blob: 72b1b3d156bc9ab0662ef05cd6c0e4992343a284 [file] [log] [blame]
/*
* Copyright (c) 2005-2011 Atheros Communications Inc.
* Copyright (c) 2011-2013 Qualcomm Atheros, Inc.
*
* Permission to use, copy, modify, and/or distribute this software for any
* purpose with or without fee is hereby granted, provided that the above
* copyright notice and this permission notice appear in all copies.
*
* THE SOFTWARE IS PROVIDED "AS IS" AND THE AUTHOR DISCLAIMS ALL WARRANTIES
* WITH REGARD TO THIS SOFTWARE INCLUDING ALL IMPLIED WARRANTIES OF
* MERCHANTABILITY AND FITNESS. IN NO EVENT SHALL THE AUTHOR BE LIABLE FOR
* ANY SPECIAL, DIRECT, INDIRECT, OR CONSEQUENTIAL DAMAGES OR ANY DAMAGES
* WHATSOEVER RESULTING FROM LOSS OF USE, DATA OR PROFITS, WHETHER IN AN
* ACTION OF CONTRACT, NEGLIGENCE OR OTHER TORTIOUS ACTION, ARISING OUT OF
* OR IN CONNECTION WITH THE USE OR PERFORMANCE OF THIS SOFTWARE.
*/
#include "txrx.h"
#include <assert.h>
#include <string.h>
#include <ddk/driver.h>
#include <hw/arch_ops.h>
#include <lib/zircon-internal/fnv1hash.h>
#include "core.h"
#include "debug.h"
#include "hif.h"
#include "htc.h"
#include "htt.h"
#include "mac.h"
#include "macros.h"
#define HTT_RX_RING_SIZE HTT_RX_RING_SIZE_MAX
#define HTT_RX_RING_FILL_LEVEL (((HTT_RX_RING_SIZE) / 2) - 1)
/* when under memory pressure rx ring refill may fail and needs a retry */
#define HTT_RX_RING_REFILL_RETRY_MS 50
#define HTT_RX_RING_REFILL_RESCHED_MS 5
#if 0 // NEEDS PORTING
static int ath10k_htt_rx_get_csum_state(struct sk_buff* skb);
#endif // NEEDS PORTING
static_assert(IS_POW2(HTT_RX_BUF_HTABLE_SZ), "Invalid hash table size, must be power of 2");
static struct ath10k_msg_buf* ath10k_htt_rx_find_msg_buf_paddr(struct ath10k* ar, uint32_t paddr) {
uint32_t hash = fnv1a_tiny(paddr, ROUNDUP_LOG2(HTT_RX_BUF_HTABLE_SZ));
ZX_DEBUG_ASSERT(hash < HTT_RX_BUF_HTABLE_SZ);
list_node_t* candidate_list = &ar->htt.rx_ring.buf_hash[hash];
struct ath10k_msg_buf* entry;
struct ath10k_msg_buf* temp_entry;
list_for_every_entry_safe(candidate_list, entry, temp_entry, struct ath10k_msg_buf, listnode) {
if (entry->paddr == paddr) { return entry; }
}
ath10k_warn("Unable to find buffer corresponding to phys addr %x\n", paddr);
return NULL;
}
static void ath10k_htt_rx_ring_free(struct ath10k_htt* htt) {
struct ath10k_msg_buf* buf;
int i;
if (htt->rx_ring.in_ord_rx == ATH10K_HTT_IN_ORD_RX_YES) {
for (i = 0; i < HTT_RX_BUF_HTABLE_SZ; i++) {
list_node_t* list = &htt->rx_ring.buf_hash[i];
while ((buf = list_remove_head_type(list, struct ath10k_msg_buf, listnode)) != NULL) {
ath10k_msg_buf_free(buf);
}
}
} else {
for (i = 0; i < htt->rx_ring.size; i++) {
buf = htt->rx_ring.netbufs_ring[i];
if (buf == NULL) { continue; }
ath10k_msg_buf_free(buf);
}
}
htt->rx_ring.fill_cnt = 0;
memset(htt->rx_ring.netbufs_ring, 0, htt->rx_ring.size * sizeof(htt->rx_ring.netbufs_ring[0]));
}
static zx_status_t __ath10k_htt_rx_ring_fill_n(struct ath10k_htt* htt, int num) {
struct htt_rx_desc* rx_desc;
struct ath10k_msg_buf* buf;
zx_status_t ret = ZX_OK;
int idx;
/* The Full Rx Reorder firmware has no way of telling the host
* implicitly when it copied HTT Rx Ring buffers to MAC Rx Ring.
* To keep things simple make sure ring is always half empty. This
* guarantees there'll be no replenishment overruns possible.
*/
static_assert(HTT_RX_RING_FILL_LEVEL < HTT_RX_RING_SIZE / 2,
"Ring fill must be less than half the total ring size");
idx = *htt->rx_ring.alloc_idx.vaddr;
while (num > 0) {
ret = ath10k_msg_buf_alloc(htt->ar, &buf, ATH10K_MSG_TYPE_BASE, HTT_RX_BUF_SIZE);
if (ret != ZX_OK) { goto fail; }
ZX_DEBUG_ASSERT(IS_ALIGNED(buf->vaddr, HTT_RX_DESC_ALIGN));
ZX_DEBUG_ASSERT((uintptr_t)buf->paddr + HTT_RX_BUF_SIZE <= 0x100000000);
/* Clear rx_desc attention word before posting to Rx ring */
rx_desc = buf->vaddr;
rx_desc->attention.flags = 0;
htt->rx_ring.netbufs_ring[idx] = buf;
htt->rx_ring.paddrs_ring[idx] = buf->paddr;
htt->rx_ring.fill_cnt++;
if (htt->rx_ring.in_ord_rx == ATH10K_HTT_IN_ORD_RX_YES) {
uint32_t hash = fnv1a_tiny(buf->paddr, ROUNDUP_LOG2(HTT_RX_BUF_HTABLE_SZ));
ZX_DEBUG_ASSERT(hash < HTT_RX_BUF_HTABLE_SZ);
list_node_t* bucket = &htt->rx_ring.buf_hash[hash];
list_add_tail(bucket, &buf->listnode);
}
num--;
idx++;
idx &= htt->rx_ring.size_mask;
}
fail:
/*
* Make sure the rx buffer is updated before available buffer
* index to avoid any potential rx ring corruption.
