blob: 23e74fd0d10100e931a8c46fd6a40c5ba8817c6c [file] [log] [blame]
/*
* Copyright (c) 2014 Broadcom Corporation
*
* Permission to use, copy, modify, and/or distribute this software for any
* purpose with or without fee is hereby granted, provided that the above
* copyright notice and this permission notice appear in all copies.
*
* THE SOFTWARE IS PROVIDED "AS IS" AND THE AUTHOR DISCLAIMS ALL WARRANTIES
* WITH REGARD TO THIS SOFTWARE INCLUDING ALL IMPLIED WARRANTIES OF
* MERCHANTABILITY AND FITNESS. IN NO EVENT SHALL THE AUTHOR BE LIABLE FOR ANY
* SPECIAL, DIRECT, INDIRECT, OR CONSEQUENTIAL DAMAGES OR ANY DAMAGES
* WHATSOEVER RESULTING FROM LOSS OF USE, DATA OR PROFITS, WHETHER IN AN ACTION
* OF CONTRACT, NEGLIGENCE OR OTHER TORTIOUS ACTION, ARISING OUT OF OR IN
* CONNECTION WITH THE USE OR PERFORMANCE OF THIS SOFTWARE.
*/
#include "chip.h"
#include <zircon/listnode.h>
#include <zircon/status.h>
#include "brcm_hw_ids.h"
#include "brcmu_utils.h"
#include "chipcommon.h"
#include "debug.h"
#include "defs.h"
#include "device.h"
#include "linuxisms.h"
#include "soc.h"
/* SOC Interconnect types (aka chip types) */
#define SOCI_SB 0
#define SOCI_AI 1
// clang-format off
/* PL-368 DMP definitions */
#define DMP_DESC_TYPE_MSK 0x0000000F
#define DMP_DESC_EMPTY 0x00000000
#define DMP_DESC_VALID 0x00000001
#define DMP_DESC_COMPONENT 0x00000001
#define DMP_DESC_MASTER_PORT 0x00000003
#define DMP_DESC_ADDRESS 0x00000005
#define DMP_DESC_ADDRSIZE_GT32 0x00000008
#define DMP_DESC_EOT 0x0000000F
#define DMP_COMP_DESIGNER 0xFFF00000
#define DMP_COMP_DESIGNER_S 20
#define DMP_COMP_PARTNUM 0x000FFF00
#define DMP_COMP_PARTNUM_S 8
#define DMP_COMP_CLASS 0x000000F0
#define DMP_COMP_CLASS_S 4
#define DMP_COMP_REVISION 0xFF000000
#define DMP_COMP_REVISION_S 24
#define DMP_COMP_NUM_SWRAP 0x00F80000
#define DMP_COMP_NUM_SWRAP_S 19
#define DMP_COMP_NUM_MWRAP 0x0007C000
#define DMP_COMP_NUM_MWRAP_S 14
#define DMP_COMP_NUM_SPORT 0x00003E00
#define DMP_COMP_NUM_SPORT_S 9
#define DMP_COMP_NUM_MPORT 0x000001F0
#define DMP_COMP_NUM_MPORT_S 4
#define DMP_MASTER_PORT_UID 0x0000FF00
#define DMP_MASTER_PORT_UID_S 8
#define DMP_MASTER_PORT_NUM 0x000000F0
#define DMP_MASTER_PORT_NUM_S 4
#define DMP_SLAVE_ADDR_BASE 0xFFFFF000
#define DMP_SLAVE_ADDR_BASE_S 12
#define DMP_SLAVE_PORT_NUM 0x00000F00
#define DMP_SLAVE_PORT_NUM_S 8
#define DMP_SLAVE_TYPE 0x000000C0
#define DMP_SLAVE_TYPE_S 6
#define DMP_SLAVE_TYPE_SLAVE 0
#define DMP_SLAVE_TYPE_BRIDGE 1
#define DMP_SLAVE_TYPE_SWRAP 2
#define DMP_SLAVE_TYPE_MWRAP 3
#define DMP_SLAVE_SIZE_TYPE 0x00000030
#define DMP_SLAVE_SIZE_TYPE_S 4
#define DMP_SLAVE_SIZE_4K 0
#define DMP_SLAVE_SIZE_8K 1
#define DMP_SLAVE_SIZE_16K 2
#define DMP_SLAVE_SIZE_DESC 3
/* EROM CompIdentB */
#define CIB_REV_MASK 0xff000000
#define CIB_REV_SHIFT 24
/* ARM CR4 core specific control flag bits */
#define ARMCR4_BCMA_IOCTL_CPUHALT 0x0020
/* D11 core specific control flag bits */
#define D11_BCMA_IOCTL_PHYCLOCKEN 0x0004
#define D11_BCMA_IOCTL_PHYRESET 0x0008
/* chip core base & ramsize */
/* bcm4329 */
/* SDIO device core, ID 0x829 */
#define BCM4329_CORE_BUS_BASE 0x18011000
/* internal memory core, ID 0x80e */
#define BCM4329_CORE_SOCRAM_BASE 0x18003000
/* ARM Cortex M3 core, ID 0x82a */
#define BCM4329_CORE_ARM_BASE 0x18002000
/* Max possibly supported memory size (limited by IO mapped memory) */
#define BRCMF_CHIP_MAX_MEMSIZE (4 * 1024 * 1024)
#define CORE_SB(base, field) (base + SBCONFIGOFF + offsetof(struct sbconfig, field))
#define SBCOREREV(sbidh) \
((((sbidh)&BACKPLANE_ID_HIGH_REVCODE_HIGH) >> BACKPLANE_ID_HIGH_REVCODE_HIGH_SHIFT) | \
((sbidh)&BACKPLANE_ID_HIGH_REVCODE_LOW))
struct sbconfig {
uint32_t PAD[2];
uint32_t sbipsflag; /* initiator port ocp slave flag */
uint32_t PAD[3];
uint32_t sbtpsflag; /* target port ocp slave flag */
uint32_t PAD[11];
uint32_t sbtmerrloga; /* (sonics >= 2.3) */
uint32_t PAD;
uint32_t sbtmerrlog; /* (sonics >= 2.3) */
uint32_t PAD[3];
uint32_t sbadmatch3; /* address match3 */
uint32_t PAD;
uint32_t sbadmatch2; /* address match2 */
uint32_t PAD;
uint32_t sbadmatch1; /* address match1 */
uint32_t PAD[7];
uint32_t sbimstate; /* initiator agent state */
uint32_t sbintvec; /* interrupt mask */
uint32_t sbtmstatelow; /* target state */
uint32_t sbtmstatehigh; /* target state */
uint32_t sbbwa0; /* bandwidth allocation table0 */
uint32_t PAD;
uint32_t sbimconfiglow; /* initiator configuration */
uint32_t sbimconfighigh; /* initiator configuration */
uint32_t sbadmatch0; /* address match0 */
uint32_t PAD;
uint32_t sbtmconfiglow; /* target configuration */
uint32_t sbtmconfighigh; /* target configuration */
uint32_t sbbconfig; /* broadcast configuration */
