
if (!loader_check_version_meets_required(meta_layer_version, comp_prop_version)) {
loader_log(inst, VULKAN_LOADER_WARN_BIT, 0,
"verify_meta_layer_component_layers: Meta-layer uses API version %d.%d, but component "
"layer %d has API version %d.%d that is lower. Skipping this layer.",
meta_layer_version.major, meta_layer_version.minor, comp_layer, comp_prop_version.major,
comp_prop_version.minor);
return false;
}
// Make sure the layer isn't using it's own name
if (!strcmp(prop->info.layerName, prop->component_layer_names.list[comp_layer])) {
loader_log(inst, VULKAN_LOADER_WARN_BIT, 0,
"verify_meta_layer_component_layers: Meta-layer %s lists itself in its component layer "
"list at index %d. Skipping this layer.",
prop->info.layerName, comp_layer);
return false;
}
if (comp_prop->type_flags & VK_LAYER_TYPE_FLAG_META_LAYER) {
loader_log(inst, VULKAN_LOADER_INFO_BIT, 0,
"verify_meta_layer_component_layers: Adding meta-layer %s which also contains meta-layer %s",
prop->info.layerName, comp_prop->info.layerName);
// Make sure if the layer is using a meta-layer in its component list that we also verify that.
if (!verify_meta_layer_component_layers(inst, comp_prop, instance_layers)) {
loader_log(inst, VULKAN_LOADER_WARN_BIT, 0,
"Meta-layer %s component layer %s can not find all component layers."
" Skipping this layer.",
prop->info.layerName, prop->component_layer_names.list[comp_layer]);
return false;
}
}
}
// Didn't exit early so that means it passed all checks
loader_log(inst, VULKAN_LOADER_INFO_BIT | VULKAN_LOADER_LAYER_BIT, 0,
"Meta-layer \"%s\" all %d component layers appear to be valid.", prop->info.layerName,
prop->component_layer_names.count);
// If layer logging is on, list the internals included in the meta-layer
if ((loader_get_global_debug_level() & VULKAN_LOADER_LAYER_BIT) != 0) {
for (uint32_t comp_layer = 0; comp_layer < prop->component_layer_names.count; comp_layer++) {
loader_log(inst, VULKAN_LOADER_LAYER_BIT, 0, " [%d] %s", comp_layer, prop->component_layer_names.list[comp_layer]);
}
}
return true;
}
// Add any instance and device extensions from component layers to this layer
// list, so that anyone querying extensions will only need to look at the meta-layer
bool update_meta_layer_extensions_from_component_layers(const struct loader_instance *inst, struct loader_layer_properties *prop,
struct loader_layer_list *instance_layers) {
VkResult res = VK_SUCCESS;
for (uint32_t comp_layer = 0; comp_layer < prop->component_layer_names.count; comp_layer++) {
struct loader_layer_properties *comp_prop =
loader_find_layer_property(prop->component_layer_names.list[comp_layer], instance_layers);
if (NULL != comp_prop->instance_extension_list.list) {
for (uint32_t ext = 0; ext < comp_prop->instance_extension_list.count; ext++) {
loader_log(inst, VULKAN_LOADER_DEBUG_BIT, 0, "Meta-layer %s component layer %s adding instance extension %s",
prop->info.layerName, prop->component_layer_names.list[comp_layer],
comp_prop->instance_extension_list.list[ext].extensionName);
if (!has_vk_extension_property(&comp_prop->instance_extension_list.list[ext], &prop->instance_extension_list)) {
res = loader_add_to_ext_list(inst, &prop->instance_extension_list, 1,
&comp_prop->instance_extension_list.list[ext]);
if (VK_ERROR_OUT_OF_HOST_MEMORY == res) {
return res;
}
}
}
}
if (NULL != comp_prop->device_extension_list.list) {
for (uint32_t ext = 0; ext < comp_prop->device_extension_list.count; ext++) {
loader_log(inst, VULKAN_LOADER_DEBUG_BIT, 0, "Meta-layer %s component layer %s adding device extension %s",
prop->info.layerName, prop->component_layer_names.list[comp_layer],
comp_prop->device_extension_list.list[ext].props.extensionName);
if (!has_vk_dev_ext_property(&comp_prop->device_extension_list.list[ext].props, &prop->device_extension_list)) {
loader_add_to_dev_ext_list(inst, &prop->device_extension_list,
&comp_prop->device_extension_list.list[ext].props, NULL);
if (VK_ERROR_OUT_OF_HOST_MEMORY == res) {
return res;
}
}
}
}
}
return res;
}
// Verify that all meta-layers in a layer verify_meta_layer_component_layerslist are valid.
VkResult verify_all_meta_layers(struct loader_instance *inst, const struct loader_envvar_all_filters *filters,
struct loader_layer_list *instance_layers, bool *override_layer_present) {
VkResult res = VK_SUCCESS;
*override_layer_present = false;
for (int32_t i = 0; i < (int32_t)instance_layers->count; i++) {
struct loader_layer_properties *prop = &instance_layers->list[i];
// If this is a meta-layer, make sure it is valid
if (prop->type_flags & VK_LAYER_TYPE_FLAG_META_LAYER) {
if (verify_meta_layer_component_layers(inst, prop, instance_layers)) {
// If any meta layer is valid, update its extension list to include the extensions from its component layers.
res = update_meta_layer_extensions_from_component_layers(inst, prop, instance_layers);
if (VK_ERROR_OUT_OF_HOST_MEMORY == res) {
return res;
}
if (prop->is_override && loader_implicit_layer_is_enabled(inst, filters, prop)) {
*override_layer_present = true;
}
} else {
loader_log(inst, VULKAN_LOADER_DEBUG_BIT, 0,
"Removing meta-layer %s from instance layer list since it appears invalid.", prop->info.layerName);
loader_remove_layer_in_list(inst, instance_layers, i);
i--;
}
}
}
return res;
}
// If the current working directory matches any app_key_path of the layers, remove all other override layers.
// Otherwise if no matching app_key was found, remove all but the global override layer, which has no app_key_path.
void remove_all_non_valid_override_layers(struct loader_instance *inst, struct loader_layer_list *instance_layers) {
if (instance_layers == NULL) {
return;
}
char cur_path[1024];
char *ret = loader_platform_executable_path(cur_path, 1024);
if (NULL == ret) {
return;
}
// Find out if there is an override layer with same the app_key_path as the path to the current executable.
// If more than one is found, remove it and use the first layer
// Remove any layers which aren't global and do not have the same app_key_path as the path to the current executable.
bool found_active_override_layer = false;
int global_layer_index = -1;
for (uint32_t i = 0; i < instance_layers->count; i++) {
struct loader_layer_properties *props = &instance_layers->list[i];
if (strcmp(props->info.layerName, VK_OVERRIDE_LAYER_NAME) == 0) {
if (props->app_key_paths.count > 0) { // not the global layer
// cur_path is unset on Fuchsia, so app_key_path is not supported.
#if !defined(__Fuchsia__)
for (uint32_t j = 0; j < props->app_key_paths.count; j++) {
if (strcmp(props->app_key_paths.list[j], cur_path) == 0) {
if (!found_active_override_layer) {
found_active_override_layer = true;
} else {
loader_log(inst, VULKAN_LOADER_WARN_BIT | VULKAN_LOADER_LAYER_BIT, 0,
"remove_all_non_valid_override_layers: Multiple override layers where the same path in "
"app_keys "
"was found. Using the first layer found");
// Remove duplicate active override layers that have the same app_key_path
loader_remove_layer_in_list(inst, instance_layers, i);
i--;
}
}
}
#endif
if (!found_active_override_layer) {
loader_log(inst, VULKAN_LOADER_INFO_BIT | VULKAN_LOADER_LAYER_BIT, 0,
"--Override layer found but not used because app \'%s\' is not in \'app_keys\' list!", cur_path);
// Remove non-global override layers that don't have an app_key that matches cur_path
loader_remove_layer_in_list(inst, instance_layers, i);
i--;
}
} else {
if (global_layer_index == -1) {
global_layer_index = i;
} else {
loader_log(
inst, VULKAN_LOADER_WARN_BIT | VULKAN_LOADER_LAYER_BIT, 0,
"remove_all_non_valid_override_layers: Multiple global override layers found. Using the first global "
"layer found");
loader_remove_layer_in_list(inst, instance_layers, i);
i--;
}
}
}
}
// Remove global layer if layer with same the app_key_path as the path to the current executable is found
if (found_active_override_layer && global_layer_index >= 0) {
loader_remove_layer_in_list(inst, instance_layers, global_layer_index);
}
// Should be at most 1 override layer in the list now.
if (found_active_override_layer) {
loader_log(inst, VULKAN_LOADER_INFO_BIT | VULKAN_LOADER_LAYER_BIT, 0, "Using the override layer for app key %s", cur_path);
} else if (global_layer_index >= 0) {
loader_log(inst, VULKAN_LOADER_INFO_BIT | VULKAN_LOADER_LAYER_BIT, 0, "Using the global override layer");
}
}
/* The following are required in the "layer" object:
* "name"
* "type"
* (for non-meta layers) "library_path"
* (for meta layers) "component_layers"
* "api_version"
* "implementation_version"
* "description"
* (for implicit layers) "disable_environment"
*/
VkResult loader_read_layer_json(const struct loader_instance *inst, struct loader_layer_list *layer_instance_list,
cJSON *layer_node, loader_api_version version, bool is_implicit, char *filename) {
assert(layer_instance_list);
char *type = NULL;
char *api_version = NULL;
char *implementation_version = NULL;
VkResult result = VK_SUCCESS;
struct loader_layer_properties props = {0};
// Parse name
result = loader_parse_json_string_to_existing_str(inst, layer_node, "name", VK_MAX_EXTENSION_NAME_SIZE, props.info.layerName);
if (VK_ERROR_OUT_OF_HOST_MEMORY == result) goto out;
if (VK_ERROR_INITIALIZATION_FAILED == result) {
loader_log(inst, VULKAN_LOADER_WARN_BIT, 0,
"Layer located at %s didn't find required layer value \"name\" in manifest JSON file, skipping this layer",
filename);
goto out;
}
// Check if this layer's name matches the override layer name, set is_override to true if so.
if (!strcmp(props.info.layerName, VK_OVERRIDE_LAYER_NAME)) {
props.is_override = true;
}
if (0 != strncmp(props.info.layerName, "VK_LAYER_", 9)) {
loader_log(inst, VULKAN_LOADER_WARN_BIT, 0, "Layer name %s does not conform to naming standard (Policy #LLP_LAYER_3)",
props.info.layerName);
}
// Parse type
result = loader_parse_json_string(layer_node, "type", &type);
if (VK_ERROR_OUT_OF_HOST_MEMORY == result) goto out;
if (VK_ERROR_INITIALIZATION_FAILED == result) {
loader_log(inst, VULKAN_LOADER_WARN_BIT, 0,
"Layer located at %s didn't find required layer value \"type\" in manifest JSON file, skipping this layer",
filename);
goto out;
}
// Add list entry
if (!strcmp(type, "DEVICE")) {
loader_log(inst, VULKAN_LOADER_WARN_BIT | VULKAN_LOADER_LAYER_BIT, 0, "Device layers are deprecated. Skipping this layer");
result = VK_ERROR_INITIALIZATION_FAILED;
goto out;
}
// Allow either GLOBAL or INSTANCE type interchangeably to handle layers that must work with older loaders
if (!strcmp(type, "INSTANCE") || !strcmp(type, "GLOBAL")) {
props.type_flags = VK_LAYER_TYPE_FLAG_INSTANCE_LAYER;
if (!is_implicit) {
props.type_flags |= VK_LAYER_TYPE_FLAG_EXPLICIT_LAYER;
}
} else {
result = VK_ERROR_INITIALIZATION_FAILED;
goto out;
}
// Parse api_version
result = loader_parse_json_string(layer_node, "api_version", &api_version);
if (VK_ERROR_OUT_OF_HOST_MEMORY == result) goto out;
if (VK_ERROR_INITIALIZATION_FAILED == result) {
loader_log(
inst, VULKAN_LOADER_WARN_BIT, 0,
"Layer located at %s didn't find required layer value \"api_version\" in manifest JSON file, skipping this layer",
filename);
goto out;
}
props.info.specVersion = loader_parse_version_string(api_version);
// Make sure the layer's manifest doesn't contain a non zero variant value
if (VK_API_VERSION_VARIANT(props.info.specVersion) != 0) {
loader_log(inst, VULKAN_LOADER_INFO_BIT | VULKAN_LOADER_LAYER_BIT, 0,
"Layer \"%s\" has an \'api_version\' field which contains a non-zero variant value of %d. "
" Skipping Layer.",
props.info.layerName, VK_API_VERSION_VARIANT(props.info.specVersion));
result = VK_ERROR_INITIALIZATION_FAILED;
goto out;
}
// Parse implementation_version
result = loader_parse_json_string(layer_node, "implementation_version", &implementation_version);
if (VK_ERROR_OUT_OF_HOST_MEMORY == result) goto out;
if (VK_ERROR_INITIALIZATION_FAILED == result) {
loader_log(inst, VULKAN_LOADER_WARN_BIT, 0,
"Layer located at %s didn't find required layer value \"implementation_version\" in manifest JSON file, "
"skipping this layer",
filename);
goto out;
}
props.info.implementationVersion = atoi(implementation_version);
// Parse description
result = loader_parse_json_string_to_existing_str(inst, layer_node, "description", VK_MAX_EXTENSION_NAME_SIZE,
props.info.description);
if (VK_ERROR_OUT_OF_HOST_MEMORY == result) goto out;
if (VK_ERROR_INITIALIZATION_FAILED == result) {
loader_log(
inst, VULKAN_LOADER_WARN_BIT, 0,
"Layer located at %s didn't find required layer value \"description\" in manifest JSON file, skipping this layer",
filename);
goto out;
}
// Parse library_path
// Library path no longer required unless component_layers is also not defined
cJSON *library_path = loader_cJSON_GetObjectItem(layer_node, "library_path");
if (NULL != library_path) {
if (NULL != loader_cJSON_GetObjectItem(layer_node, "component_layers")) {
loader_log(inst, VULKAN_LOADER_WARN_BIT, 0,
"Indicating meta-layer-specific component_layers, but also defining layer library path. Both are not "
"compatible, so skipping this layer");
result = VK_ERROR_INITIALIZATION_FAILED;
goto out;
}
result = loader_copy_to_new_str(inst, filename, &props.manifest_file_name);
if (result == VK_ERROR_OUT_OF_HOST_MEMORY) goto out;
char *library_path_str = loader_cJSON_Print(library_path);
if (NULL == library_path_str) {
loader_log(inst, VULKAN_LOADER_WARN_BIT, 0,
"Skipping layer due to problem accessing the library_path value in manifest JSON file %s", filename);
result = VK_ERROR_OUT_OF_HOST_MEMORY;
goto out;
}
// This function takes ownership of library_path_str - so we don't need to clean it up
result = combine_manifest_directory_and_library_path(inst, library_path_str, filename, &props.lib_name);
if (result == VK_ERROR_OUT_OF_HOST_MEMORY) goto out;
}
// Parse component_layers
if (NULL == library_path) {
if (!loader_check_version_meets_required(LOADER_VERSION_1_1_0, version)) {
loader_log(inst, VULKAN_LOADER_WARN_BIT, 0,
"Indicating meta-layer-specific component_layers, but using older JSON file version.");
}
result = loader_parse_json_array_of_strings(inst, layer_node, "component_layers", &(props.component_layer_names));
if (VK_ERROR_OUT_OF_HOST_MEMORY == result) {
goto out;
}
if (VK_ERROR_INITIALIZATION_FAILED == result) {
loader_log(inst, VULKAN_LOADER_WARN_BIT, 0,
"Layer missing both library_path and component_layers fields. One or the other MUST be defined. Skipping "
"this layer");
goto out;
}
// This is now, officially, a meta-layer
props.type_flags |= VK_LAYER_TYPE_FLAG_META_LAYER;
loader_log(inst, VULKAN_LOADER_INFO_BIT | VULKAN_LOADER_LAYER_BIT, 0, "Encountered meta-layer \"%s\"",
props.info.layerName);
}
// Parse blacklisted_layers
if (props.is_override) {
result = loader_parse_json_array_of_strings(inst, layer_node, "blacklisted_layers", &(props.blacklist_layer_names));
if (VK_ERROR_OUT_OF_HOST_MEMORY == result) {
goto out;
}
}
// Parse override_paths
result = loader_parse_json_array_of_strings(inst, layer_node, "override_paths", &(props.override_paths));
if (VK_ERROR_OUT_OF_HOST_MEMORY == result) {
goto out;
}
if (NULL != props.override_paths.list && !loader_check_version_meets_required(loader_combine_version(1, 1, 0), version)) {
loader_log(inst, VULKAN_LOADER_WARN_BIT, 0,
"Indicating meta-layer-specific override paths, but using older JSON file version.");
}
// Parse disable_environment
if (is_implicit) {
cJSON *disable_environment = loader_cJSON_GetObjectItem(layer_node, "disable_environment");
if (disable_environment == NULL) {
loader_log(inst, VULKAN_LOADER_WARN_BIT, 0,
"Didn't find required layer object disable_environment in manifest JSON file, skipping this layer");
result = VK_ERROR_INITIALIZATION_FAILED;
goto out;
}
if (!disable_environment->child || disable_environment->child->type != cJSON_String) {
loader_log(inst, VULKAN_LOADER_WARN_BIT, 0,
"Didn't find required layer child value disable_environment in manifest JSON file, skipping this layer "
"(Policy #LLP_LAYER_9)");
result = VK_ERROR_INITIALIZATION_FAILED;
goto out;
}
result = loader_copy_to_new_str(inst, disable_environment->child->string, &(props.disable_env_var.name));
if (VK_SUCCESS != result) goto out;
result = loader_copy_to_new_str(inst, disable_environment->child->valuestring, &(props.disable_env_var.value));
if (VK_SUCCESS != result) goto out;
}
// Now get all optional items and objects and put in list:
// functions
// instance_extensions
// device_extensions
// enable_environment (implicit layers only)
// library_arch
// Layer interface functions
// vkGetInstanceProcAddr
// vkGetDeviceProcAddr
// vkNegotiateLoaderLayerInterfaceVersion (starting with JSON file 1.1.0)
cJSON *functions = loader_cJSON_GetObjectItem(layer_node, "functions");
if (functions != NULL) {
if (loader_check_version_meets_required(loader_combine_version(1, 1, 0), version)) {
result = loader_parse_json_string(functions, "vkNegotiateLoaderLayerInterfaceVersion",
&props.functions.str_negotiate_interface);
if (result == VK_ERROR_OUT_OF_HOST_MEMORY) goto out;
}
result = loader_parse_json_string(functions, "vkGetInstanceProcAddr", &props.functions.str_gipa);
if (result == VK_ERROR_OUT_OF_HOST_MEMORY) goto out;
if (props.functions.str_gipa && loader_check_version_meets_required(loader_combine_version(1, 1, 0), version)) {
loader_log(inst, VULKAN_LOADER_INFO_BIT, 0,
"Layer \"%s\" using deprecated \'vkGetInstanceProcAddr\' tag which was deprecated starting with JSON "
"file version 1.1.0. The new vkNegotiateLoaderLayerInterfaceVersion function is preferred, though for "
"compatibility reasons it may be desirable to continue using the deprecated tag.",
props.info.layerName);
}
result = loader_parse_json_string(functions, "vkGetDeviceProcAddr", &props.functions.str_gdpa);
if (result == VK_ERROR_OUT_OF_HOST_MEMORY) goto out;
if (props.functions.str_gdpa && loader_check_version_meets_required(loader_combine_version(1, 1, 0), version)) {
loader_log(inst, VULKAN_LOADER_INFO_BIT, 0,
"Layer \"%s\" using deprecated \'vkGetDeviceProcAddr\' tag which was deprecated starting with JSON "
"file version 1.1.0. The new vkNegotiateLoaderLayerInterfaceVersion function is preferred, though for "
"compatibility reasons it may be desirable to continue using the deprecated tag.",
props.info.layerName);
}
}
// instance_extensions
// array of {
// name
// spec_version
// }
cJSON *instance_extensions = loader_cJSON_GetObjectItem(layer_node, "instance_extensions");
if (instance_extensions != NULL) {
int count = loader_cJSON_GetArraySize(instance_extensions);
for (int i = 0; i < count; i++) {
VkExtensionProperties ext_prop = {0};
cJSON *ext_item = loader_cJSON_GetArrayItem(instance_extensions, i);
result = loader_parse_json_string_to_existing_str(inst, ext_item, "name", VK_MAX_EXTENSION_NAME_SIZE,
ext_prop.extensionName);
if (result == VK_ERROR_OUT_OF_HOST_MEMORY) goto out;
if (result == VK_ERROR_INITIALIZATION_FAILED) continue;
char *spec_version = NULL;
result = loader_parse_json_string(ext_item, "spec_version", &spec_version);
if (result == VK_ERROR_OUT_OF_HOST_MEMORY) goto out;
if (NULL != spec_version) {
ext_prop.specVersion = atoi(spec_version);
}
loader_instance_heap_free(inst, spec_version);
bool ext_unsupported = wsi_unsupported_instance_extension(&ext_prop);
if (!ext_unsupported) {
loader_add_to_ext_list(inst, &props.instance_extension_list, 1, &ext_prop);
}
}
}
// device_extensions
// array of {
// name
// spec_version
// entrypoints
// }
cJSON *device_extensions = loader_cJSON_GetObjectItem(layer_node, "device_extensions");
if (device_extensions != NULL) {
int count = loader_cJSON_GetArraySize(device_extensions);
for (int i = 0; i < count; i++) {
VkExtensionProperties ext_prop = {0};
cJSON *ext_item = loader_cJSON_GetArrayItem(device_extensions, i);
result = loader_parse_json_string_to_existing_str(inst, ext_item, "name", VK_MAX_EXTENSION_NAME_SIZE,
ext_prop.extensionName);
if (result == VK_ERROR_OUT_OF_HOST_MEMORY) goto out;
char *spec_version = NULL;
result = loader_parse_json_string(ext_item, "spec_version", &spec_version);
if (result == VK_ERROR_OUT_OF_HOST_MEMORY) goto out;
if (NULL != spec_version) {
ext_prop.specVersion = atoi(spec_version);
}
loader_instance_heap_free(inst, spec_version);
cJSON *entrypoints = loader_cJSON_GetObjectItem(ext_item, "entrypoints");
if (entrypoints == NULL) {
result = loader_add_to_dev_ext_list(inst, &props.device_extension_list, &ext_prop, NULL);
if (result == VK_ERROR_OUT_OF_HOST_MEMORY) goto out;
continue;
}
struct loader_string_list entrys = {0};
result = loader_parse_json_array_of_strings(inst, ext_item, "entrypoints", &entrys);
if (result == VK_ERROR_OUT_OF_HOST_MEMORY) goto out;
result = loader_add_to_dev_ext_list(inst, &props.device_extension_list, &ext_prop, &entrys);
if (result == VK_ERROR_OUT_OF_HOST_MEMORY) goto out;
}
}
if (is_implicit) {
cJSON *enable_environment = loader_cJSON_GetObjectItem(layer_node, "enable_environment");
// enable_environment is optional
if (enable_environment && enable_environment->child && enable_environment->child->type == cJSON_String) {
result = loader_copy_to_new_str(inst, enable_environment->child->string, &(props.enable_env_var.name));
if (VK_SUCCESS != result) goto out;
result = loader_copy_to_new_str(inst, enable_environment->child->valuestring, &(props.enable_env_var.value));
if (VK_SUCCESS != result) goto out;
}
}
// Read in the pre-instance stuff
cJSON *pre_instance = loader_cJSON_GetObjectItem(layer_node, "pre_instance_functions");
if (NULL != pre_instance) {
// Supported versions started in 1.1.2, so anything newer
if (!loader_check_version_meets_required(loader_combine_version(1, 1, 2), version)) {
loader_log(inst, VULKAN_LOADER_ERROR_BIT, 0,
"Found pre_instance_functions section in layer from \"%s\". This section is only valid in manifest version "
"1.1.2 or later. The section will be ignored",
filename);
} else if (!is_implicit) {
loader_log(inst, VULKAN_LOADER_WARN_BIT, 0,
"Found pre_instance_functions section in explicit layer from \"%s\". This section is only valid in implicit "
"layers. The section will be ignored",
filename);
} else {
result = loader_parse_json_string(pre_instance, "vkEnumerateInstanceExtensionProperties",
&props.pre_instance_functions.enumerate_instance_extension_properties);
if (result == VK_ERROR_OUT_OF_HOST_MEMORY) goto out;
result = loader_parse_json_string(pre_instance, "vkEnumerateInstanceLayerProperties",
&props.pre_instance_functions.enumerate_instance_layer_properties);
if (result == VK_ERROR_OUT_OF_HOST_MEMORY) goto out;
result = loader_parse_json_string(pre_instance, "vkEnumerateInstanceVersion",
&props.pre_instance_functions.enumerate_instance_version);
if (result == VK_ERROR_OUT_OF_HOST_MEMORY) goto out;
}
}
if (loader_cJSON_GetObjectItem(layer_node, "app_keys")) {
if (!props.is_override) {
loader_log(inst, VULKAN_LOADER_WARN_BIT | VULKAN_LOADER_LAYER_BIT, 0,
"Layer %s contains app_keys, but any app_keys can only be provided by the override metalayer. "
"These will be ignored.",
props.info.layerName);
}
result = loader_parse_json_array_of_strings(inst, layer_node, "app_keys", &props.app_key_paths);
if (result == VK_ERROR_OUT_OF_HOST_MEMORY) goto out;
}
char *library_arch = NULL;
result = loader_parse_json_string(layer_node, "library_arch", &library_arch);
if (result == VK_ERROR_OUT_OF_HOST_MEMORY) goto out;
if (library_arch != NULL) {
if ((strncmp(library_arch, "32", 2) == 0 && sizeof(void *) != 4) ||
(strncmp(library_arch, "64", 2) == 0 && sizeof(void *) != 8)) {
loader_log(inst, VULKAN_LOADER_INFO_BIT, 0,
"Layer library architecture doesn't match the current running architecture, skipping this layer");
loader_instance_heap_free(inst, library_arch);
result = VK_ERROR_INITIALIZATION_FAILED;
goto out;
}
loader_instance_heap_free(inst, library_arch);
}
result = VK_SUCCESS;
out:
// Try to append the layer property
if (VK_SUCCESS == result) {
result = loader_append_layer_property(inst, layer_instance_list, &props);
}
// If appending fails - free all the memory allocated in it
if (VK_SUCCESS != result) {
loader_free_layer_properties(inst, &props);
}
loader_instance_heap_free(inst, type);
loader_instance_heap_free(inst, api_version);
loader_instance_heap_free(inst, implementation_version);
return result;
}
bool is_valid_layer_json_version(const loader_api_version *layer_json) {
// Supported versions are: 1.0.0, 1.0.1, 1.1.0 - 1.1.2, and 1.2.0 - 1.2.1.
if ((layer_json->major == 1 && layer_json->minor == 2 && layer_json->patch < 2) ||
(layer_json->major == 1 && layer_json->minor == 1 && layer_json->patch < 3) ||
(layer_json->major == 1 && layer_json->minor == 0 && layer_json->patch < 2)) {
return true;
}
return false;
}
// Given a cJSON struct (json) of the top level JSON object from layer manifest
// file, add entry to the layer_list. Fill out the layer_properties in this list
// entry from the input cJSON object.
//
// \returns
// void
// layer_list has a new entry and initialized accordingly.
// If the json input object does not have all the required fields no entry
// is added to the list.