*/
hw_mb();
*htt->rx_ring.alloc_idx.vaddr = idx;
return ret;
}
static zx_status_t ath10k_htt_rx_ring_fill_n(struct ath10k_htt* htt, int num) {
ASSERT_MTX_HELD(&htt->rx_ring.lock);
return __ath10k_htt_rx_ring_fill_n(htt, num);
}
static void ath10k_htt_rx_msdu_buff_replenish(struct ath10k_htt* htt) {
int num_deficit;
/* Refilling the whole RX ring buffer proves to be a bad idea. The
* reason is RX may take up significant amount of CPU cycles and starve
* other tasks, e.g. TX on an ethernet device while acting as a bridge
* with ath10k wlan interface. This ended up with very poor performance
* once CPU the host system was overwhelmed with RX on ath10k.
*
* By limiting the number of refills the replenishing occurs
* progressively. This in turns makes use of the fact tasklets are
* processed in FIFO order. This means actual RX processing can starve
* out refilling. If there's not enough buffers on RX ring FW will not
* report RX until it is refilled with enough buffers. This
* automatically balances load wrt to CPU power.
*
* This probably comes at a cost of lower maximum throughput but
* improves the average and stability.
*/
mtx_lock(&htt->rx_ring.lock);
num_deficit = htt->rx_ring.fill_level - htt->rx_ring.fill_cnt;
ath10k_htt_rx_ring_fill_n(htt, num_deficit);
mtx_unlock(&htt->rx_ring.lock);
}
zx_status_t ath10k_htt_rx_ring_refill(struct ath10k* ar) {
struct ath10k_htt* htt = &ar->htt;
zx_status_t ret;
mtx_lock(&htt->rx_ring.lock);
ret = ath10k_htt_rx_ring_fill_n(htt, (htt->rx_ring.fill_level - htt->rx_ring.fill_cnt));
mtx_unlock(&htt->rx_ring.lock);
if (ret != ZX_OK) { ath10k_htt_rx_ring_free(htt); }
return ret;
}
void ath10k_htt_rx_free(struct ath10k_htt* htt) {
ath10k_htt_rx_ring_free(htt);
io_buffer_release(&htt->rx_ring.io_buf);
io_buffer_release(&htt->rx_ring.alloc_idx.io_buf);
free(htt->rx_ring.netbufs_ring);
}
static inline struct ath10k_msg_buf* ath10k_htt_rx_netbuf_pop(struct ath10k_htt* htt) {
struct ath10k* ar = htt->ar;
int idx;
struct ath10k_msg_buf* msdu;
ASSERT_MTX_HELD(&htt->rx_ring.lock);
if (htt->rx_ring.fill_cnt == 0) {
ath10k_warn("tried to pop msg_buf from an empty rx ring\n");
return NULL;
}
idx = htt->rx_ring.sw_rd_idx.msdu_payld;
msdu = htt->rx_ring.netbufs_ring[idx];
htt->rx_ring.netbufs_ring[idx] = NULL;
htt->rx_ring.paddrs_ring[idx] = 0;
idx++;
idx &= htt->rx_ring.size_mask;
htt->rx_ring.sw_rd_idx.msdu_payld = idx;
htt->rx_ring.fill_cnt--;
ath10k_dbg_dump(ar, ATH10K_DBG_HTT_DUMP, NULL, "htt rx netbuf pop: ",
msdu->vaddr, msdu->capacity);
return msdu;
}
static zx_status_t ath10k_htt_rx_amsdu_pop_chained(struct ath10k_htt* htt,
struct ath10k_msg_buf* msdu_head,
size_t chained_len,
list_node_t* amsdu) {
struct htt_rx_desc* rx_desc = ath10k_msg_buf_get_header(msdu_head, ATH10K_MSG_TYPE_HTT_RX);
int num_chained = rx_desc->frag_info.ring2_more_count;
while (num_chained--) {
struct ath10k_msg_buf* chained_part = ath10k_htt_rx_netbuf_pop(htt);
if (!chained_part) {
return ZX_ERR_NOT_FOUND;
}
size_t part_len = MIN(chained_len, HTT_RX_BUF_SIZE);
chained_part->used = part_len;
chained_len -= part_len;
list_add_tail(amsdu, &chained_part->listnode);
}
return ZX_OK;
}
static zx_status_t ath10k_htt_rx_amsdu_pop(struct ath10k_htt* htt, list_node_t* amsdu) {
ASSERT_MTX_HELD(&htt->rx_ring.lock);
for (;;) {
struct ath10k_msg_buf* msdu = ath10k_htt_rx_netbuf_pop(htt);
if (!msdu) {
return ZX_ERR_NOT_FOUND;
}
msdu->type = ATH10K_MSG_TYPE_HTT_RX;
struct htt_rx_desc* rx_desc = ath10k_msg_buf_get_header(msdu, ATH10K_MSG_TYPE_HTT_RX);
/*
* Sanity check - confirm the HW is finished filling in the
* rx data.
* If the HW and SW are working correctly, then it's guaranteed
* that the HW's MAC DMA is done before this point in the SW.
* To prevent the case that we handle a stale Rx descriptor,
* just assert for now until we have a way to recover.
*/
if (!(rx_desc->attention.flags & RX_ATTENTION_FLAGS_MSDU_DONE)) {
return ZX_ERR_IO;
}
bool msdu_len_invalid = rx_desc->attention.flags
& (RX_ATTENTION_FLAGS_MPDU_LENGTH_ERR | RX_ATTENTION_FLAGS_MSDU_LENGTH_ERR);
int msdu_len = MS(rx_desc->msdu_start.common.info0, RX_MSDU_START_INFO0_MSDU_LENGTH);
bool last_msdu = rx_desc->msdu_end.common.info0 & RX_MSDU_END_INFO0_LAST_MSDU;
if (msdu_len_invalid) {
msdu_len = 0;
}
size_t first_part_len = MIN(msdu_len, HTT_RX_MSDU_SIZE);
msdu->used = sizeof(struct htt_rx_desc) + first_part_len;
ZX_DEBUG_ASSERT(msdu->used <= msdu->capacity);
list_add_tail(amsdu, &msdu->listnode);
zx_status_t status = ath10k_htt_rx_amsdu_pop_chained(
htt, msdu, msdu_len - first_part_len, amsdu);
if (status != ZX_OK) {
return status;
}
if (last_msdu) {
break;
}
}
/*
* Don't refill the ring yet.
