blob: 20342b0cc373ed2875892375c783886ddf9cda68 [file] [log] [blame]
/*
* Copyright (c) 2005-2011 Atheros Communications Inc.
* Copyright (c) 2011-2013 Qualcomm Atheros, Inc.
*
* Permission to use, copy, modify, and/or distribute this software for any
* purpose with or without fee is hereby granted, provided that the above
* copyright notice and this permission notice appear in all copies.
*
* THE SOFTWARE IS PROVIDED "AS IS" AND THE AUTHOR DISCLAIMS ALL WARRANTIES
* WITH REGARD TO THIS SOFTWARE INCLUDING ALL IMPLIED WARRANTIES OF
* MERCHANTABILITY AND FITNESS. IN NO EVENT SHALL THE AUTHOR BE LIABLE FOR
* ANY SPECIAL, DIRECT, INDIRECT, OR CONSEQUENTIAL DAMAGES OR ANY DAMAGES
* WHATSOEVER RESULTING FROM LOSS OF USE, DATA OR PROFITS, WHETHER IN AN
* ACTION OF CONTRACT, NEGLIGENCE OR OTHER TORTIOUS ACTION, ARISING OUT OF
* OR IN CONNECTION WITH THE USE OR PERFORMANCE OF THIS SOFTWARE.
*/
#include "mac.h"
#include <stdlib.h>
#include <zircon/status.h>
#include "core.h"
#include "debug.h"
#include "hif.h"
#include "htt.h"
#include "ieee80211.h"
#include "macros.h"
#include "testmode.h"
#include "txrx.h"
#include "utils.h"
#include "wmi-ops.h"
#include "wmi-tlv.h"
#include "wmi.h"
#include "wow.h"
// clang-format off
static const uint8_t bcast_addr[ETH_ALEN] = {0xff, 0xff, 0xff, 0xff, 0xff, 0xff};
// The mask of bit |x|.
#ifndef BIT
#define BIT(x) (1 << (x))
#endif
#define CHAN2G(_channel, _freq20, _freq40plus, _freq40minus) { \
.hw_value = (_channel), \
.center_freq = { .cbw20 = _freq20, \
.cbw40_above = _freq40plus, \
.cbw40_below = _freq40minus, \
.cbw80 = 0, \
.cbw160 = 0 }, \
.flags = 0, \
.max_antenna_gain = 0, \
.max_power = 30, \
.max_reg_power = 0, \
}
#define CHAN5G(_channel, _freq20, _freq40plus, _freq40minus, _freq80, _freq160) { \
.hw_value = (_channel), \
.center_freq = { .cbw20 = _freq20, \
.cbw40_above = _freq40plus, \
.cbw40_below = _freq40minus, \
.cbw80 = _freq80, \
.cbw160 = _freq160 }, \
.flags = 0, \
.max_antenna_gain = 0, \
.max_power = 30, \
.max_reg_power = 0, \
}
static const struct ath10k_channel ath10k_2ghz_channels[] = {
/* CBW: 20 40+ 40- */
CHAN2G(1, 2412, 2422, 0),
CHAN2G(2, 2417, 2427, 0),
CHAN2G(3, 2422, 2432, 0),
CHAN2G(4, 2427, 2437, 0),
CHAN2G(5, 2432, 2442, 2422),
CHAN2G(6, 2437, 2447, 2427),
CHAN2G(7, 2442, 2452, 2432),
CHAN2G(8, 2447, 2457, 2437),
CHAN2G(9, 2452, 2462, 2442),
CHAN2G(10, 2457, 0, 2447),
CHAN2G(11, 2462, 0, 2452),
CHAN2G(12, 2467, 0, 2457),
CHAN2G(13, 2472, 0, 2462),
CHAN2G(14, 2484, 0, 0),
};
static const struct ath10k_channel ath10k_5ghz_channels[] = {
/* CBW: 20 40+ 40- 80 160 */
CHAN5G(36, 5180, 5190, 0, 5210, 5250),
CHAN5G(38, 0, 5190, 0, 0, 0),
CHAN5G(40, 5200, 5210, 5190, 5210, 5250),
CHAN5G(42, 0, 0, 0, 5210, 0),
CHAN5G(44, 5220, 5230, 5210, 5210, 5250),
CHAN5G(46, 0, 5230, 0, 0, 0),
CHAN5G(48, 5240, 5250, 5230, 5210, 5250),
CHAN5G(50, 0, 0, 0, 0, 5250),
CHAN5G(52, 5260, 5270, 5250, 5290, 5250),
CHAN5G(54, 0, 5270, 0, 0, 0),
CHAN5G(56, 5280, 5290, 5270, 5290, 5250),
CHAN5G(58, 0, 0, 0, 5290, 0),
CHAN5G(60, 5300, 5310, 5290, 5290, 5250),
CHAN5G(62, 0, 5310, 0, 0, 0),
CHAN5G(64, 5320, 0, 5310, 5290, 5250),
CHAN5G(100, 5500, 5510, 0, 5530, 5570),
CHAN5G(102, 0, 5510, 0, 0, 0),
CHAN5G(104, 5520, 5530, 5510, 5530, 5570),
CHAN5G(106, 0, 0, 0, 5530, 0),
CHAN5G(108, 5540, 5550, 5530, 5530, 5570),
CHAN5G(110, 0, 5550, 0, 0, 0),
CHAN5G(112, 5560, 5570, 5550, 5530, 5570),
CHAN5G(114, 0, 0, 0, 0, 5570),
CHAN5G(116, 5580, 5590, 5570, 5610, 5570),
CHAN5G(118, 0, 5590, 0, 0, 0),
CHAN5G(120, 5600, 5610, 5590, 5610, 5570),
CHAN5G(122, 0, 0, 0, 5610, 0),
CHAN5G(124, 5620, 5630, 5610, 5610, 5570),
CHAN5G(126, 0, 5630, 0, 0, 0),
CHAN5G(128, 5640, 5650, 5630, 5610, 5570),
CHAN5G(132, 5660, 5670, 5650, 5690, 0),
CHAN5G(134, 0, 5670, 0, 0, 0),
CHAN5G(136, 5680, 5690, 5670, 5690, 0),
CHAN5G(138, 0, 0, 0, 5690, 0),
CHAN5G(140, 5700, 5710, 5690, 5690, 0),
CHAN5G(142, 0, 5710, 0, 0, 0),
CHAN5G(144, 5720, 0, 5710, 5690, 0),
CHAN5G(149, 5745, 5755, 0, 5775, 0),
CHAN5G(151, 0, 5755, 0, 0, 0),
CHAN5G(153, 5765, 5775, 5755, 5775, 0),
CHAN5G(155, 0, 0, 0, 5775, 0),
CHAN5G(157, 5785, 5795, 5775, 5775, 0),
CHAN5G(159, 0, 5795, 0, 0, 0),
CHAN5G(161, 5805, 5815, 5795, 5775, 0),
CHAN5G(165, 5825, 0, 5815, 0, 0),
};
// clang-format on
// Band information that is consistent across all supported ath10k chipsets
static const struct ath10k_band ath10k_supported_bands[] = {
{
.band_id = WLAN_BAND_2GHZ,
.ht_supported = true,
.vht_supported = false,
// TODO(NET-1375):
// Unmark the "BasicRate" bit for the first 4 rates.
// Rename ".basic_rates" to ".supported_rates"
// See IEEE Std 802.11-2016, 9.4.2.3 for encoding
.basic_rates = {0x82, 0x84, 0x8b, 0x96, 0x0c, 0x12, 0x18, 0x24, 0x30, 0x48, 0x60, 0x6c},
.base_freq = 2407,
.n_channels = countof(ath10k_2ghz_channels),
.channels = ath10k_2ghz_channels,
},
{
.band_id = WLAN_BAND_5GHZ,
.ht_supported = true,
.vht_supported = true,
// TODO(NET-1375):
// Unmark the "BasicRate" bit for the first 4 rates.
// Rename ".basic_rates" to ".supported_rates"
// See IEEE Std 802.11-2016, 9.4.2.3 for encoding
// Basic rates:
// 6 Mbps, 9 Mbps, 12 Mbps
// Supported rates:
// 20 Mbps, 24 Mbps, 36 Mbps, 48 Mbps, 54 Mbps
.basic_rates = {0x8c, 0x92, 0x98, 0x24, 0x30, 0x48, 0x60, 0x6c},
.base_freq = 5000,
.n_channels = countof(ath10k_5ghz_channels),
.channels = ath10k_5ghz_channels,
},
};
// Gets the band ID from |channel| number.
//
// Returns: WLAN_BAND_COUNT if |channel| is not found in the band info.
static enum Band chan_to_band(uint8_t channel) {
for(size_t band_idx = 0; band_idx < countof(ath10k_supported_bands); band_idx++) {
const struct ath10k_band* band = &ath10k_supported_bands[band_idx];
for(size_t chan_idx = 0; chan_idx < band->n_channels; chan_idx++) {
if (channel == band->channels[chan_idx].hw_value) {
return band->band_id;
}
}
}
ZX_DEBUG_ASSERT(false); // This should not happen since MLME should honor what ath10k reports.
return WLAN_BAND_COUNT; // Not found
}
static zx_status_t ath10k_add_interface(struct ath10k* ar, uint32_t vif_role);
/*********/
/* Rates */
/*********/
#if 0 // NEEDS PORTING
static struct ieee80211_rate ath10k_rates[] = {
{
.bitrate = 10,
.hw_value = ATH10K_HW_RATE_CCK_LP_1M
},
{
.bitrate = 20,
.hw_value = ATH10K_HW_RATE_CCK_LP_2M,
.hw_value_short = ATH10K_HW_RATE_CCK_SP_2M,
.flags = IEEE80211_RATE_SHORT_PREAMBLE
},
{
.bitrate = 55,
.hw_value = ATH10K_HW_RATE_CCK_LP_5_5M,
.hw_value_short = ATH10K_HW_RATE_CCK_SP_5_5M,
.flags = IEEE80211_RATE_SHORT_PREAMBLE
},
{
.bitrate = 110,
.hw_value = ATH10K_HW_RATE_CCK_LP_11M,
.hw_value_short = ATH10K_HW_RATE_CCK_SP_11M,
.flags = IEEE80211_RATE_SHORT_PREAMBLE
},
{ .bitrate = 60, .hw_value = ATH10K_HW_RATE_OFDM_6M },
{ .bitrate = 90, .hw_value = ATH10K_HW_RATE_OFDM_9M },
{ .bitrate = 120, .hw_value = ATH10K_HW_RATE_OFDM_12M },
{ .bitrate = 180, .hw_value = ATH10K_HW_RATE_OFDM_18M },
{ .bitrate = 240, .hw_value = ATH10K_HW_RATE_OFDM_24M },
{ .bitrate = 360, .hw_value = ATH10K_HW_RATE_OFDM_36M },
{ .bitrate = 480, .hw_value = ATH10K_HW_RATE_OFDM_48M },
{ .bitrate = 540, .hw_value = ATH10K_HW_RATE_OFDM_54M },
};
static struct ieee80211_rate ath10k_rates_rev2[] = {
{
.bitrate = 10,
.hw_value = ATH10K_HW_RATE_REV2_CCK_LP_1M
},
{
.bitrate = 20,
.hw_value = ATH10K_HW_RATE_REV2_CCK_LP_2M,
.hw_value_short = ATH10K_HW_RATE_REV2_CCK_SP_2M,
.flags = IEEE80211_RATE_SHORT_PREAMBLE
},
{
.bitrate = 55,
.hw_value = ATH10K_HW_RATE_REV2_CCK_LP_5_5M,
.hw_value_short = ATH10K_HW_RATE_REV2_CCK_SP_5_5M,
.flags = IEEE80211_RATE_SHORT_PREAMBLE
},
{
.bitrate = 110,
.hw_value = ATH10K_HW_RATE_REV2_CCK_LP_11M,
.hw_value_short = ATH10K_HW_RATE_REV2_CCK_SP_11M,
.flags = IEEE80211_RATE_SHORT_PREAMBLE
},
{ .bitrate = 60, .hw_value = ATH10K_HW_RATE_OFDM_6M },
{ .bitrate = 90, .hw_value = ATH10K_HW_RATE_OFDM_9M },
{ .bitrate = 120, .hw_value = ATH10K_HW_RATE_OFDM_12M },
{ .bitrate = 180, .hw_value = ATH10K_HW_RATE_OFDM_18M },
{ .bitrate = 240, .hw_value = ATH10K_HW_RATE_OFDM_24M },
{ .bitrate = 360, .hw_value = ATH10K_HW_RATE_OFDM_36M },
{ .bitrate = 480, .hw_value = ATH10K_HW_RATE_OFDM_48M },
{ .bitrate = 540, .hw_value = ATH10K_HW_RATE_OFDM_54M },
};
#define ATH10K_MAC_FIRST_OFDM_RATE_IDX 4
#define ath10k_a_rates (ath10k_rates + ATH10K_MAC_FIRST_OFDM_RATE_IDX)
#define ath10k_a_rates_size (countof(ath10k_rates) - ATH10K_MAC_FIRST_OFDM_RATE_IDX)
#define ath10k_g_rates (ath10k_rates + 0)
#define ath10k_g_rates_size (countof(ath10k_rates))
#define ath10k_g_rates_rev2 (ath10k_rates_rev2 + 0)
#define ath10k_g_rates_rev2_size (countof(ath10k_rates_rev2))
static bool ath10k_mac_bitrate_is_cck(int bitrate) {
switch (bitrate) {
case 10:
case 20:
case 55:
case 110:
return true;
}
return false;
}
uint8_t ath10k_mac_hw_rate_to_idx(const struct ieee80211_supported_band* sband,
uint8_t hw_rate, bool cck) {
const struct ieee80211_rate* rate;
int i;
for (i = 0; i < sband->n_bitrates; i++) {
rate = &sband->bitrates[i];
if (ath10k_mac_bitrate_is_cck(rate->bitrate) != cck) {
continue;
}
if (rate->hw_value == hw_rate) {
return i;
} else if (rate->flags & IEEE80211_RATE_SHORT_PREAMBLE &&
rate->hw_value_short == hw_rate) {
return i;
}
}
return 0;
}
uint8_t ath10k_mac_bitrate_to_idx(const struct ieee80211_supported_band* sband,
uint32_t bitrate) {
int i;
for (i = 0; i < sband->n_bitrates; i++)
if (sband->bitrates[i].bitrate == bitrate) {
return i;
}
return 0;
}
static int ath10k_mac_get_max_vht_mcs_map(uint16_t mcs_map, int nss) {
switch ((mcs_map >> (2 * nss)) & 0x3) {
case IEEE80211_VHT_MCS_SUPPORT_0_7:
return (1 << 8) - 1;
case IEEE80211_VHT_MCS_SUPPORT_0_8:
return (1 << 9) - 1;
case IEEE80211_VHT_MCS_SUPPORT_0_9:
return (1 << 10) - 1;
}
return 0;
}
static uint32_t
ath10k_mac_max_ht_nss(const uint8_t ht_mcs_mask[IEEE80211_HT_MCS_MASK_LEN]) {
int nss;
for (nss = IEEE80211_HT_MCS_MASK_LEN - 1; nss >= 0; nss--)
if (ht_mcs_mask[nss]) {
return nss + 1;
}
return 1;
}
static uint32_t
ath10k_mac_max_vht_nss(const uint16_t vht_mcs_mask[NL80211_VHT_NSS_MAX]) {
int nss;
for (nss = NL80211_VHT_NSS_MAX - 1; nss >= 0; nss--)
if (vht_mcs_mask[nss]) {
return nss + 1;
}
return 1;
}
#endif // NEEDS PORTING
zx_status_t ath10k_mac_ext_resource_config(struct ath10k* ar, uint32_t val) {
enum wmi_host_platform_type platform_type;
int ret;
if (BITARR_TEST(ar->wmi.svc_map, WMI_SERVICE_TX_MODE_DYNAMIC)) {
platform_type = WMI_HOST_PLATFORM_LOW_PERF;
} else {
platform_type = WMI_HOST_PLATFORM_HIGH_PERF;
}
ret = ath10k_wmi_ext_resource_config(ar, platform_type, val);
if (ret && ret != ZX_ERR_NOT_SUPPORTED) {
ath10k_warn("failed to configure ext resource: %d\n", ret);
return ret;
}
return ZX_OK;
}
/**********/
/* Crypto */
/**********/
static zx_status_t ath10k_send_key(struct ath10k_vif* arvif, wlan_key_config_t* key_config,
const uint8_t* macaddr, uint32_t flags) {
struct wmi_vdev_install_key_arg arg = {
.vdev_id = arvif->vdev_id,
.key_idx = key_config->key_idx,
.key_len = key_config->key_len,
.key_data = key_config->key,
.key_flags = flags,
.macaddr = macaddr,
};
ASSERT_MTX_HELD(&arvif->ar->conf_mutex);
switch (key_config->cipher_type) {
case IEEE80211_CIPHER_SUITE_NONE: // to delete a key.
arg.key_cipher = WMI_CIPHER_NONE;
arg.key_data = NULL;
break;
case IEEE80211_CIPHER_SUITE_CCMP_128:
case IEEE80211_CIPHER_SUITE_CCMP_256:
arg.key_cipher = WMI_CIPHER_AES_CCM;
break;
case IEEE80211_CIPHER_SUITE_TKIP:
arg.key_cipher = WMI_CIPHER_TKIP;
arg.key_txmic_len = 8;
arg.key_rxmic_len = 8;
break;
case IEEE80211_CIPHER_SUITE_WEP_40:
case IEEE80211_CIPHER_SUITE_WEP_104:
arg.key_cipher = WMI_CIPHER_WEP;
break;
case IEEE80211_CIPHER_SUITE_CMAC_128:
case IEEE80211_CIPHER_SUITE_CMAC_256:
return ZX_ERR_INVALID_ARGS;
default:
ath10k_warn("cipher %d is not supported\n", key_config->cipher_type);
return ZX_ERR_NOT_SUPPORTED;
}
return ath10k_wmi_vdev_install_key(arvif->ar, &arg);
}
static zx_status_t ath10k_install_key(struct ath10k_vif* arvif, wlan_key_config_t* key_config,
const uint8_t* macaddr, uint32_t flags) {
struct ath10k* ar = arvif->ar;
zx_status_t ret;
ASSERT_MTX_HELD(&ar->conf_mutex);
sync_completion_reset(&ar->install_key_done);
if (arvif->nohwcrypt) { return ZX_ERR_NOT_SUPPORTED; }
ret = ath10k_send_key(arvif, key_config, macaddr, flags);
if (ret != ZX_OK) { return ret; }
if (sync_completion_wait(&ar->install_key_done, ZX_SEC(3)) == ZX_ERR_TIMED_OUT) {
ath10k_err("Timed out waiting for key install complete message\n");
return ZX_ERR_TIMED_OUT;
}
return ZX_OK;
}
static zx_status_t ath10k_clear_peer_keys(struct ath10k_vif* arvif, const uint8_t* addr) {
struct ath10k* ar = arvif->ar;
struct ath10k_peer* peer;
zx_status_t first_errno = ZX_OK;
zx_status_t status = ZX_OK;
uint32_t flags = 0;
ASSERT_MTX_HELD(&ar->conf_mutex);
mtx_lock(&ar->data_lock);
peer = ath10k_peer_find(ar, arvif->vdev_id, addr);
mtx_unlock(&ar->data_lock);
if (!peer) {
return ZX_ERR_NOT_FOUND;
}
size_t num_wlan_cfg = peer->num_wlan_cfg;
char ethaddr_str[ETH_ALEN * 3];
ethaddr_sprintf(ethaddr_str, addr);
ath10k_dbg(ar, ATH10K_DBG_MAC, "Removing %zu key(s) of %s...\n", num_wlan_cfg, ethaddr_str);
for (size_t i = 0; i < num_wlan_cfg; i++) {
/* key flags are not required to delete the key */
mtx_lock(&ar->data_lock);
wlan_key_config_t key_config = {
.cipher_type = IEEE80211_CIPHER_SUITE_NONE,
.key_idx = peer->wlan_cfg[i].key_idx,
.key_len = peer->wlan_cfg[i].key_len,
};
mtx_unlock(&ar->data_lock);
status = ath10k_install_key(arvif, &key_config, addr, flags);
if (status != ZX_OK && first_errno == ZX_OK) {
first_errno = status;
}
if (status != ZX_OK) {
ath10k_warn("failed to remove peer key %zu of %s: %s\n",
i, ethaddr_str, zx_status_get_string(status));
}
}
if (first_errno != ZX_OK) {
ath10k_warn("Some keys are not deleted %zu: %s\n",
peer->num_wlan_cfg, zx_status_get_string(first_errno));
}
// Reset the counter no matter keys are deleted or not.
mtx_lock(&ar->data_lock);
peer->num_wlan_cfg = 0;
mtx_unlock(&ar->data_lock);
return first_errno;
}
#if 0 // NEEDS PORTING
static int ath10k_clear_vdev_key(struct ath10k_vif* arvif,
struct ieee80211_key_conf* key) {
struct ath10k* ar = arvif->ar;
struct ath10k_peer* peer;
uint8_t addr[ETH_ALEN];
int first_errno = 0;
int ret;
int i;
uint32_t flags = 0;
ASSERT_MTX_HELD(&ar->conf_mutex);
for (;;) {
/* since ath10k_install_key we can't hold data_lock all the
* time, so we try to remove the keys incrementally
*/
mtx_lock(&ar->data_lock);
i = 0;
list_for_each_entry(peer, &ar->peers, list) {
for (i = 0; i < countof(peer->keys); i++) {
if (peer->keys[i] == key) {
memcpy(addr, peer->addr, ETH_ALEN);
peer->keys[i] = NULL;
break;
}
}
if (i < countof(peer->keys)) {
break;
}
}
mtx_unlock(&ar->data_lock);
if (i == countof(peer->keys)) {
break;
}
/* key flags are not required to delete the key */
ret = ath10k_install_key(arvif, key, DISABLE_KEY, addr, flags);
if (ret < 0 && first_errno == 0) {
first_errno = ret;
}
if (ret)
ath10k_warn("failed to remove key for %pM: %d\n",
addr, ret);
}
return first_errno;
}
#endif // NEEDS PORTING
/*********************/
/* General utilities */
/*********************/
static uint8_t ath10k_parse_mpdudensity(uint8_t mpdudensity) {
/*
* 802.11n D2.0 defined values for "Minimum MPDU Start Spacing":
* 0 for no restriction
* 1 for 1/4 us
* 2 for 1/2 us
* 3 for 1 us
* 4 for 2 us
* 5 for 4 us
* 6 for 8 us
* 7 for 16 us
*/
switch (mpdudensity) {
case 0:
return 0;
case 1:
case 2:
case 3:
/* Our lower layer calculations limit our precision to
* 1 microsecond
*/
return 1;
case 4:
return 2;
case 5:
return 4;
case 6:
return 8;
case 7:
return 16;
default:
return 0;
}
}
#if 0 // NEEDS PORTING
int ath10k_mac_vif_chan(struct ieee80211_vif* vif,
struct cfg80211_chan_def* def) {
struct ieee80211_chanctx_conf* conf;
rcu_read_lock();
conf = rcu_dereference(vif->chanctx_conf);
if (!conf) {
rcu_read_unlock();
return -ENOENT;
}
*def = conf->def;
rcu_read_unlock();
return 0;
}
static void ath10k_mac_num_chanctxs_iter(struct ieee80211_hw* hw,
struct ieee80211_chanctx_conf* conf,
void* data) {
int* num = data;
(*num)++;
}
static int ath10k_mac_num_chanctxs(struct ath10k* ar) {
int num = 0;
ieee80211_iter_chan_contexts_atomic(ar->hw,
ath10k_mac_num_chanctxs_iter,
&num);
return num;
}
static void
ath10k_mac_get_any_chandef_iter(struct ieee80211_hw* hw,
struct ieee80211_chanctx_conf* conf,
void* data) {
struct cfg80211_chan_def** def = data;
*def = &conf->def;
}
#endif // NEEDS PORTING
// When |expect_existing|==true, returns true if the peer has been created.
// When |expect_existing|==false, returns true if the peer is not existed yet.
// Otherwise, returns false. In another word, returns whether it matches expectation or not.
static bool ath10k_check_peer_existence(struct ath10k* ar, const uint8_t* bssid,
bool expect_existing) {
mtx_lock(&ar->data_lock);
struct ath10k_peer* peer = ath10k_peer_find(ar, ar->arvif.vdev_id, bssid);
mtx_unlock(&ar->data_lock);
char bssid_str[ETH_ALEN * 3];
ethaddr_sprintf(bssid_str, bssid);
if (expect_existing && !peer) {
ath10k_warn("the peer %s hadn't been created yet\n", bssid_str);
return false;
} else if (!expect_existing && peer) {
ath10k_warn("the peer %s had been created\n", bssid_str);
return false;
}
return true;
}
static zx_status_t ath10k_peer_create(struct ath10k* ar,
uint32_t vdev_id,
const uint8_t* addr,
enum wmi_peer_type peer_type) {
ASSERT_MTX_HELD(&ar->conf_mutex);
int num_peers = ar->num_peers;
/* Each vdev consumes a peer entry as well */
#if 0 // NEEDS PORTING
struct ath10k_vif* arvif;
list_for_each_entry(arvif, &ar->arvifs, list)
num_peers++;
#else
num_peers++; // There is only one vdev for now
#endif
if (num_peers >= ar->max_num_peers) {
return ZX_ERR_NO_RESOURCES;
}
// Return error immediately if the peer had been created.
if (!ath10k_check_peer_existence(ar, addr, false)) {
return ZX_ERR_ALREADY_EXISTS;
}
zx_status_t status = ath10k_wmi_peer_create(ar, vdev_id, addr, peer_type);
if (status != ZX_OK) {
ath10k_warn("failed to create wmi peer %pM on vdev %i: %s\n",
addr, vdev_id, zx_status_get_string(status));
return status;
}
status = ath10k_wait_for_peer_created(ar, vdev_id, addr);
if (status != ZX_OK) {
ath10k_warn("failed to wait for created wmi peer %pM on vdev %i: %s\n",
addr, vdev_id, zx_status_get_string(status));
return status;
}
mtx_lock(&ar->data_lock);
struct ath10k_peer* peer = ath10k_peer_find(ar, vdev_id, addr);
if (!peer) {
mtx_unlock(&ar->data_lock);
ath10k_warn("failed to find peer %pM on vdev %i after creation\n",
addr, vdev_id);
ath10k_wmi_peer_delete(ar, vdev_id, addr);
return ZX_ERR_NOT_FOUND;
}
#if 0 // NEEDS PORTING
peer->vif = vif;
peer->sta = sta;
#endif // NEEDS PORTING
mtx_unlock(&ar->data_lock);
ar->num_peers++;
return ZX_OK;
}
static zx_status_t ath10k_mac_set_kickout(struct ath10k_vif* arvif) {
struct ath10k* ar = arvif->ar;
uint32_t param;
zx_status_t ret;
param = ar->wmi.pdev_param->sta_kickout_th;
ret = ath10k_wmi_pdev_set_param(ar, param,
ATH10K_KICKOUT_THRESHOLD);
if (ret != ZX_OK) {
ath10k_warn("failed to set kickout threshold on vdev %i: %s\n",
arvif->vdev_id, zx_status_get_string(ret));
return ret;
}
param = ar->wmi.vdev_param->ap_keepalive_min_idle_inactive_time_secs;
ret = ath10k_wmi_vdev_set_param(ar, arvif->vdev_id, param,
ATH10K_KEEPALIVE_MIN_IDLE);
if (ret != ZX_OK) {
ath10k_warn("failed to set keepalive minimum idle time on vdev %i: %s\n",
arvif->vdev_id, zx_status_get_string(ret));
return ret;
}
param = ar->wmi.vdev_param->ap_keepalive_max_idle_inactive_time_secs;
ret = ath10k_wmi_vdev_set_param(ar, arvif->vdev_id, param,
ATH10K_KEEPALIVE_MAX_IDLE);
if (ret != ZX_OK) {
ath10k_warn("failed to set keepalive maximum idle time on vdev %i: %s\n",
arvif->vdev_id, zx_status_get_string(ret));
return ret;
}
param = ar->wmi.vdev_param->ap_keepalive_max_unresponsive_time_secs;
ret = ath10k_wmi_vdev_set_param(ar, arvif->vdev_id, param,
ATH10K_KEEPALIVE_MAX_UNRESPONSIVE);
if (ret != ZX_OK) {
ath10k_warn("failed to set keepalive maximum unresponsive time on vdev %i: %s\n",
arvif->vdev_id, zx_status_get_string(ret));
return ret;
}
return ZX_OK;
}
#if 0 // NEEDS PORTING
static int ath10k_mac_set_rts(struct ath10k_vif* arvif, uint32_t value) {
struct ath10k* ar = arvif->ar;
uint32_t vdev_param;
vdev_param = ar->wmi.vdev_param->rts_threshold;
return ath10k_wmi_vdev_set_param(ar, arvif->vdev_id, vdev_param, value);
}
#endif // NEEDS PORTING
static zx_status_t ath10k_peer_delete(struct ath10k* ar, uint32_t vdev_id, const uint8_t* addr) {
ASSERT_MTX_HELD(&ar->conf_mutex);
// If the peer is not existing, return error.
if (!ath10k_check_peer_existence(ar, addr, true)) {
return ZX_ERR_NOT_FOUND;
}
zx_status_t status = ath10k_wmi_peer_delete(ar, vdev_id, addr);
if (status != ZX_OK) {
return status;
}
status = ath10k_wait_for_peer_deleted(ar, vdev_id, addr);
if (status != ZX_OK) {
return status;
}
ar->num_peers--;
return ZX_OK;
}
__attribute__ ((unused))
static void ath10k_peer_cleanup(struct ath10k* ar, uint32_t vdev_id) {
ASSERT_MTX_HELD(&ar->conf_mutex);
mtx_lock(&ar->data_lock);
struct ath10k_peer* peer, *tmp;
list_for_every_entry_safe(&ar->peers, peer, tmp, struct ath10k_peer, listnode) {
if (peer->vdev_id != vdev_id) {
continue;
}
ath10k_warn("removing stale peer %pM from vdev_id %d\n", peer->addr, vdev_id);
size_t peer_id;
for_each_set_bit(peer_id, peer->peer_ids, ATH10K_MAX_NUM_PEER_IDS) {
ar->peer_map[peer_id] = NULL;
}
/* Double check that peer is properly un-referenced from
* the peer_map
*/
for (size_t i = 0; i < countof(ar->peer_map); i++) {
if (ar->peer_map[i] == peer) {
ath10k_warn("removing stale peer_map entry for %pM (ptr %pK idx %zu)\n",
peer->addr, peer, i);
ar->peer_map[i] = NULL;
}
}
list_delete(&peer->listnode);
free(peer);
ar->num_peers--;
}
mtx_unlock(&ar->data_lock);
}
__attribute__ ((unused))
static void ath10k_peer_cleanup_all(struct ath10k* ar) {
ASSERT_MTX_HELD(&ar->conf_mutex);
mtx_lock(&ar->data_lock);
struct ath10k_peer* peer, *tmp;
list_for_every_entry_safe(&ar->peers, peer, tmp, struct ath10k_peer, listnode) {
list_delete(&peer->listnode);
free(peer);
}
for (size_t i = 0; i < countof(ar->peer_map); i++) {
ar->peer_map[i] = NULL;
}
mtx_unlock(&ar->data_lock);
ar->num_peers = 0;
ar->num_stations = 0;
}
#if 0 // NEEDS PORTING
static int ath10k_mac_tdls_peer_update(struct ath10k* ar, uint32_t vdev_id,
struct ieee80211_sta* sta,
enum wmi_tdls_peer_state state) {
int ret;
struct wmi_tdls_peer_update_cmd_arg arg = {};
struct wmi_tdls_peer_capab_arg cap = {};
struct wmi_channel_arg chan_arg = {};
ASSERT_MTX_HELD(&ar->conf_mutex);
arg.vdev_id = vdev_id;
arg.peer_state = state;
memcpy(arg.addr, sta->addr, ETH_ALEN);
cap.peer_max_sp = sta->max_sp;
cap.peer_uapsd_queues = sta->uapsd_queues;
if (state == WMI_TDLS_PEER_STATE_CONNECTED &&
!sta->tdls_initiator) {
cap.is_peer_responder = 1;
}
ret = ath10k_wmi_tdls_peer_update(ar, &arg, &cap, &chan_arg);
if (ret) {
ath10k_warn("failed to update tdls peer %pM on vdev %i: %i\n",
arg.addr, vdev_id, ret);
return ret;
}
return 0;
}
/************************/
/* Interface management */
/************************/
void ath10k_mac_vif_beacon_free(struct ath10k_vif* arvif) {
struct ath10k* ar = arvif->ar;
ASSERT_MTX_HELD(&ar->data_lock);
if (!arvif->beacon) {
return;
}
if (!arvif->beacon_buf)
dma_unmap_single(ar->dev, ATH10K_SKB_CB(arvif->beacon)->paddr,
arvif->beacon->len, DMA_TO_DEVICE);
if (COND_WARN(arvif->beacon_state != ATH10K_BEACON_SCHEDULED &&
arvif->beacon_state != ATH10K_BEACON_SENT)) {
return;
}
dev_kfree_skb_any(arvif->beacon);
arvif->beacon = NULL;
arvif->beacon_state = ATH10K_BEACON_SCHEDULED;
}
static void ath10k_mac_vif_beacon_cleanup(struct ath10k_vif* arvif) {
struct ath10k* ar = arvif->ar;
ASSERT_MTX_HELD(&ar->data_lock);
ath10k_mac_vif_beacon_free(arvif);
if (arvif->beacon_buf) {
dma_free_coherent(ar->dev, IEEE80211_MAX_FRAME_LEN,
arvif->beacon_buf, arvif->beacon_paddr);
arvif->beacon_buf = NULL;
}
}
#endif // NEEDS PORTING
static inline zx_status_t ath10k_vdev_setup_sync(struct ath10k* ar) {
ASSERT_MTX_HELD(&ar->conf_mutex);
if (BITARR_TEST(ar->dev_flags, ATH10K_FLAG_CRASH_FLUSH)) { return ZX_ERR_BAD_STATE; }
if (sync_completion_wait(&ar->vdev_setup_done, ATH10K_VDEV_SETUP_TIMEOUT) == ZX_ERR_TIMED_OUT) {
return ZX_ERR_TIMED_OUT;
}
return ZX_OK;
}
#if 0 // NEEDS PORTING
static int ath10k_monitor_vdev_start(struct ath10k* ar, int vdev_id) {
struct cfg80211_chan_def* chandef = NULL;
struct ieee80211_channel* channel = NULL;
struct wmi_vdev_start_request_arg arg = {};
int ret = 0;
ASSERT_MTX_HELD(&ar->conf_mutex);
ieee80211_iter_chan_contexts_atomic(ar->hw,
ath10k_mac_get_any_chandef_iter,
&chandef);
if (COND_WARN_ONCE(!chandef)) {
return -ENOENT;
}
channel = chandef->chan;
arg.vdev_id = vdev_id;
arg.channel.freq = channel->center_freq;
arg.channel.band_center_freq1 = chandef->center_freq1;
arg.channel.band_center_freq2 = chandef->center_freq2;
/* TODO setup this dynamically, what in case we
* don't have any vifs?