VkResult loader_add_layer_properties(const struct loader_instance *inst, struct loader_layer_list *layer_instance_list, cJSON *json,
bool is_implicit, char *filename) {
// The following Fields in layer manifest file that are required:
// - "file_format_version"
// - If more than one "layer" object are used, then the "layers" array is
// required
VkResult result = VK_ERROR_INITIALIZATION_FAILED;
cJSON *item, *layers_node, *layer_node;
loader_api_version json_version = {0, 0, 0};
char *file_vers = NULL;
// Make sure sure the top level json value is an object
if (!json || json->type != 6) {
goto out;
}
item = loader_cJSON_GetObjectItem(json, "file_format_version");
if (item == NULL) {
goto out;
}
file_vers = loader_cJSON_PrintUnformatted(item);
if (NULL == file_vers) {
result = VK_ERROR_OUT_OF_HOST_MEMORY;
goto out;
}
loader_log(inst, VULKAN_LOADER_INFO_BIT, 0, "Found manifest file %s (file version %s)", filename, file_vers);
// Get the major/minor/and patch as integers for easier comparison
json_version = loader_make_full_version(loader_parse_version_string(file_vers));
if (!is_valid_layer_json_version(&json_version)) {
loader_log(inst, VULKAN_LOADER_INFO_BIT | VULKAN_LOADER_LAYER_BIT, 0,
"loader_add_layer_properties: %s has unknown layer manifest file version %d.%d.%d. May cause errors.", filename,
json_version.major, json_version.minor, json_version.patch);
}
// If "layers" is present, read in the array of layer objects
layers_node = loader_cJSON_GetObjectItem(json, "layers");
if (layers_node != NULL) {
int numItems = loader_cJSON_GetArraySize(layers_node);
// Supported versions started in 1.0.1, so anything newer
if (!loader_check_version_meets_required(loader_combine_version(1, 0, 1), json_version)) {
loader_log(inst, VULKAN_LOADER_WARN_BIT | VULKAN_LOADER_LAYER_BIT, 0,
"loader_add_layer_properties: \'layers\' tag not supported until file version 1.0.1, but %s is reporting "
"version %s",
filename, file_vers);
}
for (int curLayer = 0; curLayer < numItems; curLayer++) {
layer_node = loader_cJSON_GetArrayItem(layers_node, curLayer);
if (layer_node == NULL) {
loader_log(inst, VULKAN_LOADER_WARN_BIT | VULKAN_LOADER_LAYER_BIT, 0,
"loader_add_layer_properties: Can not find 'layers' array element %d object in manifest JSON file %s. "
"Skipping this file",
curLayer, filename);
goto out;
}
result = loader_read_layer_json(inst, layer_instance_list, layer_node, json_version, is_implicit, filename);
}
} else {
// Otherwise, try to read in individual layers
layer_node = loader_cJSON_GetObjectItem(json, "layer");
if (layer_node == NULL) {
loader_log(inst, VULKAN_LOADER_WARN_BIT | VULKAN_LOADER_LAYER_BIT, 0,
"loader_add_layer_properties: Can not find 'layer' object in manifest JSON file %s. Skipping this file.",
filename);
goto out;
}
// Loop through all "layer" objects in the file to get a count of them
// first.
uint16_t layer_count = 0;
cJSON *tempNode = layer_node;
do {
tempNode = tempNode->next;
layer_count++;
} while (tempNode != NULL);
// Throw a warning if we encounter multiple "layer" objects in file
// versions newer than 1.0.0. Having multiple objects with the same
// name at the same level is actually a JSON standard violation.
if (layer_count > 1 && loader_check_version_meets_required(loader_combine_version(1, 0, 1), json_version)) {
loader_log(inst, VULKAN_LOADER_ERROR_BIT | VULKAN_LOADER_LAYER_BIT, 0,
"loader_add_layer_properties: Multiple 'layer' nodes are deprecated starting in file version \"1.0.1\". "
"Please use 'layers' : [] array instead in %s.",
filename);
} else {
do {
result = loader_read_layer_json(inst, layer_instance_list, layer_node, json_version, is_implicit, filename);
layer_node = layer_node->next;
} while (layer_node != NULL);
}
}
out:
loader_instance_heap_free(inst, file_vers);
return result;
}
size_t determine_data_file_path_size(const char *cur_path, size_t relative_path_size) {
size_t path_size = 0;
if (NULL != cur_path) {
// For each folder in cur_path, (detected by finding additional
// path separators in the string) we need to add the relative path on
// the end. Plus, leave an additional two slots on the end to add an
// additional directory slash and path separator if needed
path_size += strlen(cur_path) + relative_path_size + 2;
for (const char *x = cur_path; *x; ++x) {
if (*x == PATH_SEPARATOR) {
path_size += relative_path_size + 2;
}
}
}
return path_size;
}
void copy_data_file_info(const char *cur_path, const char *relative_path, size_t relative_path_size, char **output_path) {
if (NULL != cur_path) {
uint32_t start = 0;
uint32_t stop = 0;
char *cur_write = *output_path;
while (cur_path[start] != '\0') {
while (cur_path[start] == PATH_SEPARATOR) {
start++;
}
stop = start;
while (cur_path[stop] != PATH_SEPARATOR && cur_path[stop] != '\0') {
stop++;
}
const size_t s = stop - start;
if (s) {
memcpy(cur_write, &cur_path[start], s);
cur_write += s;
// If this is a specific JSON file, just add it and don't add any
// relative path or directory symbol to it.
if (!is_json(cur_write - 5, s)) {
// Add the relative directory if present.
if (relative_path_size > 0) {
// If last symbol written was not a directory symbol, add it.
if (*(cur_write - 1) != DIRECTORY_SYMBOL) {
*cur_write++ = DIRECTORY_SYMBOL;
}
memcpy(cur_write, relative_path, relative_path_size);
cur_write += relative_path_size;
}
}
*cur_write++ = PATH_SEPARATOR;
start = stop;
}
}
*output_path = cur_write;
}
}
// If the file found is a manifest file name, add it to the out_files manifest list.
VkResult add_if_manifest_file(const struct loader_instance *inst, const char *file_name, struct loader_string_list *out_files) {
VkResult vk_result = VK_SUCCESS;
assert(NULL != file_name && "add_if_manifest_file: Received NULL pointer for file_name");
assert(NULL != out_files && "add_if_manifest_file: Received NULL pointer for out_files");
// Look for files ending with ".json" suffix
size_t name_len = strlen(file_name);
const char *name_suffix = file_name + name_len - 5;
if (!is_json(name_suffix, name_len)) {
// Use incomplete to indicate invalid name, but to keep going.
vk_result = VK_INCOMPLETE;
goto out;
}
vk_result = copy_str_to_string_list(inst, out_files, file_name, name_len);
out:
return vk_result;
}
// Add any files found in the search_path. If any path in the search path points to a specific JSON, attempt to
// only open that one JSON. Otherwise, if the path is a folder, search the folder for JSON files.
VkResult add_data_files(const struct loader_instance *inst, int dir_fd, char *search_path, struct loader_string_list *out_files,
bool use_first_found_manifest) {
VkResult vk_result = VK_SUCCESS;
DIR *dir_stream = NULL;
struct dirent *dir_entry;
char *cur_file;
char *next_file;
char *name;
char full_path[2048];
#if !defined(_WIN32)
char temp_path[2048];
#endif
#if !defined(__Fuchsia__)
assert(dir_fd < 0);
#endif
// Now, parse the paths
next_file = search_path;
while (NULL != next_file && *next_file != '\0') {
name = NULL;
cur_file = next_file;
next_file = loader_get_next_path(cur_file);
// Is this a JSON file, then try to open it.
size_t len = strlen(cur_file);
if (is_json(cur_file + len - 5, len)) {
#if defined(_WIN32)
name = cur_file;
#elif COMMON_UNIX_PLATFORMS
// Only Linux has relative paths, make a copy of location so it isn't modified
size_t str_len;
if (NULL != next_file) {
str_len = next_file - cur_file + 1;
} else {
str_len = strlen(cur_file) + 1;
}
if (str_len > sizeof(temp_path)) {
loader_log(inst, VULKAN_LOADER_DEBUG_BIT, 0, "add_data_files: Path to %s too long", cur_file);
continue;
}
strncpy(temp_path, cur_file, str_len);
name = temp_path;
#else
#warning add_data_files must define relative path copy for this platform
#endif
loader_get_fullpath(cur_file, name, sizeof(full_path), full_path);
name = full_path;
VkResult local_res;
local_res = add_if_manifest_file(inst, name, out_files);
// Incomplete means this was not a valid data file.
if (local_res == VK_INCOMPLETE) {
continue;
} else if (local_res != VK_SUCCESS) {
vk_result = local_res;
break;
}
} else { // Otherwise, treat it as a directory
if (dir_fd >= 0) {
int new_dir_fd = openat(dir_fd, cur_file, O_DIRECTORY);
dir_stream = fdopendir(new_dir_fd);
} else {
dir_stream = loader_opendir(inst, cur_file);
}
if (NULL == dir_stream) {
continue;
}
while (1) {
dir_entry = readdir(dir_stream);
if (NULL == dir_entry) {
break;
}
name = &(dir_entry->d_name[0]);
loader_get_fullpath(name, cur_file, sizeof(full_path), full_path);
name = full_path;
VkResult local_res;
local_res = add_if_manifest_file(inst, name, out_files);
// Incomplete means this was not a valid data file.
if (local_res == VK_INCOMPLETE) {
continue;
} else if (local_res != VK_SUCCESS) {
vk_result = local_res;
break;
}
}
loader_closedir(inst, dir_stream);
if (vk_result != VK_SUCCESS) {
goto out;
}
}
if (use_first_found_manifest && out_files->count > 0) {
break;
}
}
out:
return vk_result;
}
// Look for data files in the provided paths, but first check the environment override to determine if we should use that
// instead.
VkResult read_data_files_in_search_paths(const struct loader_instance *inst, enum loader_data_files_type manifest_type,
const char *path_override, bool *override_active, struct loader_string_list *out_files) {
VkResult vk_result = VK_SUCCESS;
char *override_env = NULL;
const char *override_path = NULL;
char *additional_env = NULL;
size_t search_path_size = 0;
char *search_path = NULL;
char *cur_path_ptr = NULL;
bool use_first_found_manifest = false;
#if COMMON_UNIX_PLATFORMS
char *relative_location = NULL; // Only used on unix platforms
size_t rel_size = 0; // unused in windows, dont declare so no compiler warnings are generated
#endif
int dir_fd = -1;
#if defined(_WIN32)
char *package_path = NULL;
#elif COMMON_UNIX_PLATFORMS
// Determine how much space is needed to generate the full search path
// for the current manifest files.
char *xdg_config_home = loader_secure_getenv("XDG_CONFIG_HOME", inst);
char *xdg_config_dirs = loader_secure_getenv("XDG_CONFIG_DIRS", inst);
#if !defined(__Fuchsia__) && !defined(__QNX__)
if (NULL == xdg_config_dirs || '\0' == xdg_config_dirs[0]) {
xdg_config_dirs = FALLBACK_CONFIG_DIRS;
}
#endif
char *xdg_data_home = loader_secure_getenv("XDG_DATA_HOME", inst);
char *xdg_data_dirs = loader_secure_getenv("XDG_DATA_DIRS", inst);
#if !defined(__Fuchsia__) && !defined(__QNX__)
if (NULL == xdg_data_dirs || '\0' == xdg_data_dirs[0]) {
xdg_data_dirs = FALLBACK_DATA_DIRS;
}
#endif
char *home = NULL;
char *default_data_home = NULL;
char *default_config_home = NULL;
char *home_data_dir = NULL;
char *home_config_dir = NULL;
// Only use HOME if XDG_DATA_HOME is not present on the system
home = loader_secure_getenv("HOME", inst);
if (home != NULL) {
if (NULL == xdg_config_home || '\0' == xdg_config_home[0]) {
const char config_suffix[] = "/.config";
size_t default_config_home_len = strlen(home) + sizeof(config_suffix) + 1;
default_config_home = loader_instance_heap_calloc(inst, default_config_home_len, VK_SYSTEM_ALLOCATION_SCOPE_COMMAND);
if (default_config_home == NULL) {
vk_result = VK_ERROR_OUT_OF_HOST_MEMORY;
goto out;
}
strncpy(default_config_home, home, default_config_home_len);
strncat(default_config_home, config_suffix, default_config_home_len);
}
if (NULL == xdg_data_home || '\0' == xdg_data_home[0]) {
const char data_suffix[] = "/.local/share";
size_t default_data_home_len = strlen(home) + sizeof(data_suffix) + 1;
default_data_home = loader_instance_heap_calloc(inst, default_data_home_len, VK_SYSTEM_ALLOCATION_SCOPE_COMMAND);
if (default_data_home == NULL) {
vk_result = VK_ERROR_OUT_OF_HOST_MEMORY;
goto out;
}
strncpy(default_data_home, home, default_data_home_len);
strncat(default_data_home, data_suffix, default_data_home_len);
}
}
if (NULL != default_config_home) {
home_config_dir = default_config_home;
} else {
home_config_dir = xdg_config_home;
}
if (NULL != default_data_home) {
home_data_dir = default_data_home;
} else {
home_data_dir = xdg_data_home;
}
#else
#warning read_data_files_in_search_paths unsupported platform
#endif
switch (manifest_type) {
case LOADER_DATA_FILE_MANIFEST_DRIVER:
override_env = loader_secure_getenv(VK_DRIVER_FILES_ENV_VAR, inst);
if (NULL == override_env) {
// Not there, so fall back to the old name
override_env = loader_secure_getenv(VK_ICD_FILENAMES_ENV_VAR, inst);
}
additional_env = loader_secure_getenv(VK_ADDITIONAL_DRIVER_FILES_ENV_VAR, inst);
#if COMMON_UNIX_PLATFORMS
relative_location = VK_DRIVERS_INFO_RELATIVE_DIR;
#endif
#if defined(_WIN32)
package_path = windows_get_app_package_manifest_path(inst);
#endif
break;
case LOADER_DATA_FILE_MANIFEST_IMPLICIT_LAYER:
#if COMMON_UNIX_PLATFORMS
relative_location = VK_ILAYERS_INFO_RELATIVE_DIR;
#endif
break;
case LOADER_DATA_FILE_MANIFEST_EXPLICIT_LAYER:
override_env = loader_secure_getenv(VK_LAYER_PATH_ENV_VAR, inst);
additional_env = loader_secure_getenv(VK_ADDITIONAL_LAYER_PATH_ENV_VAR, inst);
#if COMMON_UNIX_PLATFORMS
relative_location = VK_ELAYERS_INFO_RELATIVE_DIR;
#endif
break;
default:
assert(false && "Shouldn't get here!");
break;
}
// Log a message when VK_LAYER_PATH is set but the override layer paths take priority
if (manifest_type == LOADER_DATA_FILE_MANIFEST_EXPLICIT_LAYER && NULL != override_env && NULL != path_override) {
loader_log(inst, VULKAN_LOADER_INFO_BIT | VULKAN_LOADER_LAYER_BIT, 0,
"Ignoring VK_LAYER_PATH. The Override layer is active and has override paths set, which takes priority. "
"VK_LAYER_PATH is set to %s",
override_env);
}
if (path_override != NULL) {
override_path = path_override;
} else if (override_env != NULL) {
override_path = override_env;
}
#if defined(__Fuchsia__)
if (!override_path && manifest_type == LOADER_DATA_FILE_MANIFEST_DRIVER) {
dir_fd = get_manifest_fs_fd();
if (dir_fd >= 0) {
override_path = ".";
}
}
#endif
// Add two by default for NULL terminator and one path separator on end (just in case)
search_path_size = 2;
// If there's an override, use that (and the local folder if required) and nothing else
if (NULL != override_path) {
// Local folder and null terminator
search_path_size += strlen(override_path) + 2;
} else {
// Add the size of any additional search paths defined in the additive environment variable
if (NULL != additional_env) {
search_path_size += determine_data_file_path_size(additional_env, 0) + 2;
#if defined(_WIN32)
}
if (NULL != package_path) {
search_path_size += determine_data_file_path_size(package_path, 0) + 2;
}
if (search_path_size == 2) {
goto out;
}
#elif COMMON_UNIX_PLATFORMS
}
// Add the general search folders (with the appropriate relative folder added)
rel_size = strlen(relative_location);
if (rel_size > 0) {
#if defined(__APPLE__)
search_path_size += MAXPATHLEN;
#endif
// Only add the home folders if defined
if (NULL != home_config_dir) {
search_path_size += determine_data_file_path_size(home_config_dir, rel_size);
}
search_path_size += determine_data_file_path_size(xdg_config_dirs, rel_size);
search_path_size += determine_data_file_path_size(SYSCONFDIR, rel_size);
#if defined(EXTRASYSCONFDIR)
search_path_size += determine_data_file_path_size(EXTRASYSCONFDIR, rel_size);
#endif
// Only add the home folders if defined
if (NULL != home_data_dir) {
search_path_size += determine_data_file_path_size(home_data_dir, rel_size);
}
search_path_size += determine_data_file_path_size(xdg_data_dirs, rel_size);
}
#else
#warning read_data_files_in_search_paths unsupported platform
#endif
}
// Allocate the required space
search_path = loader_instance_heap_calloc(inst, search_path_size, VK_SYSTEM_ALLOCATION_SCOPE_COMMAND);
if (NULL == search_path) {
loader_log(inst, VULKAN_LOADER_ERROR_BIT, 0,
"read_data_files_in_search_paths: Failed to allocate space for search path of length %d",
(uint32_t)search_path_size);
vk_result = VK_ERROR_OUT_OF_HOST_MEMORY;
goto out;
}
cur_path_ptr = search_path;
// Add the remaining paths to the list
if (NULL != override_path) {
size_t override_path_len = strlen(override_path);
loader_strncpy(cur_path_ptr, search_path_size, override_path, override_path_len);
cur_path_ptr += override_path_len;
} else {
// Add any additional search paths defined in the additive environment variable
if (NULL != additional_env) {
copy_data_file_info(additional_env, NULL, 0, &cur_path_ptr);
}
#if defined(_WIN32)
if (NULL != package_path) {
copy_data_file_info(package_path, NULL, 0, &cur_path_ptr);
}
#elif COMMON_UNIX_PLATFORMS
if (rel_size > 0) {
#if defined(__APPLE__)
// Add the bundle's Resources dir to the beginning of the search path.
// Looks for manifests in the bundle first, before any system directories.
// This also appears to work unmodified for iOS, it finds the app bundle on the devices
// file system. (RSW)
CFBundleRef main_bundle = CFBundleGetMainBundle();
if (NULL != main_bundle) {
CFURLRef ref = CFBundleCopyResourcesDirectoryURL(main_bundle);
if (NULL != ref) {
if (CFURLGetFileSystemRepresentation(ref, TRUE, (UInt8 *)cur_path_ptr, search_path_size)) {
cur_path_ptr += strlen(cur_path_ptr);
*cur_path_ptr++ = DIRECTORY_SYMBOL;
memcpy(cur_path_ptr, relative_location, rel_size);
cur_path_ptr += rel_size;
*cur_path_ptr++ = PATH_SEPARATOR;
if (manifest_type == LOADER_DATA_FILE_MANIFEST_DRIVER) {
use_first_found_manifest = true;
}
}
CFRelease(ref);
}
}
#endif // __APPLE__
// Only add the home folders if not NULL
if (NULL != home_config_dir) {
copy_data_file_info(home_config_dir, relative_location, rel_size, &cur_path_ptr);
}
copy_data_file_info(xdg_config_dirs, relative_location, rel_size, &cur_path_ptr);
copy_data_file_info(SYSCONFDIR, relative_location, rel_size, &cur_path_ptr);
#if defined(EXTRASYSCONFDIR)
copy_data_file_info(EXTRASYSCONFDIR, relative_location, rel_size, &cur_path_ptr);
#endif
// Only add the home folders if not NULL
if (NULL != home_data_dir) {
copy_data_file_info(home_data_dir, relative_location, rel_size, &cur_path_ptr);
}
copy_data_file_info(xdg_data_dirs, relative_location, rel_size, &cur_path_ptr);
}
// Remove the last path separator
--cur_path_ptr;
assert(cur_path_ptr - search_path < (ptrdiff_t)search_path_size);
*cur_path_ptr = '\0';
#else
#warning read_data_files_in_search_paths unsupported platform
#endif
}
// Remove duplicate paths, or it would result in duplicate extensions, duplicate devices, etc.
// This uses minimal memory, but is O(N^2) on the number of paths. Expect only a few paths.
char path_sep_str[2] = {PATH_SEPARATOR, '\0'};
size_t search_path_updated_size = strlen(search_path);
for (size_t first = 0; first < search_path_updated_size;) {
// If this is an empty path, erase it
if (search_path[first] == PATH_SEPARATOR) {
memmove(&search_path[first], &search_path[first + 1], search_path_updated_size - first + 1);
search_path_updated_size -= 1;
continue;
}
size_t first_end = first + 1;
first_end += strcspn(&search_path[first_end], path_sep_str);
for (size_t second = first_end + 1; second < search_path_updated_size;) {
size_t second_end = second + 1;
second_end += strcspn(&search_path[second_end], path_sep_str);
if (first_end - first == second_end - second &&
!strncmp(&search_path[first], &search_path[second], second_end - second)) {
// Found duplicate. Include PATH_SEPARATOR in second_end, then erase it from search_path.
if (search_path[second_end] == PATH_SEPARATOR) {
second_end++;
}
memmove(&search_path[second], &search_path[second_end], search_path_updated_size - second_end + 1);
search_path_updated_size -= second_end - second;
} else {
second = second_end + 1;
}
}
first = first_end + 1;
}
search_path_size = search_path_updated_size;
// Print out the paths being searched if debugging is enabled
uint32_t log_flags = 0;
if (search_path_size > 0) {
char *tmp_search_path = loader_instance_heap_alloc(inst, search_path_size + 1, VK_SYSTEM_ALLOCATION_SCOPE_COMMAND);
if (NULL != tmp_search_path) {
loader_strncpy(tmp_search_path, search_path_size + 1, search_path, search_path_size);
tmp_search_path[search_path_size] = '\0';
if (manifest_type == LOADER_DATA_FILE_MANIFEST_DRIVER) {
log_flags = VULKAN_LOADER_DRIVER_BIT;
loader_log(inst, VULKAN_LOADER_DRIVER_BIT, 0, "Searching for driver manifest files");
} else {
log_flags = VULKAN_LOADER_LAYER_BIT;
loader_log(inst, VULKAN_LOADER_LAYER_BIT, 0, "Searching for layer manifest files");
}
loader_log(inst, log_flags, 0, " In following locations:");
char *cur_file;
char *next_file = tmp_search_path;
while (NULL != next_file && *next_file != '\0') {
cur_file = next_file;
next_file = loader_get_next_path(cur_file);
loader_log(inst, log_flags, 0, " %s", cur_file);
}
loader_instance_heap_free(inst, tmp_search_path);
}
}
// Now, parse the paths and add any manifest files found in them.
vk_result = add_data_files(inst, dir_fd, search_path, out_files, use_first_found_manifest);
if (log_flags != 0 && out_files->count > 0) {
loader_log(inst, log_flags, 0, " Found the following files:");
for (uint32_t cur_file = 0; cur_file < out_files->count; ++cur_file) {
loader_log(inst, log_flags, 0, " %s", out_files->list[cur_file]);
}
} else {
loader_log(inst, log_flags, 0, " Found no files");
}
if (NULL != override_path) {
*override_active = true;
} else {
*override_active = false;
}
out:
loader_free_getenv(additional_env, inst);
loader_free_getenv(override_env, inst);
#if defined(_WIN32)
loader_instance_heap_free(inst, package_path);
#elif COMMON_UNIX_PLATFORMS
loader_free_getenv(xdg_config_home, inst);
loader_free_getenv(xdg_config_dirs, inst);
loader_free_getenv(xdg_data_home, inst);
loader_free_getenv(xdg_data_dirs, inst);
loader_free_getenv(xdg_data_home, inst);
loader_free_getenv(home, inst);
loader_instance_heap_free(inst, default_data_home);
loader_instance_heap_free(inst, default_config_home);
#else
#warning read_data_files_in_search_paths unsupported platform
#endif
loader_instance_heap_free(inst, search_path);
return vk_result;
}
// Find the Vulkan library manifest files.
//
// This function scans the appropriate locations for a list of JSON manifest files based on the
// "manifest_type". The location is interpreted as Registry path on Windows and a directory path(s)
// on Linux.
// "home_location" is an additional directory in the users home directory to look at. It is
// expanded into the dir path $XDG_DATA_HOME/home_location or $HOME/.local/share/home_location
// depending on environment variables. This "home_location" is only used on Linux.
//
// \returns
// VKResult
// A string list of manifest files to be opened in out_files param.
// List has a pointer to string for each manifest filename.
// When done using the list in out_files, pointers should be freed.
// Location or override string lists can be either files or directories as
// follows:
// | location | override
// --------------------------------
// Win ICD | files | files
// Win Layer | files | dirs
// Linux ICD | dirs | files
// Linux Layer| dirs | dirs
VkResult loader_get_data_files(const struct loader_instance *inst, enum loader_data_files_type manifest_type,
const char *path_override, struct loader_string_list *out_files) {
VkResult res = VK_SUCCESS;
bool override_active = false;
// Free and init the out_files information so there's no false data left from uninitialized variables.
free_string_list(inst, out_files);
res = read_data_files_in_search_paths(inst, manifest_type, path_override, &override_active, out_files);
if (VK_SUCCESS != res) {
goto out;
}
#if defined(_WIN32)
// Read the registry if the override wasn't active.
if (!override_active) {
bool warn_if_not_present = false;
char *registry_location = NULL;
switch (manifest_type) {
default:
goto out;
case LOADER_DATA_FILE_MANIFEST_DRIVER:
warn_if_not_present = true;
registry_location = VK_DRIVERS_INFO_REGISTRY_LOC;
break;
case LOADER_DATA_FILE_MANIFEST_IMPLICIT_LAYER:
registry_location = VK_ILAYERS_INFO_REGISTRY_LOC;
break;
case LOADER_DATA_FILE_MANIFEST_EXPLICIT_LAYER:
warn_if_not_present = true;
registry_location = VK_ELAYERS_INFO_REGISTRY_LOC;
break;
}
VkResult tmp_res =
windows_read_data_files_in_registry(inst, manifest_type, warn_if_not_present, registry_location, out_files);
// Only return an error if there was an error this time, and no manifest files from before.
if (VK_SUCCESS != tmp_res && out_files->count == 0) {
res = tmp_res;
goto out;
}
}
#endif
out:
if (VK_SUCCESS != res) {
free_string_list(inst, out_files);
}
return res;
}
struct ICDManifestInfo {
char *full_library_path;
uint32_t version;
};
// Takes a json file, opens, reads, and parses an ICD Manifest out of it.