uint32_t PAD;
uint32_t sbbstate; /* broadcast state */
uint32_t PAD[3];
uint32_t sbactcnfg; /* activate configuration */
uint32_t PAD[3];
uint32_t sbflagst; /* current sbflags */
uint32_t PAD[3];
uint32_t sbidlow; /* identification */
uint32_t sbidhigh; /* identification */
};
/* bankidx and bankinfo reg defines corerev >= 8 */
#define SOCRAM_BANKINFO_RETNTRAM_MASK 0x00010000
#define SOCRAM_BANKINFO_SZMASK 0x0000007f
#define SOCRAM_BANKIDX_ROM_MASK 0x00000100
#define SOCRAM_BANKIDX_MEMTYPE_SHIFT 8
/* socram bankinfo memtype */
#define SOCRAM_MEMTYPE_RAM 0
#define SOCRAM_MEMTYPE_R0M 1
#define SOCRAM_MEMTYPE_DEVRAM 2
#define SOCRAM_BANKINFO_SZBASE 8192
#define SRCI_LSS_MASK 0x00f00000
#define SRCI_LSS_SHIFT 20
#define SRCI_SRNB_MASK 0xf0
#define SRCI_SRNB_SHIFT 4
#define SRCI_SRBSZ_MASK 0xf
#define SRCI_SRBSZ_SHIFT 0
#define SR_BSZ_BASE 14
struct sbsocramregs {
uint32_t coreinfo;
uint32_t bwalloc;
uint32_t extracoreinfo;
uint32_t biststat;
uint32_t bankidx;
uint32_t standbyctrl;
uint32_t errlogstatus; /* rev 6 */
uint32_t errlogaddr; /* rev 6 */
/* used for patching rev 3 & 5 */
uint32_t cambankidx;
uint32_t cambankstandbyctrl;
uint32_t cambankpatchctrl;
uint32_t cambankpatchtblbaseaddr;
uint32_t cambankcmdreg;
uint32_t cambankdatareg;
uint32_t cambankmaskreg;
uint32_t PAD[1];
uint32_t bankinfo; /* corev 8 */
uint32_t bankpda;
uint32_t PAD[14];
uint32_t extmemconfig;
uint32_t extmemparitycsr;
uint32_t extmemparityerrdata;
uint32_t extmemparityerrcnt;
uint32_t extmemwrctrlandsize;
uint32_t PAD[84];
uint32_t workaround;
uint32_t pwrctl; /* corerev >= 2 */
uint32_t PAD[133];
uint32_t sr_control; /* corerev >= 15 */
uint32_t sr_status; /* corerev >= 15 */
uint32_t sr_address; /* corerev >= 15 */
uint32_t sr_data; /* corerev >= 15 */
};
#define SOCRAMREGOFFS(_f) offsetof(struct sbsocramregs, _f)
#define SYSMEMREGOFFS(_f) offsetof(struct sbsocramregs, _f)
#define ARMCR4_CAP (0x04)
#define ARMCR4_BANKIDX (0x40)
#define ARMCR4_BANKINFO (0x44)
#define ARMCR4_BANKPDA (0x4C)
#define ARMCR4_TCBBNB_MASK 0xf0
#define ARMCR4_TCBBNB_SHIFT 4
#define ARMCR4_TCBANB_MASK 0x0f
#define ARMCR4_TCBANB_SHIFT 0
#define ARMCR4_BSZ_MASK 0x3f
#define ARMCR4_BSZ_MULT 8192
// clang-format on
struct brcmf_core_priv {
struct brcmf_core pub;
uint32_t wrapbase;
struct list_node list;
struct brcmf_chip_priv* chip;
};
struct brcmf_chip_priv {
struct brcmf_chip pub;
const struct brcmf_buscore_ops* ops;
void* ctx;
/* assured first core is chipcommon, second core is buscore */
struct list_node cores;
uint16_t num_cores;
bool (*iscoreup)(struct brcmf_core_priv* core);
void (*coredisable)(struct brcmf_core_priv* core, uint32_t prereset, uint32_t reset);
void (*resetcore)(struct brcmf_core_priv* core, uint32_t prereset, uint32_t reset,
uint32_t postreset);
};
static void brcmf_chip_sb_corerev(struct brcmf_chip_priv* ci, struct brcmf_core* core) {
uint32_t regdata;
regdata = ci->ops->read32(ci->ctx, CORE_SB(core->base, sbidhigh));
core->rev = SBCOREREV(regdata);
}
static bool brcmf_chip_sb_iscoreup(struct brcmf_core_priv* core) {
struct brcmf_chip_priv* ci;
uint32_t regdata;
uint32_t address;
ci = core->chip;
address = CORE_SB(core->pub.base, sbtmstatelow);
regdata = ci->ops->read32(ci->ctx, address);
regdata &= (BACKPLANE_TARGET_STATE_LOW_RESET | BACKPLANE_TARGET_STATE_LOW_REJECT |
BACKPLANE_INITIATOR_STATE_REJECT | BACKPLANE_TARGET_STATE_LOW_CLOCK);
return BACKPLANE_TARGET_STATE_LOW_CLOCK == regdata;
}
static bool brcmf_chip_ai_iscoreup(struct brcmf_core_priv* core) {
struct brcmf_chip_priv* ci;
uint32_t regdata;
bool ret;
ci = core->chip;
regdata = ci->ops->read32(ci->ctx, core->wrapbase + BC_CORE_CONTROL);
ret = (regdata & (BC_CORE_CONTROL_FGC | BC_CORE_CONTROL_CLOCK)) == BC_CORE_CONTROL_CLOCK;
regdata = ci->ops->read32(ci->ctx, core->wrapbase + BC_CORE_RESET_CONTROL);
ret = ret && ((regdata & BC_CORE_RESET_CONTROL_RESET) == 0);
return ret;
}
static void brcmf_chip_sb_coredisable(struct brcmf_core_priv* core, uint32_t prereset,
uint32_t reset) {
struct brcmf_chip_priv* ci;
uint32_t val, base;
ci = core->chip;
base = core->pub.base;
val = ci->ops->read32(ci->ctx, CORE_SB(base, sbtmstatelow));
if (val & BACKPLANE_TARGET_STATE_LOW_RESET) {
return;
}
val = ci->ops->read32(ci->ctx, CORE_SB(base, sbtmstatelow));
if ((val & BACKPLANE_TARGET_STATE_LOW_CLOCK) != 0) {
/*
* set target reject and spin until busy is clear
* (preserve core-specific bits)
*/
val = ci->ops->read32(ci->ctx, CORE_SB(base, sbtmstatelow));
ci->ops->write32(ci->ctx, CORE_SB(base, sbtmstatelow), val |
BACKPLANE_TARGET_STATE_LOW_REJECT);
val = ci->ops->read32(ci->ctx, CORE_SB(base, sbtmstatelow));
usleep(1);