*/
arg.channel.mode = chan_to_phymode(chandef);
arg.channel.chan_radar =
!!(channel->flags & IEEE80211_CHAN_RADAR);
arg.channel.min_power = 0;
arg.channel.max_power = channel->max_power * 2;
arg.channel.max_reg_power = channel->max_reg_power * 2;
arg.channel.max_antenna_gain = channel->max_antenna_gain * 2;
sync_completion_reset(&ar->vdev_setup_done);
ret = ath10k_wmi_vdev_start(ar, &arg);
if (ret) {
ath10k_warn("failed to request monitor vdev %i start: %d\n",
vdev_id, ret);
return ret;
}
ret = ath10k_vdev_setup_sync(ar);
if (ret) {
ath10k_warn("failed to synchronize setup for monitor vdev %i start: %d\n",
vdev_id, ret);
return ret;
}
ret = ath10k_wmi_vdev_up(ar, vdev_id, 0, ar->mac_addr);
if (ret) {
ath10k_warn("failed to put up monitor vdev %i: %d\n",
vdev_id, ret);
goto vdev_stop;
}
ar->monitor_vdev_id = vdev_id;
ath10k_dbg(ar, ATH10K_DBG_MAC, "mac monitor vdev %i started\n",
ar->monitor_vdev_id);
return 0;
vdev_stop:
ret = ath10k_wmi_vdev_stop(ar, ar->monitor_vdev_id);
if (ret)
ath10k_warn("failed to stop monitor vdev %i after start failure: %d\n",
ar->monitor_vdev_id, ret);
return ret;
}
static int ath10k_monitor_vdev_stop(struct ath10k* ar) {
int ret = 0;
ASSERT_MTX_HELD(&ar->conf_mutex);
ret = ath10k_wmi_vdev_down(ar, ar->monitor_vdev_id);
if (ret)
ath10k_warn("failed to put down monitor vdev %i: %d\n",
ar->monitor_vdev_id, ret);
sync_completion_reset(&ar->vdev_setup_done);
ret = ath10k_wmi_vdev_stop(ar, ar->monitor_vdev_id);
if (ret)
ath10k_warn("failed to to request monitor vdev %i stop: %d\n",
ar->monitor_vdev_id, ret);
ret = ath10k_vdev_setup_sync(ar);
if (ret)
ath10k_warn("failed to synchronize monitor vdev %i stop: %d\n",
ar->monitor_vdev_id, ret);
ath10k_dbg(ar, ATH10K_DBG_MAC, "mac monitor vdev %i stopped\n",
ar->monitor_vdev_id);
return ret;
}
static int ath10k_monitor_vdev_create(struct ath10k* ar) {
int bit, ret = 0;
ASSERT_MTX_HELD(&ar->conf_mutex);
if (ar->free_vdev_map == 0) {
ath10k_warn("failed to find free vdev id for monitor vdev\n");
return -ENOMEM;
}
bit = __ffs64(ar->free_vdev_map);
ar->monitor_vdev_id = bit;
ret = ath10k_wmi_vdev_create(ar, ar->monitor_vdev_id,
WMI_VDEV_TYPE_MONITOR,
0, ar->mac_addr);
if (ret) {
ath10k_warn("failed to request monitor vdev %i creation: %d\n",
ar->monitor_vdev_id, ret);
return ret;
}
ar->free_vdev_map &= ~(1LL << ar->monitor_vdev_id);
ath10k_dbg(ar, ATH10K_DBG_MAC, "mac monitor vdev %d created\n",
ar->monitor_vdev_id);
return 0;
}
static int ath10k_monitor_vdev_delete(struct ath10k* ar) {
int ret = 0;
ASSERT_MTX_HELD(&ar->conf_mutex);
ret = ath10k_wmi_vdev_delete(ar, ar->monitor_vdev_id);
if (ret) {
ath10k_warn("failed to request wmi monitor vdev %i removal: %d\n",
ar->monitor_vdev_id, ret);
return ret;
}
ar->free_vdev_map |= 1LL << ar->monitor_vdev_id;
ath10k_dbg(ar, ATH10K_DBG_MAC, "mac monitor vdev %d deleted\n",
ar->monitor_vdev_id);
return ret;
}
static int ath10k_monitor_start(struct ath10k* ar) {
int ret;
ASSERT_MTX_HELD(&ar->conf_mutex);
ret = ath10k_monitor_vdev_create(ar);
if (ret) {
ath10k_warn("failed to create monitor vdev: %d\n", ret);
return ret;
}
ret = ath10k_monitor_vdev_start(ar, ar->monitor_vdev_id);
if (ret) {
ath10k_warn("failed to start monitor vdev: %d\n", ret);
ath10k_monitor_vdev_delete(ar);
return ret;
}
ar->monitor_started = true;
ath10k_dbg(ar, ATH10K_DBG_MAC, "mac monitor started\n");
return 0;
}
static int ath10k_monitor_stop(struct ath10k* ar) {
int ret;
ASSERT_MTX_HELD(&ar->conf_mutex);
ret = ath10k_monitor_vdev_stop(ar);
if (ret) {
ath10k_warn("failed to stop monitor vdev: %d\n", ret);
return ret;
}
ret = ath10k_monitor_vdev_delete(ar);
if (ret) {
ath10k_warn("failed to delete monitor vdev: %d\n", ret);
return ret;
}
ar->monitor_started = false;
ath10k_dbg(ar, ATH10K_DBG_MAC, "mac monitor stopped\n");
return 0;
}
static bool ath10k_mac_monitor_vdev_is_needed(struct ath10k* ar) {
int num_ctx;
/* At least one chanctx is required to derive a channel to start
* monitor vdev on.
*/
num_ctx = ath10k_mac_num_chanctxs(ar);
if (num_ctx == 0) {
return false;
}
/* If there's already an existing special monitor interface then don't
* bother creating another monitor vdev.
*/
if (ar->monitor_arvif) {
return false;
}
return ar->monitor ||
(!BITARR_TEST(ar->running_fw->fw_file.fw_features,
ATH10K_FW_FEATURE_ALLOWS_MESH_BCAST) &&
(ar->filter_flags & FIF_OTHER_BSS)) ||
BITARR_TEST(&ar->dev_flags, ATH10K_CAC_RUNNING);
}
static bool ath10k_mac_monitor_vdev_is_allowed(struct ath10k* ar) {
int num_ctx;
num_ctx = ath10k_mac_num_chanctxs(ar);
/* FIXME: Current interface combinations and cfg80211/mac80211 code
* shouldn't allow this but make sure to prevent handling the following
* case anyway since multi-channel DFS hasn't been tested at all.
*/
if (BITARR_TEST(&ar->dev_flags, ATH10K_CAC_RUNNING) && num_ctx > 1) {
return false;
}
return true;
}
static int ath10k_monitor_recalc(struct ath10k* ar) {
bool needed;
bool allowed;
int ret;
ASSERT_MTX_HELD(&ar->conf_mutex);
needed = ath10k_mac_monitor_vdev_is_needed(ar);
allowed = ath10k_mac_monitor_vdev_is_allowed(ar);
ath10k_dbg(ar, ATH10K_DBG_MAC,
"mac monitor recalc started? %d needed? %d allowed? %d\n",
ar->monitor_started, needed, allowed);
if (COND_WARN(needed && !allowed)) {
if (ar->monitor_started) {
ath10k_dbg(ar, ATH10K_DBG_MAC, "mac monitor stopping disallowed monitor\n");
ret = ath10k_monitor_stop(ar);
if (ret)
ath10k_warn("failed to stop disallowed monitor: %d\n",
ret);
/* not serious */
}
return -EPERM;
}
if (needed == ar->monitor_started) {
return 0;
}
if (needed) {
return ath10k_monitor_start(ar);
} else {
return ath10k_monitor_stop(ar);
}
}
static bool ath10k_mac_can_set_cts_prot(struct ath10k_vif* arvif) {
struct ath10k* ar = arvif->ar;
ASSERT_MTX_HELD(&ar->conf_mutex);
if (!arvif->is_started) {
ath10k_dbg(ar, ATH10K_DBG_MAC, "defer cts setup, vdev is not ready yet\n");
return false;
}
return true;
}
static int ath10k_mac_set_cts_prot(struct ath10k_vif* arvif) {
struct ath10k* ar = arvif->ar;
uint32_t vdev_param;
ASSERT_MTX_HELD(&ar->conf_mutex);
vdev_param = ar->wmi.vdev_param->protection_mode;
ath10k_dbg(ar, ATH10K_DBG_MAC, "mac vdev %d cts_protection %d\n",
arvif->vdev_id, arvif->use_cts_prot);
return ath10k_wmi_vdev_set_param(ar, arvif->vdev_id, vdev_param,
arvif->use_cts_prot ? 1 : 0);
}
static int ath10k_recalc_rtscts_prot(struct ath10k_vif* arvif) {
struct ath10k* ar = arvif->ar;
uint32_t vdev_param, rts_cts = 0;
ASSERT_MTX_HELD(&ar->conf_mutex);
vdev_param = ar->wmi.vdev_param->enable_rtscts;
rts_cts |= SM(WMI_RTSCTS_ENABLED, WMI_RTSCTS_SET);
if (arvif->num_legacy_stations > 0)
rts_cts |= SM(WMI_RTSCTS_ACROSS_SW_RETRIES,
WMI_RTSCTS_PROFILE);
else
rts_cts |= SM(WMI_RTSCTS_FOR_SECOND_RATESERIES,
WMI_RTSCTS_PROFILE);
ath10k_dbg(ar, ATH10K_DBG_MAC, "mac vdev %d recalc rts/cts prot %d\n",
arvif->vdev_id, rts_cts);
return ath10k_wmi_vdev_set_param(ar, arvif->vdev_id, vdev_param,
rts_cts);
}
static int ath10k_start_cac(struct ath10k* ar) {
int ret;
ASSERT_MTX_HELD(&ar->conf_mutex);
BITARR_SET(&ar->dev_flags, ATH10K_CAC_RUNNING);
ret = ath10k_monitor_recalc(ar);
if (ret) {
ath10k_warn("failed to start monitor (cac): %d\n", ret);
BITARR_CLEAR(&ar->dev_flags, ATH10K_CAC_RUNNING);
return ret;
}
ath10k_dbg(ar, ATH10K_DBG_MAC, "mac cac start monitor vdev %d\n",
ar->monitor_vdev_id);
return 0;
}
static int ath10k_stop_cac(struct ath10k* ar) {
ASSERT_MTX_HELD(&ar->conf_mutex);
/* CAC is not running - do nothing */
if (!BITARR_TEST(&ar->dev_flags, ATH10K_CAC_RUNNING)) {
return 0;
}
BITARR_CLEAR(&ar->dev_flags, ATH10K_CAC_RUNNING);
ath10k_monitor_stop(ar);
ath10k_dbg(ar, ATH10K_DBG_MAC, "mac cac finished\n");
return 0;
}
static void ath10k_mac_has_radar_iter(struct ieee80211_hw* hw,
struct ieee80211_chanctx_conf* conf,
void* data) {
bool* ret = data;
if (!*ret && conf->radar_enabled) {
*ret = true;
}
}
static bool ath10k_mac_has_radar_enabled(struct ath10k* ar) {
bool has_radar = false;
ieee80211_iter_chan_contexts_atomic(ar->hw,
ath10k_mac_has_radar_iter,
&has_radar);
return has_radar;
}
static void ath10k_recalc_radar_detection(struct ath10k* ar) {
int ret;
ASSERT_MTX_HELD(&ar->conf_mutex);
ath10k_stop_cac(ar);
if (!ath10k_mac_has_radar_enabled(ar)) {
return;
}
if (ar->num_started_vdevs > 0) {
return;
}
ret = ath10k_start_cac(ar);
if (ret) {
/*
* Not possible to start CAC on current channel so starting
* radiation is not allowed, make this channel DFS_UNAVAILABLE
* by indicating that radar was detected.
*/
ath10k_warn("failed to start CAC: %d\n", ret);
ieee80211_radar_detected(ar->hw);
}
}
static int ath10k_vdev_stop(struct ath10k_vif* arvif) {
struct ath10k* ar = arvif->ar;
int ret;
ASSERT_MTX_HELD(&ar->conf_mutex);
sync_completion_reset(&ar->vdev_setup_done);
ret = ath10k_wmi_vdev_stop(ar, arvif->vdev_id);
if (ret) {
ath10k_warn("failed to stop WMI vdev %i: %d\n",
arvif->vdev_id, ret);
return ret;
}
ret = ath10k_vdev_setup_sync(ar);
if (ret) {
ath10k_warn("failed to synchronize setup for vdev %i: %d\n",
arvif->vdev_id, ret);
return ret;
}
COND_WARN(ar->num_started_vdevs == 0);
if (ar->num_started_vdevs != 0) {
ar->num_started_vdevs--;
ath10k_recalc_radar_detection(ar);
}
return ret;
}
#endif // NEEDS PORTING
static zx_status_t ath10k_lookup_chan(uint8_t wlan_chan, const struct ath10k_channel** ath_chan) {
// TODO: create channel -> channel info map
for (unsigned band_ndx = 0; band_ndx < countof(ath10k_supported_bands); band_ndx++) {
const struct ath10k_band* band = &ath10k_supported_bands[band_ndx];
for (unsigned ch_ndx = 0; ch_ndx < band->n_channels; ch_ndx++) {
const struct ath10k_channel* ch = &band->channels[ch_ndx];
if (ch->hw_value == wlan_chan) {
*ath_chan = ch;
return ZX_OK;
}
}
}
return ZX_ERR_NOT_FOUND;
}
// Helper function to fill new center freq and phymode.
// This is the original Linux's chan_to_phymode() plus the new center freq calculation.
//
// Note for the types of freq in this function. Actually uint16_t is large enough (see 'Mhz' in
// garnet/lib/wlan/common/include/wlan/common/channel.h). However, wmi_channel_arg.band_center_freq1
// is defined as uint32_t. So, |ptr_center_freq| is 'uint32_t*'.
static inline zx_status_t set_center_freq_and_phymode(const wlan_channel_t* chandef,
const struct ath10k_channel_freq* center_freq,
uint32_t* ptr_center_freq,
enum wmi_phy_mode* ptr_phymode) {
uint8_t primary_chan = chandef->primary;
enum Band band = chan_to_band(primary_chan);
enum CBW cbw = chandef->cbw;
uint16_t new_center_freq = 0;
enum wmi_phy_mode phymode = MODE_UNKNOWN;
switch (band) {
case WLAN_BAND_2GHZ:
switch (cbw) {
case CBW20:
new_center_freq = center_freq->cbw20;
phymode = MODE_11NG_HT20;
break;
case CBW40ABOVE:
new_center_freq = center_freq->cbw40_above;
phymode = MODE_11NG_HT40;
break;
case CBW40BELOW:
new_center_freq = center_freq->cbw40_below;
phymode = MODE_11NG_HT40;
break;
default:
ath10k_err("attempt to start with invalid CBW %d at 2 GHz band\n", cbw);
return ZX_ERR_INVALID_ARGS;
}
break;
case WLAN_BAND_5GHZ:
switch (cbw) {
case CBW20:
new_center_freq = center_freq->cbw20;
phymode = MODE_11NA_HT20;
break;
case CBW40ABOVE:
new_center_freq = center_freq->cbw40_above;
phymode = MODE_11NA_HT40;
break;
case CBW40BELOW:
new_center_freq = center_freq->cbw40_below;
phymode = MODE_11NA_HT40;
break;
case CBW80:
new_center_freq = center_freq->cbw80;
phymode = MODE_11AC_VHT80;
break;
case CBW160:
new_center_freq = center_freq->cbw160;
phymode = MODE_11AC_VHT160;
break;
case CBW80P80:
// TODO(WLAN-837): Returns 2 center freqs.
return ZX_ERR_NOT_SUPPORTED;
default:
ath10k_err("attempt to start with invalid CBW %d at 5 GHz band\n", cbw);
return ZX_ERR_INVALID_ARGS;
}
break;
default:
ath10k_err("Unsupported band %d\n", band);
return ZX_ERR_INVALID_ARGS;
}
// Check for unsupported channel + CBW combinations
if (new_center_freq == 0) {
ath10k_err("unsupported channel/CBW combination (%d @ %s MHz)\n",
primary_chan, cbw == CBW20 ? "20" :
cbw == CBW40ABOVE ? "40+" :
cbw == CBW40BELOW ? "40-" :
cbw == CBW80 ? "80" :
cbw == CBW160 ? "160" :
cbw == CBW80P80 ? "80 + 80" : "unrecognized");
return ZX_ERR_NOT_SUPPORTED;
}
ath10k_info("basic setting: phymode %s center_freq=%d\n",
ath10k_wmi_phymode_str(phymode), new_center_freq);
*ptr_center_freq = new_center_freq;
*ptr_phymode = phymode;
return ZX_OK;
}
// Restart the vdev. After this function is done successfully, the vdev will be on started state.
static zx_status_t ath10k_vdev_start_restart(struct ath10k_vif* arvif, wlan_channel_t* chandef,
bool restart) {
struct ath10k* ar = arvif->ar;
ASSERT_MTX_HELD(&ar->conf_mutex);
const struct ath10k_channel* primary_chan;
zx_status_t status = ath10k_lookup_chan(chandef->primary, &primary_chan);
if (status != ZX_OK) {
ath10k_warn("unable to find primary channel %d\n", chandef->primary);
return status;
}
const struct ath10k_channel* secondary_chan;
if (chandef->cbw == CBW80P80) {
status = ath10k_lookup_chan(chandef->secondary80, &secondary_chan);
if (status != ZX_OK) {
ath10k_warn("unable to find secondary channel %d\n", chandef->secondary80);
return status;
}
}
struct wmi_vdev_start_request_arg arg = {};
sync_completion_reset(&ar->vdev_setup_done);
arg.vdev_id = arvif->vdev_id;
arg.dtim_period = arvif->dtim_period;
arg.bcn_intval = arvif->beacon_interval;
arg.channel.freq = primary_chan->center_freq.cbw20;
// Set the default PHY mode for basic mode.
//
// For client role, the real phymode will be determined once we get association context.
//
// For AP role, this will be used for management frames only. For each client associated, the
// corresponding phymode will be specified in the association context.
status = set_center_freq_and_phymode(chandef,
&primary_chan->center_freq,
&arg.channel.band_center_freq1,
&arg.channel.mode);
if (status != ZX_OK) {
return status;
}
arg.channel.min_power = 0;
arg.channel.max_power = primary_chan->max_power * 2;
arg.channel.max_reg_power = primary_chan->max_reg_power * 2;
arg.channel.max_antenna_gain = primary_chan->max_antenna_gain * 2;
if (arvif->vdev_type == WMI_VDEV_TYPE_AP) {
arg.ssid = arvif->u.ap.ssid;
arg.ssid_len = arvif->u.ap.ssid_len;
arg.hidden_ssid = arvif->u.ap.hidden_ssid;
}
#if 0 // NEEDS PORTING
/* For now allow DFS for AP mode */
arg.channel.chan_radar =
!!(chandef->chan->flags & IEEE80211_CHAN_RADAR);
} else if (arvif->vdev_type == WMI_VDEV_TYPE_IBSS) {
arg.ssid = arvif->vif->bss_conf.ssid;
arg.ssid_len = arvif->vif->bss_conf.ssid_len;
}
#endif // NEEDS PORTING
ath10k_dbg(ar, ATH10K_DBG_MAC, "mac vdev %d start center_freq %d phymode %s\n", arg.vdev_id,
arg.channel.freq, ath10k_wmi_phymode_str(arg.channel.mode));
if (restart) {
status = ath10k_wmi_vdev_restart(ar, &arg);
} else {
status = ath10k_wmi_vdev_start(ar, &arg);
}
if (status != ZX_OK) {
ath10k_warn("failed to start WMI vdev %i: %s\n", arg.vdev_id, zx_status_get_string(status));
return status;
}
// TODO: We really don't want to block, but if we don't we have no
// confirmation that the channel change actually went through.
status = ath10k_vdev_setup_sync(ar);
if (status != ZX_OK) {
ath10k_warn("failed to synchronize setup for vdev %i restart %d: %s\n", arg.vdev_id,
restart, zx_status_get_string(status));
return status;
}
ar->num_started_vdevs++;
#if 0 // NEEDS PORTING
ath10k_recalc_radar_detection(ar);
#endif // NEEDS PORTING
return status;
}
static zx_status_t ath10k_vdev_start(struct ath10k_vif* arvif, wlan_channel_t* def) {
return ath10k_vdev_start_restart(arvif, def, false);
}
static zx_status_t ath10k_vdev_restart(struct ath10k_vif* arvif, wlan_channel_t* def) {
return ath10k_vdev_start_restart(arvif, def, true);
}
#if 0 // NEEDS PORTING
static int ath10k_mac_setup_bcn_p2p_ie(struct ath10k_vif* arvif,
struct sk_buff* bcn) {
struct ath10k* ar = arvif->ar;
struct ieee80211_mgmt* mgmt;
const uint8_t* p2p_ie;
int ret;
if (arvif->vif->type != NL80211_IFTYPE_AP || !arvif->vif->p2p) {
return 0;
}
mgmt = (void*)bcn->data;
p2p_ie = cfg80211_find_vendor_ie(WLAN_OUI_WFA, WLAN_OUI_TYPE_WFA_P2P,
mgmt->u.beacon.variable,
bcn->len - (mgmt->u.beacon.variable -
bcn->data));
if (!p2p_ie) {
return -ENOENT;
}
ret = ath10k_wmi_p2p_go_bcn_ie(ar, arvif->vdev_id, p2p_ie);
if (ret) {
ath10k_warn("failed to submit p2p go bcn ie for vdev %i: %d\n",
arvif->vdev_id, ret);
return ret;
}
return 0;
}
static int ath10k_mac_remove_vendor_ie(struct sk_buff* skb, unsigned int oui,
uint8_t oui_type, size_t ie_offset) {
size_t len;
const uint8_t* next;
const uint8_t* end;
uint8_t* ie;
if (COND_WARN(skb->len < ie_offset)) {
return -EINVAL;
}
ie = (uint8_t*)cfg80211_find_vendor_ie(oui, oui_type,
skb->data + ie_offset,
skb->len - ie_offset);
if (!ie) {
return -ENOENT;
}
len = ie[1] + 2;
end = skb->data + skb->len;
next = ie + len;
if (COND_WARN(next > end)) {
return -EINVAL;
}
memmove(ie, next, end - next);
skb_trim(skb, skb->len - len);
return 0;
}
#endif // NEEDS PORTING
zx_status_t ath10k_mac_setup_bcn_tmpl(struct ath10k_vif* arvif) {
struct ath10k* ar = arvif->ar;
zx_status_t ret;
#if 0 // NEEDS PORTING
struct ieee80211_hw* hw = ar->hw;
struct ieee80211_vif* vif = arvif->vif;
struct ieee80211_mutable_offsets offs = {};
struct sk_buff* bcn;
#endif // NEEDS PORTING
if (!BITARR_TEST(ar->wmi.svc_map, WMI_SERVICE_BEACON_OFFLOAD)) {
return ZX_OK;
}
if (arvif->vdev_type != WMI_VDEV_TYPE_AP && arvif->vdev_type != WMI_VDEV_TYPE_IBSS) {
ath10k_err("The interface is neither AP or IBSS. arvif->vdev_type=%d\n", arvif->vdev_type);
return ZX_ERR_BAD_STATE;
}
#if 0 // This is not required to enable AP beaconing. But don't know it is used in other beaconing,
// for example, in the WiFi Direct mode. So leave it here.
ret = ath10k_mac_setup_bcn_p2p_ie(ar, bcn);
if (ret) {
ath10k_warn("failed to setup p2p go bcn ie: %d\n", ret);
kfree_skb(bcn);
return ret;
}
/* P2P IE is inserted by firmware automatically (as configured above)
* so remove it from the base beacon template to avoid duplicate P2P
* IEs in beacon frames.
*/
ath10k_mac_remove_vendor_ie(bcn, WLAN_OUI_WFA, WLAN_OUI_TYPE_WFA_P2P,
offsetof(struct ieee80211_mgmt,
u.beacon.variable));
#endif
struct ath10k_msg_buf* bcn;
ret = ath10k_msg_buf_alloc(ar, &bcn, ATH10K_MSG_TYPE_BASE, arvif->bcn_tmpl_len);
if (ret != ZX_OK) {
ath10k_err("Cannot alloc memory for beacon template: %s\n", zx_status_get_string(ret));
return ret;
}
bcn->used = arvif->bcn_tmpl_len;
memcpy(bcn->vaddr, arvif->bcn_tmpl_data, bcn->used);
ret = ath10k_wmi_bcn_tmpl(
ar, ar->arvif.vdev_id, arvif->tim_ie_offset, bcn,
/* prb_caps */ 0, /* prb_erp */ 0, /* prb_ies */ NULL, /* prb_ies_len */ 0);
// Beacon is used for ath10k_wmi_bcn_tmpl() to copy. Not hooked up to hardware. Free it now.
ath10k_msg_buf_free(bcn);
if (ret != ZX_OK) {
ath10k_err("ath10k_wmi_bcn_tmpl failed: %s\n", zx_status_get_string(ret));
}
return ret;
}
static zx_status_t ath10k_mac_setup_prb_tmpl(struct ath10k_vif* arvif) {
struct ath10k* ar = arvif->ar;
struct ath10k_msg_buf* prb;
zx_status_t ret;
// It seems we don't need this.
return ZX_OK;
if (!BITARR_TEST(ar->wmi.svc_map, WMI_SERVICE_BEACON_OFFLOAD)) {
ath10k_err("The hardware don't support beacon offload.\n");
return ZX_ERR_NOT_SUPPORTED;
}
if (arvif->vdev_type != WMI_VDEV_TYPE_AP) {
ath10k_err("The interface is not AP. arvif->vdev_type=%d\n", arvif->vdev_type);
return ZX_ERR_BAD_STATE;
}
ret = ath10k_msg_buf_alloc(ar, &prb, ATH10K_MSG_TYPE_WMI_TLV_PRB_TMPL, 0);
if (ret != ZX_OK) {
ath10k_err("Cannot alloc memory for probe response packet: %s\n",
zx_status_get_string(ret));
return ret;
}
static const uint8_t prb_data[] = {};
prb->used = sizeof(prb_data);
memcpy(prb->vaddr, prb_data, prb->used);
ret = ath10k_wmi_prb_tmpl(ar, ar->arvif.vdev_id, prb);
// Beacon is used for ath10k_wmi_bcn_tmpl() to copy. Not hooked up to hardware. Free it now.
ath10k_msg_buf_free(prb);
if (ret != ZX_OK) {
ath10k_warn("failed to submit probe resp template command: %s\n",
zx_status_get_string(ret));
return ret;
}
return ret;
}
static zx_status_t ath10k_mac_vif_fix_hidden_ssid(struct ath10k_vif* arvif) {
struct ath10k* ar = arvif->ar;
zx_status_t ret;
/* When originally vdev is started during assign_vif_chanctx() some
* information is missing, notably SSID. Firmware revisions with beacon
* offloading require the SSID to be provided during vdev (re)start to
* handle hidden SSID properly.
*
* Vdev restart must be done after vdev has been both started and
* upped. Otherwise some firmware revisions (at least 10.2) fail to
* deliver vdev restart response event causing timeouts during vdev
* syncing in ath10k.
*
* Note: The vdev down/up and template reinstallation could be skipped
* since only wmi-tlv firmware are known to have beacon offload and
* wmi-tlv doesn't seem to misbehave like 10.2 wrt vdev restart
* response delivery. It's probably more robust to keep it as is.
*/
if (!BITARR_TEST(ar->wmi.svc_map, WMI_SERVICE_BEACON_OFFLOAD)) {
return ZX_OK;
}
if (arvif->vdev_type != WMI_VDEV_TYPE_AP && arvif->vdev_type != WMI_VDEV_TYPE_IBSS) {
ath10k_err("The interface is neither AP or IBSS. arvif->vdev_type=%d\n", arvif->vdev_type);
return ZX_ERR_BAD_STATE;
}
if (COND_WARN(!arvif->is_started)) {
return ZX_ERR_BAD_STATE;
}
if (COND_WARN(!arvif->is_up)) {
return ZX_ERR_BAD_STATE;
}
ret = ath10k_wmi_vdev_down(ar, arvif->vdev_id);
if (ret != ZX_OK) {
ath10k_warn("failed to bring down ap vdev %i: %s\n",
arvif->vdev_id, zx_status_get_string(ret));
return ret;
}
/* Vdev down reset beacon & presp templates. Reinstall them. Otherwise
* firmware will crash upon vdev up.
*/
ret = ath10k_mac_setup_bcn_tmpl(arvif);
if (ret != ZX_OK) {
ath10k_warn("failed to update beacon template: %s\n", zx_status_get_string(ret));
return ret;
}
ret = ath10k_mac_setup_prb_tmpl(arvif);
if (ret != ZX_OK) {
ath10k_warn("failed to update presp template: %s\n", zx_status_get_string(ret));
return ret;
}
ret = ath10k_vdev_restart(arvif, &ar->rx_channel);
if (ret != ZX_OK) {
ath10k_warn("failed to restart ap vdev %i: %s\n",
arvif->vdev_id, zx_status_get_string(ret));
return ret;
}
ret = ath10k_wmi_vdev_up(arvif->ar, arvif->vdev_id, arvif->aid,
arvif->bssid);
if (ret != ZX_OK) {
ath10k_warn("failed to bring up ap vdev %i: %s\n",
arvif->vdev_id, zx_status_get_string(ret));
return ret;
}
return ZX_OK;
}
static zx_status_t ath10k_control_beaconing(struct ath10k_vif* arvif) {
struct ath10k* ar = arvif->ar;
zx_status_t ret;
arvif->tx_seq_no = 0x1000;
// AID 0 is reserved for AP.
arvif->aid = 0;
ret = ath10k_wmi_vdev_up(ar, arvif->vdev_id, arvif->aid, arvif->bssid);
if (ret != ZX_OK) {
ath10k_err("failed to bring up vdev %d: %s\n", arvif->vdev_id, zx_status_get_string(ret));
return ret;
}
arvif->is_up = true;
ret = ath10k_mac_vif_fix_hidden_ssid(arvif);
if (ret != ZX_OK) {
ath10k_warn("failed to fix hidden ssid for vdev %i, expect trouble: %s\n",
arvif->vdev_id, zx_status_get_string(ret));
return ret;
}
ath10k_dbg(ar, ATH10K_DBG_MAC, "mac vdev %d up\n", arvif->vdev_id);
return ZX_OK;
}
zx_status_t ath10k_mac_start_ap(struct ath10k_vif* arvif) {
struct ath10k* ar = arvif->ar;
zx_status_t ret;
mtx_lock(&ar->conf_mutex);
ret = ath10k_wmi_vdev_set_param(ar, arvif->vdev_id,
ar->wmi.vdev_param->beacon_interval, arvif->beacon_interval);
if (ret != ZX_OK) {
ath10k_err("Setting beacon interval failed: %s\n", zx_status_get_string(ret));
return ret;
}
ret = ath10k_wmi_pdev_set_param(ar, ar->wmi.pdev_param->beacon_tx_mode,
WMI_BEACON_STAGGERED_MODE);
if (ret != ZX_OK) {
ath10k_err("Setting beacon Tx mode failed: %s\n", zx_status_get_string(ret));
return ret;
}
ret = ath10k_mac_setup_bcn_tmpl(arvif);
if (ret != ZX_OK) {
ath10k_err("ath10k_mac_setup_bcn_tmpl() failed: %s at ath10k_mac_start_ap().\n",
zx_status_get_string(ret));
return ret;
}
ret = ath10k_wmi_vdev_set_param(ar, arvif->vdev_id, ar->wmi.vdev_param->dtim_period,
arvif->dtim_period);
if (ret != ZX_OK) {
ath10k_err("Setting DTIM period failed: %s\n", zx_status_get_string(ret));
return ret;
}
ret = ath10k_control_beaconing(arvif);
if (ret != ZX_OK) {
ath10k_err("controlling beaconing failed: %s\n", zx_status_get_string(ret));
return ret;
}
// In the protected AP mode, the firmware requires a broadcast peer existed before the group key
// (WLAN_KEY_TYPE_GROUP) can be added. Otherwise, the firmware will reject that key.
// Since group key will be added per AP, add the peer here.
ret = ath10k_peer_create(ar, arvif->vdev_id, bcast_addr, WMI_PEER_TYPE_DEFAULT);
if (ret != ZX_OK) {
ath10k_warn("Failed to create the peer for group key: %s\n", zx_status_get_string(ret));
}
mtx_unlock(&ar->conf_mutex);
return ret;
}
zx_status_t ath10k_mac_stop_ap(struct ath10k_vif* arvif) {
struct ath10k* ar = arvif->ar;
mtx_lock(&ar->conf_mutex);
zx_status_t status = ath10k_wmi_vdev_down(ar, arvif->vdev_id);
if (status != ZX_OK) {
ath10k_err("failed to down vdev_id %i: %s\n", arvif->vdev_id, zx_status_get_string(status));
mtx_unlock(&ar->conf_mutex);
return status;
}
status = ath10k_peer_delete(ar, arvif->vdev_id, bcast_addr);
if (status != ZX_OK) {
ath10k_warn("failed to delete the peer for group key: %s\n", zx_status_get_string(status));
}
arvif->is_up = false;
mtx_unlock(&ar->conf_mutex);
return ZX_OK;
}
#if 0 // NEEDS PORTING
static void ath10k_control_ibss(struct ath10k_vif* arvif,
struct ieee80211_bss_conf* info,
const uint8_t self_peer[ETH_ALEN]) {
struct ath10k* ar = arvif->ar;
uint32_t vdev_param;
int ret = 0;
ASSERT_MTX_HELD(&arvif->ar->conf_mutex);
if (!info->ibss_joined) {
if (is_zero_ether_addr(arvif->bssid)) {
return;
}
eth_zero_addr(arvif->bssid);
return;
}
vdev_param = arvif->ar->wmi.vdev_param->atim_window;
ret = ath10k_wmi_vdev_set_param(arvif->ar, arvif->vdev_id, vdev_param,
ATH10K_DEFAULT_ATIM);
if (ret)
ath10k_warn("failed to set IBSS ATIM for vdev %d: %d\n",
arvif->vdev_id, ret);
}
static int ath10k_mac_vif_recalc_ps_wake_threshold(struct ath10k_vif* arvif) {
struct ath10k* ar = arvif->ar;
uint32_t param;
uint32_t value;
int ret;
ASSERT_MTX_HELD(&arvif->ar->conf_mutex);
if (arvif->u.sta.uapsd) {
value = WMI_STA_PS_TX_WAKE_THRESHOLD_NEVER;
} else {
value = WMI_STA_PS_TX_WAKE_THRESHOLD_ALWAYS;
}
param = WMI_STA_PS_PARAM_TX_WAKE_THRESHOLD;
ret = ath10k_wmi_set_sta_ps_param(ar, arvif->vdev_id, param, value);
if (ret) {
ath10k_warn("failed to submit ps wake threshold %u on vdev %i: %d\n",
value, arvif->vdev_id, ret);
return ret;
}
return 0;
}
static int ath10k_mac_vif_recalc_ps_poll_count(struct ath10k_vif* arvif) {
struct ath10k* ar = arvif->ar;
uint32_t param;
uint32_t value;
int ret;
ASSERT_MTX_HELD(&arvif->ar->conf_mutex);
if (arvif->u.sta.uapsd) {
value = WMI_STA_PS_PSPOLL_COUNT_UAPSD;
} else {
value = WMI_STA_PS_PSPOLL_COUNT_NO_MAX;
}
param = WMI_STA_PS_PARAM_PSPOLL_COUNT;
ret = ath10k_wmi_set_sta_ps_param(ar, arvif->vdev_id,
param, value);
if (ret) {
ath10k_warn("failed to submit ps poll count %u on vdev %i: %d\n",
value, arvif->vdev_id, ret);
return ret;
}
return 0;
}
static int ath10k_mac_num_vifs_started(struct ath10k* ar) {
struct ath10k_vif* arvif;
int num = 0;
ASSERT_MTX_HELD(&ar->conf_mutex);
list_for_each_entry(arvif, &ar->arvifs, list)
if (arvif->is_started) {
num++;
}
return num;
}
static int ath10k_mac_vif_setup_ps(struct ath10k_vif* arvif) {
struct ath10k* ar = arvif->ar;
struct ieee80211_vif* vif = arvif->vif;
struct ieee80211_conf* conf = &ar->hw->conf;
enum wmi_sta_powersave_param param;
enum wmi_sta_ps_mode psmode;
int ret;
int ps_timeout;
bool enable_ps;
ASSERT_MTX_HELD(&arvif->ar->conf_mutex);
if (arvif->vif->type != NL80211_IFTYPE_STATION) {
return 0;
}
enable_ps = arvif->ps;
if (enable_ps && ath10k_mac_num_vifs_started(ar) > 1 &&
!BITARR_TEST(ar->running_fw->fw_file.fw_features,
ATH10K_FW_FEATURE_MULTI_VIF_PS_SUPPORT)) {
ath10k_warn("refusing to enable ps on vdev %i: not supported by fw\n",
arvif->vdev_id);
enable_ps = false;
}
if (!arvif->is_started) {
/* mac80211 can update vif powersave state while disconnected.
* Firmware doesn't behave nicely and consumes more power than
* necessary if PS is disabled on a non-started vdev. Hence
* force-enable PS for non-running vdevs.