// Should only return VK_SUCCESS, VK_ERROR_INCOMPATIBLE_DRIVER, or VK_ERROR_OUT_OF_HOST_MEMORY
VkResult loader_parse_icd_manifest(const struct loader_instance *inst, int dir_fd, char *file_str, struct ICDManifestInfo *icd,
bool *skipped_portability_drivers) {
VkResult res = VK_SUCCESS;
cJSON *json = NULL;
char *file_vers_str = NULL;
char *library_arch_str = NULL;
char *version_str = NULL;
if (file_str == NULL) {
goto out;
}
res = loader_get_json(inst, dir_fd, file_str, &json);
if (res == VK_ERROR_OUT_OF_HOST_MEMORY) {
goto out;
}
if (res != VK_SUCCESS || NULL == json) {
res = VK_ERROR_INCOMPATIBLE_DRIVER;
goto out;
}
cJSON *item = loader_cJSON_GetObjectItem(json, "file_format_version");
if (item == NULL) {
loader_log(inst, VULKAN_LOADER_WARN_BIT | VULKAN_LOADER_DRIVER_BIT, 0,
"loader_parse_icd_manifest: ICD JSON %s does not have a \'file_format_version\' field. Skipping ICD JSON.",
file_str);
res = VK_ERROR_INCOMPATIBLE_DRIVER;
goto out;
}
file_vers_str = loader_cJSON_Print(item);
if (NULL == file_vers_str) {
// Only reason the print can fail is if there was an allocation issue
loader_log(inst, VULKAN_LOADER_WARN_BIT | VULKAN_LOADER_DRIVER_BIT, 0,
"loader_parse_icd_manifest: Failed retrieving ICD JSON %s \'file_format_version\' field. Skipping ICD JSON",
file_str);
res = VK_ERROR_OUT_OF_HOST_MEMORY;
goto out;
}
loader_log(inst, VULKAN_LOADER_DRIVER_BIT, 0, "Found ICD manifest file %s, version %s", file_str, file_vers_str);
// Get the version of the driver manifest
loader_api_version json_file_version = loader_make_full_version(loader_parse_version_string(file_vers_str));
// Loader only knows versions 1.0.0 and 1.0.1, anything above it is unknown
if (loader_check_version_meets_required(loader_combine_version(1, 0, 2), json_file_version)) {
loader_log(inst, VULKAN_LOADER_INFO_BIT | VULKAN_LOADER_DRIVER_BIT, 0,
"loader_parse_icd_manifest: %s has unknown icd manifest file version %d.%d.%d. May cause errors.", file_str,
json_file_version.major, json_file_version.minor, json_file_version.patch);
}
cJSON *itemICD = loader_cJSON_GetObjectItem(json, "ICD");
if (itemICD == NULL) {
loader_log(inst, VULKAN_LOADER_WARN_BIT | VULKAN_LOADER_DRIVER_BIT, 0,
"loader_parse_icd_manifest: Can not find \'ICD\' object in ICD JSON file %s. Skipping ICD JSON", file_str);
res = VK_ERROR_INCOMPATIBLE_DRIVER;
goto out;
}
item = loader_cJSON_GetObjectItem(itemICD, "library_path");
if (item == NULL) {
loader_log(inst, VULKAN_LOADER_WARN_BIT | VULKAN_LOADER_DRIVER_BIT, 0,
"loader_parse_icd_manifest: Failed to find \'library_path\' object in ICD JSON file %s. Skipping ICD JSON.",
file_str);
res = VK_ERROR_INCOMPATIBLE_DRIVER;
goto out;
}
char *library_path = loader_cJSON_Print(item);
if (!library_path) {
loader_log(inst, VULKAN_LOADER_WARN_BIT | VULKAN_LOADER_DRIVER_BIT, 0,
"loader_parse_icd_manifest: Failed retrieving ICD JSON %s \'library_path\' field. Skipping ICD JSON.", file_str);
res = VK_ERROR_OUT_OF_HOST_MEMORY;
goto out;
}
if (strlen(library_path) == 0) {
loader_log(inst, VULKAN_LOADER_WARN_BIT | VULKAN_LOADER_DRIVER_BIT, 0,
"loader_parse_icd_manifest: ICD JSON %s \'library_path\' field is empty. Skipping ICD JSON.", file_str);
res = VK_ERROR_INCOMPATIBLE_DRIVER;
goto out;
}
// Print out the paths being searched if debugging is enabled
loader_log(inst, VULKAN_LOADER_DEBUG_BIT | VULKAN_LOADER_DRIVER_BIT, 0, "Searching for ICD drivers named %s", library_path);
// This function takes ownership of library_path - so we don't need to clean it up
res = combine_manifest_directory_and_library_path(inst, library_path, file_str, &icd->full_library_path);
if (VK_SUCCESS != res) {
goto out;
}
item = loader_cJSON_GetObjectItem(itemICD, "api_version");
if (item == NULL) {
loader_log(inst, VULKAN_LOADER_WARN_BIT | VULKAN_LOADER_DRIVER_BIT, 0,
"loader_parse_icd_manifest: ICD JSON %s does not have an \'api_version\' field. Skipping ICD JSON.", file_str);
res = VK_ERROR_INCOMPATIBLE_DRIVER;
goto out;
}
version_str = loader_cJSON_Print(item);
if (NULL == version_str) {
// Only reason the print can fail is if there was an allocation issue
loader_log(inst, VULKAN_LOADER_WARN_BIT | VULKAN_LOADER_DRIVER_BIT, 0,
"loader_parse_icd_manifest: Failed retrieving ICD JSON %s \'api_version\' field. Skipping ICD JSON.", file_str);
res = VK_ERROR_OUT_OF_HOST_MEMORY;
goto out;
}
icd->version = loader_parse_version_string(version_str);
if (VK_API_VERSION_VARIANT(icd->version) != 0) {
loader_log(inst, VULKAN_LOADER_INFO_BIT | VULKAN_LOADER_DRIVER_BIT, 0,
"loader_parse_icd_manifest: Driver's ICD JSON %s \'api_version\' field contains a non-zero variant value of %d. "
" Skipping ICD JSON.",
file_str, VK_API_VERSION_VARIANT(icd->version));
res = VK_ERROR_INCOMPATIBLE_DRIVER;
goto out;
}
// Skip over ICD's which contain a true "is_portability_driver" value whenever the application doesn't enable
// portability enumeration.
item = loader_cJSON_GetObjectItem(itemICD, "is_portability_driver");
if (item != NULL && item->type == cJSON_True && inst && !inst->portability_enumeration_enabled) {
if (skipped_portability_drivers) {
*skipped_portability_drivers = true;
}
res = VK_ERROR_INCOMPATIBLE_DRIVER;
goto out;
}
item = loader_cJSON_GetObjectItem(itemICD, "library_arch");
if (item != NULL) {
library_arch_str = loader_cJSON_Print(item);
if (NULL != library_arch_str) {
// cJSON includes the quotes by default, so we need to look for those here
if ((strncmp(library_arch_str, "32", 4) == 0 && sizeof(void *) != 4) ||
(strncmp(library_arch_str, "64", 4) == 0 && sizeof(void *) != 8)) {
loader_log(inst, VULKAN_LOADER_INFO_BIT, 0,
"loader_parse_icd_manifest: Driver library architecture doesn't match the current running "
"architecture, skipping this driver");
res = VK_ERROR_INCOMPATIBLE_DRIVER;
goto out;
}
} else {
res = VK_ERROR_OUT_OF_HOST_MEMORY;
goto out;
}
}
out:
loader_cJSON_Delete(json);
loader_instance_heap_free(inst, file_vers_str);
loader_instance_heap_free(inst, version_str);
loader_instance_heap_free(inst, library_arch_str);
return res;
}
// Try to find the Vulkan ICD driver(s).
//
// This function scans the default system loader path(s) or path specified by either the
// VK_DRIVER_FILES or VK_ICD_FILENAMES environment variable in order to find loadable
// VK ICDs manifest files.
// From these manifest files it finds the ICD libraries.
//
// skipped_portability_drivers is used to report whether the loader found drivers which report
// portability but the application didn't enable the bit to enumerate them
// Can be NULL
//
// \returns
// Vulkan result
// (on result == VK_SUCCESS) a list of icds that were discovered
VkResult loader_icd_scan(const struct loader_instance *inst, struct loader_icd_tramp_list *icd_tramp_list,
const VkInstanceCreateInfo *pCreateInfo, bool *skipped_portability_drivers) {
VkResult res = VK_SUCCESS;
struct loader_string_list manifest_files = {0};
struct loader_envvar_filter select_filter = {0};
struct loader_envvar_filter disable_filter = {0};
struct ICDManifestInfo *icd_details = NULL;
// Set up the ICD Trampoline list so elements can be written into it.
res = loader_scanned_icd_init(inst, icd_tramp_list);
if (res == VK_ERROR_OUT_OF_HOST_MEMORY) {
return res;
}
bool direct_driver_loading_exclusive_mode = false;
res = loader_scan_for_direct_drivers(inst, pCreateInfo, icd_tramp_list, &direct_driver_loading_exclusive_mode);
if (res == VK_ERROR_OUT_OF_HOST_MEMORY) {
goto out;
}
if (direct_driver_loading_exclusive_mode) {
// Make sure to jump over the system & env-var driver discovery mechanisms if exclusive mode is set, even if no drivers
// were successfully found through the direct driver loading mechanism
goto out;
}
// Parse the filter environment variables to determine if we have any special behavior
res = parse_generic_filter_environment_var(inst, VK_DRIVERS_SELECT_ENV_VAR, &select_filter);
if (VK_SUCCESS != res) {
goto out;
}
res = parse_generic_filter_environment_var(inst, VK_DRIVERS_DISABLE_ENV_VAR, &disable_filter);
if (VK_SUCCESS != res) {
goto out;
}
// Get a list of manifest files for ICDs
res = loader_get_data_files(inst, LOADER_DATA_FILE_MANIFEST_DRIVER, NULL, &manifest_files);
if (VK_SUCCESS != res) {
goto out;
}
icd_details = loader_stack_alloc(sizeof(struct ICDManifestInfo) * manifest_files.count);
if (NULL == icd_details) {
res = VK_ERROR_OUT_OF_HOST_MEMORY;
goto out;
}
memset(icd_details, 0, sizeof(struct ICDManifestInfo) * manifest_files.count);
for (uint32_t i = 0; i < manifest_files.count; i++) {
int dir_fd = -1;
#if defined(__Fuchsia__)
dir_fd = get_manifest_fs_fd();
#endif
VkResult icd_res = VK_SUCCESS;
icd_res = loader_parse_icd_manifest(inst, dir_fd, manifest_files.list[i], &icd_details[i], skipped_portability_drivers);
if (VK_ERROR_OUT_OF_HOST_MEMORY == icd_res) {
res = icd_res;
goto out;
} else if (VK_ERROR_INCOMPATIBLE_DRIVER == icd_res) {
continue;
}
if (select_filter.count > 0 || disable_filter.count > 0) {
// Get only the filename for comparing to the filters
char *just_filename_str = strrchr(manifest_files.list[i], DIRECTORY_SYMBOL);
// No directory symbol, just the filename
if (NULL == just_filename_str) {
just_filename_str = manifest_files.list[i];
} else {
just_filename_str++;
}
bool name_matches_select =
(select_filter.count > 0 && check_name_matches_filter_environment_var(just_filename_str, &select_filter));
bool name_matches_disable =
(disable_filter.count > 0 && check_name_matches_filter_environment_var(just_filename_str, &disable_filter));
if (name_matches_disable && !name_matches_select) {
loader_log(inst, VULKAN_LOADER_WARN_BIT | VULKAN_LOADER_DRIVER_BIT, 0,
"Driver \"%s\" ignored because it was disabled by env var \'%s\'", just_filename_str,
VK_DRIVERS_DISABLE_ENV_VAR);
continue;
}
if (select_filter.count != 0 && !name_matches_select) {
loader_log(inst, VULKAN_LOADER_WARN_BIT | VULKAN_LOADER_DRIVER_BIT, 0,
"Driver \"%s\" ignored because not selected by env var \'%s\'", just_filename_str,
VK_DRIVERS_SELECT_ENV_VAR);
continue;
}
}
enum loader_layer_library_status lib_status;
icd_res =
loader_scanned_icd_add(inst, icd_tramp_list, icd_details[i].full_library_path, icd_details[i].version, &lib_status);
if (VK_ERROR_OUT_OF_HOST_MEMORY == icd_res) {
res = icd_res;
goto out;
} else if (VK_ERROR_INCOMPATIBLE_DRIVER == icd_res) {
switch (lib_status) {
case LOADER_LAYER_LIB_NOT_LOADED:
case LOADER_LAYER_LIB_ERROR_FAILED_TO_LOAD:
loader_log(inst, VULKAN_LOADER_ERROR_BIT | VULKAN_LOADER_DRIVER_BIT, 0,
"loader_icd_scan: Failed loading library associated with ICD JSON %s. Ignoring this JSON",
icd_details[i].full_library_path);
break;
case LOADER_LAYER_LIB_ERROR_WRONG_BIT_TYPE: {
loader_log(inst, VULKAN_LOADER_DRIVER_BIT, 0, "Requested ICD %s was wrong bit-type. Ignoring this JSON",
icd_details[i].full_library_path);
break;
}
case LOADER_LAYER_LIB_SUCCESS_LOADED:
case LOADER_LAYER_LIB_ERROR_OUT_OF_MEMORY:
// Shouldn't be able to reach this but if it is, best to report a debug
loader_log(inst, VULKAN_LOADER_WARN_BIT | VULKAN_LOADER_DRIVER_BIT, 0,
"Shouldn't reach this. A valid version of requested ICD %s was loaded but something bad "
"happened afterwards.",
icd_details[i].full_library_path);
break;
}
}
}
out:
if (NULL != icd_details) {
// Successfully got the icd_details structure, which means we need to free the paths contained within
for (uint32_t i = 0; i < manifest_files.count; i++) {
loader_instance_heap_free(inst, icd_details[i].full_library_path);
}
}
free_string_list(inst, &manifest_files);
return res;
}
// Gets the layer data files corresponding to manifest_type & path_override, then parses the resulting json objects
// into instance_layers
// Manifest type must be either implicit or explicit
VkResult loader_parse_instance_layers(struct loader_instance *inst, enum loader_data_files_type manifest_type,
const char *path_override, struct loader_layer_list *instance_layers) {
assert(manifest_type == LOADER_DATA_FILE_MANIFEST_IMPLICIT_LAYER || manifest_type == LOADER_DATA_FILE_MANIFEST_EXPLICIT_LAYER);
VkResult res = VK_SUCCESS;
struct loader_string_list manifest_files = {0};
res = loader_get_data_files(inst, manifest_type, path_override, &manifest_files);
if (VK_SUCCESS != res) {
goto out;
}
for (uint32_t i = 0; i < manifest_files.count; i++) {
char *file_str = manifest_files.list[i];
if (file_str == NULL) {
continue;
}
// Parse file into JSON struct
cJSON *json = NULL;
VkResult local_res = loader_get_json(inst, -1, file_str, &json);
if (VK_ERROR_OUT_OF_HOST_MEMORY == local_res) {
res = VK_ERROR_OUT_OF_HOST_MEMORY;
goto out;
} else if (VK_SUCCESS != local_res || NULL == json) {
continue;
}
local_res = loader_add_layer_properties(inst, instance_layers, json,
manifest_type == LOADER_DATA_FILE_MANIFEST_IMPLICIT_LAYER, file_str);
loader_cJSON_Delete(json);
// If the error is anything other than out of memory we still want to try to load the other layers
if (VK_ERROR_OUT_OF_HOST_MEMORY == local_res) {
res = VK_ERROR_OUT_OF_HOST_MEMORY;
goto out;
}
}
out:
free_string_list(inst, &manifest_files);
return res;
}
// Given a loader_layer_properties struct that is a valid override layer, concatenate the properties override paths and put them
// into the output parameter override_paths
VkResult get_override_layer_override_paths(struct loader_instance *inst, struct loader_layer_properties *prop,
char **override_paths) {
if (prop->override_paths.count > 0) {
char *cur_write_ptr = NULL;
size_t override_path_size = 0;
for (uint32_t j = 0; j < prop->override_paths.count; j++) {
override_path_size += determine_data_file_path_size(prop->override_paths.list[j], 0);
}
*override_paths = loader_instance_heap_alloc(inst, override_path_size, VK_SYSTEM_ALLOCATION_SCOPE_COMMAND);
if (*override_paths == NULL) {
return VK_ERROR_OUT_OF_HOST_MEMORY;
}
cur_write_ptr = &(*override_paths)[0];
for (uint32_t j = 0; j < prop->override_paths.count; j++) {
copy_data_file_info(prop->override_paths.list[j], NULL, 0, &cur_write_ptr);
}
// Remove the last path separator
--cur_write_ptr;
assert(cur_write_ptr - (*override_paths) < (ptrdiff_t)override_path_size);
*cur_write_ptr = '\0';
loader_log(inst, VULKAN_LOADER_WARN_BIT | VULKAN_LOADER_LAYER_BIT, 0, "Override layer has override paths set to %s",
*override_paths);
}
return VK_SUCCESS;
}
VkResult loader_scan_for_layers(struct loader_instance *inst, struct loader_layer_list *instance_layers,
const struct loader_envvar_all_filters *filters) {
VkResult res = VK_SUCCESS;
struct loader_layer_list settings_layers = {0};
struct loader_layer_list regular_instance_layers = {0};
bool override_layer_valid = false;
char *override_paths = NULL;
bool should_search_for_other_layers = true;
res = get_settings_layers(inst, &settings_layers, &should_search_for_other_layers);
if (VK_SUCCESS != res) {
goto out;
}
// If we should not look for layers using other mechanisms, assing settings_layers to instance_layers and jump to the
// output
if (!should_search_for_other_layers) {
*instance_layers = settings_layers;
memset(&settings_layers, 0, sizeof(struct loader_layer_list));
goto out;
}
res = loader_parse_instance_layers(inst, LOADER_DATA_FILE_MANIFEST_IMPLICIT_LAYER, NULL, &regular_instance_layers);
if (VK_SUCCESS != res) {
goto out;
}
// Remove any extraneous override layers.
remove_all_non_valid_override_layers(inst, &regular_instance_layers);
// Check to see if the override layer is present, and use it's override paths.
for (uint32_t i = 0; i < regular_instance_layers.count; i++) {
struct loader_layer_properties *prop = &regular_instance_layers.list[i];
if (prop->is_override && loader_implicit_layer_is_enabled(inst, filters, prop) && prop->override_paths.count > 0) {
res = get_override_layer_override_paths(inst, prop, &override_paths);
if (VK_SUCCESS != res) {
goto out;
}
break;
}
}
// Get a list of manifest files for explicit layers
res = loader_parse_instance_layers(inst, LOADER_DATA_FILE_MANIFEST_EXPLICIT_LAYER, override_paths, &regular_instance_layers);
if (VK_SUCCESS != res) {
goto out;
}
// Verify any meta-layers in the list are valid and all the component layers are
// actually present in the available layer list
res = verify_all_meta_layers(inst, filters, &regular_instance_layers, &override_layer_valid);
if (VK_ERROR_OUT_OF_HOST_MEMORY == res) {
return res;
}
if (override_layer_valid) {
loader_remove_layers_in_blacklist(inst, &regular_instance_layers);
if (NULL != inst) {
inst->override_layer_present = true;
}
}
// Remove disabled layers
for (uint32_t i = 0; i < regular_instance_layers.count; ++i) {
if (!loader_layer_is_available(inst, filters, &regular_instance_layers.list[i])) {
loader_remove_layer_in_list(inst, &regular_instance_layers, i);
i--;
}
}
res = combine_settings_layers_with_regular_layers(inst, &settings_layers, &regular_instance_layers, instance_layers);
out:
loader_delete_layer_list_and_properties(inst, &settings_layers);
loader_delete_layer_list_and_properties(inst, &regular_instance_layers);
loader_instance_heap_free(inst, override_paths);
return res;
}
VkResult loader_scan_for_implicit_layers(struct loader_instance *inst, struct loader_layer_list *instance_layers,
const struct loader_envvar_all_filters *layer_filters) {
VkResult res = VK_SUCCESS;
struct loader_layer_list settings_layers = {0};
struct loader_layer_list regular_instance_layers = {0};
bool override_layer_valid = false;
char *override_paths = NULL;
bool implicit_metalayer_present = false;
bool should_search_for_other_layers = true;
res = get_settings_layers(inst, &settings_layers, &should_search_for_other_layers);
if (VK_SUCCESS != res) {
goto out;
}
// If we should not look for layers using other mechanisms, assing settings_layers to instance_layers and jump to the
// output
if (!should_search_for_other_layers) {
*instance_layers = settings_layers;
memset(&settings_layers, 0, sizeof(struct loader_layer_list));
goto out;
}
res = loader_parse_instance_layers(inst, LOADER_DATA_FILE_MANIFEST_IMPLICIT_LAYER, NULL, &regular_instance_layers);
if (VK_SUCCESS != res) {
goto out;
}
// Remove any extraneous override layers.
remove_all_non_valid_override_layers(inst, &regular_instance_layers);
// Check to see if either the override layer is present, or another implicit meta-layer.
// Each of these may require explicit layers to be enabled at this time.
for (uint32_t i = 0; i < regular_instance_layers.count; i++) {
struct loader_layer_properties *prop = &regular_instance_layers.list[i];
if (prop->is_override && loader_implicit_layer_is_enabled(inst, layer_filters, prop)) {
override_layer_valid = true;
res = get_override_layer_override_paths(inst, prop, &override_paths);
if (VK_SUCCESS != res) {
goto out;
}
} else if (!prop->is_override && prop->type_flags & VK_LAYER_TYPE_FLAG_META_LAYER) {
implicit_metalayer_present = true;
}
}
// If either the override layer or an implicit meta-layer are present, we need to add
// explicit layer info as well. Not to worry, though, all explicit layers not included
// in the override layer will be removed below in loader_remove_layers_in_blacklist().
if (override_layer_valid || implicit_metalayer_present) {
res =
loader_parse_instance_layers(inst, LOADER_DATA_FILE_MANIFEST_EXPLICIT_LAYER, override_paths, &regular_instance_layers);
if (VK_SUCCESS != res) {
goto out;
}
}
// Verify any meta-layers in the list are valid and all the component layers are
// actually present in the available layer list
res = verify_all_meta_layers(inst, layer_filters, &regular_instance_layers, &override_layer_valid);
if (VK_ERROR_OUT_OF_HOST_MEMORY == res) {
return res;
}
if (override_layer_valid || implicit_metalayer_present) {
loader_remove_layers_not_in_implicit_meta_layers(inst, &regular_instance_layers);
if (override_layer_valid && inst != NULL) {
inst->override_layer_present = true;
}
}
// Remove disabled layers
for (uint32_t i = 0; i < regular_instance_layers.count; ++i) {
if (!loader_implicit_layer_is_enabled(inst, layer_filters, &regular_instance_layers.list[i])) {
loader_remove_layer_in_list(inst, &regular_instance_layers, i);
i--;
}
}
res = combine_settings_layers_with_regular_layers(inst, &settings_layers, &regular_instance_layers, instance_layers);
out:
loader_delete_layer_list_and_properties(inst, &settings_layers);
loader_delete_layer_list_and_properties(inst, &regular_instance_layers);
loader_instance_heap_free(inst, override_paths);
return res;
}
VKAPI_ATTR PFN_vkVoidFunction VKAPI_CALL loader_gpdpa_instance_terminator(VkInstance inst, const char *pName) {
// inst is not wrapped
if (inst == VK_NULL_HANDLE) {
return NULL;
}
VkLayerInstanceDispatchTable *disp_table = *(VkLayerInstanceDispatchTable **)inst;
if (disp_table == NULL) return NULL;
struct loader_instance *loader_inst = loader_get_instance(inst);
if (loader_inst->instance_finished_creation) {
disp_table = &loader_inst->terminator_dispatch;
}
bool found_name;
void *addr = loader_lookup_instance_dispatch_table(disp_table, pName, &found_name);
if (found_name) {
return addr;
}
// Check if any drivers support the function, and if so, add it to the unknown function list
addr = loader_phys_dev_ext_gpa_term(loader_get_instance(inst), pName);
if (NULL != addr) return addr;
// Don't call down the chain, this would be an infinite loop
loader_log(NULL, VULKAN_LOADER_DEBUG_BIT, 0, "loader_gpdpa_instance_terminator() unrecognized name %s", pName);
return NULL;
}
VKAPI_ATTR PFN_vkVoidFunction VKAPI_CALL loader_gpa_instance_terminator(VkInstance inst, const char *pName) {
// Global functions - Do not need a valid instance handle to query
if (!strcmp(pName, "vkGetInstanceProcAddr")) {
return (PFN_vkVoidFunction)loader_gpa_instance_terminator;
}
if (!strcmp(pName, "vk_layerGetPhysicalDeviceProcAddr")) {
return (PFN_vkVoidFunction)loader_gpdpa_instance_terminator;
}
if (!strcmp(pName, "vkCreateInstance")) {
return (PFN_vkVoidFunction)terminator_CreateInstance;
}
// While the spec is very clear that quering vkCreateDevice requires a valid VkInstance, because the loader allowed querying
// with a NULL VkInstance handle for a long enough time, it is impractical to fix this bug in the loader
// As such, this is a bug to maintain compatibility for the RTSS layer (Riva Tuner Statistics Server) but may
// be dependend upon by other layers out in the wild.
if (!strcmp(pName, "vkCreateDevice")) {
return (PFN_vkVoidFunction)terminator_CreateDevice;
}
// inst is not wrapped
if (inst == VK_NULL_HANDLE) {
return NULL;
}
VkLayerInstanceDispatchTable *disp_table = *(VkLayerInstanceDispatchTable **)inst;
if (disp_table == NULL) return NULL;
struct loader_instance *loader_inst = loader_get_instance(inst);
// The VK_EXT_debug_utils functions need a special case here so the terminators can still be found from
// vkGetInstanceProcAddr This is because VK_EXT_debug_utils is an instance level extension with device level functions, and
// is 'supported' by the loader.
// These functions need a terminator to handle the case of a driver not supporting VK_EXT_debug_utils when there are layers
// present which not check for NULL before calling the function.
if (!strcmp(pName, "vkSetDebugUtilsObjectNameEXT")) {
return loader_inst->enabled_known_extensions.ext_debug_utils ? (PFN_vkVoidFunction)terminator_SetDebugUtilsObjectNameEXT
: NULL;
}
if (!strcmp(pName, "vkSetDebugUtilsObjectTagEXT")) {
return loader_inst->enabled_known_extensions.ext_debug_utils ? (PFN_vkVoidFunction)terminator_SetDebugUtilsObjectTagEXT
: NULL;
}
if (!strcmp(pName, "vkQueueBeginDebugUtilsLabelEXT")) {
return loader_inst->enabled_known_extensions.ext_debug_utils ? (PFN_vkVoidFunction)terminator_QueueBeginDebugUtilsLabelEXT
: NULL;
}
if (!strcmp(pName, "vkQueueEndDebugUtilsLabelEXT")) {
return loader_inst->enabled_known_extensions.ext_debug_utils ? (PFN_vkVoidFunction)terminator_QueueEndDebugUtilsLabelEXT
: NULL;
}
if (!strcmp(pName, "vkQueueInsertDebugUtilsLabelEXT")) {
return loader_inst->enabled_known_extensions.ext_debug_utils ? (PFN_vkVoidFunction)terminator_QueueInsertDebugUtilsLabelEXT
: NULL;
}
if (!strcmp(pName, "vkCmdBeginDebugUtilsLabelEXT")) {
return loader_inst->enabled_known_extensions.ext_debug_utils ? (PFN_vkVoidFunction)terminator_CmdBeginDebugUtilsLabelEXT
: NULL;
}
if (!strcmp(pName, "vkCmdEndDebugUtilsLabelEXT")) {
return loader_inst->enabled_known_extensions.ext_debug_utils ? (PFN_vkVoidFunction)terminator_CmdEndDebugUtilsLabelEXT
: NULL;
}
if (!strcmp(pName, "vkCmdInsertDebugUtilsLabelEXT")) {
return loader_inst->enabled_known_extensions.ext_debug_utils ? (PFN_vkVoidFunction)terminator_CmdInsertDebugUtilsLabelEXT
: NULL;
}
if (loader_inst->instance_finished_creation) {
disp_table = &loader_inst->terminator_dispatch;
}
bool found_name;
void *addr = loader_lookup_instance_dispatch_table(disp_table, pName, &found_name);
if (found_name) {
return addr;
}
// Check if it is an unknown physical device function, to see if any drivers support it.
addr = loader_phys_dev_ext_gpa_term(loader_get_instance(inst), pName);
if (addr) {
return addr;
}
// Assume it is an unknown device function, check to see if any drivers support it.
addr = loader_dev_ext_gpa_term(loader_get_instance(inst), pName);
if (addr) {
return addr;
}
// Don't call down the chain, this would be an infinite loop
loader_log(NULL, VULKAN_LOADER_DEBUG_BIT, 0, "loader_gpa_instance_terminator() unrecognized name %s", pName);
return NULL;
}
VKAPI_ATTR PFN_vkVoidFunction VKAPI_CALL loader_gpa_device_terminator(VkDevice device, const char *pName) {
struct loader_device *dev;
struct loader_icd_term *icd_term = loader_get_icd_and_device(device, &dev, NULL);
// Return this function if a layer above here is asking for the vkGetDeviceProcAddr.
// This is so we can properly intercept any device commands needing a terminator.
if (!strcmp(pName, "vkGetDeviceProcAddr")) {
return (PFN_vkVoidFunction)loader_gpa_device_terminator;
}
// NOTE: Device Funcs needing Trampoline/Terminator.
// Overrides for device functions needing a trampoline and
// a terminator because certain device entry-points still need to go
// through a terminator before hitting the ICD. This could be for
// several reasons, but the main one is currently unwrapping an
// object before passing the appropriate info along to the ICD.
// This is why we also have to override the direct ICD call to
// vkGetDeviceProcAddr to intercept those calls.