SPINWAIT((ci->ops->read32(ci->ctx, CORE_SB(base, sbtmstatehigh)) &
BACKPLANE_TARGET_STATE_HIGH_BUSY),
100000);
val = ci->ops->read32(ci->ctx, CORE_SB(base, sbtmstatehigh));
if (val & BACKPLANE_TARGET_STATE_HIGH_BUSY) {
brcmf_err("core state still busy\n");
}
val = ci->ops->read32(ci->ctx, CORE_SB(base, sbidlow));
if (val & BACKPLANE_ID_LOW_INITIATOR) {
val = ci->ops->read32(ci->ctx, CORE_SB(base, sbimstate));
val |= BACKPLANE_INITIATOR_STATE_REJECT;
ci->ops->write32(ci->ctx, CORE_SB(base, sbimstate), val);
val = ci->ops->read32(ci->ctx, CORE_SB(base, sbimstate));
usleep(1);
SPINWAIT((ci->ops->read32(ci->ctx, CORE_SB(base, sbimstate)) &
BACKPLANE_INITIATOR_STATE_BUSY),
100000);
}
/* set reset and reject while enabling the clocks */
val = BACKPLANE_TARGET_STATE_LOW_GATED_CLOCKS | BACKPLANE_TARGET_STATE_LOW_CLOCK |
BACKPLANE_TARGET_STATE_LOW_REJECT | BACKPLANE_TARGET_STATE_LOW_RESET;
ci->ops->write32(ci->ctx, CORE_SB(base, sbtmstatelow), val);
val = ci->ops->read32(ci->ctx, CORE_SB(base, sbtmstatelow));
usleep(10);
/* clear the initiator reject bit */
val = ci->ops->read32(ci->ctx, CORE_SB(base, sbidlow));
if (val & BACKPLANE_ID_LOW_INITIATOR) {
val = ci->ops->read32(ci->ctx, CORE_SB(base, sbimstate));
val &= ~BACKPLANE_INITIATOR_STATE_REJECT;
ci->ops->write32(ci->ctx, CORE_SB(base, sbimstate), val);
}
}
/* leave reset and reject asserted */
ci->ops->write32(ci->ctx, CORE_SB(base, sbtmstatelow), (BACKPLANE_TARGET_STATE_LOW_REJECT |
BACKPLANE_TARGET_STATE_LOW_RESET));
usleep(1);
}
static void brcmf_chip_ai_coredisable(struct brcmf_core_priv* core, uint32_t prereset,
uint32_t reset) {
struct brcmf_chip_priv* ci;
uint32_t regdata;
ci = core->chip;
/* if core is already in reset, skip reset */
regdata = ci->ops->read32(ci->ctx, core->wrapbase + BC_CORE_RESET_CONTROL);
if ((regdata & BC_CORE_RESET_CONTROL_RESET) != 0) {
goto in_reset_configure;
}
/* configure reset */
ci->ops->write32(ci->ctx, core->wrapbase + BC_CORE_CONTROL,
prereset | BC_CORE_CONTROL_FGC | BC_CORE_CONTROL_CLOCK);
ci->ops->read32(ci->ctx, core->wrapbase + BC_CORE_CONTROL);
/* put in reset */
ci->ops->write32(ci->ctx, core->wrapbase + BC_CORE_RESET_CONTROL, BC_CORE_RESET_CONTROL_RESET);
usleep_range(10, 20);
/* wait till reset is 1 */
uint32_t spinresult;
SPINWAIT((spinresult = ci->ops->read32(ci->ctx, core->wrapbase + BC_CORE_RESET_CONTROL)) !=
BC_CORE_RESET_CONTROL_RESET,
300);
brcmf_dbg(TEMP, "Survived wait, spinresult %d (should be 1)", spinresult);
in_reset_configure:
/* in-reset configure */
ci->ops->write32(ci->ctx, core->wrapbase + BC_CORE_CONTROL, reset | BC_CORE_CONTROL_FGC |
BC_CORE_CONTROL_CLOCK);
ci->ops->read32(ci->ctx, core->wrapbase + BC_CORE_CONTROL);
}
static void brcmf_chip_sb_resetcore(struct brcmf_core_priv* core, uint32_t prereset, uint32_t reset,
uint32_t postreset) {
struct brcmf_chip_priv* ci;
uint32_t regdata;
uint32_t base;
ci = core->chip;
base = core->pub.base;
/*
* Must do the disable sequence first to work for
* arbitrary current core state.
*/
brcmf_chip_sb_coredisable(core, 0, 0);
/*
* Now do the initialization sequence.
* set reset while enabling the clock and
* forcing them on throughout the core
*/
ci->ops->write32(ci->ctx, CORE_SB(base, sbtmstatelow),
BACKPLANE_TARGET_STATE_LOW_GATED_CLOCKS | BACKPLANE_TARGET_STATE_LOW_CLOCK |
BACKPLANE_TARGET_STATE_LOW_RESET);
regdata = ci->ops->read32(ci->ctx, CORE_SB(base, sbtmstatelow));
usleep(1);
/* clear any serror */
regdata = ci->ops->read32(ci->ctx, CORE_SB(base, sbtmstatehigh));
if (regdata & BACKPLANE_TARGET_STATE_HIGH_S_ERROR) {
ci->ops->write32(ci->ctx, CORE_SB(base, sbtmstatehigh), 0);
}
regdata = ci->ops->read32(ci->ctx, CORE_SB(base, sbimstate));
if (regdata & (BACKPLANE_INITIATOR_STATE_IN_BAND_ERROR | BACKPLANE_INITIATOR_STATE_TIMEOUT)) {
regdata &= ~(BACKPLANE_INITIATOR_STATE_IN_BAND_ERROR | BACKPLANE_INITIATOR_STATE_TIMEOUT);
ci->ops->write32(ci->ctx, CORE_SB(base, sbimstate), regdata);
}
/* clear reset and allow it to propagate throughout the core */
ci->ops->write32(ci->ctx, CORE_SB(base, sbtmstatelow), BACKPLANE_TARGET_STATE_LOW_GATED_CLOCKS |
BACKPLANE_TARGET_STATE_LOW_CLOCK);
regdata = ci->ops->read32(ci->ctx, CORE_SB(base, sbtmstatelow));
usleep(1);
/* leave clock enabled */
ci->ops->write32(ci->ctx, CORE_SB(base, sbtmstatelow), BACKPLANE_TARGET_STATE_LOW_CLOCK);
regdata = ci->ops->read32(ci->ctx, CORE_SB(base, sbtmstatelow));
usleep(1);
}
static void brcmf_chip_ai_resetcore(struct brcmf_core_priv* core, uint32_t prereset, uint32_t reset,
uint32_t postreset) {
struct brcmf_chip_priv* ci;
int count;
ci = core->chip;
/* must disable first to work for arbitrary current core state */
brcmf_chip_ai_coredisable(core, prereset, reset);