*/
psmode = WMI_STA_PS_MODE_ENABLED;
} else if (enable_ps) {
psmode = WMI_STA_PS_MODE_ENABLED;
param = WMI_STA_PS_PARAM_INACTIVITY_TIME;
ps_timeout = conf->dynamic_ps_timeout;
if (ps_timeout == 0) {
/* Firmware doesn't like 0 */
ps_timeout = ieee80211_tu_to_usec(
vif->bss_conf.beacon_int) / 1000;
}
ret = ath10k_wmi_set_sta_ps_param(ar, arvif->vdev_id, param,
ps_timeout);
if (ret) {
ath10k_warn("failed to set inactivity time for vdev %d: %i\n",
arvif->vdev_id, ret);
return ret;
}
} else {
psmode = WMI_STA_PS_MODE_DISABLED;
}
ath10k_dbg(ar, ATH10K_DBG_MAC, "mac vdev %d psmode %s\n",
arvif->vdev_id, psmode ? "enable" : "disable");
ret = ath10k_wmi_set_psmode(ar, arvif->vdev_id, psmode);
if (ret) {
ath10k_warn("failed to set PS Mode %d for vdev %d: %d\n",
psmode, arvif->vdev_id, ret);
return ret;
}
return 0;
}
static int ath10k_mac_vif_disable_keepalive(struct ath10k_vif* arvif) {
struct ath10k* ar = arvif->ar;
struct wmi_sta_keepalive_arg arg = {};
int ret;
ASSERT_MTX_HELD(&arvif->ar->conf_mutex);
if (arvif->vdev_type != WMI_VDEV_TYPE_STA) {
return 0;
}
if (!BITARR_TEST(ar->wmi.svc_map, WMI_SERVICE_STA_KEEP_ALIVE)) {
return 0;
}
/* Some firmware revisions have a bug and ignore the `enabled` field.
* Instead use the interval to disable the keepalive.
*/
arg.vdev_id = arvif->vdev_id;
arg.enabled = 1;
arg.method = WMI_STA_KEEPALIVE_METHOD_NULL_FRAME;
arg.interval = WMI_STA_KEEPALIVE_INTERVAL_DISABLE;
ret = ath10k_wmi_sta_keepalive(ar, &arg);
if (ret) {
ath10k_warn("failed to submit keepalive on vdev %i: %d\n",
arvif->vdev_id, ret);
return ret;
}
return 0;
}
static void ath10k_mac_vif_ap_csa_count_down(struct ath10k_vif* arvif) {
struct ath10k* ar = arvif->ar;
struct ieee80211_vif* vif = arvif->vif;
int ret;
ASSERT_MTX_HELD(&arvif->ar->conf_mutex);
if (COND_WARN(!BITARR_TEST(ar->wmi.svc_map, WMI_SERVICE_BEACON_OFFLOAD))) {
return;
}
if (arvif->vdev_type != WMI_VDEV_TYPE_AP) {
return;
}
if (!vif->csa_active) {
return;
}
if (!arvif->is_up) {
return;
}
if (!ieee80211_csa_is_complete(vif)) {
ieee80211_csa_update_counter(vif);
ret = ath10k_mac_setup_bcn_tmpl(arvif);
if (ret)
ath10k_warn("failed to update bcn tmpl during csa: %d\n",
ret);
ret = ath10k_mac_setup_prb_tmpl(arvif);
if (ret)
ath10k_warn("failed to update prb tmpl during csa: %d\n",
ret);
} else {
ieee80211_csa_finish(vif);
}
}
static void ath10k_mac_vif_ap_csa_work(struct work_struct* work) {
struct ath10k_vif* arvif = container_of(work, struct ath10k_vif,
ap_csa_work);
struct ath10k* ar = arvif->ar;
mtx_lock(&ar->conf_mutex);
ath10k_mac_vif_ap_csa_count_down(arvif);
mtx_unlock(&ar->conf_mutex);
}
static void ath10k_mac_handle_beacon_iter(void* data, uint8_t* mac,
struct ieee80211_vif* vif) {
struct sk_buff* skb = data;
struct ieee80211_mgmt* mgmt = (void*)skb->data;
struct ath10k_vif* arvif = (void*)vif->drv_priv;
if (vif->type != NL80211_IFTYPE_STATION) {
return;
}
if (!ether_addr_equal(mgmt->bssid, vif->bss_conf.bssid)) {
return;
}
cancel_delayed_work(&arvif->connection_loss_work);
}
void ath10k_mac_handle_beacon(struct ath10k* ar, struct sk_buff* skb) {
ieee80211_iterate_active_interfaces_atomic(ar->hw,
IEEE80211_IFACE_ITER_NORMAL,
ath10k_mac_handle_beacon_iter,
skb);
}
static void ath10k_mac_handle_beacon_miss_iter(void* data, uint8_t* mac,
struct ieee80211_vif* vif) {
uint32_t* vdev_id = data;
struct ath10k_vif* arvif = (void*)vif->drv_priv;
struct ath10k* ar = arvif->ar;
struct ieee80211_hw* hw = ar->hw;
if (arvif->vdev_id != *vdev_id) {
return;
}
if (!arvif->is_up) {
return;
}
ieee80211_beacon_loss(vif);
/* Firmware doesn't report beacon loss events repeatedly. If AP probe
* (done by mac80211) succeeds but beacons do not resume then it
* doesn't make sense to continue operation. Queue connection loss work
* which can be cancelled when beacon is received.
*/
ieee80211_queue_delayed_work(hw, &arvif->connection_loss_work,
ATH10K_CONNECTION_LOSS_HZ);
}
void ath10k_mac_handle_beacon_miss(struct ath10k* ar, uint32_t vdev_id) {
ieee80211_iterate_active_interfaces_atomic(ar->hw,
IEEE80211_IFACE_ITER_NORMAL,
ath10k_mac_handle_beacon_miss_iter,
&vdev_id);
}
static void ath10k_mac_vif_sta_connection_loss_work(struct work_struct* work) {
struct ath10k_vif* arvif = container_of(work, struct ath10k_vif,
connection_loss_work.work);
struct ieee80211_vif* vif = arvif->vif;
if (!arvif->is_up) {
return;
}
ieee80211_connection_loss(vif);
}
#endif // NEEDS PORTING
/**********************/
/* Station management */
/**********************/
static uint32_t ath10k_peer_assoc_h_listen_intval(struct ath10k* ar, wlan_assoc_ctx_t* assoc) {
/* Some firmware revisions have unstable STA powersave when listen
* interval is set too high (e.g. 5). The symptoms are firmware doesn't
* generate NullFunc frames properly even if buffered frames have been
* indicated in Beacon TIM. Firmware would seldom wake up to pull
* buffered frames. Often pinging the device from AP would simply fail.
*
* As a workaround set it to 1.
*/
if (ar->arvif.vdev_type == WMI_VDEV_TYPE_STA) {
return 1;
}
return assoc->listen_interval;
}
static void ath10k_peer_assoc_h_basic(struct ath10k* ar,
wlan_assoc_ctx_t* assoc,
struct wmi_peer_assoc_complete_arg* arg) {
struct ath10k_vif* arvif = &ar->arvif;
ASSERT_MTX_HELD(&ar->conf_mutex);
memcpy(arg->addr, assoc->bssid, ETH_ALEN);
arg->vdev_id = arvif->vdev_id;
arg->peer_aid = assoc->aid;
arg->peer_flags |= arvif->ar->wmi.peer_flags->auth;
arg->peer_listen_intval = ath10k_peer_assoc_h_listen_intval(ar, assoc);
arg->peer_num_spatial_streams = 1;
arg->peer_caps = assoc->cap_info[0] | (assoc->cap_info[1] << 8);
}
static void ath10k_peer_assoc_h_crypto(struct ath10k* ar,
wlan_assoc_ctx_t* assoc,
struct wmi_peer_assoc_complete_arg* arg) {
// TODO(NET-1661): Come back later when we want to enable the security feature on AP mode.
#if 0 // NEEDS PORTING
struct ieee80211_bss_conf* info = &vif->bss_conf;
struct cfg80211_chan_def def;
struct cfg80211_bss* bss;
const uint8_t* rsnie = NULL;
const uint8_t* wpaie = NULL;
ASSERT_MTX_HELD(&ar->conf_mutex);
if (COND_WARN(ath10k_mac_vif_chan(vif, &def))) {
return;
}
bss = cfg80211_get_bss(ar->hw->wiphy, def.chan, info->bssid, NULL, 0,
IEEE80211_BSS_TYPE_ANY, IEEE80211_PRIVACY_ANY);
if (bss) {
const struct cfg80211_bss_ies* ies;
rcu_read_lock();
rsnie = ieee80211_bss_get_ie(bss, WLAN_EID_RSN);
ies = rcu_dereference(bss->ies);
wpaie = cfg80211_find_vendor_ie(WLAN_OUI_MICROSOFT,
WLAN_OUI_TYPE_MICROSOFT_WPA,
ies->data,
ies->len);
rcu_read_unlock();
cfg80211_put_bss(ar->hw->wiphy, bss);
}
/* FIXME: base on RSN IE/WPA IE is a correct idea? */
if (rsnie || wpaie) {
ath10k_dbg(ar, ATH10K_DBG_WMI, "%s: rsn ie found\n", __func__);
arg->peer_flags |= ar->wmi.peer_flags->need_ptk_4_way;
}
if (wpaie) {
ath10k_dbg(ar, ATH10K_DBG_WMI, "%s: wpa ie found\n", __func__);
arg->peer_flags |= ar->wmi.peer_flags->need_gtk_2_way;
}
if (sta->mfp &&
BITARR_TEST(ar->running_fw->fw_file.fw_features, ATH10K_FW_FEATURE_MFP_SUPPORT)) {
arg->peer_flags |= ar->wmi.peer_flags->pmf;
}
#endif // NEEDS PORTING
}
static void ath10k_peer_assoc_h_rates(struct ath10k* ar,
wlan_assoc_ctx_t* assoc,
struct wmi_peer_assoc_complete_arg* arg) {
struct wmi_rate_set_arg* rateset = &arg->peer_legacy_rates;
size_t i;
ASSERT_MTX_HELD(&ar->conf_mutex);
size_t rates_size = countof(rateset->rates);
rateset->num_rates = MIN(assoc->rates_cnt, rates_size);
for (i = 0; i < rateset->num_rates; i++) {
rateset->rates[i] = assoc->rates[i];
}
}
static void ath10k_peer_assoc_h_ht(struct ath10k* ar,
wlan_assoc_ctx_t* assoc,
struct wmi_peer_assoc_complete_arg* arg) {
const wlan_ht_caps_t* ht_cap = &assoc->ht_cap;
size_t i, n;
uint8_t max_nss;
uint32_t stbc;
ASSERT_MTX_HELD(&ar->conf_mutex);
if (!assoc->has_ht_cap) {
return;
}
arg->peer_flags |= ar->wmi.peer_flags->ht;
arg->peer_max_mpdu = (1 << (IEEE80211_HT_MAX_AMPDU_FACTOR +
(ht_cap->ampdu_params & IEEE80211_AMPDU_RX_LEN_MASK))) - 1;
arg->peer_mpdu_density = ath10k_parse_mpdudensity(
(ht_cap->ampdu_params & IEEE80211_AMPDU_DENSITY_MASK) >> IEEE80211_AMPDU_DENSITY_SHIFT);
arg->peer_ht_caps = ht_cap->ht_capability_info;
arg->peer_rate_caps |= WMI_RC_HT_FLAG;
if (ht_cap->ht_capability_info & IEEE80211_HT_CAPS_LDPC) {
arg->peer_flags |= ar->wmi.peer_flags->ldbc;
}
if (ht_cap->ht_capability_info & IEEE80211_HT_CAPS_CHAN_WIDTH) {
arg->peer_flags |= ar->wmi.peer_flags->bw40;
arg->peer_rate_caps |= WMI_RC_CW40_FLAG;
}
if ((ht_cap->ht_capability_info & IEEE80211_HT_CAPS_SGI_20) ||
(ht_cap->ht_capability_info & IEEE80211_HT_CAPS_SGI_40)) {
arg->peer_rate_caps |= WMI_RC_SGI_FLAG;
}
if (ht_cap->ht_capability_info & IEEE80211_HT_CAPS_TX_STBC) {
arg->peer_rate_caps |= WMI_RC_TX_STBC_FLAG;
arg->peer_flags |= ar->wmi.peer_flags->stbc;
}
if (ht_cap->ht_capability_info & IEEE80211_HT_CAPS_RX_STBC) {
stbc = ht_cap->ht_capability_info & IEEE80211_HT_CAPS_RX_STBC;
stbc = stbc >> IEEE80211_HT_CAPS_RX_STBC_SHIFT;
stbc = stbc << WMI_RC_RX_STBC_FLAG_S;
arg->peer_rate_caps |= stbc;
arg->peer_flags |= ar->wmi.peer_flags->stbc;
}
if (ht_cap->supported_mcs_set[1] && ht_cap->supported_mcs_set[2]) {
arg->peer_rate_caps |= WMI_RC_TS_FLAG;
} else if (ht_cap->supported_mcs_set[1]) {
arg->peer_rate_caps |= WMI_RC_DS_FLAG;
}
for (i = 0, n = 0, max_nss = 0; i < IEEE80211_HT_MCS_MASK_LEN * 8; i++) {
if (ht_cap->supported_mcs_set[i / 8] & BIT(i % 8)) {
max_nss = (i / 8) + 1;
arg->peer_ht_rates.rates[n++] = i;
}
}
/*
* This is a workaround for HT-enabled STAs which break the spec
* and have no HT capabilities RX mask (no HT RX MCS map).
*
* As per spec, in section 20.3.5 Modulation and coding scheme (MCS),
* MCS 0 through 7 are mandatory in 20MHz with 800 ns GI at all STAs.
*
* Firmware asserts if such situation occurs.
*/
if (n == 0) {
arg->peer_ht_rates.num_rates = 8;
for (i = 0; i < arg->peer_ht_rates.num_rates; i++) {
arg->peer_ht_rates.rates[i] = i;
}
} else {
arg->peer_ht_rates.num_rates = n;
arg->peer_num_spatial_streams = max_nss;
}
ath10k_dbg(ar, ATH10K_DBG_MAC, "mac ht peer %pM mcs cnt %d nss %d\n",
arg->addr,
arg->peer_ht_rates.num_rates,
arg->peer_num_spatial_streams);
}
#if 0 // NEEDS PORTING
static int ath10k_peer_assoc_qos_ap(struct ath10k* ar,
struct ath10k_vif* arvif,
struct ieee80211_sta* sta) {
uint32_t uapsd = 0;
uint32_t max_sp = 0;
int ret = 0;
ASSERT_MTX_HELD(&ar->conf_mutex);
if (sta->wme && sta->uapsd_queues) {
ath10k_dbg(ar, ATH10K_DBG_MAC, "mac uapsd_queues 0x%x max_sp %d\n",
sta->uapsd_queues, sta->max_sp);
if (sta->uapsd_queues & IEEE80211_WMM_IE_STA_QOSINFO_AC_VO)
uapsd |= WMI_AP_PS_UAPSD_AC3_DELIVERY_EN |
WMI_AP_PS_UAPSD_AC3_TRIGGER_EN;
if (sta->uapsd_queues & IEEE80211_WMM_IE_STA_QOSINFO_AC_VI)
uapsd |= WMI_AP_PS_UAPSD_AC2_DELIVERY_EN |
WMI_AP_PS_UAPSD_AC2_TRIGGER_EN;
if (sta->uapsd_queues & IEEE80211_WMM_IE_STA_QOSINFO_AC_BK)
uapsd |= WMI_AP_PS_UAPSD_AC1_DELIVERY_EN |
WMI_AP_PS_UAPSD_AC1_TRIGGER_EN;
if (sta->uapsd_queues & IEEE80211_WMM_IE_STA_QOSINFO_AC_BE)
uapsd |= WMI_AP_PS_UAPSD_AC0_DELIVERY_EN |
WMI_AP_PS_UAPSD_AC0_TRIGGER_EN;
if (sta->max_sp < MAX_WMI_AP_PS_PEER_PARAM_MAX_SP) {
max_sp = sta->max_sp;
}
ret = ath10k_wmi_set_ap_ps_param(ar, arvif->vdev_id,
sta->addr,
WMI_AP_PS_PEER_PARAM_UAPSD,
uapsd);
if (ret) {
ath10k_warn("failed to set ap ps peer param uapsd for vdev %i: %d\n",
arvif->vdev_id, ret);
return ret;
}
ret = ath10k_wmi_set_ap_ps_param(ar, arvif->vdev_id,
sta->addr,
WMI_AP_PS_PEER_PARAM_MAX_SP,
max_sp);
if (ret) {
ath10k_warn("failed to set ap ps peer param max sp for vdev %i: %d\n",
arvif->vdev_id, ret);
return ret;
}
/* TODO setup this based on STA listen interval and
* beacon interval. Currently we don't know
* sta->listen_interval - mac80211 patch required.
* Currently use 10 seconds
*/
ret = ath10k_wmi_set_ap_ps_param(ar, arvif->vdev_id, sta->addr,
WMI_AP_PS_PEER_PARAM_AGEOUT_TIME,
10);
if (ret) {
ath10k_warn("failed to set ap ps peer param ageout time for vdev %i: %d\n",
arvif->vdev_id, ret);
return ret;
}
}
return 0;
}
static uint16_t
ath10k_peer_assoc_h_vht_limit(uint16_t tx_mcs_set,
const uint16_t vht_mcs_limit[NL80211_VHT_NSS_MAX]) {
int idx_limit;
int nss;
uint16_t mcs_map;
uint16_t mcs;
for (nss = 0; nss < NL80211_VHT_NSS_MAX; nss++) {
mcs_map = ath10k_mac_get_max_vht_mcs_map(tx_mcs_set, nss) &
vht_mcs_limit[nss];
if (mcs_map) {
idx_limit = fls(mcs_map) - 1;
} else {
idx_limit = -1;
}
switch (idx_limit) {
case 0: /* fall through */
case 1: /* fall through */
case 2: /* fall through */
case 3: /* fall through */
case 4: /* fall through */
case 5: /* fall through */
case 6: /* fall through */
default:
/* see ath10k_mac_can_set_bitrate_mask() */
WARN_ONCE();
/* fall through */
case -1:
mcs = IEEE80211_VHT_MCS_NOT_SUPPORTED;
break;
case 7:
mcs = IEEE80211_VHT_MCS_SUPPORT_0_7;
break;
case 8:
mcs = IEEE80211_VHT_MCS_SUPPORT_0_8;
break;
case 9:
mcs = IEEE80211_VHT_MCS_SUPPORT_0_9;
break;
}
tx_mcs_set &= ~(0x3 << (nss * 2));
tx_mcs_set |= mcs << (nss * 2);
}
return tx_mcs_set;
}
#endif // NEEDS PORTING
static void ath10k_peer_assoc_h_vht(struct ath10k* ar,
wlan_assoc_ctx_t* assoc,
struct wmi_peer_assoc_complete_arg* arg) {
if (!assoc->has_vht_cap) {
return;
}
uint32_t vht_cap = assoc->vht_cap.vht_capability_info;
arg->peer_flags |= ar->wmi.peer_flags->vht;
enum Band band = chan_to_band(assoc->chan.primary);
if (band == WLAN_BAND_2GHZ) {
arg->peer_flags |= ar->wmi.peer_flags->vht_2g;
}
arg->peer_vht_caps = vht_cap;
uint8_t ampdu_factor = (vht_cap & IEEE80211_VHT_CAPS_MAX_AMPDU_LEN) >>
IEEE80211_VHT_CAPS_MAX_AMPDU_LEN_SHIFT;
/* Workaround: Some Netgear/Linksys 11ac APs set Rx A-MPDU factor to
* zero in VHT IE. Using it would result in degraded throughput.
* arg->peer_max_mpdu at this point contains HT max_mpdu so keep
* it if VHT max_mpdu is smaller.
*/
arg->peer_max_mpdu = MAX(arg->peer_max_mpdu,
(1U << (IEEE80211_HT_MAX_AMPDU_FACTOR + ampdu_factor)) - 1);
if (assoc->chan.cbw == CBW80) {
arg->peer_flags |= ar->wmi.peer_flags->bw80;
}
if (assoc->chan.cbw == CBW160) {
arg->peer_flags |= ar->wmi.peer_flags->bw160;
}
ZX_ASSERT(assoc->chan.cbw != CBW80P80);
/* Calculate peer NSS capability from VHT capabilities if STA
* supports VHT.
*/
uint8_t i, max_nss, vht_mcs;
uint64_t supported_vht_mcs_and_nss_set = assoc->vht_cap.supported_vht_mcs_and_nss_set;
uint16_t rx_vht_mcs_map = (supported_vht_mcs_and_nss_set & IEEE80211_VHT_MCS_NSS_RX_MCS_MAP)
>> IEEE80211_VHT_MCS_NSS_RX_MCS_MAP_SHIFT;
uint16_t rx_highest = (supported_vht_mcs_and_nss_set & IEEE80211_VHT_MCS_NSS_RX_MAX_LGI_RATE)
>> IEEE80211_VHT_MCS_NSS_RX_MAX_LGI_RATE_SHIFT;
uint16_t tx_vht_mcs_map = (supported_vht_mcs_and_nss_set & IEEE80211_VHT_MCS_NSS_TX_MCS_MAP)
>> IEEE80211_VHT_MCS_NSS_TX_MCS_MAP_SHIFT;
uint16_t tx_highest = (supported_vht_mcs_and_nss_set & IEEE80211_VHT_MCS_NSS_TX_MAX_LGI_RATE)
>> IEEE80211_VHT_MCS_NSS_TX_MAX_LGI_RATE_SHIFT;
for (i = 0, max_nss = 0, vht_mcs = 0; i < VHT_NSS_NUM; i++) {
vht_mcs = rx_vht_mcs_map >> (2 * i) & 3;
if (vht_mcs != IEEE80211_VHT_MCS_NONE) {
max_nss = i + 1;
}
}
arg->peer_num_spatial_streams = max_nss;
arg->peer_vht_rates.rx_max_rate = rx_highest;
arg->peer_vht_rates.rx_mcs_set = rx_vht_mcs_map;
arg->peer_vht_rates.tx_max_rate = tx_highest;
arg->peer_vht_rates.tx_mcs_set = tx_vht_mcs_map;
ath10k_dbg(ar, ATH10K_DBG_MAC, "mac vht peer %pM max_mpdu %d flags 0x%x\n",
assoc->bssid, arg->peer_max_mpdu, arg->peer_flags);
if (arg->peer_vht_rates.rx_max_rate && (vht_cap & IEEE80211_VHT_CAPS_SUPP_CHAN_WIDTH)) {
switch (arg->peer_vht_rates.rx_max_rate) {
case 1560:
/* Must be 2x2 at 160Mhz is all it can do. */
arg->peer_bw_rxnss_override = 2;
break;
case 780:
/* Can only do 1x1 at 160Mhz (Long Guard Interval) */
arg->peer_bw_rxnss_override = 1;
break;
}
}
}
static void ath10k_peer_assoc_h_qos(struct ath10k* ar,
wlan_assoc_ctx_t* assoc,
struct wmi_peer_assoc_complete_arg* arg) {
struct ath10k_vif* arvif = &ar->arvif;
if (assoc->qos) {
arg->peer_flags |= arvif->ar->wmi.peer_flags->qos;
}
#if 0 // NEEDS PORTING
if (arvif->vdev_type == WMI_VDEV_TYPE_AP && assoc->qos && sta->uapsd_queues) {
arg->peer_flags |= arvif->ar->wmi.peer_flags->apsd;
arg->peer_rate_caps |= WMI_RC_UAPSD_FLAG;
}
#endif // NEEDS PORTING
ath10k_dbg(ar, ATH10K_DBG_MAC, "mac peer %pM qos %d\n",
assoc->bssid, !!(arg->peer_flags & arvif->ar->wmi.peer_flags->qos));
}
static enum wmi_phy_mode ath10k_mac_get_phymode_vht(enum CBW cbw) {
if (cbw == CBW160) {
return MODE_11AC_VHT160;
} else if (cbw == CBW80P80) {
return MODE_11AC_VHT80_80;
} else if (cbw == CBW80) {
return MODE_11AC_VHT80;
} else if (cbw == CBW40ABOVE || cbw == CBW40BELOW) {
return MODE_11AC_VHT40;
} else if (cbw == CBW20) {
return MODE_11AC_VHT20;
}
return MODE_UNKNOWN;
}
static enum wmi_phy_mode ath10k_peer_assoc_h_phymode(wlan_assoc_ctx_t* assoc) {
enum wmi_phy_mode phymode = MODE_UNKNOWN;
enum Band band = chan_to_band(assoc->chan.primary);
enum CBW cbw = assoc->chan.cbw;
COND_WARN(__builtin_popcount(assoc->phy) != 1); // Assume only one bit asserted.
switch (band) {
case WLAN_BAND_2GHZ:
if ((assoc->phy == WLAN_PHY_VHT) && assoc->has_vht_cap) {
if (cbw == CBW40ABOVE || cbw == CBW40BELOW) {
phymode = MODE_11AC_VHT40;
} else {
phymode = MODE_11AC_VHT20;
}
} else if ((assoc->phy == WLAN_PHY_HT) && assoc->has_ht_cap) {
if (cbw == CBW40ABOVE || cbw == CBW40BELOW) {
phymode = MODE_11NG_HT40;
} else {
phymode = MODE_11NG_HT20;
}
} else if (assoc->phy == WLAN_PHY_OFDM) { // Has OFDM ONLY.
phymode = MODE_11G;
} else {
phymode = MODE_11B;
}
break;
case WLAN_BAND_5GHZ:
/*
* Check VHT first.
*/
if ((assoc->phy == WLAN_PHY_VHT) && assoc->has_vht_cap) {
phymode = ath10k_mac_get_phymode_vht(assoc->chan.cbw);
} else if ((assoc->phy == WLAN_PHY_HT) && assoc->has_ht_cap) {
if (cbw == CBW40ABOVE || cbw == CBW40BELOW) {
phymode = MODE_11NA_HT40;
} else {
phymode = MODE_11NA_HT20;
}
} else {
phymode = MODE_11A;
}
break;
default:
ath10k_err("Unsupported WLAN band: %d\n", band);
}
char ethaddr_str[ETH_ALEN * 3];
ethaddr_sprintf(ethaddr_str, assoc->bssid);
ath10k_info("mac peer %s phymode %s\n", ethaddr_str, ath10k_wmi_phymode_str(phymode));
COND_WARN(phymode == MODE_UNKNOWN);
return phymode;
}
static zx_status_t ath10k_peer_assoc_prepare(struct ath10k* ar,
struct ath10k_vif* arvif,
wlan_assoc_ctx_t* assoc,
struct wmi_peer_assoc_complete_arg* arg) {
ASSERT_MTX_HELD(&ar->conf_mutex);
memset(arg, 0, sizeof(*arg));
ath10k_peer_assoc_h_basic(ar, assoc, arg);
ath10k_peer_assoc_h_crypto(ar, assoc, arg);
ath10k_peer_assoc_h_rates(ar, assoc, arg);
ath10k_peer_assoc_h_ht(ar, assoc, arg);
ath10k_peer_assoc_h_vht(ar, assoc, arg);
ath10k_peer_assoc_h_qos(ar, assoc, arg);
arg->peer_phymode = ath10k_peer_assoc_h_phymode(assoc);
return 0;
}
static const uint32_t ath10k_smps_map[] = {
WMI_PEER_SMPS_STATIC,
WMI_PEER_SMPS_DYNAMIC,
WMI_PEER_SMPS_PS_NONE,
WMI_PEER_SMPS_PS_NONE,
};
static zx_status_t ath10k_setup_peer_smps(struct ath10k* ar, struct ath10k_vif* arvif,
wlan_assoc_ctx_t* assoc) {
size_t smps;
if (!assoc->has_ht_cap) {
return ZX_OK;
}
smps = assoc->ht_cap.ht_capability_info & IEEE80211_HT_CAPS_SMPS;
smps >>= IEEE80211_HT_CAPS_SMPS_SHIFT;
if (smps >= countof(ath10k_smps_map)) {
return ZX_ERR_INVALID_ARGS;
}
ath10k_info("setting peer smps mode to %s\n", smps == 0 ? "static" :
smps == 1 ? "dynamic" :
smps == 3 ? "none" :
"invalid");
return ath10k_wmi_peer_set_param(ar, arvif->vdev_id, assoc->bssid,
WMI_PEER_SMPS_STATE,
ath10k_smps_map[smps]);
}
#if 0 // NEEDS PORTING
static int ath10k_mac_vif_recalc_txbf(struct ath10k* ar,
struct ieee80211_vif* vif,
struct ieee80211_sta_vht_cap vht_cap) {
struct ath10k_vif* arvif = (void*)vif->drv_priv;
int ret;
uint32_t param;
uint32_t value;
if (ath10k_wmi_get_txbf_conf_scheme(ar) != WMI_TXBF_CONF_AFTER_ASSOC) {
return 0;
}
if (!(ar->vht_cap_info &
(IEEE80211_VHT_CAP_SU_BEAMFORMEE_CAPABLE |
IEEE80211_VHT_CAP_MU_BEAMFORMEE_CAPABLE |
IEEE80211_VHT_CAP_SU_BEAMFORMER_CAPABLE |
IEEE80211_VHT_CAP_MU_BEAMFORMER_CAPABLE))) {
return 0;
}
param = ar->wmi.vdev_param->txbf;
value = 0;
if (COND_WARN(param == WMI_VDEV_PARAM_UNSUPPORTED)) {
return 0;
}
/* The following logic is correct. If a remote STA advertises support
* for being a beamformer then we should enable us being a beamformee.
*/
if (ar->vht_cap_info &
(IEEE80211_VHT_CAP_SU_BEAMFORMEE_CAPABLE |
IEEE80211_VHT_CAP_MU_BEAMFORMEE_CAPABLE)) {
if (vht_cap.cap & IEEE80211_VHT_CAP_SU_BEAMFORMER_CAPABLE) {
value |= WMI_VDEV_PARAM_TXBF_SU_TX_BFEE;
}
if (vht_cap.cap & IEEE80211_VHT_CAP_MU_BEAMFORMER_CAPABLE) {
value |= WMI_VDEV_PARAM_TXBF_MU_TX_BFEE;
}
}
if (ar->vht_cap_info &
(IEEE80211_VHT_CAP_SU_BEAMFORMER_CAPABLE |
IEEE80211_VHT_CAP_MU_BEAMFORMER_CAPABLE)) {
if (vht_cap.cap & IEEE80211_VHT_CAP_SU_BEAMFORMEE_CAPABLE) {
value |= WMI_VDEV_PARAM_TXBF_SU_TX_BFER;
}
if (vht_cap.cap & IEEE80211_VHT_CAP_MU_BEAMFORMEE_CAPABLE) {
value |= WMI_VDEV_PARAM_TXBF_MU_TX_BFER;
}
}
if (value & WMI_VDEV_PARAM_TXBF_MU_TX_BFEE) {
value |= WMI_VDEV_PARAM_TXBF_SU_TX_BFEE;
}
if (value & WMI_VDEV_PARAM_TXBF_MU_TX_BFER) {
value |= WMI_VDEV_PARAM_TXBF_SU_TX_BFER;
}
ret = ath10k_wmi_vdev_set_param(ar, arvif->vdev_id, param, value);
if (ret) {
ath10k_warn("failed to submit vdev param txbf 0x%x: %d\n",
value, ret);
return ret;
}
return 0;
}
#endif // NEEDS PORTING
static zx_status_t ath10k_mac_delete_bss_peer(struct ath10k* ar, struct ath10k_vif* arvif) {
ASSERT_MTX_HELD(&ar->conf_mutex);
if (!is_zero_ether_addr(arvif->bssid)) {
zx_status_t status = ath10k_peer_delete(ar, arvif->vdev_id, arvif->bssid);
if (status != ZX_OK) {
char ethaddr_str[ETH_ALEN * 3];
ethaddr_sprintf(ethaddr_str, arvif->bssid);
ath10k_err("failed to delete peer %s in vdev %i: %s\n", ethaddr_str, arvif->vdev_id,
zx_status_get_string(status));
return status;
}
memset(arvif->bssid, 0, ETH_ALEN); // Clear it so that we won't delete peer twice.
}
return ZX_OK;
}
// Take the vdev down, and tell the firmware to forget about the previous peer.
static zx_status_t ath10k_mac_bss_disassoc(struct ath10k* ar) {
struct ath10k_vif* arvif = &ar->arvif;
ASSERT_MTX_HELD(&ar->conf_mutex);
if (!arvif->is_up) { return ZX_ERR_BAD_STATE; }
zx_status_t ret = ath10k_mac_delete_bss_peer(ar, arvif);
if (ret != ZX_OK) {
return ret;
}
arvif->is_up = false;
ret = ath10k_wmi_vdev_down(ar, arvif->vdev_id);
if (ret != ZX_OK) {
ath10k_err("failed to take vdev %i down: %s\n", arvif->vdev_id, zx_status_get_string(ret));
return ret;
}
arvif->is_started = false;
return ZX_OK;
}
// As a client role, prepare to connect to a BSS.
zx_status_t ath10k_mac_set_bss(struct ath10k* ar, wlan_bss_config_t* config) {
struct ath10k_vif* arvif = &ar->arvif;
mtx_lock(&ar->conf_mutex);
// Always try to delete the peer first. The peer entry can be left on the previous attempt
// to connect a BSS (AP) and that failed at the authentication stage (for example, AP didn't
// respond the Auth Request) where MLME has no way to tell driver to delete the entry.
zx_status_t ret = ath10k_mac_delete_bss_peer(ar, arvif);
if (ret != ZX_OK) {
goto out;
}
if (arvif->is_started) {
if (arvif->is_up) {
ret = ath10k_mac_bss_disassoc(ar);
if (ret != ZX_OK) {
ath10k_err("disassociating vdev failed %i: %s\n", arvif->vdev_id,
zx_status_get_string(ret));
goto out;
}
}
ret = ath10k_vdev_restart(arvif, &ar->rx_channel);
if (ret != ZX_OK) {
ath10k_err("failed to restart vdev %i: %s\n", arvif->vdev_id,
zx_status_get_string(ret));
goto out;
}
arvif->is_started = true;
}
memcpy(&arvif->bssid, config->bssid, ETH_ALEN);
ret = ath10k_peer_create(ar, arvif->vdev_id, arvif->bssid, WMI_PEER_TYPE_DEFAULT);
if (ret != ZX_OK) {
ath10k_err("failed to create peer: %s\n", zx_status_get_string(ret));
goto out;
}
out:
mtx_unlock(&ar->conf_mutex);
return ret;
}
// As a client role, tell the firmware we have associated with a BSS.
zx_status_t ath10k_mac_bss_assoc(struct ath10k* ar, wlan_assoc_ctx_t* assoc_ctx) {
zx_status_t ret;
mtx_lock(&ar->conf_mutex);
struct ath10k_vif* arvif = &ar->arvif;
struct wmi_peer_assoc_complete_arg peer_arg;
if (memcmp(assoc_ctx->bssid, arvif->bssid, ETH_ALEN)) {
char bssid_expected[ETH_ALEN * 3];
char bssid_actual[ETH_ALEN * 3];
ethaddr_sprintf(bssid_expected, arvif->bssid);
ethaddr_sprintf(bssid_actual, assoc_ctx->bssid);
ath10k_err("configure_bss invoked with %s but configure_assoc invoked with %s, ignoring\n",
bssid_expected, bssid_actual);
ret = ZX_ERR_INVALID_ARGS;
goto done;
}
ath10k_dbg(ar, ATH10K_DBG_MAC, "mac vdev %i assoc bssid %pM aid %u\n",
arvif->vdev_id, arvif->bssid, assoc_ctx->aid);
// Ensure the peer had been created before we associate it.
if (!ath10k_check_peer_existence(ar, assoc_ctx->bssid, true)) {
ret = ZX_ERR_NOT_FOUND;
goto done;
}
ret = ath10k_peer_assoc_prepare(ar, arvif, assoc_ctx, &peer_arg);
if (ret != ZX_OK) {
ath10k_warn("failed to prepare WMI peer assoc for %pM vdev %i: %s\n",
peer_arg.addr, arvif->vdev_id, zx_status_get_string(ret));
goto done;
}
peer_arg.peer_flags |= ar->wmi.peer_flags->qos;
ret = ath10k_wmi_peer_assoc(ar, &peer_arg);
if (ret != ZX_OK) {
ath10k_warn("failed to run peer assoc for %pM vdev %i: %s\n", arvif->bssid,
arvif->vdev_id, zx_status_get_string(ret));
ath10k_wmi_peer_delete(ar, arvif->vdev_id, assoc_ctx->bssid);
goto done;
}
ret = ath10k_setup_peer_smps(ar, arvif, assoc_ctx);
if (ret != ZX_OK) {
ath10k_warn("failed to setup peer SMPS for vdev %i: %s\n", arvif->vdev_id,
zx_status_get_string(ret));
}
#if 0 // NEEDS PORTING
ret = ath10k_mac_vif_recalc_txbf(ar, vif, vht_cap);
if (ret) {
ath10k_warn("failed to recalc txbf for vdev %i on bss %pM: %d\n",
arvif->vdev_id, bss_conf->bssid, ret);
return;
}
#endif // NEEDS PORTING
ath10k_dbg(ar, ATH10K_DBG_MAC, "mac vdev %d up (associated) bssid %pM aid %d\n",
arvif->vdev_id, arvif->bssid, arvif->aid);
char bssid_str[ETH_ALEN * 3];
ethaddr_sprintf(bssid_str, arvif->bssid);
ret = ath10k_wmi_vdev_up(ar, arvif->vdev_id, arvif->aid, arvif->bssid);
if (ret != ZX_OK) {
ath10k_warn("failed to bring vdev %d up with aid: %d bssid: %s (%s)\n", arvif->vdev_id,
arvif->aid, bssid_str, zx_status_get_string(ret));
}
arvif->is_up = true;
ath10k_info("successfully associated with bssid %s\n", bssid_str);
/* Workaround: Some firmware revisions (tested with qca6174
* WLAN.RM.2.0-00073) have buggy powersave state machine and must be
* poked with peer param command.