// If the pName is for a 'known' function but isn't available, due to
// the corresponding extension/feature not being enabled, we need to
// return NULL and not call down to the driver's GetDeviceProcAddr.
if (NULL != dev) {
bool found_name = false;
PFN_vkVoidFunction addr = get_extension_device_proc_terminator(dev, pName, &found_name);
if (found_name) {
return addr;
}
}
if (icd_term == NULL) {
return NULL;
}
return icd_term->dispatch.GetDeviceProcAddr(device, pName);
}
struct loader_instance *loader_get_instance(const VkInstance instance) {
// look up the loader_instance in our list by comparing dispatch tables, as
// there is no guarantee the instance is still a loader_instance* after any
// layers which wrap the instance object.
const VkLayerInstanceDispatchTable *disp;
struct loader_instance *ptr_instance = (struct loader_instance *)instance;
if (VK_NULL_HANDLE == instance || LOADER_MAGIC_NUMBER != ptr_instance->magic) {
return NULL;
} else {
disp = loader_get_instance_layer_dispatch(instance);
loader_platform_thread_lock_mutex(&loader_global_instance_list_lock);
for (struct loader_instance *inst = loader.instances; inst; inst = inst->next) {
if (&inst->disp->layer_inst_disp == disp) {
ptr_instance = inst;
break;
}
}
loader_platform_thread_unlock_mutex(&loader_global_instance_list_lock);
}
return ptr_instance;
}
loader_platform_dl_handle loader_open_layer_file(const struct loader_instance *inst, struct loader_layer_properties *prop) {
if ((prop->lib_handle = loader_platform_open_library(prop->lib_name)) == NULL) {
loader_handle_load_library_error(inst, prop->lib_name, &prop->lib_status);
} else {
prop->lib_status = LOADER_LAYER_LIB_SUCCESS_LOADED;
loader_log(inst, VULKAN_LOADER_DEBUG_BIT | VULKAN_LOADER_LAYER_BIT, 0, "Loading layer library %s", prop->lib_name);
}
return prop->lib_handle;
}
// Go through the search_list and find any layers which match type. If layer
// type match is found in then add it to ext_list.
VkResult loader_add_implicit_layers(const struct loader_instance *inst, const struct loader_envvar_all_filters *filters,
struct loader_pointer_layer_list *target_list,
struct loader_pointer_layer_list *expanded_target_list,
const struct loader_layer_list *source_list) {
for (uint32_t src_layer = 0; src_layer < source_list->count; src_layer++) {
struct loader_layer_properties *prop = &source_list->list[src_layer];
if (0 == (prop->type_flags & VK_LAYER_TYPE_FLAG_EXPLICIT_LAYER)) {
VkResult result = loader_add_implicit_layer(inst, prop, filters, target_list, expanded_target_list, source_list);
if (result == VK_ERROR_OUT_OF_HOST_MEMORY) return result;
}
}
return VK_SUCCESS;
}
void warn_if_layers_are_older_than_application(struct loader_instance *inst) {
for (uint32_t i = 0; i < inst->expanded_activated_layer_list.count; i++) {
// Verify that the layer api version is at least that of the application's request, if not, throw a warning since
// undefined behavior could occur.
struct loader_layer_properties *prop = inst->expanded_activated_layer_list.list[i];
loader_api_version prop_spec_version = loader_make_version(prop->info.specVersion);
if (!loader_check_version_meets_required(inst->app_api_version, prop_spec_version)) {
loader_log(inst, VULKAN_LOADER_WARN_BIT | VULKAN_LOADER_LAYER_BIT, 0,
"Layer %s uses API version %u.%u which is older than the application specified "
"API version of %u.%u. May cause issues.",
prop->info.layerName, prop_spec_version.major, prop_spec_version.minor, inst->app_api_version.major,
inst->app_api_version.minor);
}
}
}
VkResult loader_enable_instance_layers(struct loader_instance *inst, const VkInstanceCreateInfo *pCreateInfo,
const struct loader_layer_list *instance_layers,
const struct loader_envvar_all_filters *layer_filters) {
VkResult res = VK_SUCCESS;
assert(inst && "Cannot have null instance");
if (!loader_init_pointer_layer_list(inst, &inst->app_activated_layer_list)) {
loader_log(inst, VULKAN_LOADER_ERROR_BIT, 0,
"loader_enable_instance_layers: Failed to initialize application version of the layer list");
res = VK_ERROR_OUT_OF_HOST_MEMORY;
goto out;
}
if (!loader_init_pointer_layer_list(inst, &inst->expanded_activated_layer_list)) {
loader_log(inst, VULKAN_LOADER_ERROR_BIT, 0,
"loader_enable_instance_layers: Failed to initialize expanded version of the layer list");
res = VK_ERROR_OUT_OF_HOST_MEMORY;
goto out;
}
if (inst->settings.settings_active) {
res = enable_correct_layers_from_settings(inst, layer_filters, pCreateInfo->enabledLayerCount,
pCreateInfo->ppEnabledLayerNames, &inst->instance_layer_list,
&inst->app_activated_layer_list, &inst->expanded_activated_layer_list);
warn_if_layers_are_older_than_application(inst);
goto out;
}
// Add any implicit layers first
res = loader_add_implicit_layers(inst, layer_filters, &inst->app_activated_layer_list, &inst->expanded_activated_layer_list,
instance_layers);
if (res != VK_SUCCESS) {
goto out;
}
// Add any layers specified via environment variable next
res = loader_add_environment_layers(inst, VK_LAYER_TYPE_FLAG_EXPLICIT_LAYER, layer_filters, &inst->app_activated_layer_list,
&inst->expanded_activated_layer_list, instance_layers);
if (res != VK_SUCCESS) {
goto out;
}
// Add layers specified by the application
res = loader_add_layer_names_to_list(inst, layer_filters, &inst->app_activated_layer_list, &inst->expanded_activated_layer_list,
pCreateInfo->enabledLayerCount, pCreateInfo->ppEnabledLayerNames, instance_layers);
warn_if_layers_are_older_than_application(inst);
out:
return res;
}
// Determine the layer interface version to use.
bool loader_get_layer_interface_version(PFN_vkNegotiateLoaderLayerInterfaceVersion fp_negotiate_layer_version,
VkNegotiateLayerInterface *interface_struct) {
memset(interface_struct, 0, sizeof(VkNegotiateLayerInterface));
interface_struct->sType = LAYER_NEGOTIATE_INTERFACE_STRUCT;
interface_struct->loaderLayerInterfaceVersion = 1;
interface_struct->pNext = NULL;
if (fp_negotiate_layer_version != NULL) {
// Layer supports the negotiation API, so call it with the loader's
// latest version supported
interface_struct->loaderLayerInterfaceVersion = CURRENT_LOADER_LAYER_INTERFACE_VERSION;
VkResult result = fp_negotiate_layer_version(interface_struct);
if (result != VK_SUCCESS) {
// Layer no longer supports the loader's latest interface version so
// fail loading the Layer
return false;
}
}
if (interface_struct->loaderLayerInterfaceVersion < MIN_SUPPORTED_LOADER_LAYER_INTERFACE_VERSION) {
// Loader no longer supports the layer's latest interface version so
// fail loading the layer
return false;
}
return true;
}
// Every extension that has a loader-defined trampoline needs to be marked as enabled or disabled so that we know whether or
// not to return that trampoline when vkGetDeviceProcAddr is called
void setup_logical_device_enabled_layer_extensions(const struct loader_instance *inst, struct loader_device *dev,
const struct loader_extension_list *icd_exts,
const VkDeviceCreateInfo *pCreateInfo) {
// Can only setup debug marker as debug utils is an instance extensions.
for (uint32_t i = 0; i < pCreateInfo->enabledExtensionCount; ++i) {
if (!strcmp(pCreateInfo->ppEnabledExtensionNames[i], VK_EXT_DEBUG_MARKER_EXTENSION_NAME)) {
// Check if its supported by the driver
for (uint32_t j = 0; j < icd_exts->count; ++j) {
if (!strcmp(icd_exts->list[j].extensionName, VK_EXT_DEBUG_MARKER_EXTENSION_NAME)) {
dev->layer_extensions.ext_debug_marker_enabled = true;
}
}
// also check if any layers support it.
for (uint32_t j = 0; j < inst->app_activated_layer_list.count; j++) {
struct loader_layer_properties *layer = inst->app_activated_layer_list.list[j];
for (uint32_t k = 0; k < layer->device_extension_list.count; k++) {
if (!strcmp(layer->device_extension_list.list[k].props.extensionName, VK_EXT_DEBUG_MARKER_EXTENSION_NAME)) {
dev->layer_extensions.ext_debug_marker_enabled = true;
}
}
}
}
}
}
VKAPI_ATTR VkResult VKAPI_CALL loader_layer_create_device(VkInstance instance, VkPhysicalDevice physicalDevice,
const VkDeviceCreateInfo *pCreateInfo,
const VkAllocationCallbacks *pAllocator, VkDevice *pDevice,
PFN_vkGetInstanceProcAddr layerGIPA, PFN_vkGetDeviceProcAddr *nextGDPA) {
VkResult res;
VkPhysicalDevice internal_device = VK_NULL_HANDLE;
struct loader_device *dev = NULL;
struct loader_instance *inst = NULL;
if (instance != VK_NULL_HANDLE) {
inst = loader_get_instance(instance);
internal_device = physicalDevice;
} else {
struct loader_physical_device_tramp *phys_dev = (struct loader_physical_device_tramp *)physicalDevice;
internal_device = phys_dev->phys_dev;
inst = (struct loader_instance *)phys_dev->this_instance;
}
// Get the physical device (ICD) extensions
struct loader_extension_list icd_exts = {0};
icd_exts.list = NULL;
res = loader_init_generic_list(inst, (struct loader_generic_list *)&icd_exts, sizeof(VkExtensionProperties));
if (VK_SUCCESS != res) {
loader_log(inst, VULKAN_LOADER_ERROR_BIT, 0, "vkCreateDevice: Failed to create ICD extension list");
goto out;
}
PFN_vkEnumerateDeviceExtensionProperties enumDeviceExtensionProperties = NULL;
if (layerGIPA != NULL) {
enumDeviceExtensionProperties =
(PFN_vkEnumerateDeviceExtensionProperties)layerGIPA(instance, "vkEnumerateDeviceExtensionProperties");
} else {
enumDeviceExtensionProperties = inst->disp->layer_inst_disp.EnumerateDeviceExtensionProperties;
}
res = loader_add_device_extensions(inst, enumDeviceExtensionProperties, internal_device, "Unknown", &icd_exts);
if (res != VK_SUCCESS) {
loader_log(inst, VULKAN_LOADER_ERROR_BIT, 0, "vkCreateDevice: Failed to add extensions to list");
goto out;
}
// Make sure requested extensions to be enabled are supported
res = loader_validate_device_extensions(inst, &inst->expanded_activated_layer_list, &icd_exts, pCreateInfo);
if (res != VK_SUCCESS) {
loader_log(inst, VULKAN_LOADER_ERROR_BIT, 0, "vkCreateDevice: Failed to validate extensions in list");
goto out;
}
dev = loader_create_logical_device(inst, pAllocator);
if (dev == NULL) {
res = VK_ERROR_OUT_OF_HOST_MEMORY;
goto out;
}
setup_logical_device_enabled_layer_extensions(inst, dev, &icd_exts, pCreateInfo);
res = loader_create_device_chain(internal_device, pCreateInfo, pAllocator, inst, dev, layerGIPA, nextGDPA);
if (res != VK_SUCCESS) {
loader_log(inst, VULKAN_LOADER_ERROR_BIT, 0, "vkCreateDevice: Failed to create device chain.");
goto out;
}
*pDevice = dev->chain_device;
// Initialize any device extension dispatch entry's from the instance list
loader_init_dispatch_dev_ext(inst, dev);
// Initialize WSI device extensions as part of core dispatch since loader
// has dedicated trampoline code for these
loader_init_device_extension_dispatch_table(&dev->loader_dispatch, inst->disp->layer_inst_disp.GetInstanceProcAddr,
dev->loader_dispatch.core_dispatch.GetDeviceProcAddr, inst->instance, *pDevice);
out:
// Failure cleanup
if (VK_SUCCESS != res) {
if (NULL != dev) {
// Find the icd_term this device belongs to then remove it from that icd_term.
// Need to iterate the linked lists and remove the device from it. Don't delete
// the device here since it may not have been added to the icd_term and there
// are other allocations attached to it.
struct loader_icd_term *icd_term = inst->icd_terms;
bool found = false;
while (!found && NULL != icd_term) {
struct loader_device *cur_dev = icd_term->logical_device_list;
struct loader_device *prev_dev = NULL;
while (NULL != cur_dev) {
if (cur_dev == dev) {
if (cur_dev == icd_term->logical_device_list) {
icd_term->logical_device_list = cur_dev->next;
} else if (prev_dev) {
prev_dev->next = cur_dev->next;
}
found = true;
break;
}
prev_dev = cur_dev;
cur_dev = cur_dev->next;
}
icd_term = icd_term->next;
}
// Now destroy the device and the allocations associated with it.
loader_destroy_logical_device(dev, pAllocator);
}
}
if (NULL != icd_exts.list) {
loader_destroy_generic_list(inst, (struct loader_generic_list *)&icd_exts);
}
return res;
}
VKAPI_ATTR void VKAPI_CALL loader_layer_destroy_device(VkDevice device, const VkAllocationCallbacks *pAllocator,
PFN_vkDestroyDevice destroyFunction) {
struct loader_device *dev;
if (device == VK_NULL_HANDLE) {
return;
}
struct loader_icd_term *icd_term = loader_get_icd_and_device(device, &dev, NULL);
destroyFunction(device, pAllocator);
if (NULL != dev) {
dev->chain_device = NULL;
dev->icd_device = NULL;
loader_remove_logical_device(icd_term, dev, pAllocator);
}
}
// Given the list of layers to activate in the loader_instance
// structure. This function will add a VkLayerInstanceCreateInfo
// structure to the VkInstanceCreateInfo.pNext pointer.
// Each activated layer will have it's own VkLayerInstanceLink
// structure that tells the layer what Get*ProcAddr to call to
// get function pointers to the next layer down.
// Once the chain info has been created this function will
// execute the CreateInstance call chain. Each layer will
// then have an opportunity in it's CreateInstance function
// to setup it's dispatch table when the lower layer returns
// successfully.
// Each layer can wrap or not-wrap the returned VkInstance object
// as it sees fit.
// The instance chain is terminated by a loader function
// that will call CreateInstance on all available ICD's and
// cache those VkInstance objects for future use.
VkResult loader_create_instance_chain(const VkInstanceCreateInfo *pCreateInfo, const VkAllocationCallbacks *pAllocator,
struct loader_instance *inst, VkInstance *created_instance) {
uint32_t num_activated_layers = 0;
struct activated_layer_info *activated_layers = NULL;
VkLayerInstanceCreateInfo chain_info;
VkLayerInstanceLink *layer_instance_link_info = NULL;
VkInstanceCreateInfo loader_create_info;
VkResult res;
PFN_vkGetInstanceProcAddr next_gipa = loader_gpa_instance_terminator;
PFN_vkGetInstanceProcAddr cur_gipa = loader_gpa_instance_terminator;
PFN_vkGetDeviceProcAddr cur_gdpa = loader_gpa_device_terminator;
PFN_GetPhysicalDeviceProcAddr next_gpdpa = loader_gpdpa_instance_terminator;
PFN_GetPhysicalDeviceProcAddr cur_gpdpa = loader_gpdpa_instance_terminator;
memcpy(&loader_create_info, pCreateInfo, sizeof(VkInstanceCreateInfo));
if (inst->expanded_activated_layer_list.count > 0) {
chain_info.u.pLayerInfo = NULL;
chain_info.pNext = pCreateInfo->pNext;
chain_info.sType = VK_STRUCTURE_TYPE_LOADER_INSTANCE_CREATE_INFO;
chain_info.function = VK_LAYER_LINK_INFO;
loader_create_info.pNext = &chain_info;
layer_instance_link_info = loader_stack_alloc(sizeof(VkLayerInstanceLink) * inst->expanded_activated_layer_list.count);
if (!layer_instance_link_info) {
loader_log(inst, VULKAN_LOADER_ERROR_BIT, 0,
"loader_create_instance_chain: Failed to alloc Instance objects for layer");
return VK_ERROR_OUT_OF_HOST_MEMORY;
}
activated_layers = loader_stack_alloc(sizeof(struct activated_layer_info) * inst->expanded_activated_layer_list.count);
if (!activated_layers) {
loader_log(inst, VULKAN_LOADER_ERROR_BIT, 0,
"loader_create_instance_chain: Failed to alloc activated layer storage array");
return VK_ERROR_OUT_OF_HOST_MEMORY;
}
// Create instance chain of enabled layers
for (int32_t i = inst->expanded_activated_layer_list.count - 1; i >= 0; i--) {
struct loader_layer_properties *layer_prop = inst->expanded_activated_layer_list.list[i];
loader_platform_dl_handle lib_handle;
// Skip it if a Layer with the same name has been already successfully activated
if (loader_names_array_has_layer_property(&layer_prop->info, num_activated_layers, activated_layers)) {
continue;
}
lib_handle = loader_open_layer_file(inst, layer_prop);
if (layer_prop->lib_status == LOADER_LAYER_LIB_ERROR_OUT_OF_MEMORY) {
return VK_ERROR_OUT_OF_HOST_MEMORY;
}
if (!lib_handle) {
continue;
}
if (NULL == layer_prop->functions.negotiate_layer_interface) {
PFN_vkNegotiateLoaderLayerInterfaceVersion negotiate_interface = NULL;
bool functions_in_interface = false;
if (!layer_prop->functions.str_negotiate_interface || strlen(layer_prop->functions.str_negotiate_interface) == 0) {
negotiate_interface = (PFN_vkNegotiateLoaderLayerInterfaceVersion)loader_platform_get_proc_address(
lib_handle, "vkNegotiateLoaderLayerInterfaceVersion");
} else {
negotiate_interface = (PFN_vkNegotiateLoaderLayerInterfaceVersion)loader_platform_get_proc_address(
lib_handle, layer_prop->functions.str_negotiate_interface);
}
// If we can negotiate an interface version, then we can also
// get everything we need from the one function call, so try
// that first, and see if we can get all the function pointers
// necessary from that one call.
if (NULL != negotiate_interface) {
layer_prop->functions.negotiate_layer_interface = negotiate_interface;
VkNegotiateLayerInterface interface_struct;
if (loader_get_layer_interface_version(negotiate_interface, &interface_struct)) {
// Go ahead and set the properties version to the
// correct value.
layer_prop->interface_version = interface_struct.loaderLayerInterfaceVersion;
// If the interface is 2 or newer, we have access to the
// new GetPhysicalDeviceProcAddr function, so grab it,
// and the other necessary functions, from the
// structure.
if (interface_struct.loaderLayerInterfaceVersion > 1) {
cur_gipa = interface_struct.pfnGetInstanceProcAddr;
cur_gdpa = interface_struct.pfnGetDeviceProcAddr;
cur_gpdpa = interface_struct.pfnGetPhysicalDeviceProcAddr;
if (cur_gipa != NULL) {
// We've set the functions, so make sure we
// don't do the unnecessary calls later.
functions_in_interface = true;
}
}
}
}
if (!functions_in_interface) {
if ((cur_gipa = layer_prop->functions.get_instance_proc_addr) == NULL) {
if (layer_prop->functions.str_gipa == NULL || strlen(layer_prop->functions.str_gipa) == 0) {
cur_gipa =
(PFN_vkGetInstanceProcAddr)loader_platform_get_proc_address(lib_handle, "vkGetInstanceProcAddr");
layer_prop->functions.get_instance_proc_addr = cur_gipa;
if (NULL == cur_gipa) {
loader_log(inst, VULKAN_LOADER_ERROR_BIT | VULKAN_LOADER_LAYER_BIT, 0,
"loader_create_instance_chain: Failed to find \'vkGetInstanceProcAddr\' in layer \"%s\"",
layer_prop->lib_name);
continue;
}
} else {
cur_gipa = (PFN_vkGetInstanceProcAddr)loader_platform_get_proc_address(lib_handle,
layer_prop->functions.str_gipa);
if (NULL == cur_gipa) {
loader_log(inst, VULKAN_LOADER_ERROR_BIT | VULKAN_LOADER_LAYER_BIT, 0,
"loader_create_instance_chain: Failed to find \'%s\' in layer \"%s\"",
layer_prop->functions.str_gipa, layer_prop->lib_name);
continue;
}
}
}
}
}
layer_instance_link_info[num_activated_layers].pNext = chain_info.u.pLayerInfo;
layer_instance_link_info[num_activated_layers].pfnNextGetInstanceProcAddr = next_gipa;
layer_instance_link_info[num_activated_layers].pfnNextGetPhysicalDeviceProcAddr = next_gpdpa;
next_gipa = cur_gipa;
if (layer_prop->interface_version > 1 && cur_gpdpa != NULL) {
layer_prop->functions.get_physical_device_proc_addr = cur_gpdpa;
next_gpdpa = cur_gpdpa;
}
if (layer_prop->interface_version > 1 && cur_gipa != NULL) {
layer_prop->functions.get_instance_proc_addr = cur_gipa;
}
if (layer_prop->interface_version > 1 && cur_gdpa != NULL) {
layer_prop->functions.get_device_proc_addr = cur_gdpa;
}
chain_info.u.pLayerInfo = &layer_instance_link_info[num_activated_layers];
activated_layers[num_activated_layers].name = layer_prop->info.layerName;
activated_layers[num_activated_layers].manifest = layer_prop->manifest_file_name;
activated_layers[num_activated_layers].library = layer_prop->lib_name;
activated_layers[num_activated_layers].is_implicit = !(layer_prop->type_flags & VK_LAYER_TYPE_FLAG_EXPLICIT_LAYER);
if (activated_layers[num_activated_layers].is_implicit) {
activated_layers[num_activated_layers].disable_env = layer_prop->disable_env_var.name;
}
loader_log(inst, VULKAN_LOADER_INFO_BIT | VULKAN_LOADER_LAYER_BIT, 0, "Insert instance layer \"%s\" (%s)",
layer_prop->info.layerName, layer_prop->lib_name);
num_activated_layers++;
}
}
// Make sure each layer requested by the application was actually loaded
for (uint32_t exp = 0; exp < inst->expanded_activated_layer_list.count; ++exp) {
struct loader_layer_properties *exp_layer_prop = inst->expanded_activated_layer_list.list[exp];
bool found = false;
for (uint32_t act = 0; act < num_activated_layers; ++act) {
if (!strcmp(activated_layers[act].name, exp_layer_prop->info.layerName)) {
found = true;
break;
}
}
// If it wasn't found, we want to at least log an error. However, if it was enabled by the application directly,
// we want to return a bad layer error.
if (!found) {
bool app_requested = false;
for (uint32_t act = 0; act < pCreateInfo->enabledLayerCount; ++act) {
if (!strcmp(pCreateInfo->ppEnabledLayerNames[act], exp_layer_prop->info.layerName)) {
app_requested = true;
break;
}
}
VkFlags log_flag = VULKAN_LOADER_LAYER_BIT;
char ending = '.';
if (app_requested) {
log_flag |= VULKAN_LOADER_ERROR_BIT;
ending = '!';
} else {
log_flag |= VULKAN_LOADER_INFO_BIT;
}
switch (exp_layer_prop->lib_status) {
case LOADER_LAYER_LIB_NOT_LOADED:
loader_log(inst, log_flag, 0, "Requested layer \"%s\" was not loaded%c", exp_layer_prop->info.layerName,
ending);
break;
case LOADER_LAYER_LIB_ERROR_WRONG_BIT_TYPE: {
loader_log(inst, log_flag, 0, "Requested layer \"%s\" was wrong bit-type%c", exp_layer_prop->info.layerName,
ending);
break;
}
case LOADER_LAYER_LIB_ERROR_FAILED_TO_LOAD:
loader_log(inst, log_flag, 0, "Requested layer \"%s\" failed to load%c", exp_layer_prop->info.layerName,
ending);
break;
case LOADER_LAYER_LIB_SUCCESS_LOADED:
case LOADER_LAYER_LIB_ERROR_OUT_OF_MEMORY:
// Shouldn't be able to reach this but if it is, best to report a debug
loader_log(inst, log_flag, 0,
"Shouldn't reach this. A valid version of requested layer %s was loaded but was not found in the "
"list of activated layers%c",
exp_layer_prop->info.layerName, ending);
break;
}
if (app_requested) {
return VK_ERROR_LAYER_NOT_PRESENT;
}
}
}
VkLoaderFeatureFlags feature_flags = 0;
#if defined(_WIN32)
feature_flags = windows_initialize_dxgi();
#endif
PFN_vkCreateInstance fpCreateInstance = (PFN_vkCreateInstance)next_gipa(*created_instance, "vkCreateInstance");
if (fpCreateInstance) {
VkLayerInstanceCreateInfo instance_dispatch;
instance_dispatch.sType = VK_STRUCTURE_TYPE_LOADER_INSTANCE_CREATE_INFO;
instance_dispatch.pNext = loader_create_info.pNext;
instance_dispatch.function = VK_LOADER_DATA_CALLBACK;
instance_dispatch.u.pfnSetInstanceLoaderData = vkSetInstanceDispatch;
VkLayerInstanceCreateInfo device_callback;
device_callback.sType = VK_STRUCTURE_TYPE_LOADER_INSTANCE_CREATE_INFO;
device_callback.pNext = &instance_dispatch;
device_callback.function = VK_LOADER_LAYER_CREATE_DEVICE_CALLBACK;
device_callback.u.layerDevice.pfnLayerCreateDevice = loader_layer_create_device;
device_callback.u.layerDevice.pfnLayerDestroyDevice = loader_layer_destroy_device;
VkLayerInstanceCreateInfo loader_features;
loader_features.sType = VK_STRUCTURE_TYPE_LOADER_INSTANCE_CREATE_INFO;
loader_features.pNext = &device_callback;
loader_features.function = VK_LOADER_FEATURES;
loader_features.u.loaderFeatures = feature_flags;
loader_create_info.pNext = &loader_features;
// If layer debugging is enabled, let's print out the full callstack with layers in their
// defined order.
if ((loader_get_global_debug_level() & VULKAN_LOADER_LAYER_BIT) != 0) {
loader_log(inst, VULKAN_LOADER_LAYER_BIT, 0, "vkCreateInstance layer callstack setup to:");
loader_log(inst, VULKAN_LOADER_LAYER_BIT, 0, " <Application>");
loader_log(inst, VULKAN_LOADER_LAYER_BIT, 0, " ||");
loader_log(inst, VULKAN_LOADER_LAYER_BIT, 0, " <Loader>");
loader_log(inst, VULKAN_LOADER_LAYER_BIT, 0, " ||");
for (uint32_t cur_layer = 0; cur_layer < num_activated_layers; ++cur_layer) {
uint32_t index = num_activated_layers - cur_layer - 1;
loader_log(inst, VULKAN_LOADER_LAYER_BIT, 0, " %s", activated_layers[index].name);
loader_log(inst, VULKAN_LOADER_LAYER_BIT, 0, " Type: %s",
activated_layers[index].is_implicit ? "Implicit" : "Explicit");
if (activated_layers[index].is_implicit) {
loader_log(inst, VULKAN_LOADER_LAYER_BIT, 0, " Disable Env Var: %s",
activated_layers[index].disable_env);
}
loader_log(inst, VULKAN_LOADER_LAYER_BIT, 0, " Manifest: %s", activated_layers[index].manifest);
loader_log(inst, VULKAN_LOADER_LAYER_BIT, 0, " Library: %s", activated_layers[index].library);
loader_log(inst, VULKAN_LOADER_LAYER_BIT, 0, " ||");
}
loader_log(inst, VULKAN_LOADER_LAYER_BIT, 0, " <Drivers>");
}
res = fpCreateInstance(&loader_create_info, pAllocator, created_instance);
} else {
loader_log(inst, VULKAN_LOADER_ERROR_BIT, 0, "loader_create_instance_chain: Failed to find \'vkCreateInstance\'");
// Couldn't find CreateInstance function!
res = VK_ERROR_INITIALIZATION_FAILED;
}
if (res == VK_SUCCESS) {
// Copy the current disp table into the terminator_dispatch table so we can use it in loader_gpa_instance_terminator()
memcpy(&inst->terminator_dispatch, &inst->disp->layer_inst_disp, sizeof(VkLayerInstanceDispatchTable));
loader_init_instance_core_dispatch_table(&inst->disp->layer_inst_disp, next_gipa, *created_instance);
inst->instance = *created_instance;
}
if (pCreateInfo->enabledLayerCount > 0 && pCreateInfo->ppEnabledLayerNames != NULL) {
res = create_string_list(inst, pCreateInfo->enabledLayerCount, &inst->enabled_layer_names);
if (res != VK_SUCCESS) {
return res;
}
for (uint32_t i = 0; i < pCreateInfo->enabledLayerCount; ++i) {
res = copy_str_to_string_list(inst, &inst->enabled_layer_names, pCreateInfo->ppEnabledLayerNames[i],
strlen(pCreateInfo->ppEnabledLayerNames[i]));
if (res != VK_SUCCESS) return res;
}
}
return res;
}
void loader_activate_instance_layer_extensions(struct loader_instance *inst, VkInstance created_inst) {
loader_init_instance_extension_dispatch_table(&inst->disp->layer_inst_disp, inst->disp->layer_inst_disp.GetInstanceProcAddr,
created_inst);
}
#if defined(__APPLE__)
VkResult loader_create_device_chain(const VkPhysicalDevice pd, const VkDeviceCreateInfo *pCreateInfo,
const VkAllocationCallbacks *pAllocator, const struct loader_instance *inst,
struct loader_device *dev, PFN_vkGetInstanceProcAddr callingLayer,
PFN_vkGetDeviceProcAddr *layerNextGDPA) __attribute__((optnone)) {
#else
VkResult loader_create_device_chain(const VkPhysicalDevice pd, const VkDeviceCreateInfo *pCreateInfo,
const VkAllocationCallbacks *pAllocator, const struct loader_instance *inst,
struct loader_device *dev, PFN_vkGetInstanceProcAddr callingLayer,
PFN_vkGetDeviceProcAddr *layerNextGDPA) {
#endif
uint32_t num_activated_layers = 0;
struct activated_layer_info *activated_layers = NULL;
VkLayerDeviceLink *layer_device_link_info;
VkLayerDeviceCreateInfo chain_info;
VkDeviceCreateInfo loader_create_info;
VkDeviceGroupDeviceCreateInfoKHR *original_device_group_create_info_struct = NULL;
VkResult res;
PFN_vkGetDeviceProcAddr fpGDPA = NULL, nextGDPA = loader_gpa_device_terminator;
PFN_vkGetInstanceProcAddr fpGIPA = NULL, nextGIPA = loader_gpa_instance_terminator;
memcpy(&loader_create_info, pCreateInfo, sizeof(VkDeviceCreateInfo));
if (loader_create_info.enabledLayerCount > 0 && loader_create_info.ppEnabledLayerNames != NULL) {
bool invalid_device_layer_usage = false;
if (loader_create_info.enabledLayerCount != inst->enabled_layer_names.count && loader_create_info.enabledLayerCount > 0) {
invalid_device_layer_usage = true;
} else if (loader_create_info.enabledLayerCount > 0 && loader_create_info.ppEnabledLayerNames == NULL) {
invalid_device_layer_usage = true;
} else if (loader_create_info.enabledLayerCount == 0 && loader_create_info.ppEnabledLayerNames != NULL) {
invalid_device_layer_usage = true;
} else if (inst->enabled_layer_names.list != NULL) {
for (uint32_t i = 0; i < loader_create_info.enabledLayerCount; i++) {
const char *device_layer_names = loader_create_info.ppEnabledLayerNames[i];
if (strcmp(device_layer_names, inst->enabled_layer_names.list[i]) != 0) {
invalid_device_layer_usage = true;
break;
}
}
}
if (invalid_device_layer_usage) {
loader_log(
inst, VULKAN_LOADER_WARN_BIT, 0,
"loader_create_device_chain: Using deprecated and ignored 'ppEnabledLayerNames' member of 'VkDeviceCreateInfo' "
"when creating a Vulkan device.");
}
}
// Before we continue, we need to find out if the KHR_device_group extension is in the enabled list. If it is, we then
// need to look for the corresponding VkDeviceGroupDeviceCreateInfoKHR struct in the device list. This is because we
// need to replace all the incoming physical device values (which are really loader trampoline physical device values)
// with the layer/ICD version.