count = 0;
while (ci->ops->read32(ci->ctx, core->wrapbase + BC_CORE_RESET_CONTROL) &
BC_CORE_RESET_CONTROL_RESET) {
ci->ops->write32(ci->ctx, core->wrapbase + BC_CORE_RESET_CONTROL, 0);
count++;
if (count > 50) {
break;
}
usleep_range(40, 60);
}
ci->ops->write32(ci->ctx, core->wrapbase + BC_CORE_CONTROL, postreset | BC_CORE_CONTROL_CLOCK);
ci->ops->read32(ci->ctx, core->wrapbase + BC_CORE_CONTROL);
}
static char* brcmf_chip_name(uint chipid, char* buf, uint len) {
const char* fmt;
fmt = ((chipid > 0xa000) || (chipid < 0x4000)) ? "%d" : "%x";
snprintf(buf, len, fmt, chipid);
return buf;
}
static zx_status_t brcmf_chip_add_core(struct brcmf_chip_priv* ci, uint16_t coreid, uint32_t base,
uint32_t wrapbase, struct brcmf_core** core_out) {
struct brcmf_core_priv* core;
core = calloc(1, sizeof(*core));
if (!core) {
if (core_out) {
*core_out = NULL;
}
return ZX_ERR_NO_MEMORY;
}
core->pub.id = coreid;
core->pub.base = base;
core->chip = ci;
core->wrapbase = wrapbase;
list_add_tail(&ci->cores, &core->list);
if (core_out) {
*core_out = &core->pub;
}
return ZX_OK;
}
/* safety check for chipinfo */
static zx_status_t brcmf_chip_cores_check(struct brcmf_chip_priv* ci) {
struct brcmf_core_priv* core;
bool need_socram = false;
bool has_socram = false;
bool cpu_found = false;
int idx = 1;
list_for_every_entry(&ci->cores, core, struct brcmf_core_priv, list) {
brcmf_dbg(INFO, " [%-2d] core 0x%x:%-2d base 0x%08x wrap 0x%08x\n", idx++, core->pub.id,
core->pub.rev, core->pub.base, core->wrapbase);
switch (core->pub.id) {
case CHIPSET_ARM_CM3_CORE:
cpu_found = true;
need_socram = true;
break;
case CHIPSET_INTERNAL_MEM_CORE:
has_socram = true;
break;
case CHIPSET_ARM_CR4_CORE:
cpu_found = true;
break;
case CHIPSET_ARM_CA7_CORE:
cpu_found = true;
break;
default:
break;
}
}
if (!cpu_found) {
brcmf_err("CPU core not detected\n");
return ZX_ERR_IO_NOT_PRESENT;
}
/* check RAM core presence for ARM CM3 core */
if (need_socram && !has_socram) {
brcmf_err("RAM core not provided with ARM CM3 core\n");
return ZX_ERR_WRONG_TYPE;
}
return ZX_OK;
}
static uint32_t brcmf_chip_core_read32(struct brcmf_core_priv* core, uint16_t reg) {
return core->chip->ops->read32(core->chip->ctx, core->pub.base + reg);
}
static void brcmf_chip_core_write32(struct brcmf_core_priv* core, uint16_t reg, uint32_t val) {
core->chip->ops->write32(core->chip->ctx, core->pub.base + reg, val);
}
static bool brcmf_chip_socram_banksize(struct brcmf_core_priv* core, uint8_t idx,
uint32_t* banksize) {
uint32_t bankinfo;
uint32_t bankidx = (SOCRAM_MEMTYPE_RAM << SOCRAM_BANKIDX_MEMTYPE_SHIFT);
bankidx |= idx;
brcmf_chip_core_write32(core, SOCRAMREGOFFS(bankidx), bankidx);
bankinfo = brcmf_chip_core_read32(core, SOCRAMREGOFFS(bankinfo));
*banksize = (bankinfo & SOCRAM_BANKINFO_SZMASK) + 1;
*banksize *= SOCRAM_BANKINFO_SZBASE;
return !!(bankinfo & SOCRAM_BANKINFO_RETNTRAM_MASK);
}
static void brcmf_chip_socram_ramsize(struct brcmf_core_priv* sr, uint32_t* ramsize,
uint32_t* srsize) {
uint32_t coreinfo;
uint nb, banksize, lss;
bool retent;
int i;
*ramsize = 0;
*srsize = 0;
if (WARN_ON(sr->pub.rev < 4)) {
return;
}
if (!brcmf_chip_iscoreup(&sr->pub)) {
brcmf_chip_resetcore(&sr->pub, 0, 0, 0);
}
/* Get info for determining size */
coreinfo = brcmf_chip_core_read32(sr, SOCRAMREGOFFS(coreinfo));
nb = (coreinfo & SRCI_SRNB_MASK) >> SRCI_SRNB_SHIFT;
if ((sr->pub.rev <= 7) || (sr->pub.rev == 12)) {
banksize = (coreinfo & SRCI_SRBSZ_MASK);
lss = (coreinfo & SRCI_LSS_MASK) >> SRCI_LSS_SHIFT;
if (lss != 0) {
nb--;
}
*ramsize = nb * (1 << (banksize + SR_BSZ_BASE));
if (lss != 0) {
*ramsize += (1 << ((lss - 1) + SR_BSZ_BASE));
}
} else {
nb = (coreinfo & SRCI_SRNB_MASK) >> SRCI_SRNB_SHIFT;
for (i = 0; i < (int)nb; i++) {
retent = brcmf_chip_socram_banksize(sr, i, &banksize);
*ramsize += banksize;
if (retent) {
*srsize += banksize;
}
}
}
/* hardcoded save&restore memory sizes */
switch (sr->chip->pub.chip) {
case BRCM_CC_4334_CHIP_ID:
if (sr->chip->pub.chiprev < 2) {
*srsize = (32 * 1024);
}
break;
case BRCM_CC_43430_CHIP_ID:
/* assume sr for now as we can not check
* firmware sr capability at this point.
*/
*srsize = (64 * 1024);
break;
default:
break;
}
}
/** Return the SYS MEM size */
static uint32_t brcmf_chip_sysmem_ramsize(struct brcmf_core_priv* sysmem) {
uint32_t memsize = 0;
uint32_t coreinfo;
uint32_t idx;
uint32_t nb;
uint32_t banksize;
if (!brcmf_chip_iscoreup(&sysmem->pub)) {
brcmf_chip_resetcore(&sysmem->pub, 0, 0, 0);
}
coreinfo = brcmf_chip_core_read32(sysmem, SYSMEMREGOFFS(coreinfo));
nb = (coreinfo & SRCI_SRNB_MASK) >> SRCI_SRNB_SHIFT;
for (idx = 0; idx < nb; idx++) {
brcmf_chip_socram_banksize(sysmem, idx, &banksize);
memsize += banksize;