*/
ret = ath10k_wmi_peer_set_param(ar, arvif->vdev_id, arvif->bssid, WMI_PEER_DUMMY_VAR, 1);
if (ret != ZX_OK) {
ath10k_warn("failed to poke peer %pM param for ps workaround on vdev %i: %s\n",
arvif->bssid, arvif->vdev_id, zx_status_get_string(ret));
}
done:
mtx_unlock(&ar->conf_mutex);
return ret;
}
#if 0 // NEEDS PORTING
static void ath10k_bss_disassoc(struct ieee80211_hw* hw,
struct ieee80211_vif* vif) {
struct ath10k* ar = hw->priv;
struct ath10k_vif* arvif = (void*)vif->drv_priv;
struct ieee80211_sta_vht_cap vht_cap = {};
int ret;
ASSERT_MTX_HELD(&ar->conf_mutex);
ath10k_dbg(ar, ATH10K_DBG_MAC, "mac vdev %i disassoc bssid %pM\n",
arvif->vdev_id, arvif->bssid);
ret = ath10k_wmi_vdev_down(ar, arvif->vdev_id);
if (ret)
ath10k_warn("failed to down vdev %i: %d\n",
arvif->vdev_id, ret);
arvif->def_wep_key_idx = -1;
ret = ath10k_mac_vif_recalc_txbf(ar, vif, vht_cap);
if (ret) {
ath10k_warn("failed to recalc txbf for vdev %i: %d\n",
arvif->vdev_id, ret);
return;
}
arvif->is_up = false;
cancel_delayed_work_sync(&arvif->connection_loss_work);
}
#endif // NEEDS PORTING
// Used by AP role to add a remote client.
static zx_status_t ath10k_station_assoc(struct ath10k* ar,
wlan_assoc_ctx_t* assoc,
bool reassoc) {
struct ath10k_vif* arvif = &ar->arvif;
struct wmi_peer_assoc_complete_arg peer_arg;
zx_status_t ret;
ASSERT_MTX_HELD(&ar->conf_mutex);
ret = ath10k_peer_assoc_prepare(ar, arvif, assoc, &peer_arg);
if (ret != ZX_OK) {
ath10k_warn("failed to prepare WMI peer assoc for %pM vdev %i: %s\n",
peer_arg.addr, arvif->vdev_id, zx_status_get_string(ret));
return ret;
}
peer_arg.peer_reassoc = reassoc;
ret = ath10k_wmi_peer_assoc(ar, &peer_arg);
if (ret != ZX_OK) {
ath10k_warn("failed to run peer assoc for STA vdev %i: %s\n",
arvif->vdev_id, zx_status_get_string(ret));
return ret;
}
/* Re-assoc is run only to update supported rates for given station. It
* doesn't make much sense to reconfigure the peer completely.
*/
if (!reassoc) {
ret = ath10k_setup_peer_smps(ar, arvif, assoc);
if (ret != ZX_OK) {
ath10k_warn("failed to setup peer SMPS for vdev %d: %s\n",
arvif->vdev_id, zx_status_get_string(ret));
return ret;
}
#if 0 // NEEDS PORTING
ret = ath10k_peer_assoc_qos_ap(ar, arvif, sta);
if (ret) {
ath10k_warn("failed to set qos params for STA %pM for vdev %i: %d\n",
sta->addr, arvif->vdev_id, ret);
return ret;
}
if (!sta->wme) {
arvif->num_legacy_stations++;
ret = ath10k_recalc_rtscts_prot(arvif);
if (ret) {
ath10k_warn("failed to recalculate rts/cts prot for vdev %d: %d\n",
arvif->vdev_id, ret);
return ret;
}
}
/* Plumb cached keys only for static WEP */
if (arvif->def_wep_key_idx != -1) {
ret = ath10k_install_peer_wep_keys(arvif, sta->addr);
if (ret) {
ath10k_warn("failed to install peer wep keys for vdev %i: %d\n",
arvif->vdev_id, ret);
return ret;
}
}
#endif // NEEDS PORTING
}
return ret;
}
// Used by an AP after accepted a station's association request.
// Keys will be added by ath10k_mac_set_key().
zx_status_t ath10k_mac_ap_assoc_with_sta(struct ath10k* ar, wlan_assoc_ctx_t* assoc) {
struct ath10k_vif* arvif = &ar->arvif;
zx_status_t ret;
mtx_lock(&ar->conf_mutex);
ret = ath10k_peer_create(ar, arvif->vdev_id, assoc->bssid, WMI_PEER_TYPE_DEFAULT);
if (ret != ZX_OK) {
ath10k_err("peer create failed: %s\n", zx_status_get_string(ret));
goto out;
}
ret = ath10k_station_assoc(ar, assoc, false);
if (ret != ZX_OK) {
ath10k_err("failed to associate station: %s\n", zx_status_get_string(ret));
goto out;
}
out:
mtx_unlock(&ar->conf_mutex);
return ret;
}
// Used by an AP to disassociate a station.
zx_status_t ath10k_mac_ap_disassoc_sta(struct ath10k* ar, const uint8_t* peer_addr) {
struct ath10k_vif* arvif = &ar->arvif;
zx_status_t ret;
mtx_lock(&ar->conf_mutex);
#if 0 // NEEDS PORTING
if (!sta->wme) {
arvif->num_legacy_stations--;
ret = ath10k_recalc_rtscts_prot(arvif);
if (ret) {
ath10k_warn("failed to recalculate rts/cts prot for vdev %d: %d\n",
arvif->vdev_id, ret);
return ret;
}
}
#endif
ret = ath10k_clear_peer_keys(arvif, peer_addr);
if (ret != ZX_OK) {
char ethaddr_str[ETH_ALEN * 3];
ethaddr_sprintf(ethaddr_str, peer_addr);
ath10k_warn("failed to clear all peer keys for vdev %i: %s : %s\n",
arvif->vdev_id, ethaddr_str, zx_status_get_string(ret));
}
ret = ath10k_peer_delete(ar, arvif->vdev_id, peer_addr);
if (ret != ZX_OK) {
char ethaddr_str[ETH_ALEN * 3];
ethaddr_sprintf(ethaddr_str, peer_addr);
ath10k_err("failed to delete a peer for vdev %i: %s : %s\n",
arvif->vdev_id, ethaddr_str, zx_status_get_string(ret));
}
mtx_unlock(&ar->conf_mutex);
return ret;
}
/**************/
/* Regulatory */
/**************/
static bool interested_channel(const struct ath10k_channel* channel) {
if (channel->flags & IEEE80211_CHAN_DISABLED) {
return false;
}
// For scan purposes, we only want to consider CBW20 channels
if (channel->center_freq.cbw20 == 0) {
return false;
}
return true;
}
static zx_status_t ath10k_update_channel_list(struct ath10k* ar) {
ASSERT_MTX_HELD(&ar->conf_mutex);
size_t num_bands = countof(ath10k_supported_bands);
struct wmi_scan_chan_list_arg arg = {0};
for (unsigned band = 0; band < num_bands; band++) {
for (unsigned i = 0; i < ath10k_supported_bands[band].n_channels; i++) {
if (interested_channel(&ath10k_supported_bands[band].channels[i])) {
arg.n_channels++;
}
}
}
size_t len = sizeof(struct wmi_channel_arg) * arg.n_channels;
arg.channels = calloc(1, len);
if (!arg.channels) { return ZX_ERR_NO_MEMORY; }
struct wmi_channel_arg* ch = arg.channels;
for (unsigned band = 0; band < num_bands; band++) {
for (unsigned i = 0; i < ath10k_supported_bands[band].n_channels; i++) {
const struct ath10k_channel* channel = &ath10k_supported_bands[band].channels[i];
if (!interested_channel(channel)) {
continue;
}
ch->allow_ht = ath10k_supported_bands[band].ht_supported;
ch->allow_vht = ath10k_supported_bands[band].vht_supported;
ch->allow_ibss = !(channel->flags & IEEE80211_CHAN_NO_IR);
ch->ht40plus = !(channel->flags & IEEE80211_CHAN_NO_HT40PLUS);
ch->chan_radar = !!(channel->flags & IEEE80211_CHAN_RADAR);
bool passive = channel->flags & IEEE80211_CHAN_NO_IR;
ch->passive = passive;
ch->freq = channel->center_freq.cbw20;
ch->band_center_freq1 = channel->center_freq.cbw20;
ch->min_power = 0;
ch->max_power = channel->max_power * 2;
ch->max_reg_power = channel->max_reg_power * 2;
ch->max_antenna_gain = channel->max_antenna_gain * 2;
ch->reg_class_id = 0; /* FIXME */
/* FIXME: why use only legacy modes, why not any
* HT/VHT modes? Would that even make any
* difference?
*/
ch->mode = (ath10k_supported_bands[band].base_freq == 5000) ? MODE_11A : MODE_11G;
if (COND_WARN_ONCE(ch->mode == MODE_UNKNOWN)) { continue; }
ath10k_dbg(ar, ATH10K_DBG_WMI,
"mac channel [%zd/%d] freq %d maxpower %d regpower %d antenna %d mode %d\n",
ch - arg.channels, arg.n_channels, ch->freq, ch->max_power,
ch->max_reg_power, ch->max_antenna_gain, ch->mode);
ch++;
}
}
zx_status_t ret = ath10k_wmi_scan_chan_list(ar, &arg);
free(arg.channels);
return ret;
}
#if 0
static enum wmi_dfs_region
ath10k_mac_get_dfs_region(enum nl80211_dfs_regions dfs_region) {
switch (dfs_region) {
case NL80211_DFS_UNSET:
return WMI_UNINIT_DFS_DOMAIN;
case NL80211_DFS_FCC:
return WMI_FCC_DFS_DOMAIN;
case NL80211_DFS_ETSI:
return WMI_ETSI_DFS_DOMAIN;
case NL80211_DFS_JP:
return WMI_MKK4_DFS_DOMAIN;
}
return WMI_UNINIT_DFS_DOMAIN;
}
#endif // NEEDS PORTING
static void ath10k_regd_update(struct ath10k* ar) {
// zx_status_t ret;
#if 0 // NEEDS PORTING
struct reg_dmn_pair_mapping* regpair;
enum wmi_dfs_region wmi_dfs_reg;
enum nl80211_dfs_regions nl_dfs_reg;
#endif // NEEDS PORTING
ASSERT_MTX_HELD(&ar->conf_mutex);
zx_status_t st = ath10k_update_channel_list(ar);
if (st != ZX_OK) {
ath10k_err("failed to update channel list: %s\n", zx_status_get_string(st));
}
#if 0 // NEEDS PORTING
regpair = ar->ath_common.regulatory.regpair;
if (IS_ENABLED(CONFIG_ATH10K_DFS_CERTIFIED) && ar->dfs_detector) {
nl_dfs_reg = ar->dfs_detector->region;
wmi_dfs_reg = ath10k_mac_get_dfs_region(nl_dfs_reg);
} else {
wmi_dfs_reg = WMI_UNINIT_DFS_DOMAIN;
}
/* Target allows setting up per-band regdomain but ath_common provides
* a combined one only
*/
ret = ath10k_wmi_pdev_set_regdomain(ar,
regpair->reg_domain,
regpair->reg_domain, /* 2ghz */
regpair->reg_domain, /* 5ghz */
regpair->reg_2ghz_ctl,
regpair->reg_5ghz_ctl,
wmi_dfs_reg);
if (ret) {
ath10k_warn("failed to set pdev regdomain: %d\n", ret);
}
#endif // NEEDS PORTING
}
void ath10k_foreach_band(struct ath10k* ar,
void (*cb)(struct ath10k* ar, const struct ath10k_band* band,
void* cookie),
void* cookie) {
for (size_t band_ndx = 0; band_ndx < countof(ath10k_supported_bands); band_ndx++) {
const struct ath10k_band* band = &ath10k_supported_bands[band_ndx];
cb(ar, band, cookie);
}
}
void ath10k_foreach_channel(const struct ath10k_band* band,
void (*cb)(const struct ath10k_channel* ch, void* cookie),
void* cookie) {
for (size_t ch_ndx = 0; ch_ndx < band->n_channels; ch_ndx++) {
const struct ath10k_channel* ch = &band->channels[ch_ndx];
cb(ch, cookie);
}
}
#if 0 // NEEDS PORTING
static void ath10k_mac_update_channel_list(struct ath10k* ar,
struct ieee80211_supported_band* band) {
int i;
if (ar->low_5ghz_chan && ar->high_5ghz_chan) {
for (i = 0; i < band->n_channels; i++) {
if (band->channels[i].center_freq < ar->low_5ghz_chan ||
band->channels[i].center_freq > ar->high_5ghz_chan)
band->channels[i].flags |=
IEEE80211_CHAN_DISABLED;
}
}
}
static void ath10k_reg_notifier(struct wiphy* wiphy,
struct regulatory_request* request) {
struct ieee80211_hw* hw = wiphy_to_ieee80211_hw(wiphy);
struct ath10k* ar = hw->priv;
bool result;
ath_reg_notifier_apply(wiphy, request, &ar->ath_common.regulatory);
if (IS_ENABLED(CONFIG_ATH10K_DFS_CERTIFIED) && ar->dfs_detector) {
ath10k_dbg(ar, ATH10K_DBG_REGULATORY, "dfs region 0x%x\n",
request->dfs_region);
result = ar->dfs_detector->set_dfs_domain(ar->dfs_detector,
request->dfs_region);
if (!result)
ath10k_warn("DFS region 0x%X not supported, will trigger radar for every pulse\n",
request->dfs_region);
}
mtx_lock(&ar->conf_mutex);
if (ar->state == ATH10K_STATE_ON) {
ath10k_regd_update(ar);
}
mtx_unlock(&ar->conf_mutex);
if (ar->phy_capability & WHAL_WLAN_11A_CAPABILITY)
ath10k_mac_update_channel_list(ar,
ar->hw->wiphy->bands[NL80211_BAND_5GHZ]);
}
#endif // NEEDS PORTING
/***************/
/* TX handlers */
/***************/
enum ath10k_mac_tx_path {
ATH10K_MAC_TX_HTT,
ATH10K_MAC_TX_HTT_MGMT,
ATH10K_MAC_TX_WMI_MGMT,
ATH10K_MAC_TX_UNKNOWN,
};
#if 0 // NEEDS PORTING
void ath10k_mac_tx_lock(struct ath10k* ar, int reason) {
ASSERT_MTX_HELD(&ar->htt.tx_lock);
COND_WARN(reason >= ATH10K_TX_PAUSE_MAX);
ar->tx_paused |= BIT(reason);
ieee80211_stop_queues(ar->hw);
}
static void ath10k_mac_tx_unlock_iter(void* data, uint8_t* mac,
struct ieee80211_vif* vif) {
struct ath10k* ar = data;
struct ath10k_vif* arvif = (void*)vif->drv_priv;
if (arvif->tx_paused) {
return;
}
ieee80211_wake_queue(ar->hw, arvif->vdev_id);
}
void ath10k_mac_tx_unlock(struct ath10k* ar, int reason) {
ASSERT_MTX_HELD(&ar->htt.tx_lock);
COND_WARN(reason >= ATH10K_TX_PAUSE_MAX);
ar->tx_paused &= ~BIT(reason);
if (ar->tx_paused) {
return;
}
ieee80211_iterate_active_interfaces_atomic(ar->hw,
IEEE80211_IFACE_ITER_RESUME_ALL,
ath10k_mac_tx_unlock_iter,
ar);
ieee80211_wake_queue(ar->hw, ar->hw->offchannel_tx_hw_queue);
}
void ath10k_mac_vif_tx_lock(struct ath10k_vif* arvif, int reason) {
struct ath10k* ar = arvif->ar;
ASSERT_MTX_HELD(&ar->htt.tx_lock);
COND_WARN(reason >= BITS_PER_LONG);
arvif->tx_paused |= BIT(reason);
ieee80211_stop_queue(ar->hw, arvif->vdev_id);
}
void ath10k_mac_vif_tx_unlock(struct ath10k_vif* arvif, int reason) {
struct ath10k* ar = arvif->ar;
ASSERT_MTX_HELD(&ar->htt.tx_lock);
COND_WARN(reason >= BITS_PER_LONG);
arvif->tx_paused &= ~BIT(reason);
if (ar->tx_paused) {
return;
}
if (arvif->tx_paused) {
return;
}
ieee80211_wake_queue(ar->hw, arvif->vdev_id);
}
static void ath10k_mac_vif_handle_tx_pause(struct ath10k_vif* arvif,
enum wmi_tlv_tx_pause_id pause_id,
enum wmi_tlv_tx_pause_action action) {
struct ath10k* ar = arvif->ar;
ASSERT_MTX_HELD(&ar->htt.tx_lock);
switch (action) {
case WMI_TLV_TX_PAUSE_ACTION_STOP:
ath10k_mac_vif_tx_lock(arvif, pause_id);
break;
case WMI_TLV_TX_PAUSE_ACTION_WAKE:
ath10k_mac_vif_tx_unlock(arvif, pause_id);
break;
default:
ath10k_dbg(ar, ATH10K_DBG_BOOT,
"received unknown tx pause action %d on vdev %i, ignoring\n",
action, arvif->vdev_id);
break;
}
}
struct ath10k_mac_tx_pause {
uint32_t vdev_id;
enum wmi_tlv_tx_pause_id pause_id;
enum wmi_tlv_tx_pause_action action;
};
static void ath10k_mac_handle_tx_pause_iter(void* data, uint8_t* mac,
struct ieee80211_vif* vif) {
struct ath10k_vif* arvif = (void*)vif->drv_priv;
struct ath10k_mac_tx_pause* arg = data;
if (arvif->vdev_id != arg->vdev_id) {
return;
}
ath10k_mac_vif_handle_tx_pause(arvif, arg->pause_id, arg->action);
}
void ath10k_mac_handle_tx_pause_vdev(struct ath10k* ar, uint32_t vdev_id,
enum wmi_tlv_tx_pause_id pause_id,
enum wmi_tlv_tx_pause_action action) {
struct ath10k_mac_tx_pause arg = {
.vdev_id = vdev_id,
.pause_id = pause_id,
.action = action,
};
mtx_lock(&ar->htt.tx_lock);
ieee80211_iterate_active_interfaces_atomic(ar->hw,
IEEE80211_IFACE_ITER_RESUME_ALL,
ath10k_mac_handle_tx_pause_iter,
&arg);
mtx_unlock(&ar->htt.tx_lock);
}
#endif // NEEDS PORTING
static enum ath10k_hw_txrx_mode ath10k_mac_tx_h_get_txmode(struct ath10k* ar,
const void* packet_head) {
#if 0 // NEEDS PORTING
struct ieee80211_vif* vif,
struct ieee80211_sta* sta,
struct sk_buff* skb) {
#endif // NEEDS PORTING
const struct ieee80211_frame_header* hdr = packet_head;
#if 0 // NEEDS PORTING
if (!vif || vif->type == NL80211_IFTYPE_MONITOR) {
return ATH10K_HW_TXRX_RAW;
}
#endif // NEEDS PORTING
if (ieee80211_get_frame_type(hdr) == IEEE80211_FRAME_TYPE_MGMT) { return ATH10K_HW_TXRX_MGMT; }
#if 0 // NEEDS PORTING
/* Workaround:
*
* NullFunc frames are mostly used to ping if a client or AP are still
* reachable and responsive. This implies tx status reports must be
* accurate - otherwise either mac80211 or userspace (e.g. hostapd) can
* come to a conclusion that the other end disappeared and tear down
* BSS connection or it can never disconnect from BSS/client (which is
* the case).
*
* Firmware with HTT older than 3.0 delivers incorrect tx status for
* NullFunc frames to driver. However there's a HTT Mgmt Tx command
* which seems to deliver correct tx reports for NullFunc frames. The
* downside of using it is it ignores client powersave state so it can
* end up disconnecting sleeping clients in AP mode. It should fix STA
* mode though because AP don't sleep.
*/
if (ar->htt.target_version_major < 3 &&
(ieee80211_is_nullfunc(fc) || ieee80211_is_qos_nullfunc(fc)) &&
!BITARR_TEST(ar->running_fw->fw_file.fw_features, ATH10K_FW_FEATURE_HAS_WMI_MGMT_TX)) {
return ATH10K_HW_TXRX_MGMT;
}
/* Workaround:
*
* Some wmi-tlv firmwares for qca6174 have broken Tx key selection for
* NativeWifi txmode - it selects AP key instead of peer key. It seems
* to work with Ethernet txmode so use it.
*
* FIXME: Check if raw mode works with TDLS.
*/
if (ieee80211_is_data_present(fc) && sta && sta->tdls) {
return ATH10K_HW_TXRX_ETHERNET;
}
#endif // NEEDS PORTING
if (BITARR_TEST(ar->dev_flags, ATH10K_FLAG_RAW_MODE)) { return ATH10K_HW_TXRX_RAW; }
return ATH10K_HW_TXRX_NATIVE_WIFI;
}
static bool ath10k_tx_h_use_hwcrypto(struct ath10k* ar, struct ath10k_msg_buf* tx_buf,
wlan_tx_info_t* tx_info) {
if (!(tx_info->tx_flags & WLAN_TX_INFO_FLAGS_PROTECTED)) { return false; }
if (ar->arvif.nohwcrypt) { return false; }
return true;
}
/* HTT Tx uses Native Wifi tx mode which expects 802.11 frames without QoS
* Control in the header. We would prefer that wlanmac allow us to specify
* that we don't want this information in the header so that we don't have
* to change frames on-the-fly (see NET-903).
*/
static void ath10k_tx_h_nwifi(struct ath10k_msg_buf* tx_buf) {
void* pkt = ath10k_msg_buf_get_payload(tx_buf);
size_t len = ath10k_msg_buf_get_payload_len(tx_buf, tx_buf->type);
if (len < sizeof(struct ieee80211_frame_header)) { return; }
struct ieee80211_frame_header* hdr = pkt;
if (!ieee80211_is_qos_data(hdr)) { return; }
size_t qos_offset = ieee80211_get_qos_ctrl_offset(hdr);
if (qos_offset + IEEE80211_QOS_CTL_LEN > len) { return; }
size_t tail_len = len - (qos_offset + IEEE80211_QOS_CTL_LEN);
memmove(pkt + qos_offset, pkt + qos_offset + IEEE80211_QOS_CTL_LEN, tail_len);
tx_buf->used -= IEEE80211_QOS_CTL_LEN;
/* Some firmware revisions don't handle sending QoS NullFunc well.
* These frames are mainly used for CQM purposes so it doesn't really
* matter whether QoS NullFunc or NullFunc are sent.
*/
if (ieee80211_get_frame_subtype(hdr) == IEEE80211_FRAME_SUBTYPE_QOS_NULL) {
tx_buf->tx.flags &= ~ATH10K_TX_BUF_QOS;
}
hdr->frame_ctrl &= ~IEEE80211_FRAME_SUBTYPE_QOS;
}
#if 0 // NEEDS PORTING
static void ath10k_tx_h_8023(struct sk_buff* skb) {
struct ieee80211_hdr* hdr;
struct rfc1042_hdr* rfc1042;
struct ethhdr* eth;
size_t hdrlen;
uint8_t da[ETH_ALEN];
uint8_t sa[ETH_ALEN];
__be16 type;
hdr = (void*)skb->data;
hdrlen = ieee80211_hdrlen(hdr->frame_control);
rfc1042 = (void*)skb->data + hdrlen;
memcpy(da, ieee80211_get_DA(hdr), ETH_ALEN);
memcpy(sa, ieee80211_get_SA(hdr), ETH_ALEN);
type = rfc1042->snap_type;
skb_pull(skb, hdrlen + sizeof(*rfc1042));
skb_push(skb, sizeof(*eth));
eth = (void*)skb->data;
memcpy(eth->h_dest, da, ETH_ALEN);
memcpy(eth->h_source, sa, ETH_ALEN);
eth->h_proto = type;
}
static void ath10k_tx_h_add_p2p_noa_ie(struct ath10k* ar,
struct ieee80211_vif* vif,
struct sk_buff* skb) {
struct ieee80211_hdr* hdr = (struct ieee80211_hdr*)skb->data;
struct ath10k_vif* arvif = (void*)vif->drv_priv;
/* This is case only for P2P_GO */
if (vif->type != NL80211_IFTYPE_AP || !vif->p2p) {
return;
}
if (unlikely(ieee80211_is_probe_resp(hdr->frame_control))) {
mtx_lock(&ar->data_lock);
if (arvif->u.ap.noa_data)
if (!pskb_expand_head(skb, 0, arvif->u.ap.noa_len,
GFP_ATOMIC))
skb_put_data(skb, arvif->u.ap.noa_data,
arvif->u.ap.noa_len);
mtx_unlock(&ar->data_lock);
}
}
#endif // NEEDS PORTING
static void ath10k_mac_tx_h_tx_flags(struct ath10k* ar, struct ath10k_msg_buf* tx_buf,
wlan_tx_info_t* tx_info) {
struct ieee80211_frame_header* hdr = ath10k_msg_buf_get_payload(tx_buf);
tx_buf->tx.flags = 0;
if (ath10k_tx_h_use_hwcrypto(ar, tx_buf, tx_info)) {
tx_buf->tx.flags |= ATH10K_TX_BUF_PROTECTED;
}
if ((ieee80211_get_frame_type(hdr) == IEEE80211_FRAME_TYPE_DATA) &&
(ieee80211_get_frame_subtype(hdr) & IEEE80211_FRAME_SUBTYPE_QOS)) {
tx_buf->tx.flags |= ATH10K_TX_BUF_QOS;
}
}
bool ath10k_mac_tx_frm_has_freq(struct ath10k* ar) {
/* FIXME: Not really sure since when the behaviour changed. At some
* point new firmware stopped requiring creation of peer entries for
* offchannel tx (and actually creating them causes issues with wmi-htc
* tx credit replenishment and reliability). Assuming it's at least 3.4
* because that's when the `freq` was introduced to TX_FRM HTT command.
*/
return (ar->htt.target_version_major >= 3 && ar->htt.target_version_minor >= 4 &&
ar->running_fw->fw_file.htt_op_version == ATH10K_FW_HTT_OP_VERSION_TLV);
}
static zx_status_t ath10k_mac_tx_wmi_mgmt(struct ath10k* ar, struct ath10k_msg_buf* tx_buf) {
ath10k_err("ath10k_mac_tx_wmi_mgmt unimplemented - dropping tx packet!\n");
#if 0 // NEEDS PORTING
struct sk_buff_head* q = &ar->wmi_mgmt_tx_queue;
int ret = 0;
mtx_lock(&ar->data_lock);
if (skb_queue_len(q) == ATH10K_MAX_NUM_MGMT_PENDING) {
ath10k_warn("wmi mgmt tx queue is full\n");
ret = -ENOSPC;
goto unlock;
}
__skb_queue_tail(q, skb);
ieee80211_queue_work(ar->hw, &ar->wmi_mgmt_tx_work);
unlock:
mtx_unlock(&ar->data_lock);
return ret;
#endif // NEEDS PORTING
return ZX_ERR_NOT_SUPPORTED;
}
static enum ath10k_mac_tx_path ath10k_mac_tx_h_get_txpath(struct ath10k* ar,
enum ath10k_hw_txrx_mode txmode) {
switch (txmode) {
case ATH10K_HW_TXRX_RAW:
case ATH10K_HW_TXRX_NATIVE_WIFI:
case ATH10K_HW_TXRX_ETHERNET:
return ATH10K_MAC_TX_HTT;
case ATH10K_HW_TXRX_MGMT:
if (BITARR_TEST(ar->running_fw->fw_file.fw_features, ATH10K_FW_FEATURE_HAS_WMI_MGMT_TX)) {
return ATH10K_MAC_TX_WMI_MGMT;
} else if (ar->htt.target_version_major >= 3) {
return ATH10K_MAC_TX_HTT;
} else {
return ATH10K_MAC_TX_HTT_MGMT;
}
}
return ATH10K_MAC_TX_UNKNOWN;
}
static zx_status_t ath10k_mac_tx_submit(struct ath10k* ar, enum ath10k_hw_txrx_mode txmode,
enum ath10k_mac_tx_path txpath,
struct ath10k_msg_buf* tx_buf) {
struct ath10k_htt* htt = &ar->htt;
zx_status_t ret;
switch (txpath) {
case ATH10K_MAC_TX_HTT:
ret = ath10k_htt_tx(htt, txmode, tx_buf);
break;
case ATH10K_MAC_TX_HTT_MGMT:
ret = ath10k_htt_mgmt_tx(htt, tx_buf);
break;
case ATH10K_MAC_TX_WMI_MGMT:
ret = ath10k_mac_tx_wmi_mgmt(ar, tx_buf);
break;
case ATH10K_MAC_TX_UNKNOWN:
default:
WARN_ONCE();
ret = ZX_ERR_WRONG_TYPE;
break;
}
if (ret != ZX_OK) {
ath10k_warn("failed to transmit packet, dropping: %s\n", zx_status_get_string(ret));
ath10k_msg_buf_free(tx_buf);
}
return ret;
}
/* This function consumes the tx_buf regardless of return value as far as
* caller is concerned so no freeing is necessary afterwards.
*/
static zx_status_t ath10k_mac_tx(struct ath10k* ar, enum ath10k_hw_txrx_mode txmode,
enum ath10k_mac_tx_path txpath, struct ath10k_msg_buf* tx_buf) {
#if 0 // NEEDS PORTING
/* We should disable CCK RATE due to P2P */
if (info->flags & IEEE80211_TX_CTL_NO_CCK_RATE) {
ath10k_dbg(ar, ATH10K_DBG_MAC, "IEEE80211_TX_CTL_NO_CCK_RATE\n");
}
#endif // NEEDS PORTING
switch (txmode) {
case ATH10K_HW_TXRX_MGMT:
case ATH10K_HW_TXRX_NATIVE_WIFI:
ath10k_tx_h_nwifi(tx_buf);
#if 0 // NEEDS PORTING
ath10k_tx_h_add_p2p_noa_ie(ar, vif, skb);
ath10k_tx_h_seq_no(vif, skb);
#endif // NEEDS PORTING
break;
case ATH10K_HW_TXRX_ETHERNET:
ZX_DEBUG_ASSERT(0); // Not supported yet
#if 0 // NEEDS PORTING
ath10k_tx_h_8023(skb);
#endif // NEEDS PORTING
break;
case ATH10K_HW_TXRX_RAW:
if (!BITARR_TEST(ar->dev_flags, ATH10K_FLAG_RAW_MODE)) {
WARN_ONCE();
ath10k_msg_buf_free(tx_buf);
return ZX_ERR_NOT_SUPPORTED;
}
}
#if 0 // NEEDS PORTING
if (info->flags & IEEE80211_TX_CTL_TX_OFFCHAN) {
if (!ath10k_mac_tx_frm_has_freq(ar)) {
ath10k_dbg(ar, ATH10K_DBG_MAC, "queued offchannel skb %pK\n",
skb);
skb_queue_tail(&ar->offchan_tx_queue, skb);
ieee80211_queue_work(hw, &ar->offchan_tx_work);
return 0;
}
}
#endif // NEEDS PORTING
zx_status_t ret = ath10k_mac_tx_submit(ar, txmode, txpath, tx_buf);
if (ret != ZX_OK) {
ath10k_warn("failed to submit frame: %d\n", ret);
return ret;
}
return ZX_OK;
}
#if 0 // NEEDS PORTING
void ath10k_offchan_tx_purge(struct ath10k* ar) {
struct sk_buff* skb;
for (;;) {
skb = skb_dequeue(&ar->offchan_tx_queue);
if (!skb) {
break;
}
ieee80211_free_txskb(ar->hw, skb);
}
}
void ath10k_offchan_tx_work(struct work_struct* work) {
struct ath10k* ar = container_of(work, struct ath10k, offchan_tx_work);
struct ath10k_peer* peer;
struct ath10k_vif* arvif;
enum ath10k_hw_txrx_mode txmode;
enum ath10k_mac_tx_path txpath;
struct ieee80211_hdr* hdr;
struct ieee80211_vif* vif;
struct ieee80211_sta* sta;
struct sk_buff* skb;
const uint8_t* peer_addr;
int vdev_id;
int ret;
bool tmp_peer_created = false;
/* FW requirement: We must create a peer before FW will send out
* an offchannel frame. Otherwise the frame will be stuck and
* never transmitted. We delete the peer upon tx completion.
* It is unlikely that a peer for offchannel tx will already be
* present. However it may be in some rare cases so account for that.
* Otherwise we might remove a legitimate peer and break stuff.
*/
for (;;) {
skb = skb_dequeue(&ar->offchan_tx_queue);
if (!skb) {
break;
}
mtx_lock(&ar->conf_mutex);
ath10k_dbg(ar, ATH10K_DBG_MAC, "mac offchannel skb %pK\n",
skb);
hdr = (struct ieee80211_hdr*)skb->data;
peer_addr = ieee80211_get_DA(hdr);
mtx_lock(&ar->data_lock);
vdev_id = ar->scan.vdev_id;
peer = ath10k_peer_find(ar, vdev_id, peer_addr);
mtx_unlock(&ar->data_lock);
if (peer)
/* FIXME: should this use ath10k_warn()? */
ath10k_dbg(ar, ATH10K_DBG_MAC, "peer %pM on vdev %d already present\n",
peer_addr, vdev_id);
if (!peer) {
ret = ath10k_peer_create(ar, NULL, NULL, vdev_id,
peer_addr,
WMI_PEER_TYPE_DEFAULT);
if (ret)
ath10k_warn("failed to create peer %pM on vdev %d: %d\n",
peer_addr, vdev_id, ret);
tmp_peer_created = (ret == 0);
}
mtx_lock(&ar->data_lock);
sync_completion_reset(&ar->offchan_tx_completed);
ar->offchan_tx_skb = skb;
mtx_unlock(&ar->data_lock);
/* It's safe to access vif and sta - conf_mutex guarantees that
* sta_state() and remove_interface() are locked exclusively
* out wrt to this offchannel worker.
*/
arvif = ath10k_get_arvif(ar, vdev_id);
if (arvif) {
vif = arvif->vif;
sta = ieee80211_find_sta(vif, peer_addr);
} else {
vif = NULL;
sta = NULL;
}
txmode = ath10k_mac_tx_h_get_txmode(ar, vif, sta, skb);
txpath = ath10k_mac_tx_h_get_txpath(ar, skb, txmode);
ret = ath10k_mac_tx(ar, vif, txmode, txpath, skb);
if (ret) {
ath10k_warn("failed to transmit offchannel frame: %d\n",
ret);
/* not serious */
}
if (sync_completion_wait(&ar->offchan_tx_completed, ZX_SEC(3)) == ZX_ERR_TIMED_OUT) {
ath10k_warn("timed out waiting for offchannel skb %pK\n", skb);
}
if (!peer && tmp_peer_created) {
ret = ath10k_peer_delete(ar, vdev_id, peer_addr);
if (ret)
ath10k_warn("failed to delete peer %pM on vdev %d: %d\n",
peer_addr, vdev_id, ret);
}
mtx_unlock(&ar->conf_mutex);
}
}
void ath10k_mgmt_over_wmi_tx_purge(struct ath10k* ar) {
struct sk_buff* skb;
for (;;) {
skb = skb_dequeue(&ar->wmi_mgmt_tx_queue);
if (!skb) {
break;
}
ieee80211_free_txskb(ar->hw, skb);
}
}
#endif // NEEDS PORTING
/************/
/* Scanning */
/************/
void __ath10k_scan_finish(struct ath10k* ar) {
ASSERT_MTX_HELD(&ar->data_lock);
switch (ar->scan.state) {
case ATH10K_SCAN_IDLE:
break;
case ATH10K_SCAN_RUNNING:
case ATH10K_SCAN_ABORTING:
if (!ar->scan.is_roc) {
wlan_hw_scan_result_t result = {.code = (ar->scan.state == ATH10K_SCAN_ABORTING)
? WLAN_HW_SCAN_ABORTED
: WLAN_HW_SCAN_SUCCESS};
ar->wlanmac.ifc->hw_scan_complete(ar->wlanmac.cookie, &result);
} else if (ar->scan.roc_notify) {
#if 0 // NEEDS PORTING
ieee80211_remain_on_channel_expired(ar->hw);
#endif // NEEDS PORTING
}
/* fall through */
case ATH10K_SCAN_STARTING:
ar->scan.state = ATH10K_SCAN_IDLE;
ar->scan.roc_freq = 0;
#if 0 // NEEDS PORTING
ath10k_offchan_tx_purge(ar);
cancel_delayed_work(&ar->scan.timeout);
#endif // NEEDS PORTING
sync_completion_signal(&ar->scan.completed);
break;
}
}
void ath10k_scan_finish(struct ath10k* ar) {
mtx_lock(&ar->data_lock);
__ath10k_scan_finish(ar);
mtx_unlock(&ar->data_lock);
}
static zx_status_t ath10k_scan_stop(struct ath10k* ar) {
struct wmi_stop_scan_arg arg = {
.req_id = 1, /* FIXME */
.req_type = WMI_SCAN_STOP_ONE,
.u.scan_id = ATH10K_SCAN_ID,
};
zx_status_t ret = ZX_OK;
ASSERT_MTX_HELD(&ar->conf_mutex);
int wmi_res = ath10k_wmi_stop_scan(ar, &arg);
if (wmi_res) {
ath10k_warn("failed to stop wmi scan: %d\n", wmi_res);
ret = ZX_ERR_INTERNAL;
goto out;
}
zx_status_t status = sync_completion_wait(&ar->scan.completed, ZX_SEC(3));
if (status != ZX_OK) {
ath10k_warn("failed to receive scan abortion completion: %s\n",
zx_status_get_string(status));
ret = ZX_ERR_TIMED_OUT;
goto out;
}
out:
/* Scan state should be updated upon scan completion but in case
* firmware fails to deliver the event (for whatever reason) it is
* desired to clean up scan state anyway. Firmware may have just
* dropped the scan completion event delivery due to transport pipe
* being overflown with data and/or it can recover on its own before
* next scan request is submitted.