*
* First, the elements popped here are still in use - it is not
* safe to overwrite them until the matching call to
* mpdu_desc_list_next. Second, for efficiency it is preferable to
* refill the rx ring with 1 PPDU's worth of rx buffers (something
* like 32 x 3 buffers), rather than one MPDU's worth of rx buffers
* (something like 3 buffers). Consequently, we'll rely on the txrx
* SW to tell us when it is done pulling all the PPDU's rx buffers
* out of the rx ring, and then refill it just once.
*/
return ZX_OK;
}
static struct ath10k_msg_buf* ath10k_htt_rx_pop_paddr(struct ath10k_htt* htt, uint32_t paddr) {
struct ath10k* ar = htt->ar;
struct ath10k_msg_buf* msdu;
ASSERT_MTX_HELD(&htt->rx_ring.lock);
msdu = ath10k_htt_rx_find_msg_buf_paddr(ar, paddr);
if (!msdu) { return NULL; }
list_delete(&msdu->listnode);
htt->rx_ring.fill_cnt--;
#if 0 // NEEDS PORTING
dma_unmap_single(htt->ar->dev, rxcb->paddr,
msdu->len + skb_tailroom(msdu),
DMA_FROM_DEVICE);
#endif // NEEDS PORTING
ath10k_dbg_dump(ar, ATH10K_DBG_HTT_DUMP, NULL, "htt rx netbuf pop: ", msdu->vaddr, msdu->used);
return msdu;
}
#if 0 // NEEDS PORTING
static zx_status_t ath10k_htt_rx_pop_paddr_list(struct ath10k_htt* htt,
struct htt_rx_in_ord_ind* ev,
list_node_t* list) {
struct htt_rx_in_ord_msdu_desc* msdu_desc = ev->msdu_descs;
struct htt_rx_desc* rxd;
struct ath10k_msg_buf* msdu;
int msdu_count;
bool is_offload;
uint32_t paddr;
ASSERT_MTX_HELD(&htt->rx_ring.lock);
msdu_count = ev->msdu_count;
is_offload = !!(ev->info & HTT_RX_IN_ORD_IND_INFO_OFFLOAD_MASK);
while (msdu_count--) {
paddr = msdu_desc->msdu_paddr;
msdu = ath10k_htt_rx_pop_paddr(htt, paddr);
if (msdu == NULL) {
__skb_queue_purge(list);
return ZX_ERR_NOT_FOUND;
}
list_add_tail(list, &msdu->listnode);
if (!is_offload) {
msdu->type = ATH10K_MSG_TYPE_HTT_RX;
rxd = ath10k_msg_buf_get_header(msdu, ATH10K_MSG_TYPE_HTT_RX);
size_t extra = sizeof(*rxd) + msdu_desc->msdu_len;
ZX_DEBUG_ASSERT((msdu->used + extra) <= msdu->capacity);
msdu->used += extra;
if (!(rxd->attention.flags &
RX_ATTENTION_FLAGS_MSDU_DONE)) {
ath10k_warn("tried to pop an incomplete frame, oops!\n");
return ZX_ERR_IO;
}
}
msdu_desc++;
}
return ZX_OK;
}
#endif // NEEDS PORTING
zx_status_t ath10k_htt_rx_alloc(struct ath10k_htt* htt) {
struct ath10k* ar = htt->ar;
zx_status_t ret;
htt->rx_confused = false;
/* XXX: The fill level could be changed during runtime in response to
* the host processing latency. Is this really worth it?
*/
htt->rx_ring.size = HTT_RX_RING_SIZE;
htt->rx_ring.size_mask = htt->rx_ring.size - 1;
htt->rx_ring.fill_level = HTT_RX_RING_FILL_LEVEL;
if (!IS_POW2(htt->rx_ring.size)) {
ath10k_warn("htt rx ring size (%d) is not power of 2\n", htt->rx_ring.size);
return ZX_ERR_INVALID_ARGS;
}
htt->rx_ring.netbufs_ring = calloc(1, htt->rx_ring.size * sizeof(struct ath10k_msg_buf*));
if (htt->rx_ring.netbufs_ring == NULL) { goto err_netbuf; }
size_t ring_size = htt->rx_ring.size * sizeof(htt->rx_ring.paddrs_ring);
zx_handle_t bti_handle;
ret = ath10k_hif_get_bti_handle(ar, &bti_handle);
if (ret != ZX_OK) { goto err_dma_ring; }
// Can this be a IO_BUFFER_RO?