}
return memsize;
}
/** Return the TCM-RAM size of the ARMCR4 core. */
static uint32_t brcmf_chip_tcm_ramsize(struct brcmf_core_priv* cr4) {
uint32_t corecap;
uint32_t memsize = 0;
uint32_t nab;
uint32_t nbb;
uint32_t totb;
uint32_t bxinfo;
uint32_t idx;
corecap = brcmf_chip_core_read32(cr4, ARMCR4_CAP);
nab = (corecap & ARMCR4_TCBANB_MASK) >> ARMCR4_TCBANB_SHIFT;
nbb = (corecap & ARMCR4_TCBBNB_MASK) >> ARMCR4_TCBBNB_SHIFT;
totb = nab + nbb;
for (idx = 0; idx < totb; idx++) {
brcmf_chip_core_write32(cr4, ARMCR4_BANKIDX, idx);
bxinfo = brcmf_chip_core_read32(cr4, ARMCR4_BANKINFO);
memsize += ((bxinfo & ARMCR4_BSZ_MASK) + 1) * ARMCR4_BSZ_MULT;
}
return memsize;
}
static uint32_t brcmf_chip_tcm_rambase(struct brcmf_chip_priv* ci) {
switch (ci->pub.chip) {
case BRCM_CC_4345_CHIP_ID:
return 0x198000;
case BRCM_CC_4335_CHIP_ID:
case BRCM_CC_4339_CHIP_ID:
case BRCM_CC_4350_CHIP_ID:
case BRCM_CC_4354_CHIP_ID:
case BRCM_CC_4356_CHIP_ID:
case BRCM_CC_43567_CHIP_ID:
case BRCM_CC_43569_CHIP_ID:
case BRCM_CC_43570_CHIP_ID:
case BRCM_CC_4358_CHIP_ID:
case BRCM_CC_43602_CHIP_ID:
case BRCM_CC_4371_CHIP_ID:
return 0x180000;
case BRCM_CC_4359_CHIP_ID:
return 0x160000;
case BRCM_CC_43465_CHIP_ID:
case BRCM_CC_43525_CHIP_ID:
case BRCM_CC_4365_CHIP_ID:
case BRCM_CC_4366_CHIP_ID:
return 0x200000;
case CY_CC_4373_CHIP_ID:
return 0x160000;
default:
brcmf_err("unknown chip: %s\n", ci->pub.name);
break;
}
return 0;
}
static zx_status_t brcmf_chip_get_raminfo(struct brcmf_chip_priv* ci) {
struct brcmf_core_priv* mem_core;
struct brcmf_core* mem;
mem = brcmf_chip_get_core(&ci->pub, CHIPSET_ARM_CR4_CORE);
if (mem) {
mem_core = containerof(mem, struct brcmf_core_priv, pub);
if (mem_core->chip->pub.chip == BRCM_CC_4359_CHIP_ID) {
ci->pub.ramsize = 0xe0000;
ci->pub.rambase = 0x160000;
ci->pub.srsize = 0; // TODO - probably wrong
brcmf_dbg(TEMP, "4359: hardcoding ramsize 0x%x, rambase 0x%x, srsize 0x%x",
ci->pub.ramsize, ci->pub.rambase, ci->pub.srsize);
return ZX_OK;
}
ci->pub.ramsize = brcmf_chip_tcm_ramsize(mem_core);
ci->pub.rambase = brcmf_chip_tcm_rambase(ci);
if (!ci->pub.rambase) {
brcmf_err("RAM base not provided with ARM CR4 core\n");
return ZX_ERR_INVALID_ARGS;
}
} else {
mem = brcmf_chip_get_core(&ci->pub, CHIPSET_SYS_MEM_CORE);
if (mem) {
mem_core = containerof(mem, struct brcmf_core_priv, pub);
ci->pub.ramsize = brcmf_chip_sysmem_ramsize(mem_core);
ci->pub.rambase = brcmf_chip_tcm_rambase(ci);
if (!ci->pub.rambase) {
brcmf_err("RAM base not provided with ARM CA7 core\n");
return ZX_ERR_INVALID_ARGS;
}
} else {
mem = brcmf_chip_get_core(&ci->pub, CHIPSET_INTERNAL_MEM_CORE);
if (!mem) {
brcmf_err("No memory cores found\n");
return ZX_ERR_NO_MEMORY;
}
mem_core = containerof(mem, struct brcmf_core_priv, pub);
brcmf_chip_socram_ramsize(mem_core, &ci->pub.ramsize, &ci->pub.srsize);
}
}
brcmf_dbg(INFO, "RAM: base=0x%x size=%d (0x%x) sr=%d (0x%x)\n", ci->pub.rambase,
ci->pub.ramsize, ci->pub.ramsize, ci->pub.srsize, ci->pub.srsize);
if (!ci->pub.ramsize) {
brcmf_err("RAM size is undetermined\n");
return ZX_ERR_NO_MEMORY;
}
if (ci->pub.ramsize > BRCMF_CHIP_MAX_MEMSIZE) {
brcmf_err("RAM size is incorrect\n");
return ZX_ERR_NO_MEMORY;
}
return ZX_OK;
}
static uint32_t brcmf_chip_dmp_get_desc(struct brcmf_chip_priv* ci, uint32_t* eromaddr,
uint8_t* type) {
uint32_t val;
/* read next descriptor */
val = ci->ops->read32(ci->ctx, *eromaddr);
*eromaddr += 4;
if (!type) {
return val;
}
/* determine descriptor type */
*type = (val & DMP_DESC_TYPE_MSK);
if ((*type & ~DMP_DESC_ADDRSIZE_GT32) == DMP_DESC_ADDRESS) {
*type = DMP_DESC_ADDRESS;
}
return val;
}
static zx_status_t brcmf_chip_dmp_get_regaddr(struct brcmf_chip_priv* ci, uint32_t* eromaddr,
uint32_t* regbase, uint32_t* wrapbase) {
uint8_t desc;
uint32_t val;
uint8_t mpnum = 0;
uint8_t stype, sztype, wraptype;
*regbase = 0;
*wrapbase = 0;
val = brcmf_chip_dmp_get_desc(ci, eromaddr, &desc);
if (desc == DMP_DESC_MASTER_PORT) {
mpnum = (val & DMP_MASTER_PORT_NUM) >> DMP_MASTER_PORT_NUM_S;
wraptype = DMP_SLAVE_TYPE_MWRAP;
} else if (desc == DMP_DESC_ADDRESS) {
/* revert erom address */
*eromaddr -= 4;
wraptype = DMP_SLAVE_TYPE_SWRAP;
} else {
*eromaddr -= 4;
return ZX_ERR_WRONG_TYPE;
}
do {
/* locate address descriptor */
do {
val = brcmf_chip_dmp_get_desc(ci, eromaddr, &desc);
/* unexpected table end */
if (desc == DMP_DESC_EOT) {
*eromaddr -= 4;
return ZX_ERR_WRONG_TYPE;
}
} while (desc != DMP_DESC_ADDRESS && desc != DMP_DESC_COMPONENT);
/* stop if we crossed current component border */
if (desc == DMP_DESC_COMPONENT) {
*eromaddr -= 4;
return ZX_OK;
}
/* skip upper 32-bit address descriptor */
if (val & DMP_DESC_ADDRSIZE_GT32) {