*/
mtx_lock(&ar->data_lock);
if (ar->scan.state != ATH10K_SCAN_IDLE) { __ath10k_scan_finish(ar); }
mtx_unlock(&ar->data_lock);
return ret;
}
#if 0 // NEEDS PORTING
static void ath10k_scan_abort(struct ath10k* ar) {
int ret;
ASSERT_MTX_HELD(&ar->conf_mutex);
mtx_lock(&ar->data_lock);
switch (ar->scan.state) {
case ATH10K_SCAN_IDLE:
/* This can happen if timeout worker kicked in and called
* abortion while scan completion was being processed.
*/
break;
case ATH10K_SCAN_STARTING:
case ATH10K_SCAN_ABORTING:
ath10k_warn("refusing scan abortion due to invalid scan state: %s (%d)\n",
ath10k_scan_state_str(ar->scan.state),
ar->scan.state);
break;
case ATH10K_SCAN_RUNNING:
ar->scan.state = ATH10K_SCAN_ABORTING;
mtx_unlock(&ar->data_lock);
ret = ath10k_scan_stop(ar);
if (ret) {
ath10k_warn("failed to abort scan: %d\n", ret);
}
mtx_lock(&ar->data_lock);
break;
}
mtx_unlock(&ar->data_lock);
}
void ath10k_scan_timeout_work(struct work_struct* work) {
struct ath10k* ar = container_of(work, struct ath10k,
scan.timeout.work);
mtx_lock(&ar->conf_mutex);
ath10k_scan_abort(ar);
mtx_unlock(&ar->conf_mutex);
}
#endif // NEEDS PORTING
static zx_status_t ath10k_start_scan(struct ath10k* ar, const struct wmi_start_scan_arg* arg) {
zx_status_t ret;
ASSERT_MTX_HELD(&ar->conf_mutex);
ret = ath10k_wmi_start_scan(ar, arg);
if (ret) {
ath10k_err("ath10k_wmi_start_scan returned error code %d\n", ret);
return ZX_ERR_INTERNAL;
}
if (sync_completion_wait(&ar->scan.started, ZX_SEC(1)) == ZX_ERR_TIMED_OUT) {
ath10k_warn("scan start timed out waiting for confirmation\n");
ret = ath10k_scan_stop(ar);
if (ret != ZX_OK) {
ath10k_warn("attempt to reset (scan_stop) from failed scan start also failed: %s\n",
zx_status_get_string(ret));
}
return ZX_ERR_TIMED_OUT;
}
/* If we failed to start the scan, return error code at
* this point. This is probably due to some issue in the
* firmware, but no need to wedge the driver due to that...
*/
mtx_lock(&ar->data_lock);
if (ar->scan.state == ATH10K_SCAN_IDLE) {
mtx_unlock(&ar->data_lock);
return ZX_ERR_INTERNAL;
}
mtx_unlock(&ar->data_lock);
return ZX_OK;
}
/**********************/
/* mac80211 callbacks */
/**********************/
static zx_status_t ath10k_mac_build_tx_pkt(struct ath10k* ar, struct ath10k_msg_buf** tx_buf_ptr,
wlan_tx_packet_t* pkt, enum ath10k_mac_tx_path txpath) {
enum ath10k_msg_type buf_type;
switch (txpath) {
case ATH10K_MAC_TX_HTT:
case ATH10K_MAC_TX_HTT_MGMT:
case ATH10K_MAC_TX_WMI_MGMT:
buf_type = ATH10K_MSG_TYPE_BASE;
break;
default:
return ZX_ERR_INVALID_ARGS;
}
struct ath10k_msg_buf* tx_buf;
size_t head_size = pkt->packet_head.data_size;
size_t tail_size = pkt->packet_tail ? (pkt->packet_tail->data_size - pkt->tail_offset) : 0;
// This 64 gives us headroom to add fields. It would be nice if we could be more specific...
size_t extra_bytes = head_size + tail_size + 64;
zx_status_t ret = ath10k_msg_buf_alloc(ar, &tx_buf, buf_type, extra_bytes);
if (ret != ZX_OK) {
ath10k_err("failed to allocate a tx buffer\n");
return ret;
}
tx_buf->used -= 64;
uint8_t* next_data = ath10k_msg_buf_get_payload(tx_buf);
memcpy(next_data, pkt->packet_head.data_buffer, head_size);
next_data += head_size;
if (tail_size > 0) {
memcpy(next_data, (pkt->packet_tail->data_buffer + pkt->tail_offset), tail_size);
}
*tx_buf_ptr = tx_buf;
return ZX_OK;
}
zx_status_t ath10k_mac_op_tx(struct ath10k* ar, wlan_tx_packet_t* pkt) {
struct ath10k_htt* htt = &ar->htt;
enum ath10k_hw_txrx_mode txmode = ath10k_mac_tx_h_get_txmode(ar, pkt->packet_head.data_buffer);
enum ath10k_mac_tx_path txpath = ath10k_mac_tx_h_get_txpath(ar, txmode);
if (txpath == ATH10K_MAC_TX_UNKNOWN) {
ath10k_err("unable to determine path for tx packet\n");
return ZX_ERR_INTERNAL;
}
struct ath10k_msg_buf* tx_buf;
zx_status_t ret = ath10k_mac_build_tx_pkt(ar, &tx_buf, pkt, txpath);
if (ret != ZX_OK) { return ret; }
bool is_htt = (txpath == ATH10K_MAC_TX_HTT || txpath == ATH10K_MAC_TX_HTT_MGMT);
bool is_mgmt = (txpath == ATH10K_MAC_TX_HTT_MGMT);
ath10k_mac_tx_h_tx_flags(ar, tx_buf, &pkt->info);
const struct ieee80211_frame_header* hdr = pkt->packet_head.data_buffer;
if (is_htt) {
mtx_lock(&ar->htt.tx_lock);
bool is_presp = (ieee80211_get_frame_type(hdr) == IEEE80211_FRAME_TYPE_MGMT) &&
(ieee80211_get_frame_subtype(hdr) == IEEE80211_FRAME_SUBTYPE_PROBE_RESP);
ret = ath10k_htt_tx_inc_pending(htt);
if (ret != ZX_OK) {
ath10k_warn("failed to increase tx pending count: %s, dropping\n",
zx_status_get_string(ret));
mtx_unlock(&ar->htt.tx_lock);
ath10k_msg_buf_free(tx_buf);
return ret;
}
ret = ath10k_htt_tx_mgmt_inc_pending(htt, is_mgmt, is_presp);
if (ret != ZX_OK) {
ath10k_warn("failed to increase tx mgmt pending count: %s, dropping\n",
zx_status_get_string(ret));
ath10k_htt_tx_dec_pending(htt);
mtx_unlock(&ar->htt.tx_lock);
ath10k_msg_buf_free(tx_buf);
return ret;
}
mtx_unlock(&ar->htt.tx_lock);
}
ret = ath10k_mac_tx(ar, txmode, txpath, tx_buf);
if (ret != ZX_OK) {
ath10k_warn("failed to transmit frame: %d\n", ret);
if (is_htt) {
mtx_lock(&ar->htt.tx_lock);
ath10k_htt_tx_dec_pending(htt);
if (is_mgmt) { ath10k_htt_tx_mgmt_dec_pending(htt); }
mtx_unlock(&ar->htt.tx_lock);
}
return ret;
}
return ZX_OK;
}
#if 0 // NEEDS PORTING
static void ath10k_mac_op_wake_tx_queue(struct ieee80211_hw* hw,
struct ieee80211_txq* txq) {
struct ath10k* ar = hw->priv;
struct ath10k_txq* artxq = (void*)txq->drv_priv;
struct ieee80211_txq* f_txq;
struct ath10k_txq* f_artxq;
int ret = 0;
int max = 16;
mtx_lock(&ar->txqs_lock);
if (list_empty(&artxq->list)) {
list_add_tail(&artxq->list, &ar->txqs);
}
f_artxq = list_first_entry(&ar->txqs, struct ath10k_txq, list);
f_txq = container_of((void*)f_artxq, struct ieee80211_txq, drv_priv);
list_del_init(&f_artxq->list);
while (ath10k_mac_tx_can_push(hw, f_txq) && max--) {
ret = ath10k_mac_tx_push_txq(hw, f_txq);
if (ret) {
break;
}
}
if (ret != -ENOENT) {
list_add_tail(&f_artxq->list, &ar->txqs);
}
mtx_unlock(&ar->txqs_lock);
ath10k_htt_tx_txq_update(hw, f_txq);
ath10k_htt_tx_txq_update(hw, txq);
}
#endif // NEEDS PORTING
/* Must not be called with conf_mutex held as workers can use that also. */
void ath10k_drain_tx(struct ath10k* ar) {
#if 0 // NEEDS PORTING
/* make sure rcu-protected mac80211 tx path itself is drained */
synchronize_net();
ath10k_offchan_tx_purge(ar);
ath10k_mgmt_over_wmi_tx_purge(ar);
cancel_work_sync(&ar->offchan_tx_work);
cancel_work_sync(&ar->wmi_mgmt_tx_work);
#endif // NEEDS PORTING
}
#if 0 // NEEDS PORTING
void ath10k_halt(struct ath10k* ar) {
struct ath10k_vif* arvif;
ASSERT_MTX_HELD(&ar->conf_mutex);
BITARR_CLEAR(&ar->dev_flags, ATH10K_CAC_RUNNING);
ar->filter_flags = 0;
ar->monitor = false;
ar->monitor_arvif = NULL;
if (ar->monitor_started) {
ath10k_monitor_stop(ar);
}
ar->monitor_started = false;
ar->tx_paused = 0;
ath10k_scan_finish(ar);
ath10k_peer_cleanup_all(ar);
ath10k_core_stop(ar);
ath10k_hif_power_down(ar);
mtx_lock(&ar->data_lock);
list_for_each_entry(arvif, &ar->arvifs, list)
ath10k_mac_vif_beacon_cleanup(arvif);
mtx_unlock(&ar->data_lock);
}
static int ath10k_get_antenna(struct ieee80211_hw* hw, uint32_t* tx_ant, uint32_t* rx_ant) {
struct ath10k* ar = hw->priv;
mtx_lock(&ar->conf_mutex);
*tx_ant = ar->cfg_tx_chainmask;
*rx_ant = ar->cfg_rx_chainmask;
mtx_unlock(&ar->conf_mutex);
return 0;
}
#endif // NEEDS PORTING
static void ath10k_check_chain_mask(struct ath10k* ar, uint32_t cm, const char* dbg) {
/* It is not clear that allowing gaps in chainmask
* is helpful. Probably it will not do what user
* is hoping for, so warn in that case.
*/
if (cm == 15 || cm == 7 || cm == 3 || cm == 1 || cm == 0) { return; }
ath10k_warn(
"mac %s antenna chainmask may be invalid: 0x%x. "
"Suggested values: 15, 7, 3, 1 or 0.\n",
dbg, cm);
}
static zx_status_t __ath10k_set_antenna(struct ath10k* ar, uint32_t tx_ant, uint32_t rx_ant) {
zx_status_t ret;
ASSERT_MTX_HELD(&ar->conf_mutex);
ath10k_check_chain_mask(ar, tx_ant, "tx");
ath10k_check_chain_mask(ar, rx_ant, "rx");
ar->cfg_tx_chainmask = tx_ant;
ar->cfg_rx_chainmask = rx_ant;
if ((ar->state != ATH10K_STATE_ON) && (ar->state != ATH10K_STATE_RESTARTED)) { return ZX_OK; }
ret = ath10k_wmi_pdev_set_param(ar, ar->wmi.pdev_param->tx_chain_mask, tx_ant);
if (ret != ZX_OK) {
ath10k_warn("failed to set tx-chainmask: %d, req 0x%x\n", ret, tx_ant);
return ret;
}
ret = ath10k_wmi_pdev_set_param(ar, ar->wmi.pdev_param->rx_chain_mask, rx_ant);
if (ret != ZX_OK) {
ath10k_warn("failed to set rx-chainmask: %d, req 0x%x\n", ret, rx_ant);
return ret;
}
#if 0 // NEEDS PORTING
/* Reload HT/VHT capability */
ath10k_mac_setup_ht_vht_cap(ar);
#endif // NEEDS PORTING
return ZX_OK;
}
#if 0 // NEEDS PORTING
static zx_status_t ath10k_set_antenna(struct ieee80211_hw* hw, uint32_t tx_ant, uint32_t rx_ant) {
struct ath10k* ar = hw->priv;
zx_status_t ret;
mtx_lock(&ar->conf_mutex);
ret = __ath10k_set_antenna(ar, tx_ant, rx_ant);
mtx_unlock(&ar->conf_mutex);
return ret;
}
#endif // NEEDS PORTING
enum { IEEE80211_AC_VO, IEEE80211_AC_VI, IEEE80211_AC_BE, IEEE80211_AC_BK };
static int ath10k_conf_tx(struct ath10k* ar, uint16_t ac, struct wmi_wmm_params_arg* params);
zx_status_t ath10k_start(struct ath10k* ar, wlanmac_ifc_t* ifc, void* cookie) {
zx_status_t ret = ZX_OK;
mtx_lock(&ar->conf_mutex);
if (!BITARR_TEST(ar->dev_flags, ATH10K_FLAG_CORE_REGISTERED)) {
ret = ZX_ERR_BAD_STATE;
goto err;
}
ar->wlanmac.ifc = ifc;
ar->wlanmac.cookie = cookie;
/*
* This makes sense only when restarting hw. It is harmless to call
* unconditionally. This is necessary to make sure no HTT/WMI tx
* commands will be submitted while restarting.
*/
ath10k_drain_tx(ar);
switch (ar->state) {
case ATH10K_STATE_OFF:
ar->state = ATH10K_STATE_ON;
break;
case ATH10K_STATE_RESTARTING:
ar->state = ATH10K_STATE_RESTARTED;
break;
case ATH10K_STATE_ON:
case ATH10K_STATE_RESTARTED:
case ATH10K_STATE_WEDGED:
WARN_ONCE();
ret = ZX_ERR_INVALID_ARGS;
goto err;
case ATH10K_STATE_UTF:
ret = ZX_ERR_BAD_STATE;
goto err;
}
ret = ath10k_wmi_pdev_set_param(ar, ar->wmi.pdev_param->pmf_qos, 1);
if (ret != ZX_OK) {
ath10k_warn("failed to enable PMF QOS: %s\n", zx_status_get_string(ret));
goto err_core_stop;
}
#if 0 // NEEDS PORTING
param = ar->wmi.pdev_param->dynamic_bw;
ret = ath10k_wmi_pdev_set_param(ar, param, 1);
if (ret) {
ath10k_warn("failed to enable dynamic BW: %d\n", ret);
goto err_core_stop;
}
if (BITARR_TEST(ar->wmi.svc_map, WMI_SERVICE_ADAPTIVE_OCS)) {
ret = ath10k_wmi_adaptive_qcs(ar, true);
if (ret) {
ath10k_warn("failed to enable adaptive qcs: %d\n",
ret);
goto err_core_stop;
}
}
if (BITARR_TEST(ar->wmi.svc_map, WMI_SERVICE_BURST)) {
param = ar->wmi.pdev_param->burst_enable;
ret = ath10k_wmi_pdev_set_param(ar, param, 0);
if (ret) {
ath10k_warn("failed to disable burst: %d\n", ret);
goto err_core_stop;
}
}
#endif // NEEDS PORTING
__ath10k_set_antenna(ar, ar->cfg_tx_chainmask, ar->cfg_rx_chainmask);
#if 0 // NEEDS PORTING
/*
* By default FW set ARP frames ac to voice (6). In that case ARP
* exchange is not working properly for UAPSD enabled AP. ARP requests
* which arrives with access category 0 are processed by network stack
* and send back with access category 0, but FW changes access category
* to 6. Set ARP frames access category to best effort (0) solves
* this problem.
*/
param = ar->wmi.pdev_param->arp_ac_override;
ret = ath10k_wmi_pdev_set_param(ar, param, 0);
if (ret) {
ath10k_warn("failed to set arp ac override parameter: %d\n",
ret);
goto err_core_stop;
}
if (BITARR_TEST(ar->running_fw->fw_file.fw_features,
ATH10K_FW_FEATURE_SUPPORTS_ADAPTIVE_CCA)) {
ret = ath10k_wmi_pdev_enable_adaptive_cca(ar, 1,
WMI_CCA_DETECT_LEVEL_AUTO,
WMI_CCA_DETECT_MARGIN_AUTO);
if (ret) {
ath10k_warn("failed to enable adaptive cca: %d\n",
ret);
goto err_core_stop;
}
}
param = ar->wmi.pdev_param->ani_enable;
ret = ath10k_wmi_pdev_set_param(ar, param, 1);
if (ret) {
ath10k_warn("failed to enable ani by default: %d\n",
ret);
goto err_core_stop;
}
ar->ani_enabled = true;
if (ath10k_peer_stats_enabled(ar)) {
param = ar->wmi.pdev_param->peer_stats_update_period;
ret = ath10k_wmi_pdev_set_param(ar, param,
PEER_DEFAULT_STATS_UPDATE_PERIOD);
if (ret) {
ath10k_warn("failed to set peer stats period : %d\n",
ret);
goto err_core_stop;
}
}
param = ar->wmi.pdev_param->enable_btcoex;
if (BITARR_TEST(ar->wmi.svc_map, WMI_SERVICE_COEX_GPIO) &&
BITARR_TEST(ar->running_fw->fw_file.fw_features, ATH10K_FW_FEATURE_BTCOEX_PARAM)) {
ret = ath10k_wmi_pdev_set_param(ar, param, 0);
if (ret) {
ath10k_warn("failed to set btcoex param: %d\n", ret);
goto err_core_stop;
}
BITARR_CLEAR(&ar->dev_flags, ATH10K_FLAG_BTCOEX);
}
#endif // NEEDS PORTING
ar->num_started_vdevs = 0;
ath10k_regd_update(ar);
ret = ath10k_add_interface(ar, ar->mac_role);
if (ret != ZX_OK) {
ath10k_err("failed to add interface: %s\n", zx_status_get_string(ret));
goto err_core_stop;
}
struct wmi_wmm_params_arg wmm_params;
wmm_params.cwmin = 3;
wmm_params.cwmax = 7;
wmm_params.aifs = 2;
wmm_params.txop = 102 * 32;
wmm_params.acm = 0;
wmm_params.no_ack = 0;
ath10k_conf_tx(ar, IEEE80211_AC_VO, &wmm_params);
wmm_params.cwmin = 7;
wmm_params.cwmax = 15;
wmm_params.aifs = 2;
wmm_params.txop = 188 * 32;
wmm_params.acm = 0;
wmm_params.no_ack = 0;
ath10k_conf_tx(ar, IEEE80211_AC_VI, &wmm_params);
wmm_params.cwmin = 15;
wmm_params.cwmax = 1023;
wmm_params.aifs = 3;
wmm_params.txop = 0 * 32;
wmm_params.acm = 0;
wmm_params.no_ack = 0;
ath10k_conf_tx(ar, IEEE80211_AC_BE, &wmm_params);
wmm_params.cwmin = 15;
wmm_params.cwmax = 1023;
wmm_params.aifs = 7;
wmm_params.txop = 0 * 32;
wmm_params.acm = 0;
wmm_params.no_ack = 0;
ath10k_conf_tx(ar, IEEE80211_AC_BK, &wmm_params);
#if 0 // NEEDS PORTING
ath10k_spectral_start(ar);
ath10k_thermal_set_throttling(ar);
#endif // NEEDS PORTING
mtx_unlock(&ar->conf_mutex);
return ZX_OK;
err_core_stop:
#if 0 // NEEDS PORTING
ath10k_core_stop(ar);
err_power_down:
ath10k_hif_power_down(ar);
err_off:
ar->state = ATH10K_STATE_OFF;
#endif // NEEDS PORTING
err:
mtx_unlock(&ar->conf_mutex);
return ret;
}
#if 0 // NEEDS PORTING
static void ath10k_stop(struct ieee80211_hw* hw) {
struct ath10k* ar = hw->priv;
ath10k_drain_tx(ar);
mtx_lock(&ar->conf_mutex);
if (ar->state != ATH10K_STATE_OFF) {
ath10k_halt(ar);
ar->state = ATH10K_STATE_OFF;
}
mtx_unlock(&ar->conf_mutex);
cancel_work_sync(&ar->set_coverage_class_work);
cancel_delayed_work_sync(&ar->scan.timeout);
cancel_work_sync(&ar->restart_work);
}
static int ath10k_config_ps(struct ath10k* ar) {
struct ath10k_vif* arvif;
int ret = 0;
ASSERT_MTX_HELD(&ar->conf_mutex);
list_for_each_entry(arvif, &ar->arvifs, list) {
ret = ath10k_mac_vif_setup_ps(arvif);
if (ret) {
ath10k_warn("failed to setup powersave: %d\n", ret);
break;
}
}
return ret;
}
#endif // NEEDS PORTING
static zx_status_t ath10k_mac_txpower_setup(struct ath10k* ar, int txpower) {
zx_status_t ret;
uint32_t param;
ASSERT_MTX_HELD(&ar->conf_mutex);
ath10k_dbg(ar, ATH10K_DBG_MAC, "mac txpower %d\n", txpower);
param = ar->wmi.pdev_param->txpower_limit2g;
ret = ath10k_wmi_pdev_set_param(ar, param, txpower * 2);
if (ret != ZX_OK) {
ath10k_warn("failed to set 2g txpower %d: %s\n", txpower, zx_status_get_string(ret));
return ret;
}
param = ar->wmi.pdev_param->txpower_limit5g;
ret = ath10k_wmi_pdev_set_param(ar, param, txpower * 2);
if (ret != ZX_OK) {
ath10k_warn("failed to set 5g txpower %d: %s\n", txpower, zx_status_get_string(ret));
return ret;
}
return ZX_OK;
}
static zx_status_t ath10k_mac_txpower_recalc(struct ath10k* ar) {
struct ath10k_vif* arvif = &ar->arvif;
zx_status_t ret;
ASSERT_MTX_HELD(&ar->conf_mutex);
int txpower = arvif->txpower;
if (txpower == -1) { return ZX_OK; }
ret = ath10k_mac_txpower_setup(ar, txpower);
if (ret != ZX_OK) {
ath10k_warn("failed to setup tx power %d: %s\n", txpower, zx_status_get_string(ret));
return ret;
}
return ZX_OK;
}
#if 0 // NEEDS PORTING
static int ath10k_config(struct ieee80211_hw* hw, uint32_t changed) {
struct ath10k* ar = hw->priv;
struct ieee80211_conf* conf = &hw->conf;
int ret = 0;
mtx_lock(&ar->conf_mutex);
if (changed & IEEE80211_CONF_CHANGE_PS) {
ath10k_config_ps(ar);
}
if (changed & IEEE80211_CONF_CHANGE_MONITOR) {
ar->monitor = conf->flags & IEEE80211_CONF_MONITOR;
ret = ath10k_monitor_recalc(ar);
if (ret) {
ath10k_warn("failed to recalc monitor: %d\n", ret);
}
}
mtx_unlock(&ar->conf_mutex);
return ret;
}
static uint32_t get_nss_from_chainmask(uint16_t chain_mask) {
if ((chain_mask & 0xf) == 0xf) {
return 4;
} else if ((chain_mask & 0x7) == 0x7) {
return 3;
} else if ((chain_mask & 0x3) == 0x3) {
return 2;
}
return 1;
}
#endif // NEEDS PORTING
static zx_status_t ath10k_mac_set_txbf_conf(struct ath10k_vif* arvif) {
uint32_t value = 0;
struct ath10k* ar = arvif->ar;
if (ath10k_wmi_get_txbf_conf_scheme(ar) != WMI_TXBF_CONF_BEFORE_ASSOC) {
return ZX_OK;
}
#if 0 // NEEDS PORTING
int nsts = ath10k_mac_get_vht_cap_bf_sts(ar);
if (ar->vht_cap_info & (IEEE80211_VHT_CAP_SU_BEAMFORMEE_CAPABLE |
IEEE80211_VHT_CAP_MU_BEAMFORMEE_CAPABLE)) {
value |= SM(nsts, WMI_TXBF_STS_CAP_OFFSET);
}
int sound_dim = ath10k_mac_get_vht_cap_bf_sound_dim(ar);
if (ar->vht_cap_info & (IEEE80211_VHT_CAP_SU_BEAMFORMER_CAPABLE |
IEEE80211_VHT_CAP_MU_BEAMFORMER_CAPABLE)) {
value |= SM(sound_dim, WMI_BF_SOUND_DIM_OFFSET);
}
if (!value) {
return 0;
}
if (ar->vht_cap_info & IEEE80211_VHT_CAP_SU_BEAMFORMER_CAPABLE) {
value |= WMI_VDEV_PARAM_TXBF_SU_TX_BFER;
}
if (ar->vht_cap_info & IEEE80211_VHT_CAP_MU_BEAMFORMER_CAPABLE)
value |= (WMI_VDEV_PARAM_TXBF_MU_TX_BFER |
WMI_VDEV_PARAM_TXBF_SU_TX_BFER);
if (ar->vht_cap_info & IEEE80211_VHT_CAP_SU_BEAMFORMEE_CAPABLE) {
value |= WMI_VDEV_PARAM_TXBF_SU_TX_BFEE;
}
if (ar->vht_cap_info & IEEE80211_VHT_CAP_MU_BEAMFORMEE_CAPABLE)
value |= (WMI_VDEV_PARAM_TXBF_MU_TX_BFEE |
WMI_VDEV_PARAM_TXBF_SU_TX_BFEE);
#endif // NEEDS PORTING
return ath10k_wmi_vdev_set_param(ar, ar->arvif.vdev_id,
ar->wmi.vdev_param->txbf, value);
}
// Role is one of the supported roles in WLAN_MAC_ROLE_* values
static zx_status_t ath10k_add_interface(struct ath10k* ar, uint32_t vif_role) {
struct ath10k_vif* arvif = &ar->arvif;
zx_status_t ret = ZX_OK;
ASSERT_MTX_HELD(&ar->conf_mutex);
if (ar->arvif_created) {
return ZX_ERR_NO_RESOURCES;
}
memset(arvif, 0, sizeof(*arvif));
arvif->ar = ar;
#if 0 // NEEDS PORTING
arvif->vif = vif;
INIT_LIST_HEAD(&arvif->list);
INIT_WORK(&arvif->ap_csa_work, ath10k_mac_vif_ap_csa_work);
INIT_DELAYED_WORK(&arvif->connection_loss_work,
ath10k_mac_vif_sta_connection_loss_work);
for (unsigned i = 0; i < countof(arvif->bitrate_mask.control); i++) {
arvif->bitrate_mask.control[i].legacy = 0xffffffff;
memset(arvif->bitrate_mask.control[i].ht_mcs, 0xff,
sizeof(arvif->bitrate_mask.control[i].ht_mcs));
memset(arvif->bitrate_mask.control[i].vht_mcs, 0xff,
sizeof(arvif->bitrate_mask.control[i].vht_mcs));
}
#endif // NEEDS PORTING
if (ar->num_peers >= ar->max_num_peers) {
ath10k_warn(
"refusing vdev creation due to insufficient peer entry resources in firmware\n");
ret = ZX_ERR_NO_RESOURCES;
goto err;
}
if (ar->free_vdev_map == 0) {
ath10k_warn("free vdev map is empty, no more interfaces allowed.\n");
ret = ZX_ERR_NO_RESOURCES;
goto err;
}
unsigned bit = __builtin_ffsll(ar->free_vdev_map) - 1;
ath10k_dbg(ar, ATH10K_DBG_MAC, "mac create vdev %i map %llx\n", bit, ar->free_vdev_map);
arvif->vdev_id = bit;
int vdev_subtype = 0;
switch (vif_role) {
#if 0 // NEEDS PORTING
case ATH10K_VIF_TYPE_P2P:
arvif->vdev_type = WMI_VDEV_TYPE_STA;
arvif->vdev_subtype = ath10k_wmi_get_vdev_subtype(ar, WMI_VDEV_SUBTYPE_P2P_DEVICE);
break;
#endif // NEEDS PORTING
case WLAN_MAC_ROLE_CLIENT:
arvif->vdev_type = WMI_VDEV_TYPE_STA;
ath10k_info("adding a station interface (vdev_id=%d) ...\n", arvif->vdev_id);
#if 0 // NEEDS PORTING
if (vif->p2p)
arvif->vdev_subtype = ath10k_wmi_get_vdev_subtype
(ar, WMI_VDEV_SUBTYPE_P2P_CLIENT);
#endif // NEEDS PORTING
break;
#if 0 // NEEDS PORTING
case NL80211_IFTYPE_ADHOC:
arvif->vdev_type = WMI_VDEV_TYPE_IBSS;
break;
#endif // NEEDS PORTING
case WLAN_MAC_ROLE_MESH:
if (!BITARR_TEST(ar->wmi.svc_map, WMI_SERVICE_MESH_11S)) {
ret = ZX_ERR_INVALID_ARGS;
ath10k_err("the firmware does not support MESH_11S vif subtype\n");
goto err;
}
ret = ath10k_wmi_get_vdev_subtype(ar, WMI_VDEV_SUBTYPE_MESH_11S, &vdev_subtype);
if (ret != ZX_OK) {
ath10k_err("failed to get vdev subtype for MESH_11S: %s\n", zx_status_get_string(ret));
goto err;
}
arvif->vdev_type = WMI_VDEV_TYPE_AP;
break;
case WLAN_MAC_ROLE_AP:
arvif->vdev_type = WMI_VDEV_TYPE_AP;
ath10k_info("adding an AP interface (vdev_id=%d) ...\n", arvif->vdev_id);
break;
#if 0 // NEEDS PORTING
if (vif->p2p)
arvif->vdev_subtype = ath10k_wmi_get_vdev_subtype
(ar, WMI_VDEV_SUBTYPE_P2P_GO);
break;
case ATH10K_VIF_TYPE_MONITOR:
arvif->vdev_type = WMI_VDEV_TYPE_MONITOR;
break;
#endif // NEEDS PORTING
default:
ath10k_warn("invalid network type specified when adding interface\n");
return ZX_ERR_INVALID_ARGS;
}
#if 0 // NEEDS PORTING
/* Using vdev_id as queue number will make it very easy to do per-vif
* tx queue locking. This shouldn't wrap due to interface combinations
* but do a modulo for correctness sake and prevent using offchannel tx
* queues for regular vif tx.
*/
vif->cab_queue = arvif->vdev_id % (IEEE80211_MAX_QUEUES - 1);
for (i = 0; i < countof(vif->hw_queue); i++) {
vif->hw_queue[i] = arvif->vdev_id % (IEEE80211_MAX_QUEUES - 1);
}
#endif // NEEDS PORTING
/* Some firmware revisions don't wait for beacon tx completion before
* sending another SWBA event. This could lead to hardware using old
* (freed) beacon data in some cases, e.g. tx credit starvation
* combined with missed TBTT. This is very very rare.
*
* On non-IOMMU-enabled hosts this could be a possible security issue
* because hw could beacon some random data on the air. On
* IOMMU-enabled hosts DMAR faults would occur in most cases and target
* device would crash.
*
* Since there are no beacon tx completions (implicit nor explicit)
* propagated to host the only workaround for this is to allocate a
* DMA-coherent buffer for a lifetime of a vif and use it for all
* beacon tx commands. Worst case for this approach is some beacons may
* become corrupted, e.g. have garbled IEs or out-of-date TIM bitmap.
*/
if (/* vif_type == NL80211_IFTYPE_ADHOC || */
vif_role == WLAN_MAC_ROLE_MESH || vif_role == WLAN_MAC_ROLE_AP)
{
ret = ath10k_msg_buf_alloc(ar, &arvif->beacon_buf, ATH10K_MSG_TYPE_BASE,
ATH10K_MAX_BCN_TMPL_SIZE);
if (ret != ZX_OK) {
ath10k_warn("failed to allocate beacon buffer: %s\n", zx_status_get_string(ret));
goto err;
}
}
if (BITARR_TEST(ar->dev_flags, ATH10K_FLAG_HW_CRYPTO_DISABLED)) { arvif->nohwcrypt = true; }
if (arvif->nohwcrypt && !BITARR_TEST(ar->dev_flags, ATH10K_FLAG_RAW_MODE)) {
ath10k_warn("cryptmode module param needed for sw crypto\n");
goto err;
}
ath10k_dbg(ar, ATH10K_DBG_MAC,
"mac vdev create %d (add interface) type %d subtype %d bcnmode %s\n", arvif->vdev_id,
arvif->vdev_type, vdev_subtype, arvif->beacon_buf ? "single-buf" : "per-skb");
ret = ath10k_wmi_vdev_create(ar, arvif->vdev_id, arvif->vdev_type, vdev_subtype, ar->mac_addr);
if (ret != ZX_OK) {
ath10k_warn("failed to create WMI vdev %i: %s\n", arvif->vdev_id,
zx_status_get_string(ret));
goto err;
}
ar->free_vdev_map &= ~(1LL << arvif->vdev_id);
#if 0 // NEEDS PORTING
mtx_lock(&ar->data_lock);
list_add(&arvif->list, &ar->arvifs);
mtx_unlock(&ar->data_lock);
/* It makes no sense to have firmware do keepalives. mac80211 already
* takes care of this with idle connection polling.
*/
ret = ath10k_mac_vif_disable_keepalive(arvif);
if (ret) {
ath10k_warn("failed to disable keepalive on vdev %i: %d\n",
arvif->vdev_id, ret);
goto err_vdev_delete;
}
arvif->def_wep_key_idx = -1;
#endif // NEEDS PORTING
uint32_t vdev_param = ar->wmi.vdev_param->tx_encap_type;
ret = ath10k_wmi_vdev_set_param(ar, arvif->vdev_id, vdev_param, ATH10K_HW_TXRX_NATIVE_WIFI);
/* 10.X firmware does not support this VDEV parameter. Do not warn */
if (ret != ZX_OK && ret != ZX_ERR_NOT_SUPPORTED) {
ath10k_warn("failed to set vdev %i TX encapsulation: %d\n", arvif->vdev_id, ret);
goto err_vdev_delete;
}
#if 0 // NEEDS PORTING
/* Configuring number of spatial stream for monitor interface is causing
* target assert in qca9888 and qca6174.