ret = io_buffer_init(&htt->rx_ring.io_buf, bti_handle, ring_size,
IO_BUFFER_RW | IO_BUFFER_CONTIG);
if (ret != ZX_OK) { goto err_dma_ring; }
htt->rx_ring.paddrs_ring = io_buffer_virt(&htt->rx_ring.io_buf);
htt->rx_ring.base_paddr = io_buffer_phys(&htt->rx_ring.io_buf);
if (htt->rx_ring.base_paddr + ring_size > 0x100000000ULL) {
ath10k_err("io buffer allocated with address above 32b range (see ZX-1073)\n");
goto err_dma_idx;
}
size_t idx_size = sizeof(*htt->rx_ring.alloc_idx.vaddr);
ret = io_buffer_init(&htt->rx_ring.alloc_idx.io_buf, bti_handle, idx_size,
IO_BUFFER_RW | IO_BUFFER_CONTIG);
if (ret != ZX_OK) { goto err_dma_idx; }
htt->rx_ring.alloc_idx.vaddr = io_buffer_virt(&htt->rx_ring.alloc_idx.io_buf);
htt->rx_ring.alloc_idx.paddr = io_buffer_phys(&htt->rx_ring.alloc_idx.io_buf);
if (htt->rx_ring.alloc_idx.paddr + idx_size > 0x100000000ULL) {
ath10k_err("io buffer allocated with address above 32b range (see ZX-1073)\n");
goto err_dma_idx_map;
}
htt->rx_ring.sw_rd_idx.msdu_payld = htt->rx_ring.size_mask;
*htt->rx_ring.alloc_idx.vaddr = 0;
mtx_init(&htt->rx_ring.lock, mtx_plain);
htt->rx_ring.fill_cnt = 0;
htt->rx_ring.sw_rd_idx.msdu_payld = 0;
for (unsigned ndx = 0; ndx < HTT_RX_BUF_HTABLE_SZ; ndx++) {
list_initialize(&htt->rx_ring.buf_hash[ndx]);
}
ath10k_dbg(ar, ATH10K_DBG_BOOT, "htt rx ring size %d fill_level %d\n", htt->rx_ring.size,
htt->rx_ring.fill_level);
return ZX_OK;
err_dma_idx_map:
io_buffer_release(&htt->rx_ring.alloc_idx.io_buf);
err_dma_idx:
io_buffer_release(&htt->rx_ring.io_buf);
err_dma_ring:
free(htt->rx_ring.netbufs_ring);
err_netbuf:
return ZX_ERR_NO_MEMORY;
}
static int ath10k_htt_rx_crypto_param_len(struct ath10k* ar, enum htt_rx_mpdu_encrypt_type type) {
switch (type) {
case HTT_RX_MPDU_ENCRYPT_NONE:
return 0;
case HTT_RX_MPDU_ENCRYPT_WEP40:
case HTT_RX_MPDU_ENCRYPT_WEP104:
return IEEE80211_WEP_IV_LEN;
case HTT_RX_MPDU_ENCRYPT_TKIP_WITHOUT_MIC:
case HTT_RX_MPDU_ENCRYPT_TKIP_WPA:
return IEEE80211_TKIP_IV_LEN;
case HTT_RX_MPDU_ENCRYPT_AES_CCM_WPA2:
return IEEE80211_CCMP_HDR_LEN;
case HTT_RX_MPDU_ENCRYPT_WEP128:
case HTT_RX_MPDU_ENCRYPT_WAPI:
break;
}
ath10k_warn("unsupported encryption type %d\n", type);
return 0;
}
#define MICHAEL_MIC_LEN 8
static int ath10k_htt_rx_crypto_tail_len(struct ath10k* ar, enum htt_rx_mpdu_encrypt_type type) {
switch (type) {
case HTT_RX_MPDU_ENCRYPT_NONE:
return 0;
case HTT_RX_MPDU_ENCRYPT_WEP40:
case HTT_RX_MPDU_ENCRYPT_WEP104:
return IEEE80211_WEP_ICV_LEN;
case HTT_RX_MPDU_ENCRYPT_TKIP_WITHOUT_MIC:
case HTT_RX_MPDU_ENCRYPT_TKIP_WPA:
return IEEE80211_TKIP_ICV_LEN;
case HTT_RX_MPDU_ENCRYPT_AES_CCM_WPA2:
return IEEE80211_CCMP_128_MIC_LEN;
case HTT_RX_MPDU_ENCRYPT_WEP128:
case HTT_RX_MPDU_ENCRYPT_WAPI:
break;
}
ath10k_warn("unsupported encryption type %d\n", type);
return 0;
}
#if 0 // NEEDS PORTING
struct amsdu_subframe_hdr {
uint8_t dst[ETH_ALEN];
uint8_t src[ETH_ALEN];
__be16 len;
} __PACKED;
#define GROUP_ID_IS_SU_MIMO(x) ((x) == 0 || (x) == 63)
static void ath10k_htt_rx_h_rates(struct ath10k* ar,
struct ieee80211_rx_status* status,
struct htt_rx_desc* rxd) {
struct ieee80211_supported_band* sband;
uint8_t cck, rate, bw, sgi, mcs, nss;
uint8_t preamble = 0;
uint8_t group_id;
uint32_t info1, info2, info3;
info1 = rxd->ppdu_start.info1;
info2 = rxd->ppdu_start.info2;
info3 = rxd->ppdu_start.info3;
preamble = MS(info1, RX_PPDU_START_INFO1_PREAMBLE_TYPE);
switch (preamble) {
case HTT_RX_LEGACY:
/* To get legacy rate index band is required. Since band can't
* be undefined check if freq is non-zero.
*/
if (!status->freq) {
return;
}
cck = info1 & RX_PPDU_START_INFO1_L_SIG_RATE_SELECT;
rate = MS(info1, RX_PPDU_START_INFO1_L_SIG_RATE);
rate &= ~RX_PPDU_START_RATE_FLAG;
sband = &ar->mac.sbands[status->band];
status->rate_idx = ath10k_mac_hw_rate_to_idx(sband, rate, cck);
break;
case HTT_RX_HT:
case HTT_RX_HT_WITH_TXBF:
/* HT-SIG - Table 20-11 in info2 and info3 */
mcs = info2 & 0x1F;
nss = mcs >> 3;
bw = (info2 >> 7) & 1;
sgi = (info3 >> 7) & 1;
status->rate_idx = mcs;
status->encoding = RX_ENC_HT;
if (sgi) {
status->enc_flags |= RX_ENC_FLAG_SHORT_GI;
}
if (bw) {
status->bw = RATE_INFO_BW_40;
}
break;
case HTT_RX_VHT:
case HTT_RX_VHT_WITH_TXBF:
/* VHT-SIG-A1 in info2, VHT-SIG-A2 in info3
* TODO check this
*/
bw = info2 & 3;
sgi = info3 & 1;
group_id = (info2 >> 4) & 0x3F;
if (GROUP_ID_IS_SU_MIMO(group_id)) {
mcs = (info3 >> 4) & 0x0F;
nss = ((info2 >> 10) & 0x07) + 1;
} else {
/* Hardware doesn't decode VHT-SIG-B into Rx descriptor
* so it's impossible to decode MCS. Also since
* firmware consumes Group Id Management frames host
* has no knowledge regarding group/user position
* mapping so it's impossible to pick the correct Nsts
* from VHT-SIG-A1.
*
* Bandwidth and SGI are valid so report the rateinfo
* on best-effort basis.