brcmf_chip_dmp_get_desc(ci, eromaddr, NULL);
}
sztype = (val & DMP_SLAVE_SIZE_TYPE) >> DMP_SLAVE_SIZE_TYPE_S;
/* next size descriptor can be skipped */
if (sztype == DMP_SLAVE_SIZE_DESC) {
val = brcmf_chip_dmp_get_desc(ci, eromaddr, NULL);
/* skip upper size descriptor if present */
if (val & DMP_DESC_ADDRSIZE_GT32) {
brcmf_chip_dmp_get_desc(ci, eromaddr, NULL);
}
}
/* only look for 4K register regions */
if (sztype != DMP_SLAVE_SIZE_4K) {
continue;
}
stype = (val & DMP_SLAVE_TYPE) >> DMP_SLAVE_TYPE_S;
/* only regular slave and wrapper */
if (*regbase == 0 && stype == DMP_SLAVE_TYPE_SLAVE) {
*regbase = val & DMP_SLAVE_ADDR_BASE;
}
if (*wrapbase == 0 && stype == wraptype) {
*wrapbase = val & DMP_SLAVE_ADDR_BASE;
}
} while (*regbase == 0 || *wrapbase == 0);
return ZX_OK;
}
static zx_status_t brcmf_chip_dmp_erom_scan(struct brcmf_chip_priv* ci) {
struct brcmf_core* core;
uint32_t eromaddr;
uint8_t desc_type = 0;
uint32_t val;
uint16_t id;
uint8_t nmp, nsp, nmw, nsw, rev;
uint32_t base, wrap;
zx_status_t err;
eromaddr = ci->ops->read32(ci->ctx, CORE_CC_REG(SI_ENUM_BASE, eromptr));
while (desc_type != DMP_DESC_EOT) {
val = brcmf_chip_dmp_get_desc(ci, &eromaddr, &desc_type);
if (!(val & DMP_DESC_VALID)) {
continue;
}
if (desc_type == DMP_DESC_EMPTY) {
continue;
}
/* need a component descriptor */
if (desc_type != DMP_DESC_COMPONENT) {
continue;
}
id = (val & DMP_COMP_PARTNUM) >> DMP_COMP_PARTNUM_S;
/* next descriptor must be component as well */
val = brcmf_chip_dmp_get_desc(ci, &eromaddr, &desc_type);
if (WARN_ON((val & DMP_DESC_TYPE_MSK) != DMP_DESC_COMPONENT)) {
return ZX_ERR_WRONG_TYPE;
}
/* only look at cores with master port(s) */
nmp = (val & DMP_COMP_NUM_MPORT) >> DMP_COMP_NUM_MPORT_S;
nsp = (val & DMP_COMP_NUM_SPORT) >> DMP_COMP_NUM_SPORT_S;
nmw = (val & DMP_COMP_NUM_MWRAP) >> DMP_COMP_NUM_MWRAP_S;
nsw = (val & DMP_COMP_NUM_SWRAP) >> DMP_COMP_NUM_SWRAP_S;
rev = (val & DMP_COMP_REVISION) >> DMP_COMP_REVISION_S;
/* need core with ports */
if (nmw + nsw == 0 && id != CHIPSET_PMU_CORE) {
continue;
}
/* try to obtain register address info */
err = brcmf_chip_dmp_get_regaddr(ci, &eromaddr, &base, &wrap);
if (err != ZX_OK) {
continue;
}
/* finally a core to be added */
err = brcmf_chip_add_core(ci, id, base, wrap, &core);
if (err != ZX_OK) {
return err;
}
core->rev = rev;
}
return ZX_OK;
}
static zx_status_t brcmf_chip_recognition(struct brcmf_chip_priv* ci) {
struct brcmf_core* core;
uint32_t regdata;
uint32_t socitype;
zx_status_t ret;
/* Get CC core rev
* Chipid is assume to be at offset 0 from SI_ENUM_BASE
* For different chiptypes or old sdio hosts w/o chipcommon,
* other ways of recognition should be added here.
*/
regdata = ci->ops->read32(ci->ctx, CORE_CC_REG(SI_ENUM_BASE, chipid));
ci->pub.chip = regdata & CID_ID_MASK;
ci->pub.chiprev = (regdata & CID_REV_MASK) >> CID_REV_SHIFT;
socitype = (regdata & CID_TYPE_MASK) >> CID_TYPE_SHIFT;
brcmf_chip_name(ci->pub.chip, ci->pub.name, sizeof(ci->pub.name));
brcmf_dbg(INFO, "found %s chip: BCM%s, rev=%d\n", socitype == SOCI_SB ? "SB" : "AXI",
ci->pub.name, ci->pub.chiprev);
if (socitype == SOCI_SB) {
if (ci->pub.chip != BRCM_CC_4329_CHIP_ID) {
brcmf_err("SB chip is not supported\n");
return ZX_ERR_WRONG_TYPE;
}
ci->iscoreup = brcmf_chip_sb_iscoreup;
ci->coredisable = brcmf_chip_sb_coredisable;
ci->resetcore = brcmf_chip_sb_resetcore;
brcmf_chip_add_core(ci, CHIPSET_CHIPCOMMON_CORE, SI_ENUM_BASE, 0, &core);
brcmf_chip_sb_corerev(ci, core);
brcmf_chip_add_core(ci, CHIPSET_SDIO_DEV_CORE, BCM4329_CORE_BUS_BASE, 0, &core);
brcmf_chip_sb_corerev(ci, core);
brcmf_chip_add_core(ci, CHIPSET_INTERNAL_MEM_CORE, BCM4329_CORE_SOCRAM_BASE, 0, &core);
brcmf_chip_sb_corerev(ci, core);
brcmf_chip_add_core(ci, CHIPSET_ARM_CM3_CORE, BCM4329_CORE_ARM_BASE, 0, &core);
brcmf_chip_sb_corerev(ci, core);
brcmf_chip_add_core(ci, CHIPSET_80211_CORE, 0x18001000, 0, &core);
brcmf_chip_sb_corerev(ci, core);
} else if (socitype == SOCI_AI) {
ci->iscoreup = brcmf_chip_ai_iscoreup;
ci->coredisable = brcmf_chip_ai_coredisable;
ci->resetcore = brcmf_chip_ai_resetcore;
brcmf_dbg(TEMP, "about to erom_scan in SOCI_AI");
brcmf_chip_dmp_erom_scan(ci);
brcmf_dbg(TEMP, "Survived erom scan");
} else {
brcmf_err("chip backplane type %u is not supported\n", socitype);
return ZX_ERR_WRONG_TYPE;
}
ret = brcmf_chip_cores_check(ci);
brcmf_dbg(TEMP, "Survived cores_check");
if (ret != ZX_OK) {
return ret;
}
/* assure chip is passive for core access */
brcmf_chip_set_passive(&ci->pub);
brcmf_dbg(TEMP, "Survived set_passive");
PAUSE;
/* Call bus specific reset function now. Cores have been determined
* but further access may require a chip specific reset at this point.