*/
if (ar->cfg_tx_chainmask && (vif->type != NL80211_IFTYPE_MONITOR)) {
uint16_t nss = get_nss_from_chainmask(ar->cfg_tx_chainmask);
vdev_param = ar->wmi.vdev_param->nss;
ret = ath10k_wmi_vdev_set_param(ar, arvif->vdev_id, vdev_param,
nss);
if (ret) {
ath10k_warn("failed to set vdev %i chainmask 0x%x, nss %i: %d\n",
arvif->vdev_id, ar->cfg_tx_chainmask, nss,
ret);
goto err_vdev_delete;
}
}
if (arvif->vdev_type == WMI_VDEV_TYPE_AP ||
arvif->vdev_type == WMI_VDEV_TYPE_IBSS) {
ret = ath10k_peer_create(ar, vif, NULL, arvif->vdev_id,
vif->addr, WMI_PEER_TYPE_DEFAULT);
if (ret) {
ath10k_warn("failed to create vdev %i peer for AP/IBSS: %d\n",
arvif->vdev_id, ret);
goto err_vdev_delete;
}
mtx_lock(&ar->data_lock);
peer = ath10k_peer_find(ar, arvif->vdev_id, vif->addr);
if (!peer) {
ath10k_warn("failed to lookup peer %pM on vdev %i\n",
vif->addr, arvif->vdev_id);
mtx_unlock(&ar->data_lock);
ret = -ENOENT;
goto err_peer_delete;
}
arvif->peer_id = find_first_bit(peer->peer_ids,
ATH10K_MAX_NUM_PEER_IDS);
mtx_unlock(&ar->data_lock);
} else {
arvif->peer_id = HTT_INVALID_PEERID;
}
#endif // NEEDS PORTING
if (arvif->vdev_type == WMI_VDEV_TYPE_AP) {
ret = ath10k_mac_set_kickout(arvif);
if (ret) {
ath10k_warn("failed to set vdev %i kickout parameters: %d\n",
arvif->vdev_id, ret);
goto err_peer_delete;
}
}
#if 0 // NEEDS PORTING
if (arvif->vdev_type == WMI_VDEV_TYPE_STA) {
param = WMI_STA_PS_PARAM_RX_WAKE_POLICY;
value = WMI_STA_PS_RX_WAKE_POLICY_WAKE;
ret = ath10k_wmi_set_sta_ps_param(ar, arvif->vdev_id,
param, value);
if (ret) {
ath10k_warn("failed to set vdev %i RX wake policy: %d\n",
arvif->vdev_id, ret);
goto err_peer_delete;
}
ret = ath10k_mac_vif_recalc_ps_wake_threshold(arvif);
if (ret) {
ath10k_warn("failed to recalc ps wake threshold on vdev %i: %d\n",
arvif->vdev_id, ret);
goto err_peer_delete;
}
ret = ath10k_mac_vif_recalc_ps_poll_count(arvif);
if (ret) {
ath10k_warn("failed to recalc ps poll count on vdev %i: %d\n",
arvif->vdev_id, ret);
goto err_peer_delete;
}
}
#endif // NEEDS PORTING
ret = ath10k_mac_set_txbf_conf(arvif);
if (ret) {
ath10k_warn("failed to set txbf for vdev %d: %d\n",
arvif->vdev_id, ret);
goto err_peer_delete;
}
#if 0 // NEEDS PORTING
ret = ath10k_mac_set_rts(arvif, ar->hw->wiphy->rts_threshold);
if (ret) {
ath10k_warn("failed to set rts threshold for vdev %d: %d\n",
arvif->vdev_id, ret);
goto err_peer_delete;
}
#endif // NEEDS PORTING
arvif->txpower = 30; // TODO -- look up from channel information
ret = ath10k_mac_txpower_recalc(ar);
if (ret) {
ath10k_warn("failed to recalc tx power: %d\n", ret);
goto err_peer_delete;
}
#if 0 // NEEDS PORTING
if (vif->type == NL80211_IFTYPE_MONITOR) {
ar->monitor_arvif = arvif;
ret = ath10k_monitor_recalc(ar);
if (ret) {
ath10k_warn("failed to recalc monitor: %d\n", ret);
goto err_peer_delete;
}
}
mtx_lock(&ar->htt.tx_lock);
if (!ar->tx_paused) {
ieee80211_wake_queue(ar->hw, arvif->vdev_id);
}
mtx_unlock(&ar->htt.tx_lock);
#endif // NEEDS PORTING
ar->arvif_created = true;
return ZX_OK;
err_peer_delete:
#if 0 // NEEDS PORTING
if (arvif->vdev_type == WMI_VDEV_TYPE_AP ||
arvif->vdev_type == WMI_VDEV_TYPE_IBSS) {
ath10k_wmi_peer_delete(ar, arvif->vdev_id, vif->addr);
}
#endif // NEEDS PORTING
err_vdev_delete:
ath10k_wmi_vdev_delete(ar, arvif->vdev_id);
ar->free_vdev_map |= 1LL << arvif->vdev_id;
#if 0 // NEEDS PORTING
mtx_lock(&ar->data_lock);
list_del(&arvif->list);
mtx_unlock(&ar->data_lock);
#endif // NEEDS PORTING
err:
#if 0 // NEEDS PORTING
if (arvif->beacon_buf) {
dma_free_coherent(ar->dev, IEEE80211_MAX_FRAME_LEN,
arvif->beacon_buf, arvif->beacon_paddr);
arvif->beacon_buf = NULL;
}
#endif // NEEDS PORTING
return ret;
}
#if 0 // NEEDS PORTING
static void ath10k_mac_vif_tx_unlock_all(struct ath10k_vif* arvif) {
int i;
for (i = 0; i < BITS_PER_LONG; i++) {
ath10k_mac_vif_tx_unlock(arvif, i);
}
}
static void ath10k_remove_interface(struct ieee80211_hw* hw,
struct ieee80211_vif* vif) {
struct ath10k* ar = hw->priv;
struct ath10k_vif* arvif = (void*)vif->drv_priv;
struct ath10k_peer* peer;
int ret;
int i;
cancel_work_sync(&arvif->ap_csa_work);
cancel_delayed_work_sync(&arvif->connection_loss_work);
mtx_lock(&ar->conf_mutex);
mtx_lock(&ar->data_lock);
ath10k_mac_vif_beacon_cleanup(arvif);
mtx_unlock(&ar->data_lock);
ret = ath10k_spectral_vif_stop(arvif);
if (ret)
ath10k_warn("failed to stop spectral for vdev %i: %d\n",
arvif->vdev_id, ret);
ar->free_vdev_map |= 1LL << arvif->vdev_id;
mtx_lock(&ar->data_lock);
list_del(&arvif->list);
mtx_unlock(&ar->data_lock);
if (arvif->vdev_type == WMI_VDEV_TYPE_AP ||
arvif->vdev_type == WMI_VDEV_TYPE_IBSS) {
ret = ath10k_wmi_peer_delete(arvif->ar, arvif->vdev_id,
vif->addr);
if (ret)
ath10k_warn("failed to submit AP/IBSS self-peer removal on vdev %i: %d\n",
arvif->vdev_id, ret);
kfree(arvif->u.ap.noa_data);
}
ath10k_dbg(ar, ATH10K_DBG_MAC, "mac vdev %i delete (remove interface)\n",
arvif->vdev_id);
ret = ath10k_wmi_vdev_delete(ar, arvif->vdev_id);
if (ret)
ath10k_warn("failed to delete WMI vdev %i: %d\n",
arvif->vdev_id, ret);
/* Some firmware revisions don't notify host about self-peer removal
* until after associated vdev is deleted.
*/
if (arvif->vdev_type == WMI_VDEV_TYPE_AP ||
arvif->vdev_type == WMI_VDEV_TYPE_IBSS) {
ret = ath10k_wait_for_peer_deleted(ar, arvif->vdev_id,
vif->addr);
if (ret)
ath10k_warn("failed to remove AP self-peer on vdev %i: %d\n",
arvif->vdev_id, ret);
mtx_lock(&ar->data_lock);
ar->num_peers--;
mtx_unlock(&ar->data_lock);
}
mtx_lock(&ar->data_lock);
for (i = 0; i < countof(ar->peer_map); i++) {
peer = ar->peer_map[i];
if (!peer) {
continue;
}
if (peer->vif == vif) {
ath10k_warn("found vif peer %pM entry on vdev %i after it was supposedly removed\n",
vif->addr, arvif->vdev_id);
peer->vif = NULL;
}
}
mtx_unlock(&ar->data_lock);
ath10k_peer_cleanup(ar, arvif->vdev_id);
ath10k_mac_txq_unref(ar, vif->txq);
if (vif->type == NL80211_IFTYPE_MONITOR) {
ar->monitor_arvif = NULL;
ret = ath10k_monitor_recalc(ar);
if (ret) {
ath10k_warn("failed to recalc monitor: %d\n", ret);
}
}
ret = ath10k_mac_txpower_recalc(ar);
if (ret) {
ath10k_warn("failed to recalc tx power: %d\n", ret);
}
mtx_lock(&ar->htt.tx_lock);
ath10k_mac_vif_tx_unlock_all(arvif);
mtx_unlock(&ar->htt.tx_lock);
ath10k_mac_txq_unref(ar, vif->txq);
mtx_unlock(&ar->conf_mutex);
}
/*
* FIXME: Has to be verified.
*/
#define SUPPORTED_FILTERS \
(FIF_ALLMULTI | FIF_CONTROL | FIF_PSPOLL | FIF_OTHER_BSS | FIF_BCN_PRBRESP_PROMISC | \
FIF_PROBE_REQ | FIF_FCSFAIL)
static void ath10k_configure_filter(struct ieee80211_hw* hw,
unsigned int changed_flags,
unsigned int* total_flags,
uint64_t multicast) {
struct ath10k* ar = hw->priv;
int ret;
mtx_lock(&ar->conf_mutex);
changed_flags &= SUPPORTED_FILTERS;
*total_flags &= SUPPORTED_FILTERS;
ar->filter_flags = *total_flags;
ret = ath10k_monitor_recalc(ar);
if (ret) {
ath10k_warn("failed to recalc monitor: %d\n", ret);
}
mtx_unlock(&ar->conf_mutex);
}
static void ath10k_bss_info_changed(struct ieee80211_hw* hw,
struct ieee80211_vif* vif,
struct ieee80211_bss_conf* info,
uint32_t changed) {
struct ath10k* ar = hw->priv;
struct ath10k_vif* arvif = (void*)vif->drv_priv;
int ret = 0;
uint32_t vdev_param, pdev_param, slottime, preamble;
mtx_lock(&ar->conf_mutex);
if (changed & BSS_CHANGED_IBSS) {
ath10k_control_ibss(arvif, info, vif->addr);
}
if (changed & BSS_CHANGED_BEACON_INT) {
arvif->beacon_interval = info->beacon_int;
vdev_param = ar->wmi.vdev_param->beacon_interval;
ret = ath10k_wmi_vdev_set_param(ar, arvif->vdev_id, vdev_param,
arvif->beacon_interval);
ath10k_dbg(ar, ATH10K_DBG_MAC,
"mac vdev %d beacon_interval %d\n",
arvif->vdev_id, arvif->beacon_interval);
if (ret)
ath10k_warn("failed to set beacon interval for vdev %d: %i\n",
arvif->vdev_id, ret);
}
if (changed & BSS_CHANGED_BEACON) {
ath10k_dbg(ar, ATH10K_DBG_MAC,
"vdev %d set beacon tx mode to staggered\n",
arvif->vdev_id);
pdev_param = ar->wmi.pdev_param->beacon_tx_mode;
ret = ath10k_wmi_pdev_set_param(ar, pdev_param,
WMI_BEACON_STAGGERED_MODE);
if (ret)
ath10k_warn("failed to set beacon mode for vdev %d: %i\n",
arvif->vdev_id, ret);
ret = ath10k_mac_setup_bcn_tmpl(arvif);
if (ret)
ath10k_warn("failed to update beacon template: %d\n",
ret);
if (ieee80211_vif_is_mesh(vif)) {
/* mesh doesn't use SSID but firmware needs it */
strncpy(arvif->u.ap.ssid, "mesh",
sizeof(arvif->u.ap.ssid));
arvif->u.ap.ssid_len = 4;
}
}
if (changed & BSS_CHANGED_AP_PROBE_RESP) {
ret = ath10k_mac_setup_prb_tmpl(arvif);
if (ret)
ath10k_warn("failed to setup probe resp template on vdev %i: %d\n",
arvif->vdev_id, ret);
}
if (changed & (BSS_CHANGED_BEACON_INFO | BSS_CHANGED_BEACON)) {
arvif->dtim_period = info->dtim_period;
ath10k_dbg(ar, ATH10K_DBG_MAC,
"mac vdev %d dtim_period %d\n",
arvif->vdev_id, arvif->dtim_period);
vdev_param = ar->wmi.vdev_param->dtim_period;
ret = ath10k_wmi_vdev_set_param(ar, arvif->vdev_id, vdev_param,
arvif->dtim_period);
if (ret)
ath10k_warn("failed to set dtim period for vdev %d: %i\n",
arvif->vdev_id, ret);
}
if (changed & BSS_CHANGED_SSID &&
vif->type == NL80211_IFTYPE_AP) {
arvif->u.ap.ssid_len = info->ssid_len;
if (info->ssid_len) {
memcpy(arvif->u.ap.ssid, info->ssid, info->ssid_len);
}
arvif->u.ap.hidden_ssid = info->hidden_ssid;
}
if (changed & BSS_CHANGED_BSSID && !is_zero_ether_addr(info->bssid)) {
memcpy(arvif->bssid, info->bssid, ETH_ALEN);
}
if (changed & BSS_CHANGED_BEACON_ENABLED) {
ath10k_control_beaconing(arvif, info);
}
if (changed & BSS_CHANGED_ERP_CTS_PROT) {
arvif->use_cts_prot = info->use_cts_prot;
ret = ath10k_recalc_rtscts_prot(arvif);
if (ret)
ath10k_warn("failed to recalculate rts/cts prot for vdev %d: %d\n",
arvif->vdev_id, ret);
if (ath10k_mac_can_set_cts_prot(arvif)) {
ret = ath10k_mac_set_cts_prot(arvif);
if (ret)
ath10k_warn("failed to set cts protection for vdev %d: %d\n",
arvif->vdev_id, ret);
}
}
if (changed & BSS_CHANGED_ERP_SLOT) {
if (info->use_short_slot) {
slottime = WMI_VDEV_SLOT_TIME_SHORT; /* 9us */
}
else {
slottime = WMI_VDEV_SLOT_TIME_LONG; /* 20us */
}
ath10k_dbg(ar, ATH10K_DBG_MAC, "mac vdev %d slot_time %d\n",
arvif->vdev_id, slottime);
vdev_param = ar->wmi.vdev_param->slot_time;
ret = ath10k_wmi_vdev_set_param(ar, arvif->vdev_id, vdev_param,
slottime);
if (ret)
ath10k_warn("failed to set erp slot for vdev %d: %i\n",
arvif->vdev_id, ret);
}
if (changed & BSS_CHANGED_ERP_PREAMBLE) {
if (info->use_short_preamble) {
preamble = WMI_VDEV_PREAMBLE_SHORT;
} else {
preamble = WMI_VDEV_PREAMBLE_LONG;
}
ath10k_dbg(ar, ATH10K_DBG_MAC,
"mac vdev %d preamble %dn",
arvif->vdev_id, preamble);
vdev_param = ar->wmi.vdev_param->preamble;
ret = ath10k_wmi_vdev_set_param(ar, arvif->vdev_id, vdev_param,
preamble);
if (ret)
ath10k_warn("failed to set preamble for vdev %d: %i\n",
arvif->vdev_id, ret);
}
if (changed & BSS_CHANGED_ASSOC) {
if (info->assoc) {
/* Workaround: Make sure monitor vdev is not running
* when associating to prevent some firmware revisions
* (e.g. 10.1 and 10.2) from crashing.
*/
if (ar->monitor_started) {
ath10k_monitor_stop(ar);
}
ath10k_bss_assoc(hw, vif, info);
ath10k_monitor_recalc(ar);
} else {
ath10k_bss_disassoc(hw, vif);
}
}
if (changed & BSS_CHANGED_TXPOWER) {
ath10k_dbg(ar, ATH10K_DBG_MAC, "mac vdev_id %i txpower %d\n",
arvif->vdev_id, info->txpower);
arvif->txpower = info->txpower;
ret = ath10k_mac_txpower_recalc(ar);
if (ret) {
ath10k_warn("failed to recalc tx power: %d\n", ret);
}
}
if (changed & BSS_CHANGED_PS) {
arvif->ps = vif->bss_conf.ps;
ret = ath10k_config_ps(ar);
if (ret)
ath10k_warn("failed to setup ps on vdev %i: %d\n",
arvif->vdev_id, ret);
}
mtx_unlock(&ar->conf_mutex);
}
static void ath10k_mac_op_set_coverage_class(struct ieee80211_hw* hw, int16_t value) {
struct ath10k* ar = hw->priv;
/* This function should never be called if setting the coverage class
* is not supported on this hardware.
*/
if (!ar->hw_params.hw_ops->set_coverage_class) {
WARN_ONCE();
return;
}
ar->hw_params.hw_ops->set_coverage_class(ar, value);
}
#endif // NEEDS PORTING
static zx_status_t ath10k_mac_convert_scan_config(const wlan_hw_scan_config_t* scan_config,
struct wmi_start_scan_arg* arg) {
if (scan_config->num_channels == 0) {
ath10k_err("number of channels to scan must be non-zero\n");
return ZX_ERR_INVALID_ARGS;
}
if (scan_config->num_channels > countof(arg->channels)) {
ath10k_err("too many channels to scan: %u\n", scan_config->num_channels);
return ZX_ERR_INVALID_ARGS;
}
memset(arg, 0, sizeof(*arg));
ath10k_wmi_start_scan_init(arg);
arg->scan_ctrl_flags |= WMI_SCAN_FLAG_PASSIVE;
arg->n_channels = scan_config->num_channels;
for (size_t i = 0; i < scan_config->num_channels; ++i) {
const struct ath10k_channel* ath_chan;
if (ath10k_lookup_chan(scan_config->channels[i], &ath_chan) != ZX_OK) {
ath10k_err("invalid channel number %u\n", scan_config->channels[i]);
return ZX_ERR_INVALID_ARGS;
}
ZX_DEBUG_ASSERT(ath_chan->center_freq.cbw20 != 0);
arg->channels[i] = ath_chan->center_freq.cbw20;
}
return ZX_OK;
}
zx_status_t ath10k_mac_hw_scan(struct ath10k* ar, const wlan_hw_scan_config_t* scan_config) {
struct wmi_start_scan_arg arg;
zx_status_t ret = ath10k_mac_convert_scan_config(scan_config, &arg);
if (ret != ZX_OK) { return ret; }
struct ath10k_vif* arvif = &ar->arvif;
mtx_lock(&ar->conf_mutex);
mtx_lock(&ar->data_lock);
arg.scan_id = ATH10K_SCAN_ID;
arg.vdev_id = arvif->vdev_id;
switch (ar->scan.state) {
case ATH10K_SCAN_IDLE:
sync_completion_reset(&ar->scan.started);
sync_completion_reset(&ar->scan.completed);
ar->scan.state = ATH10K_SCAN_STARTING;
ar->scan.is_roc = false;
ar->scan.vdev_id = arvif->vdev_id;
ret = ZX_OK;
break;
case ATH10K_SCAN_STARTING:
case ATH10K_SCAN_RUNNING:
case ATH10K_SCAN_ABORTING:
ret = ZX_ERR_BAD_STATE;
break;
}
mtx_unlock(&ar->data_lock);
if (ret != ZX_OK) { goto exit; }
ret = ath10k_start_scan(ar, &arg);
if (ret != ZX_OK) {
ath10k_warn("failed to start hw scan: %d\n", ret);
mtx_lock(&ar->data_lock);
ar->scan.state = ATH10K_SCAN_IDLE;
mtx_unlock(&ar->data_lock);
}
#if 0 // NEEDS PORTING
/* Add a 200ms margin to account for event/command processing */
ieee80211_queue_delayed_work(ar->hw, &ar->scan.timeout,
msecs_to_jiffies(arg.max_scan_time +
200));
#endif // NEEDS PORTING
exit:
mtx_unlock(&ar->conf_mutex);
return ret;
}
#if 0 // NEEDS PORTING
static void ath10k_cancel_hw_scan(struct ieee80211_hw* hw,
struct ieee80211_vif* vif) {
struct ath10k* ar = hw->priv;
mtx_lock(&ar->conf_mutex);
ath10k_scan_abort(ar);
mtx_unlock(&ar->conf_mutex);
cancel_delayed_work_sync(&ar->scan.timeout);
}
#endif // NEEDS PORTING
static void ath10k_set_key_h_def_keyidx(struct ath10k* ar, wlan_key_config_t* key_config) {
struct ath10k_vif* arvif = &ar->arvif;
uint32_t vdev_param = arvif->ar->wmi.vdev_param->def_keyid;
zx_status_t status;
/* 10.1 firmware branch requires default key index to be set to group
* key index after installing it. Otherwise FW/HW Txes corrupted
* frames with multi-vif APs. This is not required for main firmware
* branch (e.g. 636).
*
* This is also needed for 636 fw for IBSS-RSN to work more reliably.
*
* FIXME: It remains unknown if this is required for multi-vif STA
* interfaces on 10.1.
*/
if (arvif->vdev_type != WMI_VDEV_TYPE_AP && arvif->vdev_type != WMI_VDEV_TYPE_IBSS) { return; }
if (key_config->cipher_type == IEEE80211_CIPHER_SUITE_WEP_40) { return; }
if (key_config->cipher_type == IEEE80211_CIPHER_SUITE_WEP_104) { return; }
if (key_config->key_type == WLAN_KEY_TYPE_PAIRWISE) { return; }
status = ath10k_wmi_vdev_set_param(ar, arvif->vdev_id, vdev_param, key_config->key_idx);
if (status != ZX_OK) {
ath10k_warn("failed to set vdev %i group key as default key: %s\n", arvif->vdev_id,
zx_status_get_string(status));
} else {
ath10k_info("set vdev %i group key as default key\n", arvif->vdev_id);
}
}
zx_status_t ath10k_mac_set_key(struct ath10k* ar, wlan_key_config_t* key_config) {
struct ath10k_vif* arvif = &ar->arvif;
const uint8_t* peer_addr;
zx_status_t ret = ZX_OK;
uint32_t flags = 0;
bool is_an_ap_group_key = arvif->vdev_type == WMI_VDEV_TYPE_AP &&
key_config->key_type == WLAN_KEY_TYPE_GROUP;
if (arvif->nohwcrypt) { return ZX_ERR_NOT_SUPPORTED; }
if (key_config->key_idx > WMI_MAX_KEY_INDEX) { return ZX_ERR_INVALID_ARGS; }
// TODO: We should retrieve this value from key_config, but it is currently unavailable.
switch (arvif->vdev_type) {
case WMI_VDEV_TYPE_STA:
peer_addr = arvif->bssid;
break;
case WMI_VDEV_TYPE_AP:
peer_addr = key_config->peer_addr;
break;
default:
ath10k_err("Unsupported vdev_type: %d\n", arvif->vdev_type);
ZX_ASSERT(0); // Unknown type
}
mtx_lock(&ar->conf_mutex);
struct ath10k_peer* peer;
/* the peer should not disappear in mid-way (unless FW goes awry) since
* we already hold conf_mutex. we just make sure its there now.
*/
mtx_lock(&ar->data_lock);
peer = ath10k_peer_find(ar, arvif->vdev_id, peer_addr);
mtx_unlock(&ar->data_lock);
if (!peer) {
char ethaddr_str[ETH_ALEN * 3];
ethaddr_sprintf(ethaddr_str, peer_addr);
ath10k_err("failed to install key for non-existent peer %s\n", ethaddr_str);
ret = ZX_ERR_NOT_FOUND;
goto exit;
}
switch (key_config->key_type) {
case WLAN_KEY_TYPE_PAIRWISE:
flags |= WMI_KEY_PAIRWISE;
break;
case WLAN_KEY_TYPE_GROUP:
flags |= WMI_KEY_GROUP;
break;
case WLAN_KEY_TYPE_IGTK:
case WLAN_KEY_TYPE_PEER:
default:
ZX_ASSERT(0);
}
// If the key has been set, ignore the request. See WLAN-855.
mtx_lock(&ar->data_lock);
if (key_config->key_idx < peer->num_wlan_cfg &&
peer->wlan_cfg[key_config->key_idx].key_idx == key_config->key_idx) {
ath10k_warn("key idx %d has been created. ignore it.\n", key_config->key_idx);
mtx_unlock(&ar->data_lock);
goto exit;
}
mtx_unlock(&ar->data_lock);
ret = ath10k_install_key(arvif, key_config, peer_addr, flags);
if (ret != ZX_OK) {
char ethaddr_str[ETH_ALEN * 3];
ethaddr_sprintf(ethaddr_str, peer_addr);
ath10k_warn("failed to install key for vdev %i peer %s: %s\n",
arvif->vdev_id, ethaddr_str, zx_status_get_string(ret));
if (is_an_ap_group_key) {
ath10k_warn("But this could be fine. The group key might have been setup already.\n");
ret = ZX_OK;
}
goto exit;
}
ath10k_dbg(ar, ATH10K_DBG_MAC, "Added wlan_cfg[%zu] with key index: %hhu\n",
peer->num_wlan_cfg, key_config->key_idx);
mtx_lock(&ar->data_lock);
peer->wlan_cfg[key_config->key_idx] = *key_config;
// peer->num_wlan_cfg is used to record the max key index in firmware for later deletion.
peer->num_wlan_cfg = MAX(peer->num_wlan_cfg, key_config->key_idx + 1);
mtx_unlock(&ar->data_lock);
ath10k_set_key_h_def_keyidx(ar, key_config);
#if 0 // NEEDS PORTING
mtx_lock(&ar->data_lock);
peer = ath10k_peer_find(ar, arvif->vdev_id, peer_addr);
if (peer) {
peer->keys[key->keyidx] = key;
} else {
/* impossible unless FW goes crazy */
ath10k_warn("Peer %pM disappeared!\n", peer_addr);
}
mtx_unlock(&ar->data_lock);
#endif // NEEDS PORTING
exit:
mtx_unlock(&ar->conf_mutex);
return ret;
}
#if 0 // NEEDS PORTING
static void ath10k_set_default_unicast_key(struct ieee80211_hw* hw,
struct ieee80211_vif* vif,
int keyidx) {
struct ath10k* ar = hw->priv;
struct ath10k_vif* arvif = (void*)vif->drv_priv;
int ret;
mtx_lock(&arvif->ar->conf_mutex);
if (arvif->ar->state != ATH10K_STATE_ON) {
goto unlock;
}
ath10k_dbg(ar, ATH10K_DBG_MAC, "mac vdev %d set keyidx %d\n",
arvif->vdev_id, keyidx);
ret = ath10k_wmi_vdev_set_param(arvif->ar,
arvif->vdev_id,
arvif->ar->wmi.vdev_param->def_keyid,
keyidx);
if (ret) {
ath10k_warn("failed to update wep key index for vdev %d: %d\n",
arvif->vdev_id,
ret);
goto unlock;
}
arvif->def_wep_key_idx = keyidx;
unlock:
mtx_unlock(&arvif->ar->conf_mutex);
}
static void ath10k_sta_rc_update_wk(struct work_struct* wk) {
struct ath10k* ar;
struct ath10k_vif* arvif;
struct ath10k_sta* arsta;
struct ieee80211_sta* sta;
struct cfg80211_chan_def def;
enum nl80211_band band;
const uint8_t* ht_mcs_mask;
const uint16_t* vht_mcs_mask;
uint32_t changed, bw, nss, smps;
int err;
arsta = container_of(wk, struct ath10k_sta, update_wk);
sta = container_of((void*)arsta, struct ieee80211_sta, drv_priv);
arvif = arsta->arvif;
ar = arvif->ar;
if (COND_WARN(ath10k_mac_vif_chan(arvif->vif, &def))) {
return;
}
band = def.chan->band;
ht_mcs_mask = arvif->bitrate_mask.control[band].ht_mcs;
vht_mcs_mask = arvif->bitrate_mask.control[band].vht_mcs;
mtx_lock(&ar->data_lock);
changed = arsta->changed;
arsta->changed = 0;
bw = arsta->bw;
nss = arsta->nss;
smps = arsta->smps;
mtx_unlock(&ar->data_lock);
mtx_lock(&ar->conf_mutex);
nss = max_t(uint32_t, 1, nss);
nss = MIN(nss, max(ath10k_mac_max_ht_nss(ht_mcs_mask),
ath10k_mac_max_vht_nss(vht_mcs_mask)));
if (changed & IEEE80211_RC_BW_CHANGED) {
ath10k_dbg(ar, ATH10K_DBG_MAC, "mac update sta %pM peer bw %d\n",
sta->addr, bw);
err = ath10k_wmi_peer_set_param(ar, arvif->vdev_id, sta->addr,
WMI_PEER_CHAN_WIDTH, bw);
if (err)
ath10k_warn("failed to update STA %pM peer bw %d: %d\n",
sta->addr, bw, err);
}
if (changed & IEEE80211_RC_NSS_CHANGED) {
ath10k_dbg(ar, ATH10K_DBG_MAC, "mac update sta %pM nss %d\n",
sta->addr, nss);
err = ath10k_wmi_peer_set_param(ar, arvif->vdev_id, sta->addr,
WMI_PEER_NSS, nss);
if (err)
ath10k_warn("failed to update STA %pM nss %d: %d\n",
sta->addr, nss, err);
}
if (changed & IEEE80211_RC_SMPS_CHANGED) {
ath10k_dbg(ar, ATH10K_DBG_MAC, "mac update sta %pM smps %d\n",
sta->addr, smps);
err = ath10k_wmi_peer_set_param(ar, arvif->vdev_id, sta->addr,
WMI_PEER_SMPS_STATE, smps);
if (err)
ath10k_warn("failed to update STA %pM smps %d: %d\n",
sta->addr, smps, err);
}
if (changed & IEEE80211_RC_SUPP_RATES_CHANGED ||
changed & IEEE80211_RC_NSS_CHANGED) {
ath10k_dbg(ar, ATH10K_DBG_MAC, "mac update sta %pM supp rates/nss\n",
sta->addr);
err = ath10k_station_assoc(ar, arvif->vif, sta, true);
if (err)
ath10k_warn("failed to reassociate station: %pM\n",
sta->addr);
}
mtx_unlock(&ar->conf_mutex);
}
static int ath10k_mac_inc_num_stations(struct ath10k_vif* arvif,
struct ieee80211_sta* sta) {
struct ath10k* ar = arvif->ar;
ASSERT_MTX_HELD(&ar->conf_mutex);
if (arvif->vdev_type == WMI_VDEV_TYPE_STA && !sta->tdls) {
return 0;
}
if (ar->num_stations >= ar->max_num_stations) {
return -ENOBUFS;
}
ar->num_stations++;
return 0;
}
static void ath10k_mac_dec_num_stations(struct ath10k_vif* arvif,
struct ieee80211_sta* sta) {
struct ath10k* ar = arvif->ar;
ASSERT_MTX_HELD(&ar->conf_mutex);
if (arvif->vdev_type == WMI_VDEV_TYPE_STA && !sta->tdls) {
return;
}
ar->num_stations--;
}
struct ath10k_mac_tdls_iter_data {
uint32_t num_tdls_stations;
struct ieee80211_vif* curr_vif;
};
static void ath10k_mac_tdls_vif_stations_count_iter(void* data,
struct ieee80211_sta* sta) {
struct ath10k_mac_tdls_iter_data* iter_data = data;
struct ath10k_sta* arsta = (struct ath10k_sta*)sta->drv_priv;
struct ieee80211_vif* sta_vif = arsta->arvif->vif;
if (sta->tdls && sta_vif == iter_data->curr_vif) {
iter_data->num_tdls_stations++;
}
}
static int ath10k_mac_tdls_vif_stations_count(struct ieee80211_hw* hw,
struct ieee80211_vif* vif) {
struct ath10k_mac_tdls_iter_data data = {};
data.curr_vif = vif;
ieee80211_iterate_stations_atomic(hw,
ath10k_mac_tdls_vif_stations_count_iter,
&data);
return data.num_tdls_stations;
}
static void ath10k_mac_tdls_vifs_count_iter(void* data, uint8_t* mac,
struct ieee80211_vif* vif) {
struct ath10k_vif* arvif = (void*)vif->drv_priv;
int* num_tdls_vifs = data;
if (vif->type != NL80211_IFTYPE_STATION) {
return;
}
if (ath10k_mac_tdls_vif_stations_count(arvif->ar->hw, vif) > 0) {
(*num_tdls_vifs)++;
}
}
static int ath10k_mac_tdls_vifs_count(struct ieee80211_hw* hw) {
int num_tdls_vifs = 0;
ieee80211_iterate_active_interfaces_atomic(hw,
IEEE80211_IFACE_ITER_NORMAL,
ath10k_mac_tdls_vifs_count_iter,
&num_tdls_vifs);
return num_tdls_vifs;
}
static int ath10k_sta_state(struct ieee80211_hw* hw,
struct ieee80211_vif* vif,
struct ieee80211_sta* sta,
enum ieee80211_sta_state old_state,
enum ieee80211_sta_state new_state) {
struct ath10k* ar = hw->priv;
struct ath10k_vif* arvif = (void*)vif->drv_priv;
struct ath10k_sta* arsta = (struct ath10k_sta*)sta->drv_priv;
struct ath10k_peer* peer;
int ret = 0;
int i;
if (old_state == IEEE80211_STA_NOTEXIST &&
new_state == IEEE80211_STA_NONE) {
memset(arsta, 0, sizeof(*arsta));
arsta->arvif = arvif;
INIT_WORK(&arsta->update_wk, ath10k_sta_rc_update_wk);
for (i = 0; i < countof(sta->txq); i++) {
ath10k_mac_txq_init(sta->txq[i]);
}
}
/* cancel must be done outside the mutex to avoid deadlock */
if ((old_state == IEEE80211_STA_NONE &&
new_state == IEEE80211_STA_NOTEXIST)) {
cancel_work_sync(&arsta->update_wk);
}
mtx_lock(&ar->conf_mutex);
if (old_state == IEEE80211_STA_NOTEXIST &&
new_state == IEEE80211_STA_NONE) {
/*
* New station addition.
*/
enum wmi_peer_type peer_type = WMI_PEER_TYPE_DEFAULT;
uint32_t num_tdls_stations;
uint32_t num_tdls_vifs;
ath10k_dbg(ar, ATH10K_DBG_MAC,
"mac vdev %d peer create %pM (new sta) sta %d / %d peer %d / %d\n",
arvif->vdev_id, sta->addr,
ar->num_stations + 1, ar->max_num_stations,
ar->num_peers + 1, ar->max_num_peers);
num_tdls_stations = ath10k_mac_tdls_vif_stations_count(hw, vif);
num_tdls_vifs = ath10k_mac_tdls_vifs_count(hw);
if (sta->tdls) {
if (num_tdls_stations >= ar->max_num_tdls_vdevs) {
ath10k_warn("vdev %i exceeded maximum number of tdls vdevs %i\n",
arvif->vdev_id,
ar->max_num_tdls_vdevs);
ret = -ELNRNG;
goto exit;
}
peer_type = WMI_PEER_TYPE_TDLS;
}
ret = ath10k_mac_inc_num_stations(arvif, sta);
if (ret) {
ath10k_warn("refusing to associate station: too many connected already (%d)\n",
ar->max_num_stations);
goto exit;
}
ret = ath10k_peer_create(ar, vif, sta, arvif->vdev_id,
sta->addr, peer_type);
if (ret) {
ath10k_warn("failed to add peer %pM for vdev %d when adding a new sta: %i\n",
sta->addr, arvif->vdev_id, ret);
ath10k_mac_dec_num_stations(arvif, sta);
goto exit;
}
mtx_lock(&ar->data_lock);
peer = ath10k_peer_find(ar, arvif->vdev_id, sta->addr);
if (!peer) {
ath10k_warn("failed to lookup peer %pM on vdev %i\n",
vif->addr, arvif->vdev_id);
mtx_unlock(&ar->data_lock);
ath10k_peer_delete(ar, arvif->vdev_id, sta->addr);
ath10k_mac_dec_num_stations(arvif, sta);
ret = -ENOENT;
goto exit;
}
arsta->peer_id = find_first_bit(peer->peer_ids,
ATH10K_MAX_NUM_PEER_IDS);
mtx_unlock(&ar->data_lock);
if (!sta->tdls) {
goto exit;
}
ret = ath10k_wmi_update_fw_tdls_state(ar, arvif->vdev_id,
WMI_TDLS_ENABLE_ACTIVE);
if (ret) {
ath10k_warn("failed to update fw tdls state on vdev %i: %i\n",
arvif->vdev_id, ret);
ath10k_peer_delete(ar, arvif->vdev_id,
sta->addr);
ath10k_mac_dec_num_stations(arvif, sta);
goto exit;
}
ret = ath10k_mac_tdls_peer_update(ar, arvif->vdev_id, sta,
WMI_TDLS_PEER_STATE_PEERING);
if (ret) {
ath10k_warn("failed to update tdls peer %pM for vdev %d when adding a new sta: %i\n",
sta->addr, arvif->vdev_id, ret);
ath10k_peer_delete(ar, arvif->vdev_id, sta->addr);
ath10k_mac_dec_num_stations(arvif, sta);
if (num_tdls_stations != 0) {
goto exit;
}
ath10k_wmi_update_fw_tdls_state(ar, arvif->vdev_id,
WMI_TDLS_DISABLE);
}
} else if ((old_state == IEEE80211_STA_NONE &&
new_state == IEEE80211_STA_NOTEXIST)) {
/*
* Existing station deletion.