*/
mcs = 0;
nss = 1;
}
if (mcs > 0x09) {
ath10k_warn("invalid MCS received %u\n", mcs);
ath10k_warn("rxd %08x mpdu start %08x %08x msdu start %08x %08x ppdu start %08x %08x %08x %08x %08x\n",
rxd->attention.flags,
rxd->mpdu_start.info0,
rxd->mpdu_start.info1,
rxd->msdu_start.common.info0,
rxd->msdu_start.common.info1,
rxd->ppdu_start.info0,
rxd->ppdu_start.info1,
rxd->ppdu_start.info2,
rxd->ppdu_start.info3,
rxd->ppdu_start.info4);
ath10k_warn("msdu end %08x mpdu end %08x\n",
rxd->msdu_end.common.info0,
rxd->mpdu_end.info0);
ath10k_dbg_dump(ar, ATH10K_DBG_HTT_DUMP, NULL,
"rx desc msdu payload: ",
rxd->msdu_payload, 50);
}
status->rate_idx = mcs;
status->nss = nss;
if (sgi) {
status->enc_flags |= RX_ENC_FLAG_SHORT_GI;
}
switch (bw) {
/* 20MHZ */
case 0:
break;
/* 40MHZ */
case 1:
status->bw = RATE_INFO_BW_40;
break;
/* 80MHZ */
case 2:
status->bw = RATE_INFO_BW_80;
break;
case 3:
status->bw = RATE_INFO_BW_160;
break;
}
status->encoding = RX_ENC_VHT;
break;
default:
break;
}
}
static struct ieee80211_channel*
ath10k_htt_rx_h_peer_channel(struct ath10k* ar, struct htt_rx_desc* rxd) {
struct ath10k_peer* peer;
struct ath10k_vif* arvif;
struct cfg80211_chan_def def;
uint16_t peer_id;
ASSERT_MTX_HELD(&ar->data_lock);
if (!rxd) {
return NULL;
}
if (rxd->attention.flags&
RX_ATTENTION_FLAGS_PEER_IDX_INVALID) {
return NULL;
}
if (!(rxd->msdu_end.common.info0&
RX_MSDU_END_INFO0_FIRST_MSDU)) {
return NULL;
}
peer_id = MS(rxd->mpdu_start.info0,
RX_MPDU_START_INFO0_PEER_IDX);
peer = ath10k_peer_find_by_id(ar, peer_id);
if (!peer) {
return NULL;
}
arvif = ath10k_get_arvif(ar, peer->vdev_id);
if (COND_WARN_ONCE(!arvif)) {
return NULL;
}
if (ath10k_mac_vif_chan(arvif->vif, &def)) {
return NULL;
}
return def.chan;
}
static struct ieee80211_channel*
ath10k_htt_rx_h_vdev_channel(struct ath10k* ar, uint32_t vdev_id) {
struct ath10k_vif* arvif;
struct cfg80211_chan_def def;
ASSERT_MTX_HELD(&ar->data_lock);
list_for_each_entry(arvif, &ar->arvifs, list) {
if (arvif->vdev_id == vdev_id &&
ath10k_mac_vif_chan(arvif->vif, &def) == 0) {
return def.chan;
}
}
return NULL;
}
static void
ath10k_htt_rx_h_any_chan_iter(struct ieee80211_hw* hw,
struct ieee80211_chanctx_conf* conf,
void* data) {
struct cfg80211_chan_def* def = data;
*def = conf->def;
}
static struct ieee80211_channel*
ath10k_htt_rx_h_any_channel(struct ath10k* ar) {
struct cfg80211_chan_def def = {};
ieee80211_iter_chan_contexts_atomic(ar->hw,
ath10k_htt_rx_h_any_chan_iter,
&def);
return def.chan;
}
static bool ath10k_htt_rx_h_channel(struct ath10k* ar,
struct ieee80211_rx_status* status,
struct htt_rx_desc* rxd,
uint32_t vdev_id) {
struct ieee80211_channel* ch;
mtx_lock(&ar->data_lock);
ch = ar->scan_channel;
if (!ch) {
ch = ar->rx_channel;
}
if (!ch) {
ch = ath10k_htt_rx_h_peer_channel(ar, rxd);
}
if (!ch) {
ch = ath10k_htt_rx_h_vdev_channel(ar, vdev_id);
}
if (!ch) {
ch = ath10k_htt_rx_h_any_channel(ar);
}
if (!ch) {
ch = ar->tgt_oper_chan;
}
mtx_unlock(&ar->data_lock);
if (!ch) {
return false;
}
status->band = ch->band;
status->freq = ch->center_freq;
return true;
}
static void ath10k_htt_rx_h_signal(struct ath10k* ar,
struct ieee80211_rx_status* status,
struct htt_rx_desc* rxd) {
int i;
for (i = 0; i < IEEE80211_MAX_CHAINS ; i++) {
status->chains &= ~BIT(i);
if (rxd->ppdu_start.rssi_chains[i].pri20_mhz != 0x80) {
status->chain_signal[i] = ATH10K_DEFAULT_NOISE_FLOOR +
rxd->ppdu_start.rssi_chains[i].pri20_mhz;
status->chains |= BIT(i);
}
}
/* FIXME: Get real NF */
status->signal = ATH10K_DEFAULT_NOISE_FLOOR +
rxd->ppdu_start.rssi_comb;
status->flag &= ~RX_FLAG_NO_SIGNAL_VAL;
}
static void ath10k_htt_rx_h_mactime(struct ath10k* ar,
struct ieee80211_rx_status* status,
struct htt_rx_desc* rxd) {
/* FIXME: TSF is known only at the end of PPDU, in the last MPDU. This
* means all prior MSDUs in a PPDU are reported to mac80211 without the
* TSF. Is it worth holding frames until end of PPDU is known?
*
* FIXME: Can we get/compute 64bit TSF?