{
VkBaseOutStructure *pNext = (VkBaseOutStructure *)loader_create_info.pNext;
VkBaseOutStructure *pPrev = (VkBaseOutStructure *)&loader_create_info;
while (NULL != pNext) {
if (VK_STRUCTURE_TYPE_DEVICE_GROUP_DEVICE_CREATE_INFO == pNext->sType) {
VkDeviceGroupDeviceCreateInfoKHR *cur_struct = (VkDeviceGroupDeviceCreateInfoKHR *)pNext;
if (0 < cur_struct->physicalDeviceCount && NULL != cur_struct->pPhysicalDevices) {
VkDeviceGroupDeviceCreateInfoKHR *temp_struct = loader_stack_alloc(sizeof(VkDeviceGroupDeviceCreateInfoKHR));
VkPhysicalDevice *phys_dev_array = NULL;
if (NULL == temp_struct) {
return VK_ERROR_OUT_OF_HOST_MEMORY;
}
memcpy(temp_struct, cur_struct, sizeof(VkDeviceGroupDeviceCreateInfoKHR));
phys_dev_array = loader_stack_alloc(sizeof(VkPhysicalDevice) * cur_struct->physicalDeviceCount);
if (NULL == phys_dev_array) {
return VK_ERROR_OUT_OF_HOST_MEMORY;
}
// Before calling down, replace the incoming physical device values (which are really loader trampoline
// physical devices) with the next layer (or possibly even the terminator) physical device values.
struct loader_physical_device_tramp *cur_tramp;
for (uint32_t phys_dev = 0; phys_dev < cur_struct->physicalDeviceCount; phys_dev++) {
cur_tramp = (struct loader_physical_device_tramp *)cur_struct->pPhysicalDevices[phys_dev];
phys_dev_array[phys_dev] = cur_tramp->phys_dev;
}
temp_struct->pPhysicalDevices = phys_dev_array;
original_device_group_create_info_struct = (VkDeviceGroupDeviceCreateInfoKHR *)pPrev->pNext;
// Replace the old struct in the pNext chain with this one.
pPrev->pNext = (VkBaseOutStructure *)temp_struct;
}
break;
}
pPrev = pNext;
pNext = pNext->pNext;
}
}
if (inst->expanded_activated_layer_list.count > 0) {
layer_device_link_info = loader_stack_alloc(sizeof(VkLayerDeviceLink) * inst->expanded_activated_layer_list.count);
if (!layer_device_link_info) {
loader_log(inst, VULKAN_LOADER_ERROR_BIT, 0,
"loader_create_device_chain: Failed to alloc Device objects for layer. Skipping Layer.");
return VK_ERROR_OUT_OF_HOST_MEMORY;
}
activated_layers = loader_stack_alloc(sizeof(struct activated_layer_info) * inst->expanded_activated_layer_list.count);
if (!activated_layers) {
loader_log(inst, VULKAN_LOADER_ERROR_BIT, 0,
"loader_create_device_chain: Failed to alloc activated layer storage array");
return VK_ERROR_OUT_OF_HOST_MEMORY;
}
chain_info.sType = VK_STRUCTURE_TYPE_LOADER_DEVICE_CREATE_INFO;
chain_info.function = VK_LAYER_LINK_INFO;
chain_info.u.pLayerInfo = NULL;
chain_info.pNext = loader_create_info.pNext;
loader_create_info.pNext = &chain_info;
// Create instance chain of enabled layers
for (int32_t i = inst->expanded_activated_layer_list.count - 1; i >= 0; i--) {
struct loader_layer_properties *layer_prop = inst->expanded_activated_layer_list.list[i];
loader_platform_dl_handle lib_handle = layer_prop->lib_handle;
// Skip it if a Layer with the same name has been already successfully activated
if (loader_names_array_has_layer_property(&layer_prop->info, num_activated_layers, activated_layers)) {
continue;
}
// Skip the layer if the handle is NULL - this is likely because the library failed to load but wasn't removed from
// the list.
if (!lib_handle) {
continue;
}
// The Get*ProcAddr pointers will already be filled in if they were received from either the json file or the
// version negotiation
if ((fpGIPA = layer_prop->functions.get_instance_proc_addr) == NULL) {
if (layer_prop->functions.str_gipa == NULL || strlen(layer_prop->functions.str_gipa) == 0) {
fpGIPA = (PFN_vkGetInstanceProcAddr)loader_platform_get_proc_address(lib_handle, "vkGetInstanceProcAddr");
layer_prop->functions.get_instance_proc_addr = fpGIPA;
} else
fpGIPA =
(PFN_vkGetInstanceProcAddr)loader_platform_get_proc_address(lib_handle, layer_prop->functions.str_gipa);
if (!fpGIPA) {
loader_log(inst, VULKAN_LOADER_ERROR_BIT | VULKAN_LOADER_LAYER_BIT, 0,
"loader_create_device_chain: Failed to find \'vkGetInstanceProcAddr\' in layer \"%s\". "
"Skipping layer.",
layer_prop->lib_name);
continue;
}
}
if (fpGIPA == callingLayer) {
if (layerNextGDPA != NULL) {
*layerNextGDPA = nextGDPA;
}
// Break here because if fpGIPA is the same as callingLayer, that means a layer is trying to create a device,
// and once we don't want to continue any further as the next layer will be the calling layer
break;
}
if ((fpGDPA = layer_prop->functions.get_device_proc_addr) == NULL) {
if (layer_prop->functions.str_gdpa == NULL || strlen(layer_prop->functions.str_gdpa) == 0) {
fpGDPA = (PFN_vkGetDeviceProcAddr)loader_platform_get_proc_address(lib_handle, "vkGetDeviceProcAddr");
layer_prop->functions.get_device_proc_addr = fpGDPA;
} else
fpGDPA = (PFN_vkGetDeviceProcAddr)loader_platform_get_proc_address(lib_handle, layer_prop->functions.str_gdpa);
if (!fpGDPA) {
loader_log(inst, VULKAN_LOADER_INFO_BIT | VULKAN_LOADER_LAYER_BIT, 0,
"Failed to find vkGetDeviceProcAddr in layer \"%s\"", layer_prop->lib_name);
continue;
}
}
layer_device_link_info[num_activated_layers].pNext = chain_info.u.pLayerInfo;
layer_device_link_info[num_activated_layers].pfnNextGetInstanceProcAddr = nextGIPA;
layer_device_link_info[num_activated_layers].pfnNextGetDeviceProcAddr = nextGDPA;
chain_info.u.pLayerInfo = &layer_device_link_info[num_activated_layers];
nextGIPA = fpGIPA;
nextGDPA = fpGDPA;
activated_layers[num_activated_layers].name = layer_prop->info.layerName;
activated_layers[num_activated_layers].manifest = layer_prop->manifest_file_name;
activated_layers[num_activated_layers].library = layer_prop->lib_name;
activated_layers[num_activated_layers].is_implicit = !(layer_prop->type_flags & VK_LAYER_TYPE_FLAG_EXPLICIT_LAYER);
if (activated_layers[num_activated_layers].is_implicit) {
activated_layers[num_activated_layers].disable_env = layer_prop->disable_env_var.name;
}
loader_log(inst, VULKAN_LOADER_INFO_BIT | VULKAN_LOADER_LAYER_BIT, 0, "Inserted device layer \"%s\" (%s)",
layer_prop->info.layerName, layer_prop->lib_name);
num_activated_layers++;
}
}
VkDevice created_device = (VkDevice)dev;
PFN_vkCreateDevice fpCreateDevice = (PFN_vkCreateDevice)nextGIPA(inst->instance, "vkCreateDevice");
if (fpCreateDevice) {
VkLayerDeviceCreateInfo create_info_disp;
create_info_disp.sType = VK_STRUCTURE_TYPE_LOADER_DEVICE_CREATE_INFO;
create_info_disp.function = VK_LOADER_DATA_CALLBACK;
create_info_disp.u.pfnSetDeviceLoaderData = vkSetDeviceDispatch;
// If layer debugging is enabled, let's print out the full callstack with layers in their
// defined order.
uint32_t layer_driver_bits = VULKAN_LOADER_LAYER_BIT | VULKAN_LOADER_DRIVER_BIT;
if ((loader_get_global_debug_level() & layer_driver_bits) != 0) {
loader_log(inst, layer_driver_bits, 0, "vkCreateDevice layer callstack setup to:");
loader_log(inst, layer_driver_bits, 0, " <Application>");
loader_log(inst, layer_driver_bits, 0, " ||");
loader_log(inst, layer_driver_bits, 0, " <Loader>");
loader_log(inst, layer_driver_bits, 0, " ||");
if ((loader_get_global_debug_level() & VULKAN_LOADER_LAYER_BIT) != 0) {
for (uint32_t cur_layer = 0; cur_layer < num_activated_layers; ++cur_layer) {
uint32_t index = num_activated_layers - cur_layer - 1;
loader_log(inst, VULKAN_LOADER_LAYER_BIT, 0, " %s", activated_layers[index].name);
loader_log(inst, VULKAN_LOADER_LAYER_BIT, 0, " Type: %s",
activated_layers[index].is_implicit ? "Implicit" : "Explicit");
if (activated_layers[index].is_implicit) {
loader_log(inst, VULKAN_LOADER_LAYER_BIT, 0, " Disable Env Var: %s",
activated_layers[index].disable_env);
}
loader_log(inst, VULKAN_LOADER_LAYER_BIT, 0, " Manifest: %s", activated_layers[index].manifest);
loader_log(inst, VULKAN_LOADER_LAYER_BIT, 0, " Library: %s", activated_layers[index].library);
loader_log(inst, VULKAN_LOADER_LAYER_BIT, 0, " ||");
}
}
loader_log(inst, layer_driver_bits, 0, " <Device>");
}
create_info_disp.pNext = loader_create_info.pNext;
loader_create_info.pNext = &create_info_disp;
res = fpCreateDevice(pd, &loader_create_info, pAllocator, &created_device);
if (res != VK_SUCCESS) {
return res;
}
dev->chain_device = created_device;
// Because we changed the pNext chain to use our own VkDeviceGroupDeviceCreateInfoKHR, we need to fixup the chain to
// point back at the original VkDeviceGroupDeviceCreateInfoKHR.
VkBaseOutStructure *pNext = (VkBaseOutStructure *)loader_create_info.pNext;
VkBaseOutStructure *pPrev = (VkBaseOutStructure *)&loader_create_info;
while (NULL != pNext) {
if (VK_STRUCTURE_TYPE_DEVICE_GROUP_DEVICE_CREATE_INFO == pNext->sType) {
VkDeviceGroupDeviceCreateInfoKHR *cur_struct = (VkDeviceGroupDeviceCreateInfoKHR *)pNext;
if (0 < cur_struct->physicalDeviceCount && NULL != cur_struct->pPhysicalDevices) {
pPrev->pNext = (VkBaseOutStructure *)original_device_group_create_info_struct;
}
break;
}
pPrev = pNext;
pNext = pNext->pNext;
}
} else {
loader_log(inst, VULKAN_LOADER_ERROR_BIT, 0,
"loader_create_device_chain: Failed to find \'vkCreateDevice\' in layers or ICD");
// Couldn't find CreateDevice function!
return VK_ERROR_INITIALIZATION_FAILED;
}
// Initialize device dispatch table
loader_init_device_dispatch_table(&dev->loader_dispatch, nextGDPA, dev->chain_device);
// Initialize the dispatch table to functions which need terminators
// These functions point directly to the driver, not the terminator functions
init_extension_device_proc_terminator_dispatch(dev);
return res;
}
VkResult loader_validate_layers(const struct loader_instance *inst, const uint32_t layer_count,
const char *const *ppEnabledLayerNames, const struct loader_layer_list *list) {
struct loader_layer_properties *prop;
if (layer_count > 0 && ppEnabledLayerNames == NULL) {
loader_log(inst, VULKAN_LOADER_ERROR_BIT, 0,
"loader_validate_layers: ppEnabledLayerNames is NULL but enabledLayerCount is greater than zero");
return VK_ERROR_LAYER_NOT_PRESENT;
}
for (uint32_t i = 0; i < layer_count; i++) {
VkStringErrorFlags result = vk_string_validate(MaxLoaderStringLength, ppEnabledLayerNames[i]);
if (result != VK_STRING_ERROR_NONE) {
loader_log(inst, VULKAN_LOADER_ERROR_BIT, 0,
"loader_validate_layers: ppEnabledLayerNames contains string that is too long or is badly formed");
return VK_ERROR_LAYER_NOT_PRESENT;
}
prop = loader_find_layer_property(ppEnabledLayerNames[i], list);
if (NULL == prop) {
loader_log(inst, VULKAN_LOADER_ERROR_BIT, 0,
"loader_validate_layers: Layer at index %d (%s) does not exist in the list of available layers", i,
ppEnabledLayerNames[i]);
return VK_ERROR_LAYER_NOT_PRESENT;
}
if (inst->settings.settings_active && prop->settings_control_value != LOADER_SETTINGS_LAYER_CONTROL_ON &&
prop->settings_control_value != LOADER_SETTINGS_LAYER_CONTROL_DEFAULT) {
loader_log(inst, VULKAN_LOADER_ERROR_BIT, 0,
"loader_validate_layers: Layer %d was explicitly prevented from being enabled by the loader settings file",
i);
return VK_ERROR_LAYER_NOT_PRESENT;
}
}
return VK_SUCCESS;
}
VkResult loader_validate_instance_extensions(struct loader_instance *inst, const struct loader_extension_list *icd_exts,
const struct loader_layer_list *instance_layers,
const struct loader_envvar_all_filters *layer_filters,
const VkInstanceCreateInfo *pCreateInfo) {
VkExtensionProperties *extension_prop;
char *env_value;
bool check_if_known = true;
VkResult res = VK_SUCCESS;
struct loader_pointer_layer_list active_layers = {0};
struct loader_pointer_layer_list expanded_layers = {0};
if (pCreateInfo->enabledExtensionCount > 0 && pCreateInfo->ppEnabledExtensionNames == NULL) {
loader_log(inst, VULKAN_LOADER_ERROR_BIT, 0,
"loader_validate_instance_extensions: Instance ppEnabledExtensionNames is NULL but enabledExtensionCount is "
"greater than zero");
return VK_ERROR_EXTENSION_NOT_PRESENT;
}
if (!loader_init_pointer_layer_list(inst, &active_layers)) {
res = VK_ERROR_OUT_OF_HOST_MEMORY;
goto out;
}
if (!loader_init_pointer_layer_list(inst, &expanded_layers)) {
res = VK_ERROR_OUT_OF_HOST_MEMORY;
goto out;
}
if (inst->settings.settings_active) {
res = enable_correct_layers_from_settings(inst, layer_filters, pCreateInfo->enabledLayerCount,
pCreateInfo->ppEnabledLayerNames, instance_layers, &active_layers,
&expanded_layers);
if (res != VK_SUCCESS) {
goto out;
}
} else {
// Build the lists of active layers (including metalayers) and expanded layers (with metalayers resolved to their
// components)
res = loader_add_implicit_layers(inst, layer_filters, &active_layers, &expanded_layers, instance_layers);
if (res != VK_SUCCESS) {
goto out;
}
res = loader_add_environment_layers(inst, VK_LAYER_TYPE_FLAG_EXPLICIT_LAYER, layer_filters, &active_layers,
&expanded_layers, instance_layers);
if (res != VK_SUCCESS) {
goto out;
}
res = loader_add_layer_names_to_list(inst, layer_filters, &active_layers, &expanded_layers, pCreateInfo->enabledLayerCount,
pCreateInfo->ppEnabledLayerNames, instance_layers);
if (VK_SUCCESS != res) {
goto out;
}
}
for (uint32_t i = 0; i < pCreateInfo->enabledExtensionCount; i++) {
VkStringErrorFlags result = vk_string_validate(MaxLoaderStringLength, pCreateInfo->ppEnabledExtensionNames[i]);
if (result != VK_STRING_ERROR_NONE) {
loader_log(inst, VULKAN_LOADER_ERROR_BIT, 0,
"loader_validate_instance_extensions: Instance ppEnabledExtensionNames contains "
"string that is too long or is badly formed");
res = VK_ERROR_EXTENSION_NOT_PRESENT;
goto out;
}
// Check if a user wants to disable the instance extension filtering behavior
env_value = loader_getenv("VK_LOADER_DISABLE_INST_EXT_FILTER", inst);
if (NULL != env_value && atoi(env_value) != 0) {
check_if_known = false;
}
loader_free_getenv(env_value, inst);
if (check_if_known) {
// See if the extension is in the list of supported extensions
bool found = false;
for (uint32_t j = 0; LOADER_INSTANCE_EXTENSIONS[j] != NULL; j++) {
if (strcmp(pCreateInfo->ppEnabledExtensionNames[i], LOADER_INSTANCE_EXTENSIONS[j]) == 0) {
found = true;
break;
}
}
// If it isn't in the list, return an error
if (!found) {
loader_log(inst, VULKAN_LOADER_ERROR_BIT, 0,
"loader_validate_instance_extensions: Extension %s not found in list of known instance extensions.",
pCreateInfo->ppEnabledExtensionNames[i]);
res = VK_ERROR_EXTENSION_NOT_PRESENT;
goto out;
}
}
extension_prop = get_extension_property(pCreateInfo->ppEnabledExtensionNames[i], icd_exts);
if (extension_prop) {
continue;
}
extension_prop = NULL;
// Not in global list, search layer extension lists
for (uint32_t j = 0; NULL == extension_prop && j < expanded_layers.count; ++j) {
extension_prop =
get_extension_property(pCreateInfo->ppEnabledExtensionNames[i], &expanded_layers.list[j]->instance_extension_list);
if (extension_prop) {
// Found the extension in one of the layers enabled by the app.
break;
}
struct loader_layer_properties *layer_prop =
loader_find_layer_property(expanded_layers.list[j]->info.layerName, instance_layers);
if (NULL == layer_prop) {
// Should NOT get here, loader_validate_layers should have already filtered this case out.
continue;
}
}
if (!extension_prop) {
// Didn't find extension name in any of the global layers, error out
loader_log(inst, VULKAN_LOADER_ERROR_BIT, 0,
"loader_validate_instance_extensions: Instance extension %s not supported by available ICDs or enabled "
"layers.",
pCreateInfo->ppEnabledExtensionNames[i]);
res = VK_ERROR_EXTENSION_NOT_PRESENT;
goto out;
}
}
out:
loader_destroy_pointer_layer_list(inst, &active_layers);
loader_destroy_pointer_layer_list(inst, &expanded_layers);
return res;
}
VkResult loader_validate_device_extensions(struct loader_instance *this_instance,
const struct loader_pointer_layer_list *activated_device_layers,
const struct loader_extension_list *icd_exts, const VkDeviceCreateInfo *pCreateInfo) {
for (uint32_t i = 0; i < pCreateInfo->enabledExtensionCount; i++) {
VkStringErrorFlags result = vk_string_validate(MaxLoaderStringLength, pCreateInfo->ppEnabledExtensionNames[i]);
if (result != VK_STRING_ERROR_NONE) {
loader_log(this_instance, VULKAN_LOADER_ERROR_BIT, 0,
"loader_validate_device_extensions: Device ppEnabledExtensionNames contains "
"string that is too long or is badly formed");
return VK_ERROR_EXTENSION_NOT_PRESENT;
}
const char *extension_name = pCreateInfo->ppEnabledExtensionNames[i];
VkExtensionProperties *extension_prop = get_extension_property(extension_name, icd_exts);
if (extension_prop) {
continue;
}
// Not in global list, search activated layer extension lists
for (uint32_t j = 0; j < activated_device_layers->count; j++) {
struct loader_layer_properties *layer_prop = activated_device_layers->list[j];
extension_prop = get_dev_extension_property(extension_name, &layer_prop->device_extension_list);
if (extension_prop) {
// Found the extension in one of the layers enabled by the app.
break;
}
}
if (!extension_prop) {
// Didn't find extension name in any of the device layers, error out
loader_log(this_instance, VULKAN_LOADER_ERROR_BIT, 0,
"loader_validate_device_extensions: Device extension %s not supported by selected physical device "
"or enabled layers.",
pCreateInfo->ppEnabledExtensionNames[i]);
return VK_ERROR_EXTENSION_NOT_PRESENT;
}
}
return VK_SUCCESS;
}
// Terminator functions for the Instance chain
// All named terminator_<Vulkan API name>
VKAPI_ATTR VkResult VKAPI_CALL terminator_CreateInstance(const VkInstanceCreateInfo *pCreateInfo,
const VkAllocationCallbacks *pAllocator, VkInstance *pInstance) {
struct loader_icd_term *icd_term;
VkExtensionProperties *prop;
char **filtered_extension_names = NULL;
VkInstanceCreateInfo icd_create_info;
VkResult res = VK_SUCCESS;
bool one_icd_successful = false;
struct loader_instance *ptr_instance = (struct loader_instance *)*pInstance;
if (NULL == ptr_instance) {
loader_log(ptr_instance, VULKAN_LOADER_WARN_BIT, 0,
"terminator_CreateInstance: Loader instance pointer null encountered. Possibly set by active layer. (Policy "
"#LLP_LAYER_21)");
} else if (LOADER_MAGIC_NUMBER != ptr_instance->magic) {
loader_log(ptr_instance, VULKAN_LOADER_WARN_BIT, 0,
"terminator_CreateInstance: Instance pointer (%p) has invalid MAGIC value 0x%08lx. Instance value possibly "
"corrupted by active layer (Policy #LLP_LAYER_21). ",
ptr_instance, ptr_instance->magic);
}
// Save the application version if it has been modified - layers sometimes needs features in newer API versions than
// what the application requested, and thus will increase the instance version to a level that suites their needs.
if (pCreateInfo->pApplicationInfo && pCreateInfo->pApplicationInfo->apiVersion) {
loader_api_version altered_version = loader_make_version(pCreateInfo->pApplicationInfo->apiVersion);
if (altered_version.major != ptr_instance->app_api_version.major ||
altered_version.minor != ptr_instance->app_api_version.minor) {
ptr_instance->app_api_version = altered_version;
}
}
memcpy(&icd_create_info, pCreateInfo, sizeof(icd_create_info));
icd_create_info.enabledLayerCount = 0;
icd_create_info.ppEnabledLayerNames = NULL;
// NOTE: Need to filter the extensions to only those supported by the ICD.