*/
ath10k_dbg(ar, ATH10K_DBG_MAC,
"mac vdev %d peer delete %pM sta %pK (sta gone)\n",
arvif->vdev_id, sta->addr, sta);
ret = ath10k_peer_delete(ar, arvif->vdev_id, sta->addr);
if (ret)
ath10k_warn("failed to delete peer %pM for vdev %d: %i\n",
sta->addr, arvif->vdev_id, ret);
ath10k_mac_dec_num_stations(arvif, sta);
mtx_lock(&ar->data_lock);
for (i = 0; i < countof(ar->peer_map); i++) {
peer = ar->peer_map[i];
if (!peer) {
continue;
}
if (peer->sta == sta) {
ath10k_warn("found sta peer %pM (ptr %pK id %d) entry on vdev %i after it was supposedly removed\n",
sta->addr, peer, i, arvif->vdev_id);
peer->sta = NULL;
/* Clean up the peer object as well since we
* must have failed to do this above.
*/
list_del(&peer->list);
ar->peer_map[i] = NULL;
kfree(peer);
ar->num_peers--;
}
}
mtx_unlock(&ar->data_lock);
for (i = 0; i < countof(sta->txq); i++) {
ath10k_mac_txq_unref(ar, sta->txq[i]);
}
if (!sta->tdls) {
goto exit;
}
if (ath10k_mac_tdls_vif_stations_count(hw, vif)) {
goto exit;
}
/* This was the last tdls peer in current vif */
ret = ath10k_wmi_update_fw_tdls_state(ar, arvif->vdev_id,
WMI_TDLS_DISABLE);
if (ret) {
ath10k_warn("failed to update fw tdls state on vdev %i: %i\n",
arvif->vdev_id, ret);
}
} else if (old_state == IEEE80211_STA_AUTH &&
new_state == IEEE80211_STA_ASSOC &&
(vif->type == NL80211_IFTYPE_AP ||
vif->type == NL80211_IFTYPE_MESH_POINT ||
vif->type == NL80211_IFTYPE_ADHOC)) {
/*
* New association.
*/
ath10k_dbg(ar, ATH10K_DBG_MAC, "mac sta %pM associated\n",
sta->addr);
ret = ath10k_station_assoc(ar, vif, sta, false);
if (ret)
ath10k_warn("failed to associate station %pM for vdev %i: %i\n",
sta->addr, arvif->vdev_id, ret);
} else if (old_state == IEEE80211_STA_ASSOC &&
new_state == IEEE80211_STA_AUTHORIZED &&
sta->tdls) {
/*
* Tdls station authorized.
*/
ath10k_dbg(ar, ATH10K_DBG_MAC, "mac tdls sta %pM authorized\n",
sta->addr);
ret = ath10k_station_assoc(ar, vif, sta, false);
if (ret) {
ath10k_warn("failed to associate tdls station %pM for vdev %i: %i\n",
sta->addr, arvif->vdev_id, ret);
goto exit;
}
ret = ath10k_mac_tdls_peer_update(ar, arvif->vdev_id, sta,
WMI_TDLS_PEER_STATE_CONNECTED);
if (ret)
ath10k_warn("failed to update tdls peer %pM for vdev %i: %i\n",
sta->addr, arvif->vdev_id, ret);
} else if (old_state == IEEE80211_STA_ASSOC &&
new_state == IEEE80211_STA_AUTH &&
(vif->type == NL80211_IFTYPE_AP ||
vif->type == NL80211_IFTYPE_MESH_POINT ||
vif->type == NL80211_IFTYPE_ADHOC)) {
/*
* Disassociation.
*/
ath10k_dbg(ar, ATH10K_DBG_MAC, "mac sta %pM disassociated\n",
sta->addr);
ret = ath10k_station_disassoc(ar, vif, sta);
if (ret)
ath10k_warn("failed to disassociate station: %pM vdev %i: %i\n",
sta->addr, arvif->vdev_id, ret);
}
exit:
mtx_unlock(&ar->conf_mutex);
return ret;
}
static int ath10k_conf_tx_uapsd(struct ath10k* ar, struct ieee80211_vif* vif,
uint16_t ac, bool enable) {
struct ath10k_vif* arvif = (void*)vif->drv_priv;
struct wmi_sta_uapsd_auto_trig_arg arg = {};
uint32_t prio = 0, acc = 0;
uint32_t value = 0;
int ret = 0;
ASSERT_MTX_HELD(&ar->conf_mutex);
if (arvif->vdev_type != WMI_VDEV_TYPE_STA) {
return 0;
}
switch (ac) {
case IEEE80211_AC_VO:
value = WMI_STA_PS_UAPSD_AC3_DELIVERY_EN |
WMI_STA_PS_UAPSD_AC3_TRIGGER_EN;
prio = 7;
acc = 3;
break;
case IEEE80211_AC_VI:
value = WMI_STA_PS_UAPSD_AC2_DELIVERY_EN |
WMI_STA_PS_UAPSD_AC2_TRIGGER_EN;
prio = 5;
acc = 2;
break;
case IEEE80211_AC_BE:
value = WMI_STA_PS_UAPSD_AC1_DELIVERY_EN |
WMI_STA_PS_UAPSD_AC1_TRIGGER_EN;
prio = 2;
acc = 1;
break;
case IEEE80211_AC_BK:
value = WMI_STA_PS_UAPSD_AC0_DELIVERY_EN |
WMI_STA_PS_UAPSD_AC0_TRIGGER_EN;
prio = 0;
acc = 0;
break;
}
if (enable) {
arvif->u.sta.uapsd |= value;
} else {
arvif->u.sta.uapsd &= ~value;
}
ret = ath10k_wmi_set_sta_ps_param(ar, arvif->vdev_id,
WMI_STA_PS_PARAM_UAPSD,
arvif->u.sta.uapsd);
if (ret) {
ath10k_warn("failed to set uapsd params: %d\n", ret);
goto exit;
}
if (arvif->u.sta.uapsd) {
value = WMI_STA_PS_RX_WAKE_POLICY_POLL_UAPSD;
} else {
value = WMI_STA_PS_RX_WAKE_POLICY_WAKE;
}
ret = ath10k_wmi_set_sta_ps_param(ar, arvif->vdev_id,
WMI_STA_PS_PARAM_RX_WAKE_POLICY,
value);
if (ret) {
ath10k_warn("failed to set rx wake param: %d\n", ret);
}
ret = ath10k_mac_vif_recalc_ps_wake_threshold(arvif);
if (ret) {
ath10k_warn("failed to recalc ps wake threshold on vdev %i: %d\n",
arvif->vdev_id, ret);
return ret;
}
ret = ath10k_mac_vif_recalc_ps_poll_count(arvif);
if (ret) {
ath10k_warn("failed to recalc ps poll count on vdev %i: %d\n",
arvif->vdev_id, ret);
return ret;
}
if (BITARR_TEST(ar->wmi.svc_map, WMI_SERVICE_STA_UAPSD_BASIC_AUTO_TRIG) ||
BITARR_TEST(ar->wmi.svc_map, WMI_SERVICE_STA_UAPSD_VAR_AUTO_TRIG)) {
/* Only userspace can make an educated decision when to send
* trigger frame. The following effectively disables u-UAPSD
* autotrigger in firmware (which is enabled by default
* provided the autotrigger service is available).
*/
arg.wmm_ac = acc;
arg.user_priority = prio;
arg.service_interval = 0;
arg.suspend_interval = WMI_STA_UAPSD_MAX_INTERVAL_MSEC;
arg.delay_interval = WMI_STA_UAPSD_MAX_INTERVAL_MSEC;
ret = ath10k_wmi_vdev_sta_uapsd(ar, arvif->vdev_id,
arvif->bssid, &arg, 1);
if (ret) {
ath10k_warn("failed to set uapsd auto trigger %d\n",
ret);
return ret;
}
}
exit:
return ret;
}
#endif // NEEDS PORTING
static zx_status_t ath10k_conf_tx(struct ath10k* ar, uint16_t ac,
struct wmi_wmm_params_arg* params) {
struct ath10k_vif* arvif = &ar->arvif;
struct wmi_wmm_params_arg* p = NULL;
int ret;
ASSERT_MTX_HELD(&ar->conf_mutex);
switch (ac) {
case IEEE80211_AC_VO:
p = &arvif->wmm_params.ac_vo;
break;
case IEEE80211_AC_VI:
p = &arvif->wmm_params.ac_vi;
break;
case IEEE80211_AC_BE:
p = &arvif->wmm_params.ac_be;
break;
case IEEE80211_AC_BK:
p = &arvif->wmm_params.ac_bk;
break;
default:
ath10k_warn("internal err: ath10k_conf_tx called with an invalid AC value\n");
return ZX_ERR_INVALID_ARGS;
}
memcpy(p, params, sizeof(*p));
if (ar->wmi.ops->gen_vdev_wmm_conf) {
ret = ath10k_wmi_vdev_wmm_conf(ar, arvif->vdev_id, &arvif->wmm_params);
if (ret != ZX_OK) {
ath10k_warn("failed to set vdev wmm params on vdev %i: %d\n", arvif->vdev_id, ret);
goto exit;
}
} else {
/* This won't work well with multi-interface cases but it's
* better than nothing.
*/
ret = ath10k_wmi_pdev_set_wmm_params(ar, &arvif->wmm_params);
if (ret != ZX_OK) {
ath10k_warn("failed to set wmm params: %d\n", ret);
goto exit;
}
}
#if 0 // NEEDS PORTING
ret = ath10k_conf_tx_uapsd(ar, vif, ac, params->uapsd);
if (ret) {
ath10k_warn("failed to set sta uapsd: %d\n", ret);
}
#endif // NEEDS PORTING
exit:
return ret;
}
#if 0 // NEEDS PORTING
#define ATH10K_ROC_TIMEOUT_HZ (2 * HZ)
static int ath10k_remain_on_channel(struct ieee80211_hw* hw,
struct ieee80211_vif* vif,
struct ieee80211_channel* chan,
int duration,
enum ieee80211_roc_type type) {
struct ath10k* ar = hw->priv;
struct ath10k_vif* arvif = (void*)vif->drv_priv;
struct wmi_start_scan_arg arg;
int ret = 0;
uint32_t scan_time_msec;
mtx_lock(&ar->conf_mutex);
mtx_lock(&ar->data_lock);
switch (ar->scan.state) {
case ATH10K_SCAN_IDLE:
sync_completion_reset(&ar->scan.started);
sync_completion_reset(&ar->scan.completed);
sync_completion_reset(&ar->scan.on_channel);
ar->scan.state = ATH10K_SCAN_STARTING;
ar->scan.is_roc = true;
ar->scan.vdev_id = arvif->vdev_id;
ar->scan.roc_freq = chan->center_freq;
ar->scan.roc_notify = true;
ret = 0;
break;
case ATH10K_SCAN_STARTING:
case ATH10K_SCAN_RUNNING:
case ATH10K_SCAN_ABORTING:
ret = -EBUSY;
break;
}
mtx_unlock(&ar->data_lock);
if (ret) {
goto exit;
}
scan_time_msec = ar->hw->wiphy->max_remain_on_channel_duration * 2;
memset(&arg, 0, sizeof(arg));
ath10k_wmi_start_scan_init(ar, &arg);
arg.vdev_id = arvif->vdev_id;
arg.scan_id = ATH10K_SCAN_ID;
arg.n_channels = 1;
arg.channels[0] = chan->center_freq;
arg.dwell_time_active = scan_time_msec;
arg.dwell_time_passive = scan_time_msec;
arg.max_scan_time = scan_time_msec;
arg.scan_ctrl_flags |= WMI_SCAN_FLAG_PASSIVE;
arg.scan_ctrl_flags |= WMI_SCAN_FILTER_PROBE_REQ;
arg.burst_duration_ms = duration;
ret = ath10k_start_scan(ar, &arg);
if (ret) {
ath10k_warn("failed to start roc scan: %d\n", ret);
mtx_lock(&ar->data_lock);
ar->scan.state = ATH10K_SCAN_IDLE;
mtx_unlock(&ar->data_lock);
goto exit;
}
if (sync_completion_wait(&ar->scan.on_channel, ZX_SEC(3)) == ZX_ERR_TIMED_OUT) {
ath10k_warn("failed to switch to channel for roc scan\n");
ret = ath10k_scan_stop(ar);
if (ret) {
ath10k_warn("failed to stop scan: %d\n", ret);
}
ret = -ETIMEDOUT;
goto exit;
}
ieee80211_queue_delayed_work(ar->hw, &ar->scan.timeout,
msecs_to_jiffies(duration));
ret = 0;
exit:
mtx_unlock(&ar->conf_mutex);
return ret;
}
static int ath10k_cancel_remain_on_channel(struct ieee80211_hw* hw) {
struct ath10k* ar = hw->priv;
mtx_lock(&ar->conf_mutex);
mtx_lock(&ar->data_lock);
ar->scan.roc_notify = false;
mtx_unlock(&ar->data_lock);
ath10k_scan_abort(ar);
mtx_unlock(&ar->conf_mutex);
cancel_delayed_work_sync(&ar->scan.timeout);
return 0;
}
/*
* Both RTS and Fragmentation threshold are interface-specific
* in ath10k, but device-specific in mac80211.
*/
static int ath10k_set_rts_threshold(struct ieee80211_hw* hw, uint32_t value) {
struct ath10k* ar = hw->priv;
struct ath10k_vif* arvif;
int ret = 0;
mtx_lock(&ar->conf_mutex);
list_for_each_entry(arvif, &ar->arvifs, list) {
ath10k_dbg(ar, ATH10K_DBG_MAC, "mac vdev %d rts threshold %d\n",
arvif->vdev_id, value);
ret = ath10k_mac_set_rts(arvif, value);
if (ret) {
ath10k_warn("failed to set rts threshold for vdev %d: %d\n",
arvif->vdev_id, ret);
break;
}
}
mtx_unlock(&ar->conf_mutex);
return ret;
}
static int ath10k_mac_op_set_frag_threshold(struct ieee80211_hw* hw, uint32_t value) {
/* Even though there's a WMI enum for fragmentation threshold no known
* firmware actually implements it. Moreover it is not possible to rely
* frame fragmentation to mac80211 because firmware clears the "more
* fragments" bit in frame control making it impossible for remote
* devices to reassemble frames.
*
* Hence implement a dummy callback just to say fragmentation isn't
* supported. This effectively prevents mac80211 from doing frame
* fragmentation in software.
*/
return -EOPNOTSUPP;
}
static void ath10k_flush(struct ieee80211_hw* hw, struct ieee80211_vif* vif,
uint32_t queues, bool drop) {
struct ath10k* ar = hw->priv;
bool skip;
long time_left;
/* mac80211 doesn't care if we really xmit queued frames or not
* we'll collect those frames either way if we stop/delete vdevs
*/
if (drop) {
return;
}
mtx_lock(&ar->conf_mutex);
if (ar->state == ATH10K_STATE_WEDGED) {
goto skip;
}
time_left = wait_event_timeout(ar->htt.empty_tx_wq, ({
bool empty;
mtx_lock(&ar->htt.tx_lock);
empty = (ar->htt.num_pending_tx == 0);
mtx_unlock(&ar->htt.tx_lock);
skip = (ar->state == ATH10K_STATE_WEDGED) ||
BITARR_TEST(&ar->dev_flags, ATH10K_FLAG_CRASH_FLUSH);
(empty || skip);
}), ATH10K_FLUSH_TIMEOUT_HZ);
if (time_left == 0 || skip)
ath10k_warn("failed to flush transmit queue (skip %i ar-state %i): %ld\n",
skip, ar->state, time_left);
skip:
mtx_unlock(&ar->conf_mutex);
}
/* TODO: Implement this function properly
* For now it is needed to reply to Probe Requests in IBSS mode.
* Propably we need this information from FW.
*/
static int ath10k_tx_last_beacon(struct ieee80211_hw* hw) {
return 1;
}
static void ath10k_reconfig_complete(struct ieee80211_hw* hw,
enum ieee80211_reconfig_type reconfig_type) {
struct ath10k* ar = hw->priv;
if (reconfig_type != IEEE80211_RECONFIG_TYPE_RESTART) {
return;
}
mtx_lock(&ar->conf_mutex);
/* If device failed to restart it will be in a different state, e.g.
* ATH10K_STATE_WEDGED
*/
if (ar->state == ATH10K_STATE_RESTARTED) {
ath10k_trace("device successfully recovered\n");
ar->state = ATH10K_STATE_ON;
ieee80211_wake_queues(ar->hw);
}
mtx_unlock(&ar->conf_mutex);
}
static void
ath10k_mac_update_bss_chan_survey(struct ath10k* ar,
struct ieee80211_channel* channel) {
int ret;
enum wmi_bss_survey_req_type type = WMI_BSS_SURVEY_REQ_TYPE_READ_CLEAR;
ASSERT_MTX_HELD(&ar->conf_mutex);
if (!BITARR_TEST(ar->wmi.svc_map, WMI_SERVICE_BSS_CHANNEL_INFO_64) ||
(ar->rx_channel != channel)) {
return;
}
if (ar->scan.state != ATH10K_SCAN_IDLE) {
ath10k_dbg(ar, ATH10K_DBG_MAC, "ignoring bss chan info request while scanning..\n");
return;
}
sync_completion_reset(&ar->bss_survey_done);
ret = ath10k_wmi_pdev_bss_chan_info_request(ar, type);
if (ret) {
ath10k_warn("failed to send pdev bss chan info request\n");
return;
}
if (sync_completion_wait(&ar->bss_survey_done, ZX_SEC(3)) == ZX_ERR_TIMED_OUT) {
ath10k_warn("bss channel survey timed out\n");
return;
}
}
static int ath10k_get_survey(struct ieee80211_hw* hw, int idx,
struct survey_info* survey) {
struct ath10k* ar = hw->priv;
struct ieee80211_supported_band* sband;
struct survey_info* ar_survey = &ar->survey[idx];
int ret = 0;
mtx_lock(&ar->conf_mutex);
sband = hw->wiphy->bands[NL80211_BAND_2GHZ];
if (sband && idx >= sband->n_channels) {
idx -= sband->n_channels;
sband = NULL;
}
if (!sband) {
sband = hw->wiphy->bands[NL80211_BAND_5GHZ];
}
if (!sband || idx >= sband->n_channels) {
ret = -ENOENT;
goto exit;
}
ath10k_mac_update_bss_chan_survey(ar, &sband->channels[idx]);
mtx_lock(&ar->data_lock);
memcpy(survey, ar_survey, sizeof(*survey));
mtx_unlock(&ar->data_lock);
survey->channel = &sband->channels[idx];
if (ar->rx_channel == survey->channel) {
survey->filled |= SURVEY_INFO_IN_USE;
}
exit:
mtx_unlock(&ar->conf_mutex);
return ret;
}
static bool
ath10k_mac_bitrate_mask_has_single_rate(struct ath10k* ar,
enum nl80211_band band,
const struct cfg80211_bitrate_mask* mask) {
int num_rates = 0;
int i;
num_rates += hweight32(mask->control[band].legacy);
for (i = 0; i < countof(mask->control[band].ht_mcs); i++) {
num_rates += hweight8(mask->control[band].ht_mcs[i]);
}
for (i = 0; i < countof(mask->control[band].vht_mcs); i++) {
num_rates += hweight16(mask->control[band].vht_mcs[i]);
}
return num_rates == 1;
}
static bool
ath10k_mac_bitrate_mask_get_single_nss(struct ath10k* ar,
enum nl80211_band band,
const struct cfg80211_bitrate_mask* mask,
int* nss) {
struct ieee80211_supported_band* sband = &ar->mac.sbands[band];
uint16_t vht_mcs_map = sband->vht_cap.vht_mcs.tx_mcs_map;
uint8_t ht_nss_mask = 0;
uint8_t vht_nss_mask = 0;
int i;
if (mask->control[band].legacy) {
return false;
}
for (i = 0; i < countof(mask->control[band].ht_mcs); i++) {
if (mask->control[band].ht_mcs[i] == 0) {
continue;
} else if (mask->control[band].ht_mcs[i] ==
sband->ht_cap.mcs.rx_mask[i]) {
ht_nss_mask |= BIT(i);
} else {
return false;
}
}
for (i = 0; i < countof(mask->control[band].vht_mcs); i++) {
if (mask->control[band].vht_mcs[i] == 0) {
continue;
} else if (mask->control[band].vht_mcs[i] ==
ath10k_mac_get_max_vht_mcs_map(vht_mcs_map, i)) {
vht_nss_mask |= BIT(i);
} else {
return false;
}
}
if (ht_nss_mask != vht_nss_mask) {
return false;
}
if (ht_nss_mask == 0) {
return false;
}
if (BIT(fls(ht_nss_mask)) - 1 != ht_nss_mask) {
return false;
}
*nss = fls(ht_nss_mask);
return true;
}
static int
ath10k_mac_bitrate_mask_get_single_rate(struct ath10k* ar,
enum nl80211_band band,
const struct cfg80211_bitrate_mask* mask,
uint8_t* rate, uint8_t* nss) {
struct ieee80211_supported_band* sband = &ar->mac.sbands[band];
int rate_idx;
int i;
uint16_t bitrate;
uint8_t preamble;
uint8_t hw_rate;
if (hweight32(mask->control[band].legacy) == 1) {
rate_idx = ffs(mask->control[band].legacy) - 1;
hw_rate = sband->bitrates[rate_idx].hw_value;
bitrate = sband->bitrates[rate_idx].bitrate;
if (ath10k_mac_bitrate_is_cck(bitrate)) {
preamble = WMI_RATE_PREAMBLE_CCK;
} else {
preamble = WMI_RATE_PREAMBLE_OFDM;
}
*nss = 1;
*rate = preamble << 6 |
(*nss - 1) << 4 |
hw_rate << 0;
return 0;
}
for (i = 0; i < countof(mask->control[band].ht_mcs); i++) {
if (hweight8(mask->control[band].ht_mcs[i]) == 1) {
*nss = i + 1;
*rate = WMI_RATE_PREAMBLE_HT << 6 |
(*nss - 1) << 4 |
(ffs(mask->control[band].ht_mcs[i]) - 1);
return 0;
}
}
for (i = 0; i < countof(mask->control[band].vht_mcs); i++) {
if (hweight16(mask->control[band].vht_mcs[i]) == 1) {
*nss = i + 1;
*rate = WMI_RATE_PREAMBLE_VHT << 6 |
(*nss - 1) << 4 |
(ffs(mask->control[band].vht_mcs[i]) - 1);
return 0;
}
}
return -EINVAL;
}
static int ath10k_mac_set_fixed_rate_params(struct ath10k_vif* arvif,
uint8_t rate, uint8_t nss, uint8_t sgi, uint8_t ldpc) {
struct ath10k* ar = arvif->ar;
uint32_t vdev_param;
int ret;
ASSERT_MTX_HELD(&ar->conf_mutex);
ath10k_dbg(ar, ATH10K_DBG_MAC, "mac set fixed rate params vdev %i rate 0x%02hhx nss %hhu sgi %hhu\n",
arvif->vdev_id, rate, nss, sgi);
vdev_param = ar->wmi.vdev_param->fixed_rate;
ret = ath10k_wmi_vdev_set_param(ar, arvif->vdev_id, vdev_param, rate);
if (ret) {
ath10k_warn("failed to set fixed rate param 0x%02x: %d\n",
rate, ret);
return ret;
}
vdev_param = ar->wmi.vdev_param->nss;
ret = ath10k_wmi_vdev_set_param(ar, arvif->vdev_id, vdev_param, nss);
if (ret) {
ath10k_warn("failed to set nss param %d: %d\n", nss, ret);
return ret;
}
vdev_param = ar->wmi.vdev_param->sgi;
ret = ath10k_wmi_vdev_set_param(ar, arvif->vdev_id, vdev_param, sgi);
if (ret) {
ath10k_warn("failed to set sgi param %d: %d\n", sgi, ret);
return ret;
}
vdev_param = ar->wmi.vdev_param->ldpc;
ret = ath10k_wmi_vdev_set_param(ar, arvif->vdev_id, vdev_param, ldpc);
if (ret) {
ath10k_warn("failed to set ldpc param %d: %d\n", ldpc, ret);
return ret;
}
return 0;
}
static bool
ath10k_mac_can_set_bitrate_mask(struct ath10k* ar,
enum nl80211_band band,
const struct cfg80211_bitrate_mask* mask) {
int i;
uint16_t vht_mcs;
/* Due to firmware limitation in WMI_PEER_ASSOC_CMDID it is impossible
* to express all VHT MCS rate masks. Effectively only the following
* ranges can be used: none, 0-7, 0-8 and 0-9.
*/
for (i = 0; i < VHT_NSS_NUM; i++) {
vht_mcs = mask->control[band].vht_mcs[i];
switch (vht_mcs) {
case 0:
case (1 << 8) - 1:
case (1 << 9) - 1:
case (1 << 10) - 1:
break;
default:
ath10k_warn("refusing bitrate mask with missing 0-7 VHT MCS rates\n");
return false;
}
}
return true;
}
static void ath10k_mac_set_bitrate_mask_iter(void* data,
struct ieee80211_sta* sta) {
struct ath10k_vif* arvif = data;
struct ath10k_sta* arsta = (struct ath10k_sta*)sta->drv_priv;
struct ath10k* ar = arvif->ar;
if (arsta->arvif != arvif) {
return;
}
mtx_lock(&ar->data_lock);
arsta->changed |= IEEE80211_RC_SUPP_RATES_CHANGED;
mtx_unlock(&ar->data_lock);
ieee80211_queue_work(ar->hw, &arsta->update_wk);
}
static int ath10k_mac_op_set_bitrate_mask(struct ieee80211_hw* hw,
struct ieee80211_vif* vif,
const struct cfg80211_bitrate_mask* mask) {
struct ath10k_vif* arvif = (void*)vif->drv_priv;
struct cfg80211_chan_def def;
struct ath10k* ar = arvif->ar;
enum nl80211_band band;
const uint8_t* ht_mcs_mask;
const uint16_t* vht_mcs_mask;
uint8_t rate;
uint8_t nss;
uint8_t sgi;
uint8_t ldpc;
int single_nss;
int ret;
if (ath10k_mac_vif_chan(vif, &def)) {
return -EPERM;
}
band = def.chan->band;
ht_mcs_mask = mask->control[band].ht_mcs;
vht_mcs_mask = mask->control[band].vht_mcs;
ldpc = !!(ar->ht_cap_info & WMI_HT_CAP_LDPC);
sgi = mask->control[band].gi;
if (sgi == NL80211_TXRATE_FORCE_LGI) {
return -EINVAL;
}
if (ath10k_mac_bitrate_mask_has_single_rate(ar, band, mask)) {
ret = ath10k_mac_bitrate_mask_get_single_rate(ar, band, mask,
&rate, &nss);
if (ret) {
ath10k_warn("failed to get single rate for vdev %i: %d\n",
arvif->vdev_id, ret);
return ret;
}
} else if (ath10k_mac_bitrate_mask_get_single_nss(ar, band, mask,
&single_nss)) {
rate = WMI_FIXED_RATE_NONE;
nss = single_nss;
} else {
rate = WMI_FIXED_RATE_NONE;
nss = MIN(ar->num_rf_chains,
max(ath10k_mac_max_ht_nss(ht_mcs_mask),
ath10k_mac_max_vht_nss(vht_mcs_mask)));
if (!ath10k_mac_can_set_bitrate_mask(ar, band, mask)) {
return -EINVAL;
}
mtx_lock(&ar->conf_mutex);
arvif->bitrate_mask = *mask;
ieee80211_iterate_stations_atomic(ar->hw,
ath10k_mac_set_bitrate_mask_iter,
arvif);
mtx_unlock(&ar->conf_mutex);
}
mtx_lock(&ar->conf_mutex);
ret = ath10k_mac_set_fixed_rate_params(arvif, rate, nss, sgi, ldpc);
if (ret) {
ath10k_warn("failed to set fixed rate params on vdev %i: %d\n",
arvif->vdev_id, ret);
goto exit;
}
exit:
mtx_unlock(&ar->conf_mutex);
return ret;
}
static void ath10k_sta_rc_update(struct ieee80211_hw* hw,
struct ieee80211_vif* vif,
struct ieee80211_sta* sta,
uint32_t changed) {
struct ath10k* ar = hw->priv;
struct ath10k_sta* arsta = (struct ath10k_sta*)sta->drv_priv;
uint32_t bw, smps;
mtx_lock(&ar->data_lock);
ath10k_dbg(ar, ATH10K_DBG_MAC,
"mac sta rc update for %pM changed %08x bw %d nss %d smps %d\n",
sta->addr, changed, sta->bandwidth, sta->rx_nss,
sta->smps_mode);
if (changed & IEEE80211_RC_BW_CHANGED) {
bw = WMI_PEER_CHWIDTH_20MHZ;
switch (sta->bandwidth) {
case IEEE80211_STA_RX_BW_20:
bw = WMI_PEER_CHWIDTH_20MHZ;
break;
case IEEE80211_STA_RX_BW_40:
bw = WMI_PEER_CHWIDTH_40MHZ;
break;
case IEEE80211_STA_RX_BW_80:
bw = WMI_PEER_CHWIDTH_80MHZ;
break;
case IEEE80211_STA_RX_BW_160:
bw = WMI_PEER_CHWIDTH_160MHZ;
break;
default:
ath10k_warn("Invalid bandwidth %d in rc update for %pM\n",
sta->bandwidth, sta->addr);
bw = WMI_PEER_CHWIDTH_20MHZ;
break;
}
arsta->bw = bw;
}
if (changed & IEEE80211_RC_NSS_CHANGED) {
arsta->nss = sta->rx_nss;
}
if (changed & IEEE80211_RC_SMPS_CHANGED) {
smps = WMI_PEER_SMPS_PS_NONE;
switch (sta->smps_mode) {
case IEEE80211_SMPS_AUTOMATIC:
case IEEE80211_SMPS_OFF:
smps = WMI_PEER_SMPS_PS_NONE;
break;
case IEEE80211_SMPS_STATIC:
smps = WMI_PEER_SMPS_STATIC;
break;
case IEEE80211_SMPS_DYNAMIC:
smps = WMI_PEER_SMPS_DYNAMIC;
break;
case IEEE80211_SMPS_NUM_MODES:
ath10k_warn("Invalid smps %d in sta rc update for %pM\n",
sta->smps_mode, sta->addr);
smps = WMI_PEER_SMPS_PS_NONE;
break;
}
arsta->smps = smps;
}
arsta->changed |= changed;
mtx_unlock(&ar->data_lock);
ieee80211_queue_work(hw, &arsta->update_wk);
}
static void ath10k_offset_tsf(struct ieee80211_hw* hw,
struct ieee80211_vif* vif, int64_t tsf_offset) {
struct ath10k* ar = hw->priv;
struct ath10k_vif* arvif = (void*)vif->drv_priv;
uint32_t offset, vdev_param;
int ret;
if (tsf_offset < 0) {
vdev_param = ar->wmi.vdev_param->dec_tsf;
offset = -tsf_offset;
} else {
vdev_param = ar->wmi.vdev_param->inc_tsf;
offset = tsf_offset;
}
ret = ath10k_wmi_vdev_set_param(ar, arvif->vdev_id,
vdev_param, offset);
if (ret && ret != -EOPNOTSUPP)
ath10k_warn("failed to set tsf offset %d cmd %d: %d\n",
offset, vdev_param, ret);
}
static int ath10k_ampdu_action(struct ieee80211_hw* hw,
struct ieee80211_vif* vif,
struct ieee80211_ampdu_params* params) {
struct ath10k* ar = hw->priv;
struct ath10k_vif* arvif = (void*)vif->drv_priv;
struct ieee80211_sta* sta = params->sta;
enum ieee80211_ampdu_mlme_action action = params->action;
uint16_t tid = params->tid;
ath10k_dbg(ar, ATH10K_DBG_MAC, "mac ampdu vdev_id %i sta %pM tid %hu action %d\n",
arvif->vdev_id, sta->addr, tid, action);
switch (action) {
case IEEE80211_AMPDU_RX_START:
case IEEE80211_AMPDU_RX_STOP:
/* HTT AddBa/DelBa events trigger mac80211 Rx BA session
* creation/removal. Do we need to verify this?
*/
return 0;
case IEEE80211_AMPDU_TX_START:
case IEEE80211_AMPDU_TX_STOP_CONT:
case IEEE80211_AMPDU_TX_STOP_FLUSH:
case IEEE80211_AMPDU_TX_STOP_FLUSH_CONT:
case IEEE80211_AMPDU_TX_OPERATIONAL:
/* Firmware offloads Tx aggregation entirely so deny mac80211
* Tx aggregation requests.
*/
return -EOPNOTSUPP;
}
return -EINVAL;
}
static void
ath10k_mac_update_rx_channel(struct ath10k* ar,
struct ieee80211_chanctx_conf* ctx,
struct ieee80211_vif_chanctx_switch* vifs,
int n_vifs) {
struct cfg80211_chan_def* def = NULL;
/* Both locks are required because ar->rx_channel is modified. This
* allows readers to hold either lock.
*/
ASSERT_MTX_HELD(&ar->conf_mutex);
ASSERT_MTX_HELD(&ar->data_lock);
COND_WARN(ctx && vifs);
COND_WARN(vifs && !n_vifs);
/* FIXME: Sort of an optimization and a workaround. Peers and vifs are
* on a linked list now. Doing a lookup peer -> vif -> chanctx for each
* ppdu on Rx may reduce performance on low-end systems. It should be
* possible to make tables/hashmaps to speed the lookup up (be vary of
* cpu data cache lines though regarding sizes) but to keep the initial
* implementation simple and less intrusive fallback to the slow lookup
* only for multi-channel cases. Single-channel cases will remain to
* use the old channel derival and thus performance should not be
* affected much.
*/
rcu_read_lock();
if (!ctx && ath10k_mac_num_chanctxs(ar) == 1) {
ieee80211_iter_chan_contexts_atomic(ar->hw,
ath10k_mac_get_any_chandef_iter,
&def);
if (vifs) {
def = &vifs[0].new_ctx->def;
}
ar->rx_channel = def->chan;
} else if ((ctx && ath10k_mac_num_chanctxs(ar) == 0) ||
(ctx && (ar->state == ATH10K_STATE_RESTARTED))) {
/* During driver restart due to firmware assert, since mac80211
* already has valid channel context for given radio, channel
* context iteration return num_chanctx > 0. So fix rx_channel
* when restart is in progress.
*/
ar->rx_channel = ctx->def.chan;
} else {
ar->rx_channel = NULL;
}
rcu_read_unlock();
}
static void
ath10k_mac_update_vif_chan(struct ath10k* ar,
struct ieee80211_vif_chanctx_switch* vifs,
int n_vifs) {
struct ath10k_vif* arvif;
int ret;
int i;
ASSERT_MTX_HELD(&ar->conf_mutex);
/* First stop monitor interface. Some FW versions crash if there's a
* lone monitor interface.
*/
if (ar->monitor_started) {
ath10k_monitor_stop(ar);
}
for (i = 0; i < n_vifs; i++) {
arvif = (void*)vifs[i].vif->drv_priv;
ath10k_dbg(ar, ATH10K_DBG_MAC,
"mac chanctx switch vdev_id %i freq %hu->%hu width %d->%d\n",
arvif->vdev_id,
vifs[i].old_ctx->def.chan->center_freq,
vifs[i].new_ctx->def.chan->center_freq,
vifs[i].old_ctx->def.width,
vifs[i].new_ctx->def.width);
if (COND_WARN(!arvif->is_started)) {
continue;
}
if (COND_WARN(!arvif->is_up)) {
continue;
}
ret = ath10k_wmi_vdev_down(ar, arvif->vdev_id);
if (ret) {
ath10k_warn("failed to down vdev %d: %d\n",
arvif->vdev_id, ret);
continue;
}
}
/* All relevant vdevs are downed and associated channel resources
* should be available for the channel switch now.