*/
status->mactime = rxd->ppdu_end.common.tsf_timestamp;
status->flag |= RX_FLAG_MACTIME_END;
}
static void ath10k_htt_rx_h_ppdu(struct ath10k* ar,
struct sk_buff_head* amsdu,
struct ieee80211_rx_status* status,
uint32_t vdev_id) {
struct sk_buff* first;
struct htt_rx_desc* rxd;
bool is_first_ppdu;
bool is_last_ppdu;
if (skb_queue_empty(amsdu)) {
return;
}
first = skb_peek(amsdu);
rxd = (void*)first->data - sizeof(*rxd);
is_first_ppdu = !!(rxd->attention.flags &
RX_ATTENTION_FLAGS_FIRST_MPDU);
is_last_ppdu = !!(rxd->attention.flags &
RX_ATTENTION_FLAGS_LAST_MPDU);
if (is_first_ppdu) {
/* New PPDU starts so clear out the old per-PPDU status. */
status->freq = 0;
status->rate_idx = 0;
status->nss = 0;
status->encoding = RX_ENC_LEGACY;
status->bw = RATE_INFO_BW_20;
status->flag &= ~RX_FLAG_MACTIME_END;
status->flag |= RX_FLAG_NO_SIGNAL_VAL;
ath10k_htt_rx_h_signal(ar, status, rxd);
ath10k_htt_rx_h_channel(ar, status, rxd, vdev_id);
ath10k_htt_rx_h_rates(ar, status, rxd);
}
if (is_last_ppdu) {
ath10k_htt_rx_h_mactime(ar, status, rxd);
}
}
static const char* const tid_to_ac[] = {
"BE",
"BK",
"BK",
"BE",
"VI",
"VI",
"VO",
"VO",
};
static char* ath10k_get_tid(struct ieee80211_hdr* hdr, char* out, size_t size) {
uint8_t* qc;
int tid;
if (!ieee80211_is_data_qos(hdr->frame_control)) {
return "";
}
qc = ieee80211_get_qos_ctl(hdr);
tid = *qc & IEEE80211_QOS_CTL_TID_MASK;
if (tid < 8) {
snprintf(out, size, "tid %d (%s)", tid, tid_to_ac[tid]);
} else {
snprintf(out, size, "tid %d", tid);
}
return out;
}
static void ath10k_process_rx(struct ath10k* ar,
struct ieee80211_rx_status* rx_status,
struct sk_buff* skb) {
struct ieee80211_rx_status* status;
struct ieee80211_hdr* hdr = (struct ieee80211_hdr*)skb->data;
char tid[32];
status = IEEE80211_SKB_RXCB(skb);
*status = *rx_status;
ath10k_dbg(ar, ATH10K_DBG_DATA,
"rx skb %pK len %u peer %pM %s %s sn %u %s%s%s%s%s%s %srate_idx %u vht_nss %u freq %u band %u flag 0x%x fcs-err %i mic-err %i amsdu-more %i\n",
skb,
skb->len,
ieee80211_get_SA(hdr),
ath10k_get_tid(hdr, tid, sizeof(tid)),
is_multicast_ether_addr(ieee80211_get_DA(hdr)) ?
"mcast" : "ucast",
(hdr->seq_ctrl & IEEE80211_SCTL_SEQ) >> 4,
(status->encoding == RX_ENC_LEGACY) ? "legacy" : "",
(status->encoding == RX_ENC_HT) ? "ht" : "",
(status->encoding == RX_ENC_VHT) ? "vht" : "",
(status->bw == RATE_INFO_BW_40) ? "40" : "",
(status->bw == RATE_INFO_BW_80) ? "80" : "",
(status->bw == RATE_INFO_BW_160) ? "160" : "",
status->enc_flags & RX_ENC_FLAG_SHORT_GI ? "sgi " : "",
status->rate_idx,
status->nss,
status->freq,
status->band, status->flag,
!!(status->flag & RX_FLAG_FAILED_FCS_CRC),
!!(status->flag & RX_FLAG_MMIC_ERROR),
!!(status->flag & RX_FLAG_AMSDU_MORE));
ath10k_dbg_dump(ar, ATH10K_DBG_HTT_DUMP, NULL, "rx skb: ",
skb->data, skb->len);
trace_ath10k_rx_hdr(ar, skb->data, skb->len);
trace_ath10k_rx_payload(ar, skb->data, skb->len);
ieee80211_rx_napi(ar->hw, NULL, skb, &ar->napi);
}
#endif // NEEDS PORTING
static size_t ath10k_htt_rx_nwifi_hdrlen(struct ath10k* ar, struct ieee80211_frame_header* hdr) {
size_t len = ieee80211_hdrlen(hdr);
if (!BITARR_TEST(ar->running_fw->fw_file.fw_features,
ATH10K_FW_FEATURE_NO_NWIFI_DECAP_4ADDR_PADDING)) {
len = ROUNDUP(len, 4);
}
return len;
}
static void ath10k_htt_rx_h_undecap_raw(struct ath10k* ar,
struct ath10k_msg_buf* msdu,
enum htt_rx_mpdu_encrypt_type enctype,
bool is_decrypted) {
struct htt_rx_desc* rxd = ath10k_msg_buf_get_header(msdu, ATH10K_MSG_TYPE_HTT_RX);
bool is_first = !!(rxd->msdu_end.common.info0 & RX_MSDU_END_INFO0_FIRST_MSDU);
bool is_last = !!(rxd->msdu_end.common.info0 & RX_MSDU_END_INFO0_LAST_MSDU);
/* Delivered decapped frame:
* [802.11 header]
* [crypto param] <-- can be trimmed if !fcs_err &&
* !decrypt_err && !peer_idx_invalid
* [amsdu header] <-- only if A-MSDU
* [rfc1042/llc]
* [payload]
* [FCS] <-- at end, needs to be trimmed
*/
/* This probably shouldn't happen but warn just in case */
if (unlikely(COND_WARN_ONCE(!is_first))) {
return;
}
/* This probably shouldn't happen but warn just in case */
if (unlikely(COND_WARN_ONCE(!(is_first && is_last)))) {
return;
}
if (msdu->rx.frame_size < IEEE80211_FCS_LEN) {
return;
}
msdu->rx.frame_size -= IEEE80211_FCS_LEN;
/* In most cases this will be true for sniffed frames. It makes sense
* to deliver them as-is without stripping the crypto param. This is
* necessary for software based decryption.
*
* If there's no error then the frame is decrypted. At least that is
* the case for frames that come in via fragmented rx indication.
*/
if (!is_decrypted) {
return;
}
/* The payload is decrypted so strip crypto params. Start from tail
* since hdr is used to compute some stuff.