*/
if (ci->ops->reset) {
brcmf_dbg(TEMP, "Trying reset");
ci->ops->reset(ci->ctx, &ci->pub);
brcmf_dbg(TEMP, "Survived reset");
PAUSE;
brcmf_chip_set_passive(&ci->pub);
brcmf_dbg(TEMP, "Survived passive");
PAUSE;
}
//return brcmf_chip_get_raminfo(ci);
ret = brcmf_chip_get_raminfo(ci);
brcmf_dbg(TEMP, "chip_get_raminfo returned %d", ret);
PAUSE;
return ret;
}
static void brcmf_chip_disable_arm(struct brcmf_chip_priv* chip, uint16_t id) {
struct brcmf_core* core;
struct brcmf_core_priv* cpu;
uint32_t val;
core = brcmf_chip_get_core(&chip->pub, id);
if (!core) {
return;
}
switch (id) {
case CHIPSET_ARM_CM3_CORE:
brcmf_chip_coredisable(core, 0, 0);
break;
case CHIPSET_ARM_CR4_CORE:
case CHIPSET_ARM_CA7_CORE:
cpu = containerof(core, struct brcmf_core_priv, pub);
/* clear all IOCTL bits except HALT bit */
val = chip->ops->read32(chip->ctx, cpu->wrapbase + BC_CORE_CONTROL);
val &= ARMCR4_BCMA_IOCTL_CPUHALT;
brcmf_dbg(TEMP, "About to resetcore, id %d, val %d, CPUHALT", id, val);
brcmf_chip_resetcore(core, val, ARMCR4_BCMA_IOCTL_CPUHALT, ARMCR4_BCMA_IOCTL_CPUHALT);
break;
default:
brcmf_err("unknown id: %u\n", id);
break;
}
}
static int brcmf_chip_setup(struct brcmf_chip_priv* chip) {
struct brcmf_chip* pub;
struct brcmf_core_priv* cc;
struct brcmf_core* pmu;
uint32_t base;
uint32_t val;
int ret = 0;
pub = &chip->pub;
cc = list_peek_head_type(&chip->cores, struct brcmf_core_priv, list);
base = cc->pub.base;
/* get chipcommon capabilites */
pub->cc_caps = chip->ops->read32(chip->ctx, CORE_CC_REG(base, capabilities));
pub->cc_caps_ext = chip->ops->read32(chip->ctx, CORE_CC_REG(base, capabilities_ext));
/* get pmu caps & rev */
pmu = brcmf_chip_get_pmu(pub); /* after reading cc_caps_ext */
if (pub->cc_caps & CC_CAP_PMU) {
val = chip->ops->read32(chip->ctx, CORE_CC_REG(pmu->base, pmucapabilities));
pub->pmurev = val & PCAP_REV_MASK;
pub->pmucaps = val;
}
brcmf_dbg(INFO, "ccrev=%d, pmurev=%d, pmucaps=0x%x\n", cc->pub.rev, pub->pmurev, pub->pmucaps);
/* execute bus core specific setup */
if (chip->ops->setup) {
ret = chip->ops->setup(chip->ctx, pub);
}
return ret;
}
zx_status_t brcmf_chip_attach(void* ctx, const struct brcmf_buscore_ops* ops,
struct brcmf_chip** chip_out) {
struct brcmf_chip_priv* chip;
zx_status_t err = ZX_OK;
if (chip_out) {
*chip_out = NULL;
}
if (WARN_ON(!ops->read32)) {
err = ZX_ERR_INVALID_ARGS;
}
if (WARN_ON(!ops->write32)) {
err = ZX_ERR_INVALID_ARGS;
}
if (WARN_ON(!ops->prepare)) {
err = ZX_ERR_INVALID_ARGS;
}
if (WARN_ON(!ops->activate)) {
err = ZX_ERR_INVALID_ARGS;
}
if (err != ZX_OK) {
return ZX_ERR_INVALID_ARGS;
}
chip = calloc(1, sizeof(*chip));
if (!chip) {
return ZX_ERR_NO_MEMORY;
}
list_initialize(&chip->cores);
chip->num_cores = 0;
chip->ops = ops;
chip->ctx = ctx;
err = ops->prepare(ctx);
if (err != ZX_OK) {
goto fail;
}
err = brcmf_chip_recognition(chip);
brcmf_dbg(TEMP, "survived chip_recognition, err %s", zx_status_get_string(err));
if (err != ZX_OK) {
goto fail;
}
err = brcmf_chip_setup(chip);
brcmf_dbg(TEMP, "survived chip_setup, err %s", zx_status_get_string(err));
if (err != ZX_OK) {
goto fail;
}
if (chip_out) {
*chip_out = &chip->pub;
}
return ZX_OK;
fail:
brcmf_chip_detach(&chip->pub);
brcmf_dbg(TEMP, "survived fail-detach");
return err;
}
void brcmf_chip_detach(struct brcmf_chip* pub) {
struct brcmf_chip_priv* chip;
struct brcmf_core_priv* core;
struct brcmf_core_priv* tmp;
chip = containerof(pub, struct brcmf_chip_priv, pub);
list_for_every_entry_safe(&chip->cores, core, tmp, struct brcmf_core_priv, list) {
list_delete(&core->list);
free(core);
}
free(chip);
}
struct brcmf_core* brcmf_chip_get_core(struct brcmf_chip* pub, uint16_t coreid) {
struct brcmf_chip_priv* chip;
struct brcmf_core_priv* core;
chip = containerof(pub, struct brcmf_chip_priv, pub);
list_for_every_entry(&chip->cores, core, struct brcmf_core_priv, list) {
if (core->pub.id == coreid) {
return &core->pub;
}
}
return NULL;
}
struct brcmf_core* brcmf_chip_get_chipcommon(struct brcmf_chip* pub) {
struct brcmf_chip_priv* chip;
struct brcmf_core_priv* cc;
chip = containerof(pub, struct brcmf_chip_priv, pub);
cc = list_peek_head_type(&chip->cores, struct brcmf_core_priv, list);
if (WARN_ON(!cc || cc->pub.id != CHIPSET_CHIPCOMMON_CORE)) {
return brcmf_chip_get_core(pub, CHIPSET_CHIPCOMMON_CORE);
}
return &cc->pub;
}
struct brcmf_core* brcmf_chip_get_pmu(struct brcmf_chip* pub) {
struct brcmf_core* cc = brcmf_chip_get_chipcommon(pub);
struct brcmf_core* pmu;
/* See if there is separated PMU core available */
if (cc->rev >= 35 && pub->cc_caps_ext & BC_CORE_ASYNC_BACKOFF_CAPABILITY_PRESENT) {
pmu = brcmf_chip_get_core(pub, CHIPSET_PMU_CORE);
if (pmu) {
return pmu;
}
}
/* Fallback to ChipCommon core for older hardware */
return cc;
}
bool brcmf_chip_iscoreup(struct brcmf_core* pub) {
struct brcmf_core_priv* core;
core = containerof(pub, struct brcmf_core_priv, pub);
return core->chip->iscoreup(core);
}
void brcmf_chip_coredisable(struct brcmf_core* pub, uint32_t prereset, uint32_t reset) {
struct brcmf_core_priv* core;
core = containerof(pub, struct brcmf_core_priv, pub);
core->chip->coredisable(core, prereset, reset);
}
void brcmf_chip_resetcore(struct brcmf_core* pub, uint32_t prereset, uint32_t reset,
uint32_t postreset) {
struct brcmf_core_priv* core;
core = containerof(pub, struct brcmf_core_priv, pub);
core->chip->resetcore(core, prereset, reset, postreset);
}
static void brcmf_chip_cm3_set_passive(struct brcmf_chip_priv* chip) {
struct brcmf_core* core;
struct brcmf_core_priv* sr;