*/
mtx_lock(&ar->data_lock);
ath10k_mac_update_rx_channel(ar, NULL, vifs, n_vifs);
mtx_unlock(&ar->data_lock);
for (i = 0; i < n_vifs; i++) {
arvif = (void*)vifs[i].vif->drv_priv;
if (COND_WARN(!arvif->is_started)) {
continue;
}
if (COND_WARN(!arvif->is_up)) {
continue;
}
ret = ath10k_mac_setup_bcn_tmpl(arvif);
if (ret)
ath10k_warn("failed to update bcn tmpl during csa: %d\n",
ret);
ret = ath10k_mac_setup_prb_tmpl(arvif);
if (ret)
ath10k_warn("failed to update prb tmpl during csa: %d\n",
ret);
ret = ath10k_vdev_restart(arvif, &vifs[i].new_ctx->def);
if (ret) {
ath10k_warn("failed to restart vdev %d: %d\n",
arvif->vdev_id, ret);
continue;
}
ret = ath10k_wmi_vdev_up(arvif->ar, arvif->vdev_id, arvif->aid,
arvif->bssid);
if (ret) {
ath10k_warn("failed to bring vdev up %d: %d\n",
arvif->vdev_id, ret);
continue;
}
}
ath10k_monitor_recalc(ar);
}
static int
ath10k_mac_op_add_chanctx(struct ieee80211_hw* hw,
struct ieee80211_chanctx_conf* ctx) {
struct ath10k* ar = hw->priv;
ath10k_dbg(ar, ATH10K_DBG_MAC,
"mac chanctx add freq %hu width %d ptr %pK\n",
ctx->def.chan->center_freq, ctx->def.width, ctx);
mtx_lock(&ar->conf_mutex);
mtx_lock(&ar->data_lock);
ath10k_mac_update_rx_channel(ar, ctx, NULL, 0);
mtx_unlock(&ar->data_lock);
ath10k_recalc_radar_detection(ar);
ath10k_monitor_recalc(ar);
mtx_unlock(&ar->conf_mutex);
return 0;
}
static void
ath10k_mac_op_remove_chanctx(struct ieee80211_hw* hw,
struct ieee80211_chanctx_conf* ctx) {
struct ath10k* ar = hw->priv;
ath10k_dbg(ar, ATH10K_DBG_MAC,
"mac chanctx remove freq %hu width %d ptr %pK\n",
ctx->def.chan->center_freq, ctx->def.width, ctx);
mtx_lock(&ar->conf_mutex);
mtx_lock(&ar->data_lock);
ath10k_mac_update_rx_channel(ar, NULL, NULL, 0);
mtx_unlock(&ar->data_lock);
ath10k_recalc_radar_detection(ar);
ath10k_monitor_recalc(ar);
mtx_unlock(&ar->conf_mutex);
}
struct ath10k_mac_change_chanctx_arg {
struct ieee80211_chanctx_conf* ctx;
struct ieee80211_vif_chanctx_switch* vifs;
int n_vifs;
int next_vif;
};
static void
ath10k_mac_change_chanctx_cnt_iter(void* data, uint8_t* mac,
struct ieee80211_vif* vif) {
struct ath10k_mac_change_chanctx_arg* arg = data;
if (rcu_access_pointer(vif->chanctx_conf) != arg->ctx) {
return;
}
arg->n_vifs++;
}
static void
ath10k_mac_change_chanctx_fill_iter(void* data, uint8_t* mac,
struct ieee80211_vif* vif) {
struct ath10k_mac_change_chanctx_arg* arg = data;
struct ieee80211_chanctx_conf* ctx;
ctx = rcu_access_pointer(vif->chanctx_conf);
if (ctx != arg->ctx) {
return;
}
if (COND_WARN(arg->next_vif == arg->n_vifs)) {
return;
}
arg->vifs[arg->next_vif].vif = vif;
arg->vifs[arg->next_vif].old_ctx = ctx;
arg->vifs[arg->next_vif].new_ctx = ctx;
arg->next_vif++;
}
static void
ath10k_mac_op_change_chanctx(struct ieee80211_hw* hw,
struct ieee80211_chanctx_conf* ctx,
uint32_t changed) {
struct ath10k* ar = hw->priv;
struct ath10k_mac_change_chanctx_arg arg = { .ctx = ctx };
mtx_lock(&ar->conf_mutex);
ath10k_dbg(ar, ATH10K_DBG_MAC,
"mac chanctx change freq %hu width %d ptr %pK changed %x\n",
ctx->def.chan->center_freq, ctx->def.width, ctx, changed);
/* This shouldn't really happen because channel switching should use
* switch_vif_chanctx().
*/
if (COND_WARN(changed & IEEE80211_CHANCTX_CHANGE_CHANNEL)) {
goto unlock;
}
if (changed & IEEE80211_CHANCTX_CHANGE_WIDTH) {
ieee80211_iterate_active_interfaces_atomic(
hw,
IEEE80211_IFACE_ITER_NORMAL,
ath10k_mac_change_chanctx_cnt_iter,
&arg);
if (arg.n_vifs == 0) {
goto radar;
}
arg.vifs = kcalloc(arg.n_vifs, sizeof(arg.vifs[0]),
GFP_KERNEL);
if (!arg.vifs) {
goto radar;
}
ieee80211_iterate_active_interfaces_atomic(
hw,
IEEE80211_IFACE_ITER_NORMAL,
ath10k_mac_change_chanctx_fill_iter,
&arg);
ath10k_mac_update_vif_chan(ar, arg.vifs, arg.n_vifs);
kfree(arg.vifs);
}
radar:
ath10k_recalc_radar_detection(ar);
/* FIXME: How to configure Rx chains properly? */
/* No other actions are actually necessary. Firmware maintains channel
* definitions per vdev internally and there's no host-side channel
* context abstraction to configure, e.g. channel width.
*/
unlock:
mtx_unlock(&ar->conf_mutex);
}
#endif // NEEDS PORTING
// (Re-)start vif on the specified channel. A different flow will be needed if we
// want to support continued association transferring to a new channel (likely
// ath10k_mac_update_vif_channel). Upon successful completion, we will be in a started,
// but not up, state.
zx_status_t ath10k_mac_assign_vif_chanctx(struct ath10k* ar, wlan_channel_t* chan) {
struct ath10k_vif* arvif = &ar->arvif;
zx_status_t ret;
mtx_lock(&ar->conf_mutex);
ath10k_dbg(ar, ATH10K_DBG_MAC, "mac chanctx assign ptr %pK vdev_id %i\n", chan, arvif->vdev_id);
if (arvif->is_started) {
if (arvif->is_up) {
ret = ath10k_mac_bss_disassoc(ar);
if (ret != ZX_OK) {
ath10k_warn("failed to disassociate vdev %i: %s\n", arvif->vdev_id,
zx_status_get_string(ret));
}
}
ret = ath10k_vdev_restart(arvif, chan);
} else {
ret = ath10k_vdev_start(arvif, chan);
}
if (ret != ZX_OK) {
if (chan->cbw == CBW80P80) {
ath10k_warn("failed to start vdev %i on channels %d + %d: %s\n", arvif->vdev_id,
chan->primary, chan->secondary80, zx_status_get_string(ret));
} else {
ath10k_warn("failed to start vdev %i on channel %d: %s\n", arvif->vdev_id,
chan->primary, zx_status_get_string(ret));
}
goto err;
}
arvif->is_started = true;
#if 0 // NEEDS PORTING
ret = ath10k_mac_vif_setup_ps(arvif);
if (ret) {
ath10k_warn("failed to update vdev %i ps: %d\n",
arvif->vdev_id, ret);
goto err_stop;
}
if (vif->type == NL80211_IFTYPE_MONITOR) {
ret = ath10k_wmi_vdev_up(ar, arvif->vdev_id, 0, vif->addr);
if (ret) {
ath10k_warn("failed to up monitor vdev %i: %d\n",
arvif->vdev_id, ret);
goto err_stop;
}
arvif->is_up = true;
}
if (ath10k_mac_can_set_cts_prot(arvif)) {
ret = ath10k_mac_set_cts_prot(arvif);
if (ret)
ath10k_warn("failed to set cts protection for vdev %d: %d\n",
arvif->vdev_id, ret);
}
#endif // NEEDS PORTING
mtx_unlock(&ar->conf_mutex);
return ZX_OK;
#if 0 // NEEDS PORTING
err_stop:
ath10k_vdev_stop(arvif);
arvif->is_started = false;
ath10k_mac_vif_setup_ps(arvif);
#endif // NEEDS PORTING
err:
mtx_unlock(&ar->conf_mutex);
return ret;
}
#if 0 // NEEDS PORTING
static void
ath10k_mac_op_unassign_vif_chanctx(struct ieee80211_hw* hw,
struct ieee80211_vif* vif,
struct ieee80211_chanctx_conf* ctx) {
struct ath10k* ar = hw->priv;
struct ath10k_vif* arvif = (void*)vif->drv_priv;
int ret;
mtx_lock(&ar->conf_mutex);
ath10k_dbg(ar, ATH10K_DBG_MAC,
"mac chanctx unassign ptr %pK vdev_id %i\n",
ctx, arvif->vdev_id);
COND_WARN(!arvif->is_started);
if (vif->type == NL80211_IFTYPE_MONITOR) {
COND_WARN(!arvif->is_up);
ret = ath10k_wmi_vdev_down(ar, arvif->vdev_id);
if (ret)
ath10k_warn("failed to down monitor vdev %i: %d\n",
arvif->vdev_id, ret);
arvif->is_up = false;
}
ret = ath10k_vdev_stop(arvif);
if (ret)
ath10k_warn("failed to stop vdev %i: %d\n",
arvif->vdev_id, ret);
arvif->is_started = false;
mtx_unlock(&ar->conf_mutex);
}
static int
ath10k_mac_op_switch_vif_chanctx(struct ieee80211_hw* hw,
struct ieee80211_vif_chanctx_switch* vifs,
int n_vifs,
enum ieee80211_chanctx_switch_mode mode) {
struct ath10k* ar = hw->priv;
mtx_lock(&ar->conf_mutex);
ath10k_dbg(ar, ATH10K_DBG_MAC,
"mac chanctx switch n_vifs %d mode %d\n",
n_vifs, mode);
ath10k_mac_update_vif_chan(ar, vifs, n_vifs);
mtx_unlock(&ar->conf_mutex);
return 0;
}
static void ath10k_mac_op_sta_pre_rcu_remove(struct ieee80211_hw* hw,
struct ieee80211_vif* vif,
struct ieee80211_sta* sta) {
struct ath10k* ar;
struct ath10k_peer* peer;
ar = hw->priv;
list_for_each_entry(peer, &ar->peers, list)
if (peer->sta == sta) {
peer->removed = true;
}
}
static const struct ieee80211_ops ath10k_ops = {
.tx = ath10k_mac_op_tx,
.wake_tx_queue = ath10k_mac_op_wake_tx_queue,
.start = ath10k_start,
.stop = ath10k_stop,
.config = ath10k_config,
.add_interface = ath10k_add_interface,
.remove_interface = ath10k_remove_interface,
.configure_filter = ath10k_configure_filter,
.bss_info_changed = ath10k_bss_info_changed,
.set_coverage_class = ath10k_mac_op_set_coverage_class,
.hw_scan = ath10k_hw_scan,
.cancel_hw_scan = ath10k_cancel_hw_scan,
.set_key = ath10k_set_key,
.set_default_unicast_key = ath10k_set_default_unicast_key,
.sta_state = ath10k_sta_state,
.conf_tx = ath10k_conf_tx,
.remain_on_channel = ath10k_remain_on_channel,
.cancel_remain_on_channel = ath10k_cancel_remain_on_channel,
.set_rts_threshold = ath10k_set_rts_threshold,
.set_frag_threshold = ath10k_mac_op_set_frag_threshold,
.flush = ath10k_flush,
.tx_last_beacon = ath10k_tx_last_beacon,
.set_antenna = ath10k_set_antenna,
.get_antenna = ath10k_get_antenna,
.reconfig_complete = ath10k_reconfig_complete,
.get_survey = ath10k_get_survey,
.set_bitrate_mask = ath10k_mac_op_set_bitrate_mask,
.sta_rc_update = ath10k_sta_rc_update,
.offset_tsf = ath10k_offset_tsf,
.ampdu_action = ath10k_ampdu_action,
.get_et_sset_count = ath10k_debug_get_et_sset_count,
.get_et_stats = ath10k_debug_get_et_stats,
.get_et_strings = ath10k_debug_get_et_strings,
.add_chanctx = ath10k_mac_op_add_chanctx,
.remove_chanctx = ath10k_mac_op_remove_chanctx,
.change_chanctx = ath10k_mac_op_change_chanctx,
.assign_vif_chanctx = ath10k_mac_op_assign_vif_chanctx,
.unassign_vif_chanctx = ath10k_mac_op_unassign_vif_chanctx,
.switch_vif_chanctx = ath10k_mac_op_switch_vif_chanctx,
.sta_pre_rcu_remove = ath10k_mac_op_sta_pre_rcu_remove,
CFG80211_TESTMODE_CMD(ath10k_tm_cmd)
#ifdef CONFIG_PM
.suspend = ath10k_wow_op_suspend,
.resume = ath10k_wow_op_resume,
#endif
#ifdef CONFIG_MAC80211_DEBUGFS
.sta_add_debugfs = ath10k_sta_add_debugfs,
.sta_statistics = ath10k_sta_statistics,
#endif
};
#endif // NEEDS PORTING
struct ath10k* ath10k_mac_create(size_t priv_size) {
struct ath10k* ar;
void* hif_ctx;
ar = calloc(1, sizeof(struct ath10k));
if (!ar) { return NULL; }
hif_ctx = calloc(1, priv_size);
if (!hif_ctx) {
free(ar);
return NULL;
}
ar->drv_priv = hif_ctx;
return ar;
}
void ath10k_mac_destroy(struct ath10k* ar) {
free(ar->drv_priv);
free(ar);
}
#if 0 // NEEDS PORTING
static const struct ieee80211_iface_limit ath10k_if_limits[] = {
{
.max = 8,
.types = BIT(NL80211_IFTYPE_STATION)
| BIT(NL80211_IFTYPE_P2P_CLIENT)
},
{
.max = 3,
.types = BIT(NL80211_IFTYPE_P2P_GO)
},
{
.max = 1,
.types = BIT(NL80211_IFTYPE_P2P_DEVICE)
},
{
.max = 7,
.types = BIT(NL80211_IFTYPE_AP)
#ifdef CONFIG_MAC80211_MESH
| BIT(NL80211_IFTYPE_MESH_POINT)
#endif
},
};
static const struct ieee80211_iface_limit ath10k_10x_if_limits[] = {
{
.max = 8,
.types = BIT(NL80211_IFTYPE_AP)
#ifdef CONFIG_MAC80211_MESH
| BIT(NL80211_IFTYPE_MESH_POINT)
#endif
},
{
.max = 1,
.types = BIT(NL80211_IFTYPE_STATION)
},
};
static const struct ieee80211_iface_combination ath10k_if_comb[] = {
{
.limits = ath10k_if_limits,
.n_limits = countof(ath10k_if_limits),
.max_interfaces = 8,
.num_different_channels = 1,
.beacon_int_infra_match = true,
},
};
static const struct ieee80211_iface_combination ath10k_10x_if_comb[] = {
{
.limits = ath10k_10x_if_limits,
.n_limits = countof(ath10k_10x_if_limits),
.max_interfaces = 8,
.num_different_channels = 1,
.beacon_int_infra_match = true,
#ifdef CONFIG_ATH10K_DFS_CERTIFIED
.radar_detect_widths = BIT(NL80211_CHAN_WIDTH_20_NOHT) |
BIT(NL80211_CHAN_WIDTH_20) |
BIT(NL80211_CHAN_WIDTH_40) |
BIT(NL80211_CHAN_WIDTH_80),
#endif
},
};
static const struct ieee80211_iface_limit ath10k_tlv_if_limit[] = {
{
.max = 2,
.types = BIT(NL80211_IFTYPE_STATION),
},
{
.max = 2,
.types = BIT(NL80211_IFTYPE_AP) |
#ifdef CONFIG_MAC80211_MESH
BIT(NL80211_IFTYPE_MESH_POINT) |
#endif
BIT(NL80211_IFTYPE_P2P_CLIENT) |
BIT(NL80211_IFTYPE_P2P_GO),
},
{
.max = 1,
.types = BIT(NL80211_IFTYPE_P2P_DEVICE),
},
};
static const struct ieee80211_iface_limit ath10k_tlv_qcs_if_limit[] = {
{
.max = 2,
.types = BIT(NL80211_IFTYPE_STATION),
},
{
.max = 2,
.types = BIT(NL80211_IFTYPE_P2P_CLIENT),
},
{
.max = 1,
.types = BIT(NL80211_IFTYPE_AP) |
#ifdef CONFIG_MAC80211_MESH
BIT(NL80211_IFTYPE_MESH_POINT) |
#endif
BIT(NL80211_IFTYPE_P2P_GO),
},
{
.max = 1,
.types = BIT(NL80211_IFTYPE_P2P_DEVICE),
},
};
static const struct ieee80211_iface_limit ath10k_tlv_if_limit_ibss[] = {
{
.max = 1,
.types = BIT(NL80211_IFTYPE_STATION),
},
{
.max = 1,
.types = BIT(NL80211_IFTYPE_ADHOC),
},
};
/* FIXME: This is not thouroughly tested. These combinations may over- or
* underestimate hw/fw capabilities.
*/
static struct ieee80211_iface_combination ath10k_tlv_if_comb[] = {
{
.limits = ath10k_tlv_if_limit,
.num_different_channels = 1,
.max_interfaces = 4,
.n_limits = countof(ath10k_tlv_if_limit),
},
{
.limits = ath10k_tlv_if_limit_ibss,
.num_different_channels = 1,
.max_interfaces = 2,
.n_limits = countof(ath10k_tlv_if_limit_ibss),
},
};
static struct ieee80211_iface_combination ath10k_tlv_qcs_if_comb[] = {
{
.limits = ath10k_tlv_if_limit,
.num_different_channels = 1,
.max_interfaces = 4,
.n_limits = countof(ath10k_tlv_if_limit),
},
{
.limits = ath10k_tlv_qcs_if_limit,
.num_different_channels = 2,
.max_interfaces = 4,
.n_limits = countof(ath10k_tlv_qcs_if_limit),
},
{
.limits = ath10k_tlv_if_limit_ibss,
.num_different_channels = 1,
.max_interfaces = 2,
.n_limits = countof(ath10k_tlv_if_limit_ibss),
},
};
static const struct ieee80211_iface_limit ath10k_10_4_if_limits[] = {
{
.max = 1,
.types = BIT(NL80211_IFTYPE_STATION),
},
{
.max = 16,
.types = BIT(NL80211_IFTYPE_AP)
#ifdef CONFIG_MAC80211_MESH
| BIT(NL80211_IFTYPE_MESH_POINT)
#endif
},
};
static const struct ieee80211_iface_combination ath10k_10_4_if_comb[] = {
{
.limits = ath10k_10_4_if_limits,
.n_limits = countof(ath10k_10_4_if_limits),
.max_interfaces = 16,
.num_different_channels = 1,
.beacon_int_infra_match = true,
#ifdef CONFIG_ATH10K_DFS_CERTIFIED
.radar_detect_widths = BIT(NL80211_CHAN_WIDTH_20_NOHT) |
BIT(NL80211_CHAN_WIDTH_20) |
BIT(NL80211_CHAN_WIDTH_40) |
BIT(NL80211_CHAN_WIDTH_80),
#endif
},
};
static void ath10k_get_arvif_iter(void* data, uint8_t* mac,
struct ieee80211_vif* vif) {
struct ath10k_vif_iter* arvif_iter = data;
struct ath10k_vif* arvif = (void*)vif->drv_priv;
if (arvif->vdev_id == arvif_iter->vdev_id) {
arvif_iter->arvif = arvif;
}
}
#endif // NEEDS PORTING
struct ath10k_vif* ath10k_get_arvif(struct ath10k* ar, uint32_t vdev_id) {
if (ar->arvif.vdev_id == vdev_id) {
return &ar->arvif;
}
return NULL;
#if 0 // NEEDS PORTING
struct ath10k_vif_iter arvif_iter;
uint32_t flags;
memset(&arvif_iter, 0, sizeof(struct ath10k_vif_iter));
arvif_iter.vdev_id = vdev_id;
flags = IEEE80211_IFACE_ITER_RESUME_ALL;
ieee80211_iterate_active_interfaces_atomic(ar->hw,
flags,
ath10k_get_arvif_iter,
&arvif_iter);
if (!arvif_iter.arvif) {
ath10k_warn("No VIF found for vdev %d\n", vdev_id);
return NULL;
}
return arvif_iter.arvif;
#endif // NEEDS PORTING
}
#if 0 // NEEDS PORTING
#define WRD_METHOD "WRDD"
#define WRDD_WIFI (0x07)
static uint32_t ath10k_mac_wrdd_get_mcc(struct ath10k* ar, union acpi_object* wrdd) {
union acpi_object* mcc_pkg;
union acpi_object* domain_type;
union acpi_object* mcc_value;
uint32_t i;
if (wrdd->type != ACPI_TYPE_PACKAGE ||
wrdd->package.count < 2 ||
wrdd->package.elements[0].type != ACPI_TYPE_INTEGER ||
wrdd->package.elements[0].integer.value != 0) {
ath10k_warn("ignoring malformed/unsupported wrdd structure\n");
return 0;
}
for (i = 1; i < wrdd->package.count; ++i) {
mcc_pkg = &wrdd->package.elements[i];
if (mcc_pkg->type != ACPI_TYPE_PACKAGE) {
continue;
}
if (mcc_pkg->package.count < 2) {
continue;
}
if (mcc_pkg->package.elements[0].type != ACPI_TYPE_INTEGER ||
mcc_pkg->package.elements[1].type != ACPI_TYPE_INTEGER) {
continue;
}
domain_type = &mcc_pkg->package.elements[0];
if (domain_type->integer.value != WRDD_WIFI) {
continue;
}
mcc_value = &mcc_pkg->package.elements[1];
return mcc_value->integer.value;
}
return 0;
}
static int ath10k_mac_get_wrdd_regulatory(struct ath10k* ar, uint16_t* rd) {
struct pci_dev __maybe_unused* pdev = to_pci_dev(ar->dev);
acpi_handle root_handle;
acpi_handle handle;
struct acpi_buffer wrdd = {ACPI_ALLOCATE_BUFFER, NULL};
acpi_status status;
uint32_t alpha2_code;
char alpha2[3];
root_handle = ACPI_HANDLE(&pdev->dev);
if (!root_handle) {
return -EOPNOTSUPP;
}
status = acpi_get_handle(root_handle, (acpi_string)WRD_METHOD, &handle);
if (ACPI_FAILURE(status)) {
ath10k_dbg(ar, ATH10K_DBG_BOOT,
"failed to get wrd method %d\n", status);
return -EIO;
}
status = acpi_evaluate_object(handle, NULL, NULL, &wrdd);
if (ACPI_FAILURE(status)) {
ath10k_dbg(ar, ATH10K_DBG_BOOT,
"failed to call wrdc %d\n", status);
return -EIO;
}
alpha2_code = ath10k_mac_wrdd_get_mcc(ar, wrdd.pointer);
kfree(wrdd.pointer);
if (!alpha2_code) {
return -EIO;
}
alpha2[0] = (alpha2_code >> 8) & 0xff;
alpha2[1] = (alpha2_code >> 0) & 0xff;
alpha2[2] = '\0';
ath10k_dbg(ar, ATH10K_DBG_BOOT,
"regulatory hint from WRDD (alpha2-code): %s\n", alpha2);
*rd = ath_regd_find_country_by_name(alpha2);
if (*rd == 0xffff) {
return -EIO;
}
*rd |= COUNTRY_ERD_FLAG;
return 0;
}
static int ath10k_mac_init_rd(struct ath10k* ar) {
int ret;
uint16_t rd;
ret = ath10k_mac_get_wrdd_regulatory(ar, &rd);
if (ret) {
ath10k_dbg(ar, ATH10K_DBG_BOOT,
"fallback to eeprom programmed regulatory settings\n");
rd = ar->hw_eeprom_rd;
}
ar->ath_common.regulatory.current_rd = rd;
return 0;
}
int ath10k_mac_register(struct ath10k* ar) {
static const uint32_t cipher_suites[] = {
WLAN_CIPHER_SUITE_WEP40,
WLAN_CIPHER_SUITE_WEP104,
WLAN_CIPHER_SUITE_TKIP,
WLAN_CIPHER_SUITE_CCMP,
WLAN_CIPHER_SUITE_AES_CMAC,
};
struct ieee80211_supported_band* band;
void* channels;
int ret;
SET_IEEE80211_PERM_ADDR(ar->hw, ar->mac_addr);
SET_IEEE80211_DEV(ar->hw, ar->dev);
BUILD_BUG_ON((countof(ath10k_2ghz_channels) +
countof(ath10k_5ghz_channels)) !=
ATH10K_NUM_CHANS);
if (ar->phy_capability & WHAL_WLAN_11G_CAPABILITY) {
channels = kmemdup(ath10k_2ghz_channels,
sizeof(ath10k_2ghz_channels),
GFP_KERNEL);
if (!channels) {
ret = -ENOMEM;
goto err_free;
}
band = &ar->mac.sbands[NL80211_BAND_2GHZ];
band->n_channels = countof(ath10k_2ghz_channels);
band->channels = channels;
if (ar->hw_params.cck_rate_map_rev2) {
band->n_bitrates = ath10k_g_rates_rev2_size;
band->bitrates = ath10k_g_rates_rev2;
} else {
band->n_bitrates = ath10k_g_rates_size;
band->bitrates = ath10k_g_rates;
}
ar->hw->wiphy->bands[NL80211_BAND_2GHZ] = band;
}
if (ar->phy_capability & WHAL_WLAN_11A_CAPABILITY) {
channels = kmemdup(ath10k_5ghz_channels,
sizeof(ath10k_5ghz_channels),
GFP_KERNEL);
if (!channels) {
ret = -ENOMEM;
goto err_free;
}
band = &ar->mac.sbands[NL80211_BAND_5GHZ];
band->n_channels = countof(ath10k_5ghz_channels);
band->channels = channels;
band->n_bitrates = ath10k_a_rates_size;
band->bitrates = ath10k_a_rates;
ar->hw->wiphy->bands[NL80211_BAND_5GHZ] = band;
}
ath10k_mac_setup_ht_vht_cap(ar);
ar->hw->wiphy->interface_modes =
BIT(NL80211_IFTYPE_STATION) |
BIT(NL80211_IFTYPE_AP) |
BIT(NL80211_IFTYPE_MESH_POINT);
ar->hw->wiphy->available_antennas_rx = ar->cfg_rx_chainmask;
ar->hw->wiphy->available_antennas_tx = ar->cfg_tx_chainmask;
if (!BITARR_TEST(ar->normal_mode_fw.fw_file.fw_features, ATH10K_FW_FEATURE_NO_P2P))
ar->hw->wiphy->interface_modes |=
BIT(NL80211_IFTYPE_P2P_DEVICE) |
BIT(NL80211_IFTYPE_P2P_CLIENT) |
BIT(NL80211_IFTYPE_P2P_GO);
ieee80211_hw_set(ar->hw, SIGNAL_DBM);
ieee80211_hw_set(ar->hw, SUPPORTS_PS);
ieee80211_hw_set(ar->hw, SUPPORTS_DYNAMIC_PS);
ieee80211_hw_set(ar->hw, MFP_CAPABLE);
ieee80211_hw_set(ar->hw, REPORTS_TX_ACK_STATUS);
ieee80211_hw_set(ar->hw, HAS_RATE_CONTROL);
ieee80211_hw_set(ar->hw, AP_LINK_PS);
ieee80211_hw_set(ar->hw, SPECTRUM_MGMT);
ieee80211_hw_set(ar->hw, SUPPORT_FAST_XMIT);
ieee80211_hw_set(ar->hw, CONNECTION_MONITOR);
ieee80211_hw_set(ar->hw, SUPPORTS_PER_STA_GTK);
ieee80211_hw_set(ar->hw, WANT_MONITOR_VIF);
ieee80211_hw_set(ar->hw, CHANCTX_STA_CSA);
ieee80211_hw_set(ar->hw, QUEUE_CONTROL);
ieee80211_hw_set(ar->hw, SUPPORTS_TX_FRAG);
ieee80211_hw_set(ar->hw, REPORTS_LOW_ACK);
if (!BITARR_TEST(&ar->dev_flags, ATH10K_FLAG_RAW_MODE)) {
ieee80211_hw_set(ar->hw, SW_CRYPTO_CONTROL);
}
ar->hw->wiphy->features |= NL80211_FEATURE_STATIC_SMPS;
ar->hw->wiphy->flags |= WIPHY_FLAG_IBSS_RSN;
if (ar->ht_cap_info & WMI_HT_CAP_DYNAMIC_SMPS) {
ar->hw->wiphy->features |= NL80211_FEATURE_DYNAMIC_SMPS;
}
if (ar->ht_cap_info & WMI_HT_CAP_ENABLED) {
ieee80211_hw_set(ar->hw, AMPDU_AGGREGATION);
ieee80211_hw_set(ar->hw, TX_AMPDU_SETUP_IN_HW);
}
ar->hw->wiphy->max_scan_ssids = WLAN_SCAN_PARAMS_MAX_SSID;
ar->hw->wiphy->max_scan_ie_len = WLAN_SCAN_PARAMS_MAX_IE_LEN;
ar->hw->vif_data_size = sizeof(struct ath10k_vif);
ar->hw->sta_data_size = sizeof(struct ath10k_sta);
ar->hw->txq_data_size = sizeof(struct ath10k_txq);
ar->hw->max_listen_interval = ATH10K_MAX_HW_LISTEN_INTERVAL;
if (BITARR_TEST(ar->wmi.svc_map, WMI_SERVICE_BEACON_OFFLOAD)) {
ar->hw->wiphy->flags |= WIPHY_FLAG_AP_PROBE_RESP_OFFLOAD;
/* Firmware delivers WPS/P2P Probe Requests frames to driver so
* that userspace (e.g. wpa_supplicant/hostapd) can generate
* correct Probe Responses. This is more of a hack advert..
*/
ar->hw->wiphy->probe_resp_offload |=
NL80211_PROBE_RESP_OFFLOAD_SUPPORT_WPS |
NL80211_PROBE_RESP_OFFLOAD_SUPPORT_WPS2 |
NL80211_PROBE_RESP_OFFLOAD_SUPPORT_P2P;
}
if (BITARR_TEST(ar->wmi.svc_map, WMI_SERVICE_TDLS)) {
ar->hw->wiphy->flags |= WIPHY_FLAG_SUPPORTS_TDLS;
}
ar->hw->wiphy->flags |= WIPHY_FLAG_HAS_REMAIN_ON_CHANNEL;
ar->hw->wiphy->flags |= WIPHY_FLAG_HAS_CHANNEL_SWITCH;
ar->hw->wiphy->max_remain_on_channel_duration = 5000;
ar->hw->wiphy->flags |= WIPHY_FLAG_AP_UAPSD;
ar->hw->wiphy->features |= NL80211_FEATURE_AP_MODE_CHAN_WIDTH_CHANGE |
NL80211_FEATURE_AP_SCAN;
ar->hw->wiphy->max_ap_assoc_sta = ar->max_num_stations;
ret = ath10k_wow_init(ar);
if (ret) {
ath10k_warn("failed to init wow: %d\n", ret);
goto err_free;
}
wiphy_ext_feature_set(ar->hw->wiphy, NL80211_EXT_FEATURE_VHT_IBSS);
/*
* on LL hardware queues are managed entirely by the FW
* so we only advertise to mac we can do the queues thing
*/
ar->hw->queues = IEEE80211_MAX_QUEUES;
/* vdev_ids are used as hw queue numbers. Make sure offchan tx queue is
* something that vdev_ids can't reach so that we don't stop the queue
* accidentally.
*/
ar->hw->offchannel_tx_hw_queue = IEEE80211_MAX_QUEUES - 1;
switch (ar->running_fw->fw_file.wmi_op_version) {
case ATH10K_FW_WMI_OP_VERSION_MAIN:
ar->hw->wiphy->iface_combinations = ath10k_if_comb;
ar->hw->wiphy->n_iface_combinations =
countof(ath10k_if_comb);
ar->hw->wiphy->interface_modes |= BIT(NL80211_IFTYPE_ADHOC);
break;
case ATH10K_FW_WMI_OP_VERSION_TLV:
if (BITARR_TEST(ar->wmi.svc_map, WMI_SERVICE_ADAPTIVE_OCS)) {
ar->hw->wiphy->iface_combinations =
ath10k_tlv_qcs_if_comb;
ar->hw->wiphy->n_iface_combinations =
countof(ath10k_tlv_qcs_if_comb);
} else {
ar->hw->wiphy->iface_combinations = ath10k_tlv_if_comb;
ar->hw->wiphy->n_iface_combinations =
countof(ath10k_tlv_if_comb);
}
ar->hw->wiphy->interface_modes |= BIT(NL80211_IFTYPE_ADHOC);
break;
case ATH10K_FW_WMI_OP_VERSION_10_1:
case ATH10K_FW_WMI_OP_VERSION_10_2:
case ATH10K_FW_WMI_OP_VERSION_10_2_4:
ar->hw->wiphy->iface_combinations = ath10k_10x_if_comb;
ar->hw->wiphy->n_iface_combinations =
countof(ath10k_10x_if_comb);
break;
case ATH10K_FW_WMI_OP_VERSION_10_4:
ar->hw->wiphy->iface_combinations = ath10k_10_4_if_comb;
ar->hw->wiphy->n_iface_combinations =
countof(ath10k_10_4_if_comb);
break;
case ATH10K_FW_WMI_OP_VERSION_UNSET:
case ATH10K_FW_WMI_OP_VERSION_MAX:
WARN_ONCE();
ret = -EINVAL;
goto err_free;
}
if (!BITARR_TEST(&ar->dev_flags, ATH10K_FLAG_RAW_MODE)) {
ar->hw->netdev_features = NETIF_F_HW_CSUM;
}
if (IS_ENABLED(CONFIG_ATH10K_DFS_CERTIFIED)) {
/* Init ath dfs pattern detector */
ar->ath_common.debug_mask = ATH_DBG_DFS;
ar->dfs_detector = dfs_pattern_detector_init(&ar->ath_common,
NL80211_DFS_UNSET);
if (!ar->dfs_detector) {
ath10k_warn("failed to initialise DFS pattern detector\n");
}
}
/* Current wake_tx_queue implementation imposes a significant
* performance penalty in some setups. The tx scheduling code needs
* more work anyway so disable the wake_tx_queue unless firmware
* supports the pull-push mechanism.
*/
if (!BITARR_TEST(ar->running_fw->fw_file.fw_features, ATH10K_FW_FEATURE_PEER_FLOW_CONTROL)) {
ar->ops->wake_tx_queue = NULL;
}
ret = ath10k_mac_init_rd(ar);
if (ret) {
ath10k_err("failed to derive regdom: %d\n", ret);
goto err_dfs_detector_exit;
}
/* Disable set_coverage_class for chipsets that do not support it. */
if (!ar->hw_params.hw_ops->set_coverage_class) {
ar->ops->set_coverage_class = NULL;
}
ret = ath_regd_init(&ar->ath_common.regulatory, ar->hw->wiphy,
ath10k_reg_notifier);
if (ret) {
ath10k_err("failed to initialise regulatory: %i\n", ret);
goto err_dfs_detector_exit;
}
ar->hw->wiphy->cipher_suites = cipher_suites;
ar->hw->wiphy->n_cipher_suites = countof(cipher_suites);
wiphy_ext_feature_set(ar->hw->wiphy, NL80211_EXT_FEATURE_CQM_RSSI_LIST);
ret = ieee80211_register_hw(ar->hw);
if (ret) {
ath10k_err("failed to register ieee80211: %d\n", ret);
goto err_dfs_detector_exit;
}
if (!ath_is_world_regd(&ar->ath_common.regulatory)) {
ret = regulatory_hint(ar->hw->wiphy,
ar->ath_common.regulatory.alpha2);
if (ret) {
goto err_unregister;
}
}
return 0;
err_unregister:
ieee80211_unregister_hw(ar->hw);
err_dfs_detector_exit:
if (IS_ENABLED(CONFIG_ATH10K_DFS_CERTIFIED) && ar->dfs_detector) {
ar->dfs_detector->exit(ar->dfs_detector);
}
err_free:
kfree(ar->mac.sbands[NL80211_BAND_2GHZ].channels);
kfree(ar->mac.sbands[NL80211_BAND_5GHZ].channels);
SET_IEEE80211_DEV(ar->hw, NULL);
return ret;
}
void ath10k_mac_unregister(struct ath10k* ar) {
ieee80211_unregister_hw(ar->hw);
if (IS_ENABLED(CONFIG_ATH10K_DFS_CERTIFIED) && ar->dfs_detector) {
ar->dfs_detector->exit(ar->dfs_detector);
}
kfree(ar->mac.sbands[NL80211_BAND_2GHZ].channels);
kfree(ar->mac.sbands[NL80211_BAND_5GHZ].channels);
SET_IEEE80211_DEV(ar->hw, NULL);
}
#endif // NEEDS PORTING