*/
void* frame = ath10k_msg_buf_get_payload(msdu);
struct ieee80211_frame_header* hdr = frame;
size_t to_remove_from_tail = 0;
/* Tail */
if (msdu->rx.mpdu_flags & ATH10K_RX_MPDU_IV_STRIPPED) {
to_remove_from_tail += ath10k_htt_rx_crypto_tail_len(ar, enctype);
}
/* MMIC */
if ((msdu->rx.mpdu_flags & ATH10K_RX_MPDU_MMIC_STRIPPED) &&
!(hdr->frame_ctrl & IEEE80211_FRAME_CTRL_MORE_FRAGMENTS_MASK) &&
enctype == HTT_RX_MPDU_ENCRYPT_TKIP_WPA) {
to_remove_from_tail += 8;
}
if (msdu->rx.frame_size < to_remove_from_tail) {
return;
}
msdu->rx.frame_size -= to_remove_from_tail;
/* Head */
if (msdu->rx.mpdu_flags & ATH10K_RX_MPDU_IV_STRIPPED) {
size_t hdr_len = ieee80211_hdrlen(hdr);
size_t crypto_len = ath10k_htt_rx_crypto_param_len(ar, enctype);
if (msdu->rx.frame_size < hdr_len + crypto_len) {
return;
}
memmove(frame + crypto_len, frame, hdr_len);
msdu->rx.frame_offset += crypto_len;
msdu->rx.frame_size -= crypto_len;
}
}
static void ath10k_htt_rx_h_undecap_nwifi(struct ath10k* ar,
struct ath10k_msg_buf* msdu,
const uint8_t* original_hdr,
size_t original_hdr_len) {
/* Delivered decapped frame:
* [nwifi 802.11 header] <-- replaced with 802.11 hdr
* [rfc1042/llc]
*
* Note: The nwifi header doesn't have QoS Control and is
* (always?) a 3addr frame.
*
* Note2: There's no A-MSDU subframe header. Even if it's part
* of an A-MSDU.
*/
/* pull decapped header and copy SA & DA */
struct htt_rx_desc* rxd = ath10k_msg_buf_get_header(msdu, ATH10K_MSG_TYPE_HTT_RX);
int l3_pad_bytes = ath10k_rx_desc_get_l3_pad_bytes(&ar->hw_params, rxd);
msdu->used += l3_pad_bytes;
ZX_ASSERT(msdu->used <= msdu->capacity);
// Note that handling of l3_pad_bytes is different from the logic in the original source code,
// which *seemed* to contain a mistake. This should only make a difference on a QCA99x0,
// which we don't currently support. If you are working on the QCA99x0 support and are getting
// broken frames, you might want to investigate this.
void* frame = ath10k_msg_buf_get_payload(msdu) + l3_pad_bytes;
struct ieee80211_frame_header* hdr = frame;
size_t nwifi_hdr_len = ath10k_htt_rx_nwifi_hdrlen(ar, hdr);
uint8_t da[ETH_ALEN];
uint8_t sa[ETH_ALEN];
memcpy(da, ieee80211_get_dest_addr(hdr), ETH_ALEN);
memcpy(sa, ieee80211_get_src_addr(hdr), ETH_ALEN);
/* push original 802.11 header */
void* new_frame = frame + nwifi_hdr_len - original_hdr_len;
// There should be enough headroom in the buffer because we are overwriting the RX description
ZX_ASSERT(new_frame >= msdu->vaddr);
memcpy(new_frame, original_hdr, original_hdr_len);
/* original 802.11 header has a different DA and in
* case of 4addr it may also have different SA
*/
hdr = (struct ieee80211_frame_header*) new_frame;
memcpy(ieee80211_get_dest_addr(hdr), da, ETH_ALEN);
memcpy(ieee80211_get_src_addr(hdr), sa, ETH_ALEN);
msdu->rx.frame_offset = new_frame - msdu->vaddr;
msdu->rx.frame_size = msdu->used - msdu->rx.frame_offset;
}
#if 0 // NEEDS PORTING
static void* ath10k_htt_rx_h_find_rfc1042(struct ath10k* ar,
struct sk_buff* msdu,
enum htt_rx_mpdu_encrypt_type enctype) {
struct ieee80211_hdr* hdr;
struct htt_rx_desc* rxd;
size_t hdr_len, crypto_len;
void* rfc1042;
bool is_first, is_last, is_amsdu;
int bytes_aligned = ar->hw_params.decap_align_bytes;
rxd = (void*)msdu->data - sizeof(*rxd);
hdr = (void*)rxd->rx_hdr_status;
is_first = !!(rxd->msdu_end.common.info0 &
RX_MSDU_END_INFO0_FIRST_MSDU);
is_last = !!(rxd->msdu_end.common.info0 &
RX_MSDU_END_INFO0_LAST_MSDU);
is_amsdu = !(is_first && is_last);
rfc1042 = hdr;
if (is_first) {
hdr_len = ieee80211_hdrlen(hdr->frame_control);
crypto_len = ath10k_htt_rx_crypto_param_len(ar, enctype);
rfc1042 += ROUNDUP(hdr_len, bytes_aligned) +
ROUNDUP(crypto_len, bytes_aligned);
}
if (is_amsdu) {
rfc1042 += sizeof(struct amsdu_subframe_hdr);
}
return rfc1042;
}
static void ath10k_htt_rx_h_undecap_eth(struct ath10k* ar,
struct sk_buff* msdu,
struct ieee80211_rx_status* status,
const uint8_t first_hdr[64],
enum htt_rx_mpdu_encrypt_type enctype) {
struct ieee80211_hdr* hdr;
struct ethhdr* eth;
size_t hdr_len;
void* rfc1042;
uint8_t da[ETH_ALEN];
uint8_t sa[ETH_ALEN];
int l3_pad_bytes;
struct htt_rx_desc* rxd;
/* Delivered decapped frame:
* [eth header] <-- replaced with 802.11 hdr & rfc1042/llc
* [payload]
*/
rfc1042 = ath10k_htt_rx_h_find_rfc1042(ar, msdu, enctype);
if (COND_WARN_ONCE(!rfc1042)) {
return;
}
rxd = (void*)msdu->data - sizeof(*rxd);
l3_pad_bytes = ath10k_rx_desc_get_l3_pad_bytes(&ar->hw_params, rxd);
skb_put(msdu, l3_pad_bytes);
skb_pull(msdu, l3_pad_bytes);
/* pull decapped header and copy SA & DA */
eth = (struct ethhdr*)msdu->data;
memcpy(da, eth->h_dest, ETH_ALEN);
memcpy(sa, eth->h_source, ETH_ALEN);