// No ICD will advertise support for layers. An ICD library could
// support a layer, but it would be independent of the actual ICD,
// just in the same library.
uint32_t extension_count = pCreateInfo->enabledExtensionCount;
#if defined(LOADER_ENABLE_LINUX_SORT)
extension_count += 1;
#endif // LOADER_ENABLE_LINUX_SORT
filtered_extension_names = loader_stack_alloc(extension_count * sizeof(char *));
if (!filtered_extension_names) {
loader_log(ptr_instance, VULKAN_LOADER_ERROR_BIT, 0,
"terminator_CreateInstance: Failed create extension name array for %d extensions", extension_count);
res = VK_ERROR_OUT_OF_HOST_MEMORY;
goto out;
}
icd_create_info.ppEnabledExtensionNames = (const char *const *)filtered_extension_names;
// Determine if Get Physical Device Properties 2 is available to this Instance
if (pCreateInfo->pApplicationInfo && pCreateInfo->pApplicationInfo->apiVersion >= VK_API_VERSION_1_1) {
ptr_instance->supports_get_dev_prop_2 = true;
} else {
for (uint32_t j = 0; j < pCreateInfo->enabledExtensionCount; j++) {
if (!strcmp(pCreateInfo->ppEnabledExtensionNames[j], VK_KHR_GET_PHYSICAL_DEVICE_PROPERTIES_2_EXTENSION_NAME)) {
ptr_instance->supports_get_dev_prop_2 = true;
break;
}
}
}
for (uint32_t i = 0; i < ptr_instance->icd_tramp_list.count; i++) {
icd_term = loader_icd_add(ptr_instance, &ptr_instance->icd_tramp_list.scanned_list[i]);
if (NULL == icd_term) {
loader_log(ptr_instance, VULKAN_LOADER_ERROR_BIT, 0,
"terminator_CreateInstance: Failed to add ICD %d to ICD trampoline list.", i);
res = VK_ERROR_OUT_OF_HOST_MEMORY;
goto out;
}
// If any error happens after here, we need to remove the ICD from the list,
// because we've already added it, but haven't validated it
// Make sure that we reset the pApplicationInfo so we don't get an old pointer
icd_create_info.pApplicationInfo = pCreateInfo->pApplicationInfo;
icd_create_info.enabledExtensionCount = 0;
struct loader_extension_list icd_exts = {0};
// traverse scanned icd list adding non-duplicate extensions to the list
res = loader_init_generic_list(ptr_instance, (struct loader_generic_list *)&icd_exts, sizeof(VkExtensionProperties));
if (VK_ERROR_OUT_OF_HOST_MEMORY == res) {
// If out of memory, bail immediately.
goto out;
} else if (VK_SUCCESS != res) {
// Something bad happened with this ICD, so free it and try the
// next.
ptr_instance->icd_terms = icd_term->next;
icd_term->next = NULL;
loader_icd_destroy(ptr_instance, icd_term, pAllocator);
continue;
}
res = loader_add_instance_extensions(ptr_instance, icd_term->scanned_icd->EnumerateInstanceExtensionProperties,
icd_term->scanned_icd->lib_name, &icd_exts);
if (VK_SUCCESS != res) {
loader_destroy_generic_list(ptr_instance, (struct loader_generic_list *)&icd_exts);
if (VK_ERROR_OUT_OF_HOST_MEMORY == res) {
// If out of memory, bail immediately.
goto out;
} else {
// Something bad happened with this ICD, so free it and try the next.
ptr_instance->icd_terms = icd_term->next;
icd_term->next = NULL;
loader_icd_destroy(ptr_instance, icd_term, pAllocator);
continue;
}
}
for (uint32_t j = 0; j < pCreateInfo->enabledExtensionCount; j++) {
prop = get_extension_property(pCreateInfo->ppEnabledExtensionNames[j], &icd_exts);
if (prop) {
filtered_extension_names[icd_create_info.enabledExtensionCount] = (char *)pCreateInfo->ppEnabledExtensionNames[j];
icd_create_info.enabledExtensionCount++;
}
}
#if defined(LOADER_ENABLE_LINUX_SORT)
// Force on "VK_KHR_get_physical_device_properties2" for Linux as we use it for GPU sorting. This
// should be done if the API version of either the application or the driver does not natively support
// the core version of vkGetPhysicalDeviceProperties2 entrypoint.
if ((ptr_instance->app_api_version.major == 1 && ptr_instance->app_api_version.minor == 0) ||
(VK_API_VERSION_MAJOR(icd_term->scanned_icd->api_version) == 1 &&
VK_API_VERSION_MINOR(icd_term->scanned_icd->api_version) == 0)) {
prop = get_extension_property(VK_KHR_GET_PHYSICAL_DEVICE_PROPERTIES_2_EXTENSION_NAME, &icd_exts);
if (prop) {
filtered_extension_names[icd_create_info.enabledExtensionCount] =
(char *)VK_KHR_GET_PHYSICAL_DEVICE_PROPERTIES_2_EXTENSION_NAME;
icd_create_info.enabledExtensionCount++;
// At least one ICD supports this, so the instance should be able to support it
ptr_instance->supports_get_dev_prop_2 = true;
}
}
#endif // LOADER_ENABLE_LINUX_SORT
// Determine if vkGetPhysicalDeviceProperties2 is available to this Instance
if (icd_term->scanned_icd->api_version >= VK_API_VERSION_1_1) {
icd_term->supports_get_dev_prop_2 = true;
} else {
for (uint32_t j = 0; j < icd_create_info.enabledExtensionCount; j++) {
if (!strcmp(filtered_extension_names[j], VK_KHR_GET_PHYSICAL_DEVICE_PROPERTIES_2_EXTENSION_NAME)) {
icd_term->supports_get_dev_prop_2 = true;
break;
}
}
}
loader_destroy_generic_list(ptr_instance, (struct loader_generic_list *)&icd_exts);
// Get the driver version from vkEnumerateInstanceVersion
uint32_t icd_version = VK_API_VERSION_1_0;
VkResult icd_result = VK_SUCCESS;
if (icd_term->scanned_icd->api_version >= VK_API_VERSION_1_1) {
PFN_vkEnumerateInstanceVersion icd_enumerate_instance_version =
(PFN_vkEnumerateInstanceVersion)icd_term->scanned_icd->GetInstanceProcAddr(NULL, "vkEnumerateInstanceVersion");
if (icd_enumerate_instance_version != NULL) {
icd_result = icd_enumerate_instance_version(&icd_version);
if (icd_result != VK_SUCCESS) {
icd_version = VK_API_VERSION_1_0;
loader_log(ptr_instance, VULKAN_LOADER_DEBUG_BIT | VULKAN_LOADER_DRIVER_BIT, 0,
"terminator_CreateInstance: ICD \"%s\" vkEnumerateInstanceVersion returned error. The ICD will be "
"treated as a 1.0 ICD",
icd_term->scanned_icd->lib_name);
} else if (VK_API_VERSION_MINOR(icd_version) == 0) {
loader_log(ptr_instance, VULKAN_LOADER_WARN_BIT | VULKAN_LOADER_DRIVER_BIT, 0,
"terminator_CreateInstance: Manifest ICD for \"%s\" contained a 1.1 or greater API version, but "
"vkEnumerateInstanceVersion returned 1.0, treating as a 1.0 ICD",
icd_term->scanned_icd->lib_name);
}
} else {
loader_log(ptr_instance, VULKAN_LOADER_WARN_BIT | VULKAN_LOADER_DRIVER_BIT, 0,
"terminator_CreateInstance: Manifest ICD for \"%s\" contained a 1.1 or greater API version, but does "
"not support vkEnumerateInstanceVersion, treating as a 1.0 ICD",
icd_term->scanned_icd->lib_name);
}
}
// Remove the portability enumeration flag bit if the ICD doesn't support the extension
if ((pCreateInfo->flags & VK_INSTANCE_CREATE_ENUMERATE_PORTABILITY_BIT_KHR) == 1) {
bool supports_portability_enumeration = false;
for (uint32_t j = 0; j < icd_create_info.enabledExtensionCount; j++) {
if (strcmp(filtered_extension_names[j], VK_KHR_PORTABILITY_ENUMERATION_EXTENSION_NAME) == 0) {
supports_portability_enumeration = true;
break;
}
}
// If the icd supports the extension, use the flags as given, otherwise remove the portability bit
icd_create_info.flags = supports_portability_enumeration
? pCreateInfo->flags
: pCreateInfo->flags & (~VK_INSTANCE_CREATE_ENUMERATE_PORTABILITY_BIT_KHR);
}
// Create an instance, substituting the version to 1.0 if necessary
VkApplicationInfo icd_app_info;
uint32_t icd_version_nopatch =
VK_MAKE_API_VERSION(0, VK_API_VERSION_MAJOR(icd_version), VK_API_VERSION_MINOR(icd_version), 0);
uint32_t requested_version = (pCreateInfo == NULL || pCreateInfo->pApplicationInfo == NULL)
? VK_API_VERSION_1_0
: pCreateInfo->pApplicationInfo->apiVersion;
if ((requested_version != 0) && (icd_version_nopatch == VK_API_VERSION_1_0)) {
if (icd_create_info.pApplicationInfo == NULL) {
memset(&icd_app_info, 0, sizeof(icd_app_info));
} else {
memmove(&icd_app_info, icd_create_info.pApplicationInfo, sizeof(icd_app_info));
}
icd_app_info.apiVersion = icd_version;
icd_create_info.pApplicationInfo = &icd_app_info;
}
icd_result =
ptr_instance->icd_tramp_list.scanned_list[i].CreateInstance(&icd_create_info, pAllocator, &(icd_term->instance));
if (VK_ERROR_OUT_OF_HOST_MEMORY == icd_result) {
// If out of memory, bail immediately.
res = VK_ERROR_OUT_OF_HOST_MEMORY;
goto out;
} else if (VK_SUCCESS != icd_result) {
loader_log(ptr_instance, VULKAN_LOADER_WARN_BIT, 0,
"terminator_CreateInstance: Failed to CreateInstance in ICD %d. Skipping ICD.", i);
ptr_instance->icd_terms = icd_term->next;
icd_term->next = NULL;
loader_icd_destroy(ptr_instance, icd_term, pAllocator);
continue;
}
if (!loader_icd_init_entries(icd_term, icd_term->instance,
ptr_instance->icd_tramp_list.scanned_list[i].GetInstanceProcAddr)) {
loader_log(ptr_instance, VULKAN_LOADER_WARN_BIT, 0,
"terminator_CreateInstance: Failed to CreateInstance and find entrypoints with ICD. Skipping ICD.");
ptr_instance->icd_terms = icd_term->next;
icd_term->next = NULL;
loader_icd_destroy(ptr_instance, icd_term, pAllocator);
continue;
}
if (ptr_instance->icd_tramp_list.scanned_list[i].interface_version < 3 &&
(
#if defined(VK_USE_PLATFORM_XLIB_KHR)
NULL != icd_term->dispatch.CreateXlibSurfaceKHR ||
#endif // VK_USE_PLATFORM_XLIB_KHR
#if defined(VK_USE_PLATFORM_XCB_KHR)
NULL != icd_term->dispatch.CreateXcbSurfaceKHR ||
#endif // VK_USE_PLATFORM_XCB_KHR
#if defined(VK_USE_PLATFORM_WAYLAND_KHR)
NULL != icd_term->dispatch.CreateWaylandSurfaceKHR ||
#endif // VK_USE_PLATFORM_WAYLAND_KHR
#if defined(VK_USE_PLATFORM_ANDROID_KHR)
NULL != icd_term->dispatch.CreateAndroidSurfaceKHR ||
#endif // VK_USE_PLATFORM_ANDROID_KHR
#if defined(VK_USE_PLATFORM_WIN32_KHR)
NULL != icd_term->dispatch.CreateWin32SurfaceKHR ||
#endif // VK_USE_PLATFORM_WIN32_KHR
NULL != icd_term->dispatch.DestroySurfaceKHR)) {
loader_log(ptr_instance, VULKAN_LOADER_WARN_BIT, 0,
"terminator_CreateInstance: Driver %s supports interface version %u but still exposes VkSurfaceKHR"
" create/destroy entrypoints (Policy #LDP_DRIVER_8)",
ptr_instance->icd_tramp_list.scanned_list[i].lib_name,
ptr_instance->icd_tramp_list.scanned_list[i].interface_version);
}
// If we made it this far, at least one ICD was successful
one_icd_successful = true;
}
// For vkGetPhysicalDeviceProperties2, at least one ICD needs to support the extension for the
// instance to have it
if (ptr_instance->supports_get_dev_prop_2) {
bool at_least_one_supports = false;
icd_term = ptr_instance->icd_terms;
while (icd_term != NULL) {
if (icd_term->supports_get_dev_prop_2) {
at_least_one_supports = true;
break;
}
icd_term = icd_term->next;
}
if (!at_least_one_supports) {
ptr_instance->supports_get_dev_prop_2 = false;
}
}
// If no ICDs were added to instance list and res is unchanged from it's initial value, the loader was unable to
// find a suitable ICD.
if (VK_SUCCESS == res && (ptr_instance->icd_terms == NULL || !one_icd_successful)) {
loader_log(ptr_instance, VULKAN_LOADER_ERROR_BIT | VULKAN_LOADER_DRIVER_BIT, 0,
"terminator_CreateInstance: Found no drivers!");
res = VK_ERROR_INCOMPATIBLE_DRIVER;
}
out:
ptr_instance->create_terminator_invalid_extension = false;
if (VK_SUCCESS != res) {
if (VK_ERROR_EXTENSION_NOT_PRESENT == res) {
ptr_instance->create_terminator_invalid_extension = true;
}
while (NULL != ptr_instance->icd_terms) {
icd_term = ptr_instance->icd_terms;
ptr_instance->icd_terms = icd_term->next;
if (NULL != icd_term->instance) {
icd_term->dispatch.DestroyInstance(icd_term->instance, pAllocator);
}
loader_icd_destroy(ptr_instance, icd_term, pAllocator);
}
} else {
// Check for enabled extensions here to setup the loader structures so the loader knows what extensions
// it needs to worry about.
// We do it here and again above the layers in the trampoline function since the trampoline function
// may think different extensions are enabled than what's down here.
// This is why we don't clear inside of these function calls.
// The clearing should actually be handled by the overall memset of the pInstance structure in the
// trampoline.
wsi_create_instance(ptr_instance, pCreateInfo);
check_for_enabled_debug_extensions(ptr_instance, pCreateInfo);
extensions_create_instance(ptr_instance, pCreateInfo);
}
return res;
}
VKAPI_ATTR void VKAPI_CALL terminator_DestroyInstance(VkInstance instance, const VkAllocationCallbacks *pAllocator) {
struct loader_instance *ptr_instance = loader_get_instance(instance);
if (NULL == ptr_instance) {
return;
}
struct loader_icd_term *icd_terms = ptr_instance->icd_terms;
struct loader_icd_term *next_icd_term;
// Remove this instance from the list of instances:
struct loader_instance *prev = NULL;
loader_platform_thread_lock_mutex(&loader_global_instance_list_lock);
struct loader_instance *next = loader.instances;
while (next != NULL) {
if (next == ptr_instance) {
// Remove this instance from the list:
if (prev)
prev->next = next->next;
else
loader.instances = next->next;
break;
}
prev = next;
next = next->next;
}
loader_platform_thread_unlock_mutex(&loader_global_instance_list_lock);
while (NULL != icd_terms) {
if (icd_terms->instance) {
icd_terms->dispatch.DestroyInstance(icd_terms->instance, pAllocator);
}
next_icd_term = icd_terms->next;
icd_terms->instance = VK_NULL_HANDLE;
loader_icd_destroy(ptr_instance, icd_terms, pAllocator);
icd_terms = next_icd_term;
}
loader_scanned_icd_clear(ptr_instance, &ptr_instance->icd_tramp_list);
loader_destroy_generic_list(ptr_instance, (struct loader_generic_list *)&ptr_instance->ext_list);
if (NULL != ptr_instance->phys_devs_term) {
for (uint32_t i = 0; i < ptr_instance->phys_dev_count_term; i++) {
for (uint32_t j = i + 1; j < ptr_instance->phys_dev_count_term; j++) {
if (ptr_instance->phys_devs_term[i] == ptr_instance->phys_devs_term[j]) {
ptr_instance->phys_devs_term[j] = NULL;
}
}
}
for (uint32_t i = 0; i < ptr_instance->phys_dev_count_term; i++) {
loader_instance_heap_free(ptr_instance, ptr_instance->phys_devs_term[i]);
}
loader_instance_heap_free(ptr_instance, ptr_instance->phys_devs_term);
}
if (NULL != ptr_instance->phys_dev_groups_term) {
for (uint32_t i = 0; i < ptr_instance->phys_dev_group_count_term; i++) {
loader_instance_heap_free(ptr_instance, ptr_instance->phys_dev_groups_term[i]);
}
loader_instance_heap_free(ptr_instance, ptr_instance->phys_dev_groups_term);
}
loader_free_dev_ext_table(ptr_instance);
loader_free_phys_dev_ext_table(ptr_instance);
free_string_list(ptr_instance, &ptr_instance->enabled_layer_names);
}
VKAPI_ATTR VkResult VKAPI_CALL terminator_CreateDevice(VkPhysicalDevice physicalDevice, const VkDeviceCreateInfo *pCreateInfo,
const VkAllocationCallbacks *pAllocator, VkDevice *pDevice) {
VkResult res = VK_SUCCESS;
struct loader_physical_device_term *phys_dev_term;
phys_dev_term = (struct loader_physical_device_term *)physicalDevice;
struct loader_icd_term *icd_term = phys_dev_term->this_icd_term;
struct loader_device *dev = (struct loader_device *)*pDevice;
PFN_vkCreateDevice fpCreateDevice = icd_term->dispatch.CreateDevice;
struct loader_extension_list icd_exts;
VkBaseOutStructure *caller_dgci_container = NULL;
VkDeviceGroupDeviceCreateInfoKHR *caller_dgci = NULL;
if (NULL == dev) {
loader_log(icd_term->this_instance, VULKAN_LOADER_WARN_BIT, 0,
"terminator_CreateDevice: Loader device pointer null encountered. Possibly set by active layer. (Policy "
"#LLP_LAYER_22)");
} else if (DEVICE_DISP_TABLE_MAGIC_NUMBER != dev->loader_dispatch.core_dispatch.magic) {
loader_log(icd_term->this_instance, VULKAN_LOADER_WARN_BIT, 0,
"terminator_CreateDevice: Device pointer (%p) has invalid MAGIC value 0x%08lx. The expected value is "
"0x10ADED040410ADED. Device value possibly "
"corrupted by active layer (Policy #LLP_LAYER_22). ",
dev, dev->loader_dispatch.core_dispatch.magic);
}
dev->phys_dev_term = phys_dev_term;
icd_exts.list = NULL;
if (fpCreateDevice == NULL) {
loader_log(icd_term->this_instance, VULKAN_LOADER_ERROR_BIT | VULKAN_LOADER_DRIVER_BIT, 0,
"terminator_CreateDevice: No vkCreateDevice command exposed by ICD %s", icd_term->scanned_icd->lib_name);
res = VK_ERROR_INITIALIZATION_FAILED;
goto out;
}
VkDeviceCreateInfo localCreateInfo;
memcpy(&localCreateInfo, pCreateInfo, sizeof(localCreateInfo));
// NOTE: Need to filter the extensions to only those supported by the ICD.
// No ICD will advertise support for layers. An ICD library could support a layer,
// but it would be independent of the actual ICD, just in the same library.
char **filtered_extension_names = NULL;
if (0 < pCreateInfo->enabledExtensionCount) {
filtered_extension_names = loader_stack_alloc(pCreateInfo->enabledExtensionCount * sizeof(char *));
if (NULL == filtered_extension_names) {
loader_log(icd_term->this_instance, VULKAN_LOADER_ERROR_BIT, 0,
"terminator_CreateDevice: Failed to create extension name storage for %d extensions",
pCreateInfo->enabledExtensionCount);
return VK_ERROR_OUT_OF_HOST_MEMORY;
}
}
localCreateInfo.enabledLayerCount = 0;
localCreateInfo.ppEnabledLayerNames = NULL;
localCreateInfo.enabledExtensionCount = 0;
localCreateInfo.ppEnabledExtensionNames = (const char *const *)filtered_extension_names;
// Get the physical device (ICD) extensions
res = loader_init_generic_list(icd_term->this_instance, (struct loader_generic_list *)&icd_exts, sizeof(VkExtensionProperties));
if (VK_SUCCESS != res) {
goto out;
}
res = loader_add_device_extensions(icd_term->this_instance, icd_term->dispatch.EnumerateDeviceExtensionProperties,
phys_dev_term->phys_dev, icd_term->scanned_icd->lib_name, &icd_exts);
if (res != VK_SUCCESS) {
goto out;
}
for (uint32_t i = 0; i < pCreateInfo->enabledExtensionCount; i++) {
const char *extension_name = pCreateInfo->ppEnabledExtensionNames[i];
VkExtensionProperties *prop = get_extension_property(extension_name, &icd_exts);
if (prop) {
filtered_extension_names[localCreateInfo.enabledExtensionCount] = (char *)extension_name;
localCreateInfo.enabledExtensionCount++;
} else {
loader_log(icd_term->this_instance, VULKAN_LOADER_DEBUG_BIT | VULKAN_LOADER_DRIVER_BIT, 0,
"vkCreateDevice extension %s not available for devices associated with ICD %s", extension_name,
icd_term->scanned_icd->lib_name);
}
}
// Before we continue, If KHX_device_group is the list of enabled and viable extensions, then we then need to look for the
// corresponding VkDeviceGroupDeviceCreateInfo struct in the device list and replace all the physical device values (which
// are really loader physical device terminator values) with the ICD versions.
// if (icd_term->this_instance->enabled_known_extensions.khr_device_group_creation == 1) {
{
VkBaseOutStructure *pNext = (VkBaseOutStructure *)localCreateInfo.pNext;
VkBaseOutStructure *pPrev = (VkBaseOutStructure *)&localCreateInfo;
while (NULL != pNext) {
if (VK_STRUCTURE_TYPE_DEVICE_GROUP_DEVICE_CREATE_INFO == pNext->sType) {
VkDeviceGroupDeviceCreateInfo *cur_struct = (VkDeviceGroupDeviceCreateInfo *)pNext;
if (0 < cur_struct->physicalDeviceCount && NULL != cur_struct->pPhysicalDevices) {
VkDeviceGroupDeviceCreateInfo *temp_struct = loader_stack_alloc(sizeof(VkDeviceGroupDeviceCreateInfo));
VkPhysicalDevice *phys_dev_array = NULL;
if (NULL == temp_struct) {
return VK_ERROR_OUT_OF_HOST_MEMORY;
}
memcpy(temp_struct, cur_struct, sizeof(VkDeviceGroupDeviceCreateInfo));
phys_dev_array = loader_stack_alloc(sizeof(VkPhysicalDevice) * cur_struct->physicalDeviceCount);
if (NULL == phys_dev_array) {
return VK_ERROR_OUT_OF_HOST_MEMORY;
}
// Before calling down, replace the incoming physical device values (which are really loader terminator
// physical devices) with the ICDs physical device values.
struct loader_physical_device_term *cur_term;
for (uint32_t phys_dev = 0; phys_dev < cur_struct->physicalDeviceCount; phys_dev++) {
cur_term = (struct loader_physical_device_term *)cur_struct->pPhysicalDevices[phys_dev];
phys_dev_array[phys_dev] = cur_term->phys_dev;
}
temp_struct->pPhysicalDevices = phys_dev_array;
// Keep track of pointers to restore pNext chain before returning
caller_dgci_container = pPrev;
caller_dgci = cur_struct;
// Replace the old struct in the pNext chain with this one.
pPrev->pNext = (VkBaseOutStructure *)temp_struct;
}
break;
}
pPrev = pNext;
pNext = pNext->pNext;
}
}
// Handle loader emulation for structs that are not supported by the ICD:
// Presently, the emulation leaves the pNext chain alone. This means that the ICD will receive items in the chain which
// are not recognized by the ICD. If this causes the ICD to fail, then the items would have to be removed here. The current
// implementation does not remove them because copying the pNext chain would be impossible if the loader does not recognize
// the any of the struct types, as the loader would not know the size to allocate and copy.
// if (icd_term->dispatch.GetPhysicalDeviceFeatures2 == NULL && icd_term->dispatch.GetPhysicalDeviceFeatures2KHR == NULL) {
{
const void *pNext = localCreateInfo.pNext;
while (pNext != NULL) {
switch (*(VkStructureType *)pNext) {
case VK_STRUCTURE_TYPE_PHYSICAL_DEVICE_FEATURES_2: {
const VkPhysicalDeviceFeatures2KHR *features = pNext;
if (icd_term->dispatch.GetPhysicalDeviceFeatures2 == NULL &&
icd_term->dispatch.GetPhysicalDeviceFeatures2KHR == NULL) {
loader_log(icd_term->this_instance, VULKAN_LOADER_INFO_BIT, 0,
"vkCreateDevice: Emulating handling of VkPhysicalDeviceFeatures2 in pNext chain for ICD \"%s\"",
icd_term->scanned_icd->lib_name);
// Verify that VK_KHR_get_physical_device_properties2 is enabled
if (icd_term->this_instance->enabled_known_extensions.khr_get_physical_device_properties2) {
localCreateInfo.pEnabledFeatures = &features->features;
}
}
// Leave this item in the pNext chain for now
pNext = features->pNext;
break;
}
case VK_STRUCTURE_TYPE_DEVICE_GROUP_DEVICE_CREATE_INFO: {
const VkDeviceGroupDeviceCreateInfoKHR *group_info = pNext;
if (icd_term->dispatch.EnumeratePhysicalDeviceGroups == NULL &&
icd_term->dispatch.EnumeratePhysicalDeviceGroupsKHR == NULL) {
loader_log(icd_term->this_instance, VULKAN_LOADER_INFO_BIT, 0,
"vkCreateDevice: Emulating handling of VkPhysicalDeviceGroupProperties in pNext chain for "
"ICD \"%s\"",
icd_term->scanned_icd->lib_name);
// The group must contain only this one device, since physical device groups aren't actually supported
if (group_info->physicalDeviceCount != 1) {
loader_log(icd_term->this_instance, VULKAN_LOADER_ERROR_BIT, 0,
"vkCreateDevice: Emulation failed to create device from device group info");
res = VK_ERROR_INITIALIZATION_FAILED;
goto out;
}
}
// Nothing needs to be done here because we're leaving the item in the pNext chain and because the spec
// states that the physicalDevice argument must be included in the device group, and we've already checked
// that it is
pNext = group_info->pNext;
break;
}
// Multiview properties are also allowed, but since VK_KHX_multiview is a device extension, we'll just let the
// ICD handle that error when the user enables the extension here
default: {
const VkBaseInStructure *header = pNext;
pNext = header->pNext;
break;
}
}
}
}
VkBool32 maintenance5_feature_enabled = false;
// Look for the VkPhysicalDeviceMaintenance5FeaturesKHR struct to see if the feature was enabled
{
const void *pNext = localCreateInfo.pNext;
while (pNext != NULL) {
switch (*(VkStructureType *)pNext) {
case VK_STRUCTURE_TYPE_PHYSICAL_DEVICE_MAINTENANCE_5_FEATURES_KHR: {
const VkPhysicalDeviceMaintenance5FeaturesKHR *maintenance_features = pNext;
if (maintenance_features->maintenance5 == VK_TRUE) {
maintenance5_feature_enabled = true;
}
pNext = maintenance_features->pNext;
break;
}
default: {
const VkBaseInStructure *header = pNext;
pNext = header->pNext;
break;
}
}
}
}
// Every extension that has a loader-defined terminator needs to be marked as enabled or disabled so that we know whether or
// not to return that terminator when vkGetDeviceProcAddr is called
for (uint32_t i = 0; i < localCreateInfo.enabledExtensionCount; ++i) {
if (!strcmp(localCreateInfo.ppEnabledExtensionNames[i], VK_KHR_SWAPCHAIN_EXTENSION_NAME)) {
dev->driver_extensions.khr_swapchain_enabled = true;
} else if (!strcmp(localCreateInfo.ppEnabledExtensionNames[i], VK_KHR_DISPLAY_SWAPCHAIN_EXTENSION_NAME)) {
dev->driver_extensions.khr_display_swapchain_enabled = true;
} else if (!strcmp(localCreateInfo.ppEnabledExtensionNames[i], VK_KHR_DEVICE_GROUP_EXTENSION_NAME)) {
dev->driver_extensions.khr_device_group_enabled = true;
} else if (!strcmp(localCreateInfo.ppEnabledExtensionNames[i], VK_EXT_DEBUG_MARKER_EXTENSION_NAME)) {
dev->driver_extensions.ext_debug_marker_enabled = true;
} else if (!strcmp(localCreateInfo.ppEnabledExtensionNames[i], "VK_EXT_full_screen_exclusive")) {
dev->driver_extensions.ext_full_screen_exclusive_enabled = true;
} else if (!strcmp(localCreateInfo.ppEnabledExtensionNames[i], VK_KHR_MAINTENANCE_5_EXTENSION_NAME) &&
maintenance5_feature_enabled) {
dev->should_ignore_device_commands_from_newer_version = true;
}
}
dev->layer_extensions.ext_debug_utils_enabled = icd_term->this_instance->enabled_known_extensions.ext_debug_utils;
dev->driver_extensions.ext_debug_utils_enabled = icd_term->this_instance->enabled_known_extensions.ext_debug_utils;
VkPhysicalDeviceProperties properties;
icd_term->dispatch.GetPhysicalDeviceProperties(phys_dev_term->phys_dev, &properties);
if (!dev->driver_extensions.khr_device_group_enabled) {
if (properties.apiVersion >= VK_API_VERSION_1_1) {
dev->driver_extensions.khr_device_group_enabled = true;
}
}
loader_log(icd_term->this_instance, VULKAN_LOADER_LAYER_BIT | VULKAN_LOADER_DRIVER_BIT, 0,
" Using \"%s\" with driver: \"%s\"", properties.deviceName, icd_term->scanned_icd->lib_name);
res = fpCreateDevice(phys_dev_term->phys_dev, &localCreateInfo, pAllocator, &dev->icd_device);
if (res != VK_SUCCESS) {
loader_log(icd_term->this_instance, VULKAN_LOADER_ERROR_BIT | VULKAN_LOADER_DRIVER_BIT, 0,
"terminator_CreateDevice: Failed in ICD %s vkCreateDevice call", icd_term->scanned_icd->lib_name);
goto out;
}
*pDevice = dev->icd_device;
loader_add_logical_device(icd_term, dev);
// Init dispatch pointer in new device object
loader_init_dispatch(*pDevice, &dev->loader_dispatch);
out:
if (NULL != icd_exts.list) {
loader_destroy_generic_list(icd_term->this_instance, (struct loader_generic_list *)&icd_exts);
}
// Restore pNext pointer to old VkDeviceGroupDeviceCreateInfoKHX
// in the chain to maintain consistency for the caller.
if (caller_dgci_container != NULL) {
caller_dgci_container->pNext = (VkBaseOutStructure *)caller_dgci;
}
return res;
}
// Update the trampoline physical devices with the wrapped version.