brcmf_dbg(TEMP, "cm3");
brcmf_chip_disable_arm(chip, CHIPSET_ARM_CM3_CORE);
core = brcmf_chip_get_core(&chip->pub, CHIPSET_80211_CORE);
brcmf_dbg(TEMP, "cm3->resetcore");
brcmf_chip_resetcore(core, D11_BCMA_IOCTL_PHYRESET | D11_BCMA_IOCTL_PHYCLOCKEN,
D11_BCMA_IOCTL_PHYCLOCKEN, D11_BCMA_IOCTL_PHYCLOCKEN);
brcmf_dbg(TEMP, "cm3<-resetcore->get_core");
core = brcmf_chip_get_core(&chip->pub, CHIPSET_INTERNAL_MEM_CORE);
brcmf_dbg(TEMP, "get_core->reset");
brcmf_chip_resetcore(core, 0, 0, 0);
/* disable bank #3 remap for this device */
if (chip->pub.chip == BRCM_CC_43430_CHIP_ID) {
brcmf_dbg(TEMP, "cm3 43430");
sr = containerof(core, struct brcmf_core_priv, pub);
brcmf_chip_core_write32(sr, SOCRAMREGOFFS(bankidx), 3);
brcmf_chip_core_write32(sr, SOCRAMREGOFFS(bankpda), 0);
}
brcmf_dbg(TEMP, "cm3 survived");
}
static bool brcmf_chip_cm3_set_active(struct brcmf_chip_priv* chip) {
struct brcmf_core* core;
core = brcmf_chip_get_core(&chip->pub, CHIPSET_INTERNAL_MEM_CORE);
if (!brcmf_chip_iscoreup(core)) {
brcmf_err("SOCRAM core is down after reset?\n");
return false;
}
chip->ops->activate(chip->ctx, &chip->pub, 0);
core = brcmf_chip_get_core(&chip->pub, CHIPSET_ARM_CM3_CORE);
brcmf_chip_resetcore(core, 0, 0, 0);
return true;
}
static inline void brcmf_chip_cr4_set_passive(struct brcmf_chip_priv* chip) {
struct brcmf_core* core;
brcmf_dbg(TEMP, "1");
brcmf_chip_disable_arm(chip, CHIPSET_ARM_CR4_CORE);
brcmf_dbg(TEMP, "2");
// WLAN-745
if (chip->pub.chip != BRCM_CC_4359_CHIP_ID) {
core = brcmf_chip_get_core(&chip->pub, CHIPSET_80211_CORE);
brcmf_dbg(TEMP, "resetcore, id %d, val %d, PHYCLOCKEN", CHIPSET_80211_CORE,
D11_BCMA_IOCTL_PHYRESET | D11_BCMA_IOCTL_PHYCLOCKEN);
PAUSE;
brcmf_chip_resetcore(core, D11_BCMA_IOCTL_PHYRESET | D11_BCMA_IOCTL_PHYCLOCKEN,
D11_BCMA_IOCTL_PHYCLOCKEN, D11_BCMA_IOCTL_PHYCLOCKEN);
brcmf_dbg(TEMP, "4");
PAUSE;
}
}
static bool brcmf_chip_cr4_set_active(struct brcmf_chip_priv* chip, uint32_t rstvec) {
struct brcmf_core* core;
chip->ops->activate(chip->ctx, &chip->pub, rstvec);
/* restore ARM */
core = brcmf_chip_get_core(&chip->pub, CHIPSET_ARM_CR4_CORE);
brcmf_chip_resetcore(core, ARMCR4_BCMA_IOCTL_CPUHALT, 0, 0);
return true;
}
static inline void brcmf_chip_ca7_set_passive(struct brcmf_chip_priv* chip) {
struct brcmf_core* core;
brcmf_chip_disable_arm(chip, CHIPSET_ARM_CA7_CORE);
core = brcmf_chip_get_core(&chip->pub, CHIPSET_80211_CORE);
brcmf_chip_resetcore(core, D11_BCMA_IOCTL_PHYRESET | D11_BCMA_IOCTL_PHYCLOCKEN,
D11_BCMA_IOCTL_PHYCLOCKEN, D11_BCMA_IOCTL_PHYCLOCKEN);
}
static bool brcmf_chip_ca7_set_active(struct brcmf_chip_priv* chip, uint32_t rstvec) {
struct brcmf_core* core;
chip->ops->activate(chip->ctx, &chip->pub, rstvec);
/* restore ARM */
core = brcmf_chip_get_core(&chip->pub, CHIPSET_ARM_CA7_CORE);
brcmf_chip_resetcore(core, ARMCR4_BCMA_IOCTL_CPUHALT, 0, 0);
return true;
}
void brcmf_chip_set_passive(struct brcmf_chip* pub) {
struct brcmf_chip_priv* chip;
struct brcmf_core* arm;
brcmf_dbg(TEMP, "Enter");
chip = containerof(pub, struct brcmf_chip_priv, pub);
arm = brcmf_chip_get_core(pub, CHIPSET_ARM_CR4_CORE);
brcmf_dbg(TEMP, "cr4 arm %p", arm);
if (arm) {
brcmf_chip_cr4_set_passive(chip);
return;
}
arm = brcmf_chip_get_core(pub, CHIPSET_ARM_CA7_CORE);
brcmf_dbg(TEMP, "ca7 arm %p", arm);
if (arm) {
brcmf_chip_ca7_set_passive(chip);
return;
}
arm = brcmf_chip_get_core(pub, CHIPSET_ARM_CM3_CORE);
brcmf_dbg(TEMP, "cm3 arm %p", arm);
if (arm) {
brcmf_chip_cm3_set_passive(chip);
brcmf_dbg(TEMP, "Survived cm3_set_passive");
return;
}
}
bool brcmf_chip_set_active(struct brcmf_chip* pub, uint32_t rstvec) {
struct brcmf_chip_priv* chip;
struct brcmf_core* arm;
brcmf_dbg(TRACE, "Enter\n");
chip = containerof(pub, struct brcmf_chip_priv, pub);
arm = brcmf_chip_get_core(pub, CHIPSET_ARM_CR4_CORE);
if (arm) {
return brcmf_chip_cr4_set_active(chip, rstvec);
}
arm = brcmf_chip_get_core(pub, CHIPSET_ARM_CA7_CORE);
if (arm) {
return brcmf_chip_ca7_set_active(chip, rstvec);
}
arm = brcmf_chip_get_core(pub, CHIPSET_ARM_CM3_CORE);
if (arm) {
return brcmf_chip_cm3_set_active(chip);
}
return false;
}
bool brcmf_chip_sr_capable(struct brcmf_chip* pub) {
uint32_t base, addr, reg;
uint32_t pmu_cc3_mask = ~0;
struct brcmf_chip_priv* chip;
struct brcmf_core* pmu = brcmf_chip_get_pmu(pub);
brcmf_dbg(TRACE, "Enter\n");
/* old chips with PMU version less than 17 don't support save restore */
if (pub->pmurev < 17) {
return false;
}
base = brcmf_chip_get_chipcommon(pub)->base;
chip = containerof(pub, struct brcmf_chip_priv, pub);
switch (pub->chip) {
case BRCM_CC_4354_CHIP_ID:
case BRCM_CC_4356_CHIP_ID:
case BRCM_CC_4345_CHIP_ID:
/* explicitly check SR engine enable bit */
pmu_cc3_mask = BIT(2);
/* fall-through */
case BRCM_CC_43241_CHIP_ID:
case BRCM_CC_4335_CHIP_ID:
case BRCM_CC_4339_CHIP_ID:
/* read PMU chipcontrol register 3 */
addr = CORE_CC_REG(pmu->base, chipcontrol_addr);
chip->ops->write32(chip->ctx, addr, 3);
addr = CORE_CC_REG(pmu->base, chipcontrol_data);
reg = chip->ops->read32(chip->ctx, addr);
return (reg & pmu_cc3_mask) != 0;
case BRCM_CC_43430_CHIP_ID:
addr = CORE_CC_REG(base, sr_control1);
reg = chip->ops->read32(chip->ctx, addr);
return reg != 0;
default:
addr = CORE_CC_REG(pmu->base, pmucapabilities_ext);
reg = chip->ops->read32(chip->ctx, addr);
if ((reg & PCAPEXT_SR_SUPPORTED_MASK) == 0) {
return false;
}
addr = CORE_CC_REG(pmu->base, retention_ctl);
reg = chip->ops->read32(chip->ctx, addr);
return (reg & (PMU_RCTL_MACPHY_DISABLE_MASK | PMU_RCTL_LOGIC_DISABLE_MASK)) == 0;
}
}