// We always want to re-use previous physical device pointers since they may be used by an application
// after returning previously.
VkResult setup_loader_tramp_phys_devs(struct loader_instance *inst, uint32_t phys_dev_count, VkPhysicalDevice *phys_devs) {
VkResult res = VK_SUCCESS;
uint32_t found_count = 0;
uint32_t old_count = inst->phys_dev_count_tramp;
uint32_t new_count = inst->total_gpu_count;
struct loader_physical_device_tramp **new_phys_devs = NULL;
if (0 == phys_dev_count) {
return VK_SUCCESS;
}
if (phys_dev_count > new_count) {
new_count = phys_dev_count;
}
// We want an old to new index array and a new to old index array
int32_t *old_to_new_index = (int32_t *)loader_stack_alloc(sizeof(int32_t) * old_count);
int32_t *new_to_old_index = (int32_t *)loader_stack_alloc(sizeof(int32_t) * new_count);
if (NULL == old_to_new_index || NULL == new_to_old_index) {
return VK_ERROR_OUT_OF_HOST_MEMORY;
}
// Initialize both
for (uint32_t cur_idx = 0; cur_idx < old_count; ++cur_idx) {
old_to_new_index[cur_idx] = -1;
}
for (uint32_t cur_idx = 0; cur_idx < new_count; ++cur_idx) {
new_to_old_index[cur_idx] = -1;
}
// Figure out the old->new and new->old indices
for (uint32_t cur_idx = 0; cur_idx < old_count; ++cur_idx) {
for (uint32_t new_idx = 0; new_idx < phys_dev_count; ++new_idx) {
if (inst->phys_devs_tramp[cur_idx]->phys_dev == phys_devs[new_idx]) {
old_to_new_index[cur_idx] = (int32_t)new_idx;
new_to_old_index[new_idx] = (int32_t)cur_idx;
found_count++;
break;
}
}
}
// If we found exactly the number of items we were looking for as we had before. Then everything
// we already have is good enough and we just need to update the array that was passed in with
// the loader values.
if (found_count == phys_dev_count && 0 != old_count && old_count == new_count) {
for (uint32_t new_idx = 0; new_idx < phys_dev_count; ++new_idx) {
for (uint32_t cur_idx = 0; cur_idx < old_count; ++cur_idx) {
if (old_to_new_index[cur_idx] == (int32_t)new_idx) {
phys_devs[new_idx] = (VkPhysicalDevice)inst->phys_devs_tramp[cur_idx];
break;
}
}
}
// Nothing else to do for this path
res = VK_SUCCESS;
} else {
// Something is different, so do the full path of checking every device and creating a new array to use.
// This can happen if a device was added, or removed, or we hadn't previously queried all the data and we
// have more to store.
new_phys_devs = loader_instance_heap_calloc(inst, sizeof(struct loader_physical_device_tramp *) * new_count,
VK_SYSTEM_ALLOCATION_SCOPE_INSTANCE);
if (NULL == new_phys_devs) {
loader_log(inst, VULKAN_LOADER_ERROR_BIT, 0,
"setup_loader_tramp_phys_devs: Failed to allocate new physical device array of size %d", new_count);
res = VK_ERROR_OUT_OF_HOST_MEMORY;
goto out;
}
if (new_count > phys_dev_count) {
found_count = phys_dev_count;
} else {
found_count = new_count;
}
// First try to see if an old item exists that matches the new item. If so, just copy it over.
for (uint32_t new_idx = 0; new_idx < found_count; ++new_idx) {
bool old_item_found = false;
for (uint32_t cur_idx = 0; cur_idx < old_count; ++cur_idx) {
if (old_to_new_index[cur_idx] == (int32_t)new_idx) {
// Copy over old item to correct spot in the new array
new_phys_devs[new_idx] = inst->phys_devs_tramp[cur_idx];
old_item_found = true;
break;
}
}
// Something wasn't found, so it's new so add it to the new list
if (!old_item_found) {
new_phys_devs[new_idx] = loader_instance_heap_alloc(inst, sizeof(struct loader_physical_device_tramp),
VK_SYSTEM_ALLOCATION_SCOPE_INSTANCE);
if (NULL == new_phys_devs[new_idx]) {
loader_log(inst, VULKAN_LOADER_ERROR_BIT, 0,
"setup_loader_tramp_phys_devs: Failed to allocate new trampoline physical device");
res = VK_ERROR_OUT_OF_HOST_MEMORY;
goto out;
}
// Initialize the new physicalDevice object
loader_set_dispatch((void *)new_phys_devs[new_idx], inst->disp);
new_phys_devs[new_idx]->this_instance = inst;
new_phys_devs[new_idx]->phys_dev = phys_devs[new_idx];
new_phys_devs[new_idx]->magic = PHYS_TRAMP_MAGIC_NUMBER;
}
phys_devs[new_idx] = (VkPhysicalDevice)new_phys_devs[new_idx];
}
// We usually get here if the user array is smaller than the total number of devices, so copy the
// remaining devices we have over to the new array.
uint32_t start = found_count;
for (uint32_t new_idx = start; new_idx < new_count; ++new_idx) {
for (uint32_t cur_idx = 0; cur_idx < old_count; ++cur_idx) {
if (old_to_new_index[cur_idx] == -1) {
new_phys_devs[new_idx] = inst->phys_devs_tramp[cur_idx];
old_to_new_index[cur_idx] = new_idx;
found_count++;
break;
}
}
}
}
out:
if (NULL != new_phys_devs) {
if (VK_SUCCESS != res) {
for (uint32_t new_idx = 0; new_idx < found_count; ++new_idx) {
// If an OOM occurred inside the copying of the new physical devices into the existing array
// will leave some of the old physical devices in the array which may have been copied into
// the new array, leading to them being freed twice. To avoid this we just make sure to not
// delete physical devices which were copied.
bool found = false;
for (uint32_t cur_idx = 0; cur_idx < inst->phys_dev_count_tramp; cur_idx++) {
if (new_phys_devs[new_idx] == inst->phys_devs_tramp[cur_idx]) {
found = true;
break;
}
}
if (!found) {
loader_instance_heap_free(inst, new_phys_devs[new_idx]);
}
}
loader_instance_heap_free(inst, new_phys_devs);
} else {
if (new_count > inst->total_gpu_count) {
inst->total_gpu_count = new_count;
}
// Free everything in the old array that was not copied into the new array
// here. We can't attempt to do that before here since the previous loop
// looking before the "out:" label may hit an out of memory condition resulting
// in memory leaking.
if (NULL != inst->phys_devs_tramp) {
for (uint32_t i = 0; i < inst->phys_dev_count_tramp; i++) {
bool found = false;
for (uint32_t j = 0; j < inst->total_gpu_count; j++) {
if (inst->phys_devs_tramp[i] == new_phys_devs[j]) {
found = true;
break;
}
}
if (!found) {
loader_instance_heap_free(inst, inst->phys_devs_tramp[i]);
}
}
loader_instance_heap_free(inst, inst->phys_devs_tramp);
}
inst->phys_devs_tramp = new_phys_devs;
inst->phys_dev_count_tramp = found_count;
}
}
if (VK_SUCCESS != res) {
inst->total_gpu_count = 0;
}
return res;
}
#if defined(LOADER_ENABLE_LINUX_SORT)
bool is_linux_sort_enabled(struct loader_instance *inst) {
bool sort_items = inst->supports_get_dev_prop_2;
char *env_value = loader_getenv("VK_LOADER_DISABLE_SELECT", inst);
if (NULL != env_value) {
int32_t int_env_val = atoi(env_value);
loader_free_getenv(env_value, inst);
if (int_env_val != 0) {
sort_items = false;
}
}
return sort_items;
}
#endif // LOADER_ENABLE_LINUX_SORT
// Look for physical_device in the provided phys_devs list, return true if found and put the index into out_idx, otherwise
// return false
bool find_phys_dev(VkPhysicalDevice physical_device, uint32_t phys_devs_count, struct loader_physical_device_term **phys_devs,
uint32_t *out_idx) {
if (NULL == phys_devs) return false;
for (uint32_t idx = 0; idx < phys_devs_count; idx++) {
if (NULL != phys_devs[idx] && physical_device == phys_devs[idx]->phys_dev) {
*out_idx = idx;
return true;
}
}
return false;
}
// Add physical_device to new_phys_devs
VkResult check_and_add_to_new_phys_devs(struct loader_instance *inst, VkPhysicalDevice physical_device,
struct loader_phys_dev_per_icd *dev_array, uint32_t *cur_new_phys_dev_count,
struct loader_physical_device_term **new_phys_devs) {
uint32_t out_idx = 0;
uint32_t idx = *cur_new_phys_dev_count;
// Check if the physical_device already exists in the new_phys_devs buffer, that means it was found from both
// EnumerateAdapterPhysicalDevices and EnumeratePhysicalDevices and we need to skip it.
if (find_phys_dev(physical_device, idx, new_phys_devs, &out_idx)) {
return VK_SUCCESS;
}
// Check if it was found in a previous call to vkEnumeratePhysicalDevices, we can just copy over the old data.
if (find_phys_dev(physical_device, inst->phys_dev_count_term, inst->phys_devs_term, &out_idx)) {
new_phys_devs[idx] = inst->phys_devs_term[out_idx];
(*cur_new_phys_dev_count)++;
return VK_SUCCESS;
}
// Exit in case something is already present - this shouldn't happen but better to be safe than overwrite existing data
// since this code has been refactored a half dozen times.
if (NULL != new_phys_devs[idx]) {
return VK_SUCCESS;
}
// If this physical device is new, we need to allocate space for it.
new_phys_devs[idx] =
loader_instance_heap_alloc(inst, sizeof(struct loader_physical_device_term), VK_SYSTEM_ALLOCATION_SCOPE_INSTANCE);
if (NULL == new_phys_devs[idx]) {
loader_log(inst, VULKAN_LOADER_ERROR_BIT, 0,
"check_and_add_to_new_phys_devs: Failed to allocate physical device terminator object %d", idx);
return VK_ERROR_OUT_OF_HOST_MEMORY;
}
loader_set_dispatch((void *)new_phys_devs[idx], inst->disp);
new_phys_devs[idx]->this_icd_term = dev_array->icd_term;
new_phys_devs[idx]->icd_index = (uint8_t)(dev_array->icd_index);
new_phys_devs[idx]->phys_dev = physical_device;
// Increment the count of new physical devices
(*cur_new_phys_dev_count)++;
return VK_SUCCESS;
}
/* Enumerate all physical devices from ICDs and add them to inst->phys_devs_term
*
* There are two methods to find VkPhysicalDevices - vkEnumeratePhysicalDevices and vkEnumerateAdapterPhysicalDevices
* The latter is supported on windows only and on devices supporting ICD Interface Version 6 and greater.
*
* Once all physical devices are acquired, they need to be pulled into a single list of `loader_physical_device_term`'s.
* They also need to be setup - the icd_term, icd_index, phys_dev, and disp (dispatch table) all need the correct data.
* Additionally, we need to keep using already setup physical devices as they may be in use, thus anything enumerated
* that is already in inst->phys_devs_term will be carried over.
*/
VkResult setup_loader_term_phys_devs(struct loader_instance *inst) {
VkResult res = VK_SUCCESS;
struct loader_icd_term *icd_term;
uint32_t icd_idx = 0;
uint32_t windows_sorted_devices_count = 0;
struct loader_phys_dev_per_icd *windows_sorted_devices_array = NULL;
uint32_t icd_count = 0;
struct loader_phys_dev_per_icd *icd_phys_dev_array = NULL;
uint32_t new_phys_devs_capacity = 0;
uint32_t new_phys_devs_count = 0;
struct loader_physical_device_term **new_phys_devs = NULL;
#if defined(_WIN32)
// Get the physical devices supported by platform sorting mechanism into a separate list
res = windows_read_sorted_physical_devices(inst, &windows_sorted_devices_count, &windows_sorted_devices_array);
if (VK_SUCCESS != res) {
goto out;
}
#endif
icd_count = inst->total_icd_count;
// Allocate something to store the physical device characteristics that we read from each ICD.
icd_phys_dev_array = (struct loader_phys_dev_per_icd *)loader_stack_alloc(sizeof(struct loader_phys_dev_per_icd) * icd_count);
if (NULL == icd_phys_dev_array) {
loader_log(inst, VULKAN_LOADER_ERROR_BIT, 0,
"setup_loader_term_phys_devs: Failed to allocate temporary ICD Physical device info array of size %d",
icd_count);
res = VK_ERROR_OUT_OF_HOST_MEMORY;
goto out;
}
memset(icd_phys_dev_array, 0, sizeof(struct loader_phys_dev_per_icd) * icd_count);
// For each ICD, query the number of physical devices, and then get an
// internal value for those physical devices.
icd_term = inst->icd_terms;
while (NULL != icd_term) {
res = icd_term->dispatch.EnumeratePhysicalDevices(icd_term->instance, &icd_phys_dev_array[icd_idx].device_count, NULL);
if (VK_SUCCESS != res) {
loader_log(inst, VULKAN_LOADER_ERROR_BIT, 0,
"setup_loader_term_phys_devs: Call to ICD %d's \'vkEnumeratePhysicalDevices\' failed with error 0x%08x",
icd_idx, res);
goto out;
}
icd_phys_dev_array[icd_idx].physical_devices =
(VkPhysicalDevice *)loader_stack_alloc(icd_phys_dev_array[icd_idx].device_count * sizeof(VkPhysicalDevice));
if (NULL == icd_phys_dev_array[icd_idx].physical_devices) {
loader_log(inst, VULKAN_LOADER_ERROR_BIT, 0,
"setup_loader_term_phys_devs: Failed to allocate temporary ICD Physical device array for ICD %d of size %d",
icd_idx, icd_phys_dev_array[icd_idx].device_count);
res = VK_ERROR_OUT_OF_HOST_MEMORY;
goto out;
}
res = icd_term->dispatch.EnumeratePhysicalDevices(icd_term->instance, &(icd_phys_dev_array[icd_idx].device_count),
icd_phys_dev_array[icd_idx].physical_devices);
if (VK_SUCCESS != res) {
goto out;
}
icd_phys_dev_array[icd_idx].icd_term = icd_term;
icd_phys_dev_array[icd_idx].icd_index = icd_idx;
icd_term = icd_term->next;
++icd_idx;
}
// Add up both the windows sorted and non windows found physical device counts
for (uint32_t i = 0; i < windows_sorted_devices_count; ++i) {
new_phys_devs_capacity += windows_sorted_devices_array[i].device_count;
}
for (uint32_t i = 0; i < icd_count; ++i) {
new_phys_devs_capacity += icd_phys_dev_array[i].device_count;
}
// Bail out if there are no physical devices reported
if (0 == new_phys_devs_capacity) {
loader_log(inst, VULKAN_LOADER_ERROR_BIT, 0,
"setup_loader_term_phys_devs: Failed to detect any valid GPUs in the current config");
res = VK_ERROR_INITIALIZATION_FAILED;
goto out;
}
// Create an allocation large enough to hold both the windows sorting enumeration and non-windows physical device
// enumeration
new_phys_devs = loader_instance_heap_calloc(inst, sizeof(struct loader_physical_device_term *) * new_phys_devs_capacity,
VK_SYSTEM_ALLOCATION_SCOPE_INSTANCE);
if (NULL == new_phys_devs) {
loader_log(inst, VULKAN_LOADER_ERROR_BIT, 0,
"setup_loader_term_phys_devs: Failed to allocate new physical device array of size %d", new_phys_devs_capacity);
res = VK_ERROR_OUT_OF_HOST_MEMORY;
goto out;
}
// Copy over everything found through sorted enumeration
for (uint32_t i = 0; i < windows_sorted_devices_count; ++i) {
for (uint32_t j = 0; j < windows_sorted_devices_array[i].device_count; ++j) {
res = check_and_add_to_new_phys_devs(inst, windows_sorted_devices_array[i].physical_devices[j],
&windows_sorted_devices_array[i], &new_phys_devs_count, new_phys_devs);
if (res == VK_ERROR_OUT_OF_HOST_MEMORY) {
goto out;
}
}
}
// Now go through the rest of the physical devices and add them to new_phys_devs
#if defined(LOADER_ENABLE_LINUX_SORT)
if (is_linux_sort_enabled(inst)) {
for (uint32_t dev = new_phys_devs_count; dev < new_phys_devs_capacity; ++dev) {
new_phys_devs[dev] =
loader_instance_heap_alloc(inst, sizeof(struct loader_physical_device_term), VK_SYSTEM_ALLOCATION_SCOPE_INSTANCE);
if (NULL == new_phys_devs[dev]) {
loader_log(inst, VULKAN_LOADER_ERROR_BIT, 0,
"setup_loader_term_phys_devs: Failed to allocate physical device terminator object %d", dev);
res = VK_ERROR_OUT_OF_HOST_MEMORY;
goto out;
}
}
// Get the physical devices supported by platform sorting mechanism into a separate list
// Pass in a sublist to the function so it only operates on the correct elements. This means passing in a pointer to the
// current next element in new_phys_devs and passing in a `count` of currently unwritten elements
res = linux_read_sorted_physical_devices(inst, icd_count, icd_phys_dev_array, new_phys_devs_capacity - new_phys_devs_count,
&new_phys_devs[new_phys_devs_count]);
if (res == VK_ERROR_OUT_OF_HOST_MEMORY) {
goto out;
}
// Keep previously allocated physical device info since apps may already be using that!
for (uint32_t new_idx = new_phys_devs_count; new_idx < new_phys_devs_capacity; new_idx++) {
for (uint32_t old_idx = 0; old_idx < inst->phys_dev_count_term; old_idx++) {
if (new_phys_devs[new_idx]->phys_dev == inst->phys_devs_term[old_idx]->phys_dev) {
loader_log(inst, VULKAN_LOADER_DEBUG_BIT | VULKAN_LOADER_DRIVER_BIT, 0,
"Copying old device %u into new device %u", old_idx, new_idx);
// Free the old new_phys_devs info since we're not using it before we assign the new info
loader_instance_heap_free(inst, new_phys_devs[new_idx]);
new_phys_devs[new_idx] = inst->phys_devs_term[old_idx];
break;
}
}
}
// now set the count to the capacity, as now the list is filled in
new_phys_devs_count = new_phys_devs_capacity;
// We want the following code to run if either linux sorting is disabled at compile time or runtime
} else {
#endif // LOADER_ENABLE_LINUX_SORT
// Copy over everything found through the non-sorted means.
for (uint32_t i = 0; i < icd_count; ++i) {
for (uint32_t j = 0; j < icd_phys_dev_array[i].device_count; ++j) {
res = check_and_add_to_new_phys_devs(inst, icd_phys_dev_array[i].physical_devices[j], &icd_phys_dev_array[i],
&new_phys_devs_count, new_phys_devs);
if (res == VK_ERROR_OUT_OF_HOST_MEMORY) {
goto out;
}
}
}
#if defined(LOADER_ENABLE_LINUX_SORT)
}
#endif // LOADER_ENABLE_LINUX_SORT
out:
if (VK_SUCCESS != res) {
if (NULL != new_phys_devs) {
// We've encountered an error, so we should free the new buffers.
for (uint32_t i = 0; i < new_phys_devs_capacity; i++) {
// May not have allocated this far, skip it if we hadn't.
if (new_phys_devs[i] == NULL) continue;
// If an OOM occurred inside the copying of the new physical devices into the existing array
// will leave some of the old physical devices in the array which may have been copied into
// the new array, leading to them being freed twice. To avoid this we just make sure to not
// delete physical devices which were copied.
bool found = false;
if (NULL != inst->phys_devs_term) {
for (uint32_t old_idx = 0; old_idx < inst->phys_dev_count_term; old_idx++) {
if (new_phys_devs[i] == inst->phys_devs_term[old_idx]) {
found = true;
break;
}
}
}
if (!found) {
loader_instance_heap_free(inst, new_phys_devs[i]);
}
}
loader_instance_heap_free(inst, new_phys_devs);
}
inst->total_gpu_count = 0;
} else {
if (NULL != inst->phys_devs_term) {
// Free everything in the old array that was not copied into the new array
// here. We can't attempt to do that before here since the previous loop
// looking before the "out:" label may hit an out of memory condition resulting
// in memory leaking.
for (uint32_t i = 0; i < inst->phys_dev_count_term; i++) {
bool found = false;
for (uint32_t j = 0; j < new_phys_devs_count; j++) {
if (new_phys_devs != NULL && inst->phys_devs_term[i] == new_phys_devs[j]) {
found = true;
break;
}
}
if (!found) {
loader_instance_heap_free(inst, inst->phys_devs_term[i]);
}
}
loader_instance_heap_free(inst, inst->phys_devs_term);
}
// Swap out old and new devices list
inst->phys_dev_count_term = new_phys_devs_count;
inst->phys_devs_term = new_phys_devs;
inst->total_gpu_count = new_phys_devs_count;
}
if (windows_sorted_devices_array != NULL) {
for (uint32_t i = 0; i < windows_sorted_devices_count; ++i) {
if (windows_sorted_devices_array[i].device_count > 0 && windows_sorted_devices_array[i].physical_devices != NULL) {
loader_instance_heap_free(inst, windows_sorted_devices_array[i].physical_devices);
}
}
loader_instance_heap_free(inst, windows_sorted_devices_array);
}
return res;
}
VkResult setup_loader_tramp_phys_dev_groups(struct loader_instance *inst, uint32_t group_count,
VkPhysicalDeviceGroupProperties *groups) {
VkResult res = VK_SUCCESS;
uint32_t cur_idx;
uint32_t dev_idx;
if (0 == group_count) {
return VK_SUCCESS;
}
// Generate a list of all the devices and convert them to the loader ID
uint32_t phys_dev_count = 0;
for (cur_idx = 0; cur_idx < group_count; ++cur_idx) {
phys_dev_count += groups[cur_idx].physicalDeviceCount;
}
VkPhysicalDevice *devices = (VkPhysicalDevice *)loader_stack_alloc(sizeof(VkPhysicalDevice) * phys_dev_count);
if (NULL == devices) {
return VK_ERROR_OUT_OF_HOST_MEMORY;
}
uint32_t cur_device = 0;
for (cur_idx = 0; cur_idx < group_count; ++cur_idx) {
for (dev_idx = 0; dev_idx < groups[cur_idx].physicalDeviceCount; ++dev_idx) {
devices[cur_device++] = groups[cur_idx].physicalDevices[dev_idx];
}
}
// Update the devices based on the loader physical device values.
res = setup_loader_tramp_phys_devs(inst, phys_dev_count, devices);
if (VK_SUCCESS != res) {
return res;
}
// Update the devices in the group structures now
cur_device = 0;
for (cur_idx = 0; cur_idx < group_count; ++cur_idx) {
for (dev_idx = 0; dev_idx < groups[cur_idx].physicalDeviceCount; ++dev_idx) {
groups[cur_idx].physicalDevices[dev_idx] = devices[cur_device++];
}
}
return res;
}
VKAPI_ATTR VkResult VKAPI_CALL terminator_EnumeratePhysicalDevices(VkInstance instance, uint32_t *pPhysicalDeviceCount,
VkPhysicalDevice *pPhysicalDevices) {
struct loader_instance *inst = (struct loader_instance *)instance;
VkResult res = VK_SUCCESS;
// Always call the setup loader terminator physical devices because they may
// have changed at any point.
res = setup_loader_term_phys_devs(inst);
if (VK_SUCCESS != res) {
goto out;
}
uint32_t copy_count = inst->phys_dev_count_term;
if (NULL != pPhysicalDevices) {
if (copy_count > *pPhysicalDeviceCount) {
copy_count = *pPhysicalDeviceCount;
loader_log(inst, VULKAN_LOADER_INFO_BIT, 0,
"terminator_EnumeratePhysicalDevices : Trimming device count from %d to %d.", inst->phys_dev_count_term,
copy_count);
res = VK_INCOMPLETE;
}
for (uint32_t i = 0; i < copy_count; i++) {
pPhysicalDevices[i] = (VkPhysicalDevice)inst->phys_devs_term[i];
}
}
*pPhysicalDeviceCount = copy_count;
out:
return res;
}
VKAPI_ATTR VkResult VKAPI_CALL terminator_EnumerateDeviceExtensionProperties(VkPhysicalDevice physicalDevice,
const char *pLayerName, uint32_t *pPropertyCount,
VkExtensionProperties *pProperties) {
if (NULL == pPropertyCount) {
return VK_INCOMPLETE;
}
struct loader_physical_device_term *phys_dev_term;
// Any layer or trampoline wrapping should be removed at this point in time can just cast to the expected
// type for VkPhysicalDevice.
phys_dev_term = (struct loader_physical_device_term *)physicalDevice;
// if we got here with a non-empty pLayerName, look up the extensions
// from the json
if (pLayerName != NULL && strlen(pLayerName) > 0) {
uint32_t count;
uint32_t copy_size;
const struct loader_instance *inst = phys_dev_term->this_icd_term->this_instance;
struct loader_device_extension_list *dev_ext_list = NULL;
struct loader_device_extension_list local_ext_list;
memset(&local_ext_list, 0, sizeof(local_ext_list));
if (vk_string_validate(MaxLoaderStringLength, pLayerName) == VK_STRING_ERROR_NONE) {
for (uint32_t i = 0; i < inst->instance_layer_list.count; i++) {
struct loader_layer_properties *props = &inst->instance_layer_list.list[i];
if (strcmp(props->info.layerName, pLayerName) == 0) {
dev_ext_list = &props->device_extension_list;
}
}
count = (dev_ext_list == NULL) ? 0 : dev_ext_list->count;
if (pProperties == NULL) {
*pPropertyCount = count;
loader_destroy_generic_list(inst, (struct loader_generic_list *)&local_ext_list);
return VK_SUCCESS;
}
copy_size = *pPropertyCount < count ? *pPropertyCount : count;
for (uint32_t i = 0; i < copy_size; i++) {
memcpy(&pProperties[i], &dev_ext_list->list[i].props, sizeof(VkExtensionProperties));
}
*pPropertyCount = copy_size;
loader_destroy_generic_list(inst, (struct loader_generic_list *)&local_ext_list);
if (copy_size < count) {
return VK_INCOMPLETE;
}
} else {
loader_log(inst, VULKAN_LOADER_ERROR_BIT, 0,
"vkEnumerateDeviceExtensionProperties: pLayerName is too long or is badly formed");
return VK_ERROR_EXTENSION_NOT_PRESENT;
}
return VK_SUCCESS;
}
// user is querying driver extensions and has supplied their own storage - just fill it out
else if (pProperties) {
struct loader_icd_term *icd_term = phys_dev_term->this_icd_term;
uint32_t written_count = *pPropertyCount;
VkResult res =
icd_term->dispatch.EnumerateDeviceExtensionProperties(phys_dev_term->phys_dev, NULL, &written_count, pProperties);
if (res != VK_SUCCESS) {
return res;
}
// Iterate over active layers, if they are an implicit layer, add their device extensions
// After calling into the driver, written_count contains the amount of device extensions written. We can therefore write
// layer extensions starting at that point in pProperties
for (uint32_t i = 0; i < icd_term->this_instance->expanded_activated_layer_list.count; i++) {
struct loader_layer_properties *layer_props = icd_term->this_instance->expanded_activated_layer_list.list[i];
if (0 == (layer_props->type_flags & VK_LAYER_TYPE_FLAG_EXPLICIT_LAYER)) {
struct loader_device_extension_list *layer_ext_list = &layer_props->device_extension_list;
for (uint32_t j = 0; j < layer_ext_list->count; j++) {
struct loader_dev_ext_props *cur_ext_props = &layer_ext_list->list[j];
// look for duplicates
if (has_vk_extension_property_array(&cur_ext_props->props, written_count, pProperties)) {
continue;
}
if (*pPropertyCount <= written_count) {
return VK_INCOMPLETE;
}
memcpy(&pProperties[written_count], &cur_ext_props->props, sizeof(VkExtensionProperties));
written_count++;
}
}
}
// Make sure we update the pPropertyCount with the how many were written
*pPropertyCount = written_count;
return res;
}
// Use `goto out;` for rest of this function
// This case is during the call down the instance chain with pLayerName == NULL and pProperties == NULL
struct loader_icd_term *icd_term = phys_dev_term->this_icd_term;
struct loader_extension_list all_exts = {0};
VkResult res;
// We need to find the count without duplicates. This requires querying the driver for the names of the extensions.
res = icd_term->dispatch.EnumerateDeviceExtensionProperties(phys_dev_term->phys_dev, NULL, &all_exts.count, NULL);
if (res != VK_SUCCESS) {
goto out;
}
// Then allocate memory to store the physical device extension list + the extensions layers provide
// all_exts.count currently is the number of driver extensions
all_exts.capacity = sizeof(VkExtensionProperties) * (all_exts.count + 20);
all_exts.list = loader_instance_heap_alloc(icd_term->this_instance, all_exts.capacity, VK_SYSTEM_ALLOCATION_SCOPE_COMMAND);
if (NULL == all_exts.list) {
res = VK_ERROR_OUT_OF_HOST_MEMORY;
goto out;
}
// Get the available device extensions and put them in all_exts.list
res = icd_term->dispatch.EnumerateDeviceExtensionProperties(phys_dev_term->phys_dev, NULL, &all_exts.count, all_exts.list);
if (res != VK_SUCCESS) {
goto out;
}
// Iterate over active layers, if they are an implicit layer, add their device extensions to all_exts.list
for (uint32_t i = 0; i < icd_term->this_instance->expanded_activated_layer_list.count; i++) {
struct loader_layer_properties *layer_props = icd_term->this_instance->expanded_activated_layer_list.list[i];
if (0 == (layer_props->type_flags & VK_LAYER_TYPE_FLAG_EXPLICIT_LAYER)) {
struct loader_device_extension_list *layer_ext_list = &layer_props->device_extension_list;
for (uint32_t j = 0; j < layer_ext_list->count; j++) {
res = loader_add_to_ext_list(icd_term->this_instance, &all_exts, 1, &layer_ext_list->list[j].props);
if (res != VK_SUCCESS) {
goto out;
}
}
}
}
// Write out the final de-duplicated count to pPropertyCount
*pPropertyCount = all_exts.count;
res = VK_SUCCESS;
out:
loader_destroy_generic_list(icd_term->this_instance, (struct loader_generic_list *)&all_exts);
return res;
}
VkStringErrorFlags vk_string_validate(const int max_length, const char *utf8) {
VkStringErrorFlags result = VK_STRING_ERROR_NONE;
int num_char_bytes = 0;
int i, j;
if (utf8 == NULL) {
return VK_STRING_ERROR_NULL_PTR;
}
for (i = 0; i <= max_length; i++) {
if (utf8[i] == 0) {
break;
} else if (i == max_length) {
result |= VK_STRING_ERROR_LENGTH;
break;
} else if ((utf8[i] >= 0x20) && (utf8[i] < 0x7f)) {
num_char_bytes = 0;
} else if ((utf8[i] & UTF8_ONE_BYTE_MASK) == UTF8_ONE_BYTE_CODE) {
num_char_bytes = 1;
} else if ((utf8[i] & UTF8_TWO_BYTE_MASK) == UTF8_TWO_BYTE_CODE) {
num_char_bytes = 2;
} else if ((utf8[i] & UTF8_THREE_BYTE_MASK) == UTF8_THREE_BYTE_CODE) {
num_char_bytes = 3;
} else {
result = VK_STRING_ERROR_BAD_DATA;
}
// Validate the following num_char_bytes of data
for (j = 0; (j < num_char_bytes) && (i < max_length); j++) {
if (++i == max_length) {
result |= VK_STRING_ERROR_LENGTH;
break;
}
if ((utf8[i] & UTF8_DATA_BYTE_MASK) != UTF8_DATA_BYTE_CODE) {
result |= VK_STRING_ERROR_BAD_DATA;
}
}
}
return result;
}
VKAPI_ATTR VkResult VKAPI_CALL terminator_EnumerateInstanceVersion(const VkEnumerateInstanceVersionChain *chain,
uint32_t *pApiVersion) {
(void)chain;
// NOTE: The Vulkan WG doesn't want us checking pApiVersion for NULL, but instead
// prefers us crashing.
*pApiVersion = VK_HEADER_VERSION_COMPLETE;
return VK_SUCCESS;
}
VKAPI_ATTR VkResult VKAPI_CALL
terminator_EnumerateInstanceExtensionProperties(const VkEnumerateInstanceExtensionPropertiesChain *chain, const char *pLayerName,
uint32_t *pPropertyCount, VkExtensionProperties *pProperties) {
(void)chain;
struct loader_extension_list *global_ext_list = NULL;
struct loader_layer_list instance_layers;
struct loader_extension_list local_ext_list;
struct loader_icd_tramp_list icd_tramp_list;
uint32_t copy_size;
VkResult res = VK_SUCCESS;
struct loader_envvar_all_filters layer_filters = {0};
memset(&local_ext_list, 0, sizeof(local_ext_list));
memset(&instance_layers, 0, sizeof(instance_layers));
memset(&icd_tramp_list, 0, sizeof(icd_tramp_list));
res = parse_layer_environment_var_filters(NULL, &layer_filters);
if (VK_SUCCESS != res) {
goto out;
}
// Get layer libraries if needed
if (pLayerName && strlen(pLayerName) != 0) {
if (vk_string_validate(MaxLoaderStringLength, pLayerName) != VK_STRING_ERROR_NONE) {
assert(VK_FALSE && "vkEnumerateInstanceExtensionProperties: pLayerName is too long or is badly formed");
res = VK_ERROR_EXTENSION_NOT_PRESENT;
goto out;
}
res = loader_scan_for_layers(NULL, &instance_layers, &layer_filters);
if (VK_SUCCESS != res) {
goto out;
}
for (uint32_t i = 0; i < instance_layers.count; i++) {
struct loader_layer_properties *props = &instance_layers.list[i];
if (strcmp(props->info.layerName, pLayerName) == 0) {
global_ext_list = &props->instance_extension_list;
break;
}
}
} else {
// Preload ICD libraries so subsequent calls to EnumerateInstanceExtensionProperties don't have to load them
loader_preload_icds();
// Scan/discover all ICD libraries
res = loader_icd_scan(NULL, &icd_tramp_list, NULL, NULL);
// EnumerateInstanceExtensionProperties can't return anything other than OOM or VK_ERROR_LAYER_NOT_PRESENT
if ((VK_SUCCESS != res && icd_tramp_list.count > 0) || res == VK_ERROR_OUT_OF_HOST_MEMORY) {
goto out;
}
// Get extensions from all ICD's, merge so no duplicates
res = loader_get_icd_loader_instance_extensions(NULL, &icd_tramp_list, &local_ext_list);
if (VK_SUCCESS != res) {
goto out;
}
loader_scanned_icd_clear(NULL, &icd_tramp_list);
// Append enabled implicit layers.
res = loader_scan_for_implicit_layers(NULL, &instance_layers, &layer_filters);
if (VK_SUCCESS != res) {
goto out;
}
for (uint32_t i = 0; i < instance_layers.count; i++) {
struct loader_extension_list *ext_list = &instance_layers.list[i].instance_extension_list;
loader_add_to_ext_list(NULL, &local_ext_list, ext_list->count, ext_list->list);
}
global_ext_list = &local_ext_list;
}
if (global_ext_list == NULL) {
res = VK_ERROR_LAYER_NOT_PRESENT;
goto out;
}
if (pProperties == NULL) {
*pPropertyCount = global_ext_list->count;
goto out;
}
copy_size = *pPropertyCount < global_ext_list->count ? *pPropertyCount : global_ext_list->count;
for (uint32_t i = 0; i < copy_size; i++) {
memcpy(&pProperties[i], &global_ext_list->list[i], sizeof(VkExtensionProperties));
}
*pPropertyCount = copy_size;
if (copy_size < global_ext_list->count) {
res = VK_INCOMPLETE;
goto out;
}
out:
loader_destroy_generic_list(NULL, (struct loader_generic_list *)&icd_tramp_list);
loader_destroy_generic_list(NULL, (struct loader_generic_list *)&local_ext_list);
loader_delete_layer_list_and_properties(NULL, &instance_layers);
return res;
}
VKAPI_ATTR VkResult VKAPI_CALL terminator_EnumerateInstanceLayerProperties(const VkEnumerateInstanceLayerPropertiesChain *chain,
uint32_t *pPropertyCount,
VkLayerProperties *pProperties) {
(void)chain;
VkResult result = VK_SUCCESS;
struct loader_layer_list instance_layer_list;
struct loader_envvar_all_filters layer_filters = {0};
LOADER_PLATFORM_THREAD_ONCE(&once_init, loader_initialize);
uint32_t copy_size;
result = parse_layer_environment_var_filters(NULL, &layer_filters);
if (VK_SUCCESS != result) {
goto out;
}
// Get layer libraries
memset(&instance_layer_list, 0, sizeof(instance_layer_list));
result = loader_scan_for_layers(NULL, &instance_layer_list, &layer_filters);
if (VK_SUCCESS != result) {
goto out;
}
uint32_t active_layer_count = 0;
for (uint32_t i = 0; i < instance_layer_list.count; i++) {
if (instance_layer_list.list[i].settings_control_value == LOADER_SETTINGS_LAYER_CONTROL_ON ||
instance_layer_list.list[i].settings_control_value == LOADER_SETTINGS_LAYER_CONTROL_DEFAULT) {
active_layer_count++;
}
}
if (pProperties == NULL) {
*pPropertyCount = active_layer_count;
goto out;
}
copy_size = (*pPropertyCount < active_layer_count) ? *pPropertyCount : active_layer_count;
uint32_t output_properties_index = 0;
for (uint32_t i = 0; i < copy_size; i++) {
if (instance_layer_list.list[i].settings_control_value == LOADER_SETTINGS_LAYER_CONTROL_ON ||
instance_layer_list.list[i].settings_control_value == LOADER_SETTINGS_LAYER_CONTROL_DEFAULT) {
memcpy(&pProperties[output_properties_index], &instance_layer_list.list[i].info, sizeof(VkLayerProperties));
output_properties_index++;
}
}
*pPropertyCount = copy_size;
if (copy_size < instance_layer_list.count) {
result = VK_INCOMPLETE;
goto out;
}
out:
loader_delete_layer_list_and_properties(NULL, &instance_layer_list);
return result;
}
// ---- Vulkan Core 1.1 terminators
VKAPI_ATTR VkResult VKAPI_CALL terminator_EnumeratePhysicalDeviceGroups(
VkInstance instance, uint32_t *pPhysicalDeviceGroupCount, VkPhysicalDeviceGroupProperties *pPhysicalDeviceGroupProperties) {
struct loader_instance *inst = (struct loader_instance *)instance;
VkResult res = VK_SUCCESS;
struct loader_icd_term *icd_term;
uint32_t total_count = 0;
uint32_t cur_icd_group_count = 0;
VkPhysicalDeviceGroupPropertiesKHR **new_phys_dev_groups = NULL;
struct loader_physical_device_group_term *local_phys_dev_groups = NULL;
PFN_vkEnumeratePhysicalDeviceGroups fpEnumeratePhysicalDeviceGroups = NULL;
struct loader_phys_dev_per_icd *sorted_phys_dev_array = NULL;
uint32_t sorted_count = 0;
// For each ICD, query the number of physical device groups, and then get an
// internal value for those physical devices.
icd_term = inst->icd_terms;
for (uint32_t icd_idx = 0; NULL != icd_term; icd_term = icd_term->next, icd_idx++) {
// Get the function pointer to use to call into the ICD. This could be the core or KHR version
if (inst->enabled_known_extensions.khr_device_group_creation) {
fpEnumeratePhysicalDeviceGroups = icd_term->dispatch.EnumeratePhysicalDeviceGroupsKHR;
} else {
fpEnumeratePhysicalDeviceGroups = icd_term->dispatch.EnumeratePhysicalDeviceGroups;
}
cur_icd_group_count = 0;
if (NULL == fpEnumeratePhysicalDeviceGroups) {
// Treat each ICD's GPU as it's own group if the extension isn't supported
res = icd_term->dispatch.EnumeratePhysicalDevices(icd_term->instance, &cur_icd_group_count, NULL);
if (res != VK_SUCCESS) {
loader_log(inst, VULKAN_LOADER_ERROR_BIT, 0,
"terminator_EnumeratePhysicalDeviceGroups: Failed during dispatch call of \'EnumeratePhysicalDevices\' "
"to ICD %d to get plain phys dev count.",
icd_idx);
continue;
}
} else {
// Query the actual group info
res = fpEnumeratePhysicalDeviceGroups(icd_term->instance, &cur_icd_group_count, NULL);
if (res != VK_SUCCESS) {
loader_log(inst, VULKAN_LOADER_ERROR_BIT, 0,
"terminator_EnumeratePhysicalDeviceGroups: Failed during dispatch call of "
"\'EnumeratePhysicalDeviceGroups\' to ICD %d to get count.",
icd_idx);
continue;
}
}
total_count += cur_icd_group_count;
}
// If GPUs not sorted yet, look through them and generate list of all available GPUs
if (0 == total_count || 0 == inst->total_gpu_count) {
res = setup_loader_term_phys_devs(inst);
if (VK_SUCCESS != res) {
goto out;
}
}
if (NULL != pPhysicalDeviceGroupProperties) {
// Create an array for the new physical device groups, which will be stored
// in the instance for the Terminator code.
new_phys_dev_groups = (VkPhysicalDeviceGroupProperties **)loader_instance_heap_calloc(
inst, total_count * sizeof(VkPhysicalDeviceGroupProperties *), VK_SYSTEM_ALLOCATION_SCOPE_INSTANCE);
if (NULL == new_phys_dev_groups) {
loader_log(inst, VULKAN_LOADER_ERROR_BIT, 0,
"terminator_EnumeratePhysicalDeviceGroups: Failed to allocate new physical device group array of size %d",
total_count);
res = VK_ERROR_OUT_OF_HOST_MEMORY;
goto out;
}
// Create a temporary array (on the stack) to keep track of the
// returned VkPhysicalDevice values.
local_phys_dev_groups = loader_stack_alloc(sizeof(struct loader_physical_device_group_term) * total_count);
// Initialize the memory to something valid
memset(local_phys_dev_groups, 0, sizeof(struct loader_physical_device_group_term) * total_count);
#if defined(_WIN32)
// Get the physical devices supported by platform sorting mechanism into a separate list
res = windows_read_sorted_physical_devices(inst, &sorted_count, &sorted_phys_dev_array);
if (VK_SUCCESS != res) {
goto out;
}
#endif
cur_icd_group_count = 0;
icd_term = inst->icd_terms;
for (uint8_t icd_idx = 0; NULL != icd_term; icd_term = icd_term->next, icd_idx++) {
uint32_t count_this_time = total_count - cur_icd_group_count;
// Get the function pointer to use to call into the ICD. This could be the core or KHR version
if (inst->enabled_known_extensions.khr_device_group_creation) {
fpEnumeratePhysicalDeviceGroups = icd_term->dispatch.EnumeratePhysicalDeviceGroupsKHR;
} else {
fpEnumeratePhysicalDeviceGroups = icd_term->dispatch.EnumeratePhysicalDeviceGroups;
}
if (NULL == fpEnumeratePhysicalDeviceGroups) {
icd_term->dispatch.EnumeratePhysicalDevices(icd_term->instance, &count_this_time, NULL);
VkPhysicalDevice *phys_dev_array = loader_stack_alloc(sizeof(VkPhysicalDevice) * count_this_time);
if (NULL == phys_dev_array) {
loader_log(
inst, VULKAN_LOADER_ERROR_BIT, 0,
"terminator_EnumeratePhysicalDeviceGroups: Failed to allocate local physical device array of size %d",
count_this_time);
res = VK_ERROR_OUT_OF_HOST_MEMORY;
goto out;
}
res = icd_term->dispatch.EnumeratePhysicalDevices(icd_term->instance, &count_this_time, phys_dev_array);
if (res != VK_SUCCESS) {
loader_log(inst, VULKAN_LOADER_ERROR_BIT, 0,
"terminator_EnumeratePhysicalDeviceGroups: Failed during dispatch call of "
"\'EnumeratePhysicalDevices\' to ICD %d to get plain phys dev count.",
icd_idx);
goto out;
}
// Add each GPU as it's own group
for (uint32_t indiv_gpu = 0; indiv_gpu < count_this_time; indiv_gpu++) {
uint32_t cur_index = indiv_gpu + cur_icd_group_count;
local_phys_dev_groups[cur_index].this_icd_term = icd_term;
local_phys_dev_groups[cur_index].icd_index = icd_idx;
local_phys_dev_groups[cur_index].group_props.physicalDeviceCount = 1;
local_phys_dev_groups[cur_index].group_props.physicalDevices[0] = phys_dev_array[indiv_gpu];
}
} else {
res = fpEnumeratePhysicalDeviceGroups(icd_term->instance, &count_this_time, NULL);
if (res != VK_SUCCESS) {
loader_log(inst, VULKAN_LOADER_ERROR_BIT, 0,
"terminator_EnumeratePhysicalDeviceGroups: Failed during dispatch call of "
"\'EnumeratePhysicalDeviceGroups\' to ICD %d to get group count.",
icd_idx);
goto out;
}
if (cur_icd_group_count + count_this_time < *pPhysicalDeviceGroupCount) {
// The total amount is still less than the amount of physical device group data passed in
// by the callee. Therefore, we don't have to allocate any temporary structures and we
// can just use the data that was passed in.
res = fpEnumeratePhysicalDeviceGroups(icd_term->instance, &count_this_time,
&pPhysicalDeviceGroupProperties[cur_icd_group_count]);
if (res != VK_SUCCESS) {
loader_log(inst, VULKAN_LOADER_ERROR_BIT, 0,
"terminator_EnumeratePhysicalDeviceGroups: Failed during dispatch call of "
"\'EnumeratePhysicalDeviceGroups\' to ICD %d to get group information.",
icd_idx);
goto out;
}
for (uint32_t group = 0; group < count_this_time; ++group) {
uint32_t cur_index = group + cur_icd_group_count;
local_phys_dev_groups[cur_index].group_props = pPhysicalDeviceGroupProperties[cur_index];
local_phys_dev_groups[cur_index].this_icd_term = icd_term;
local_phys_dev_groups[cur_index].icd_index = icd_idx;
}
} else {
// There's not enough space in the callee's allocated pPhysicalDeviceGroupProperties structs,
// so we have to allocate temporary versions to collect all the data. However, we need to make
// sure that at least the ones we do query utilize any pNext data in the callee's version.
VkPhysicalDeviceGroupProperties *tmp_group_props =
loader_stack_alloc(count_this_time * sizeof(VkPhysicalDeviceGroupProperties));
for (uint32_t group = 0; group < count_this_time; group++) {
tmp_group_props[group].sType = VK_STRUCTURE_TYPE_PHYSICAL_DEVICE_GROUP_PROPERTIES_KHR;
uint32_t cur_index = group + cur_icd_group_count;
if (*pPhysicalDeviceGroupCount > cur_index) {
tmp_group_props[group].pNext = pPhysicalDeviceGroupProperties[cur_index].pNext;
} else {
tmp_group_props[group].pNext = NULL;
}
tmp_group_props[group].subsetAllocation = false;
}
res = fpEnumeratePhysicalDeviceGroups(icd_term->instance, &count_this_time, tmp_group_props);
if (res != VK_SUCCESS) {
loader_log(inst, VULKAN_LOADER_ERROR_BIT, 0,
"terminator_EnumeratePhysicalDeviceGroups: Failed during dispatch call of "
"\'EnumeratePhysicalDeviceGroups\' to ICD %d to get group information for temp data.",
icd_idx);
goto out;
}
for (uint32_t group = 0; group < count_this_time; ++group) {
uint32_t cur_index = group + cur_icd_group_count;
local_phys_dev_groups[cur_index].group_props = tmp_group_props[group];
local_phys_dev_groups[cur_index].this_icd_term = icd_term;
local_phys_dev_groups[cur_index].icd_index = icd_idx;
}
}
if (VK_SUCCESS != res) {
loader_log(inst, VULKAN_LOADER_ERROR_BIT, 0,
"terminator_EnumeratePhysicalDeviceGroups: Failed during dispatch call of "
"\'EnumeratePhysicalDeviceGroups\' to ICD %d to get content.",
icd_idx);
goto out;
}
}
cur_icd_group_count += count_this_time;
}
#if defined(LOADER_ENABLE_LINUX_SORT)
if (is_linux_sort_enabled(inst)) {
// Get the physical devices supported by platform sorting mechanism into a separate list
res = linux_sort_physical_device_groups(inst, total_count, local_phys_dev_groups);
}
#elif defined(_WIN32)
// The Windows sorting information is only on physical devices. We need to take that and convert it to the group
// information if it's present.
if (sorted_count > 0) {
res =
windows_sort_physical_device_groups(inst, total_count, local_phys_dev_groups, sorted_count, sorted_phys_dev_array);
}
#endif // LOADER_ENABLE_LINUX_SORT
// Just to be safe, make sure we successfully completed setup_loader_term_phys_devs above
// before attempting to do the following. By verifying that setup_loader_term_phys_devs ran
// first, it guarantees that each physical device will have a loader-specific handle.
if (NULL != inst->phys_devs_term) {
for (uint32_t group = 0; group < total_count; group++) {
for (uint32_t group_gpu = 0; group_gpu < local_phys_dev_groups[group].group_props.physicalDeviceCount;
group_gpu++) {
bool found = false;
for (uint32_t term_gpu = 0; term_gpu < inst->phys_dev_count_term; term_gpu++) {
if (local_phys_dev_groups[group].group_props.physicalDevices[group_gpu] ==
inst->phys_devs_term[term_gpu]->phys_dev) {
local_phys_dev_groups[group].group_props.physicalDevices[group_gpu] =
(VkPhysicalDevice)inst->phys_devs_term[term_gpu];
found = true;
break;
}
}
if (!found) {
loader_log(inst, VULKAN_LOADER_ERROR_BIT, 0,
"terminator_EnumeratePhysicalDeviceGroups: Failed to find GPU %d in group %d returned by "
"\'EnumeratePhysicalDeviceGroups\' in list returned by \'EnumeratePhysicalDevices\'",
group_gpu, group);
res = VK_ERROR_INITIALIZATION_FAILED;
goto out;
}
}
}
}
uint32_t idx = 0;
// Copy or create everything to fill the new array of physical device groups
for (uint32_t group = 0; group < total_count; group++) {
// Skip groups which have been included through sorting
if (local_phys_dev_groups[group].group_props.physicalDeviceCount == 0) {
continue;
}
// Find the VkPhysicalDeviceGroupProperties object in local_phys_dev_groups
VkPhysicalDeviceGroupProperties *group_properties = &local_phys_dev_groups[group].group_props;
// Check if this physical device group with the same contents is already in the old buffer
for (uint32_t old_idx = 0; old_idx < inst->phys_dev_group_count_term; old_idx++) {
if (NULL != group_properties && NULL != inst->phys_dev_groups_term[old_idx] &&
group_properties->physicalDeviceCount == inst->phys_dev_groups_term[old_idx]->physicalDeviceCount) {
bool found_all_gpus = true;
for (uint32_t old_gpu = 0; old_gpu < inst->phys_dev_groups_term[old_idx]->physicalDeviceCount; old_gpu++) {
bool found_gpu = false;
for (uint32_t new_gpu = 0; new_gpu < group_properties->physicalDeviceCount; new_gpu++) {
if (group_properties->physicalDevices[new_gpu] ==
inst->phys_dev_groups_term[old_idx]->physicalDevices[old_gpu]) {
found_gpu = true;
break;
}
}
if (!found_gpu) {
found_all_gpus = false;
break;
}
}
if (!found_all_gpus) {
continue;
} else {
new_phys_dev_groups[idx] = inst->phys_dev_groups_term[old_idx];
break;
}
}
}
// If this physical device group isn't in the old buffer, create it
if (group_properties != NULL && NULL == new_phys_dev_groups[idx]) {
new_phys_dev_groups[idx] = (VkPhysicalDeviceGroupPropertiesKHR *)loader_instance_heap_alloc(
inst, sizeof(VkPhysicalDeviceGroupPropertiesKHR), VK_SYSTEM_ALLOCATION_SCOPE_INSTANCE);
if (NULL == new_phys_dev_groups[idx]) {
loader_log(inst, VULKAN_LOADER_ERROR_BIT, 0,
"terminator_EnumeratePhysicalDeviceGroups: Failed to allocate physical device group Terminator "
"object %d",
idx);
total_count = idx;
res = VK_ERROR_OUT_OF_HOST_MEMORY;
goto out;
}
memcpy(new_phys_dev_groups[idx], group_properties, sizeof(VkPhysicalDeviceGroupPropertiesKHR));
}
++idx;
}
}
out:
if (NULL != pPhysicalDeviceGroupProperties) {
if (VK_SUCCESS != res) {
if (NULL != new_phys_dev_groups) {
// We've encountered an error, so we should free the new buffers.
for (uint32_t i = 0; i < total_count; i++) {
// If an OOM occurred inside the copying of the new physical device groups into the existing array will
// leave some of the old physical device groups in the array which may have been copied into the new array,
// leading to them being freed twice. To avoid this we just make sure to not delete physical device groups
// which were copied.
bool found = false;
if (NULL != inst->phys_devs_term) {
for (uint32_t old_idx = 0; old_idx < inst->phys_dev_group_count_term; old_idx++) {
if (new_phys_dev_groups[i] == inst->phys_dev_groups_term[old_idx]) {
found = true;
break;
}
}
}
if (!found) {
loader_instance_heap_free(inst, new_phys_dev_groups[i]);
}
}
loader_instance_heap_free(inst, new_phys_dev_groups);
}
} else {
if (NULL != inst->phys_dev_groups_term) {
// Free everything in the old array that was not copied into the new array
// here. We can't attempt to do that before here since the previous loop
// looking before the "out:" label may hit an out of memory condition resulting
// in memory leaking.
for (uint32_t i = 0; i < inst->phys_dev_group_count_term; i++) {
bool found = false;
for (uint32_t j = 0; j < total_count; j++) {
if (inst->phys_dev_groups_term[i] == new_phys_dev_groups[j]) {
found = true;
break;
}
}
if (!found) {
loader_instance_heap_free(inst, inst->phys_dev_groups_term[i]);
}
}
loader_instance_heap_free(inst, inst->phys_dev_groups_term);
}
// Swap in the new physical device group list
inst->phys_dev_group_count_term = total_count;
inst->phys_dev_groups_term = new_phys_dev_groups;
}
if (sorted_phys_dev_array != NULL) {
for (uint32_t i = 0; i < sorted_count; ++i) {
if (sorted_phys_dev_array[i].device_count > 0 && sorted_phys_dev_array[i].physical_devices != NULL) {
loader_instance_heap_free(inst, sorted_phys_dev_array[i].physical_devices);
}
}
loader_instance_heap_free(inst, sorted_phys_dev_array);
}
uint32_t copy_count = inst->phys_dev_group_count_term;
if (NULL != pPhysicalDeviceGroupProperties) {
if (copy_count > *pPhysicalDeviceGroupCount) {
copy_count = *pPhysicalDeviceGroupCount;
loader_log(inst, VULKAN_LOADER_INFO_BIT, 0,
"terminator_EnumeratePhysicalDeviceGroups : Trimming device count from %d to %d.",
inst->phys_dev_group_count_term, copy_count);
res = VK_INCOMPLETE;
}
for (uint32_t i = 0; i < copy_count; i++) {
memcpy(&pPhysicalDeviceGroupProperties[i], inst->phys_dev_groups_term[i], sizeof(VkPhysicalDeviceGroupProperties));
}
}
*pPhysicalDeviceGroupCount = copy_count;
} else {
*pPhysicalDeviceGroupCount = total_count;
}
return res;
}