skb_pull(msdu, sizeof(struct ethhdr));
/* push rfc1042/llc/snap */
memcpy(skb_push(msdu, sizeof(struct rfc1042_hdr)), rfc1042,
sizeof(struct rfc1042_hdr));
/* push original 802.11 header */
hdr = (struct ieee80211_hdr*)first_hdr;
hdr_len = ieee80211_hdrlen(hdr->frame_control);
memcpy(skb_push(msdu, hdr_len), hdr, hdr_len);
/* original 802.11 header has a different DA and in
* case of 4addr it may also have different SA
*/
hdr = (struct ieee80211_hdr*)msdu->data;
memcpy(ieee80211_get_DA(hdr), da, ETH_ALEN);
memcpy(ieee80211_get_SA(hdr), sa, ETH_ALEN);
}
static void ath10k_htt_rx_h_undecap_snap(struct ath10k* ar,
struct sk_buff* msdu,
struct ieee80211_rx_status* status,
const uint8_t first_hdr[64]) {
struct ieee80211_hdr* hdr;
size_t hdr_len;
int l3_pad_bytes;
struct htt_rx_desc* rxd;
/* Delivered decapped frame:
* [amsdu header] <-- replaced with 802.11 hdr
* [rfc1042/llc]
* [payload]
*/
rxd = (void*)msdu->data - sizeof(*rxd);
l3_pad_bytes = ath10k_rx_desc_get_l3_pad_bytes(&ar->hw_params, rxd);
skb_put(msdu, l3_pad_bytes);
skb_pull(msdu, sizeof(struct amsdu_subframe_hdr) + l3_pad_bytes);
hdr = (struct ieee80211_hdr*)first_hdr;
hdr_len = ieee80211_hdrlen(hdr->frame_control);
memcpy(skb_push(msdu, hdr_len), hdr, hdr_len);
}
#endif // NEEDS PORTING
static void ath10k_htt_rx_h_undecap(struct ath10k* ar,
struct ath10k_msg_buf* msdu,
const uint8_t* original_hdr,
size_t original_hdr_len,
enum htt_rx_mpdu_encrypt_type enctype,
bool is_decrypted) {
enum rx_msdu_decap_format decap;
/* First msdu's decapped header:
* [802.11 header] <-- padded to 4 bytes long
* [crypto param] <-- padded to 4 bytes long
* [amsdu header] <-- only if A-MSDU
* [rfc1042/llc]
*
* Other (2nd, 3rd, ..) msdu's decapped header:
* [amsdu header] <-- only if A-MSDU
* [rfc1042/llc]
*/
struct htt_rx_desc* rxd = ath10k_msg_buf_get_header(msdu, ATH10K_MSG_TYPE_HTT_RX);
decap = MS(rxd->msdu_start.common.info1, RX_MSDU_START_INFO1_DECAP_FORMAT);
switch (decap) {
case RX_MSDU_DECAP_RAW:
ath10k_htt_rx_h_undecap_raw(ar, msdu, enctype, is_decrypted);
break;
case RX_MSDU_DECAP_NATIVE_WIFI:
ath10k_htt_rx_h_undecap_nwifi(ar, msdu, original_hdr, original_hdr_len);
break;
case RX_MSDU_DECAP_ETHERNET2_DIX:
ath10k_warn("ath10k_htt_rx_h_undecap_eth unimplemented\n");
#if 0 // NEEDS PORTING
ath10k_htt_rx_h_undecap_eth(ar, msdu, status, first_hdr, enctype);
#endif // NEEDS PORTING
break;
case RX_MSDU_DECAP_8023_SNAP_LLC:
ath10k_warn("ath10k_htt_rx_h_undecap_snap unimplemented\n");
#if 0 // NEEDS PORTING
ath10k_htt_rx_h_undecap_snap(ar, msdu, status, first_hdr);
#endif // NEEDS PORTING
break;
}
}
#if 0 // NEEDS PORTING
static int ath10k_htt_rx_get_csum_state(struct sk_buff* skb) {
struct htt_rx_desc* rxd;
uint32_t flags, info;
bool is_ip4, is_ip6;
bool is_tcp, is_udp;
bool ip_csum_ok, tcpudp_csum_ok;
rxd = (void*)skb->data - sizeof(*rxd);
flags = rxd->attention.flags;
info = rxd->msdu_start.common.info1;
is_ip4 = !!(info & RX_MSDU_START_INFO1_IPV4_PROTO);
is_ip6 = !!(info & RX_MSDU_START_INFO1_IPV6_PROTO);
is_tcp = !!(info & RX_MSDU_START_INFO1_TCP_PROTO);
is_udp = !!(info & RX_MSDU_START_INFO1_UDP_PROTO);
ip_csum_ok = !(flags & RX_ATTENTION_FLAGS_IP_CHKSUM_FAIL);
tcpudp_csum_ok = !(flags & RX_ATTENTION_FLAGS_TCP_UDP_CHKSUM_FAIL);
if (!is_ip4 && !is_ip6) {
return CHECKSUM_NONE;
}
if (!is_tcp && !is_udp) {
return CHECKSUM_NONE;
}
if (!ip_csum_ok) {
return CHECKSUM_NONE;
}
if (!tcpudp_csum_ok) {
return CHECKSUM_NONE;
}
return CHECKSUM_UNNECESSARY;
}
static void ath10k_htt_rx_h_csum_offload(struct sk_buff* msdu) {
msdu->ip_summed = ath10k_htt_rx_get_csum_state(msdu);
}
#endif // NEEDS PORTING
static void ath10k_htt_rx_h_mpdu(struct ath10k* ar, list_node_t* amsdu) {
struct ath10k_msg_buf* first = list_peek_head_type(amsdu, struct ath10k_msg_buf, listnode);
if (first == NULL) {
return;
}
struct htt_rx_desc* rxd = ath10k_msg_buf_get_header(first, ATH10K_MSG_TYPE_HTT_RX);
bool is_mgmt = !!(rxd->attention.flags & RX_ATTENTION_FLAGS_MGMT_TYPE);
enum htt_rx_mpdu_encrypt_type enctype = MS(rxd->mpdu_start.info0,
RX_MPDU_START_INFO0_ENCRYPT_TYPE);
/* First MSDU's Rx descriptor in an A-MSDU contains full 802.11
* decapped header. It'll be used for undecapping of each MSDU.
*/
struct ieee80211_frame_header* hdr = (void*)rxd->rx_hdr_status;
size_t original_hdr_len = ieee80211_hdrlen(hdr);
uint8_t original_hdr[64];
ZX_ASSERT(original_hdr_len <= sizeof(original_hdr));
memcpy(original_hdr, hdr, original_hdr_len);
/* Each A-MSDU subframe will use the original header as the base and be
* reported as a separate MSDU so strip the A-MSDU bit from QoS Ctl.
*/
hdr = (void*) original_hdr;
original_hdr[ieee80211_get_qos_ctrl_offset(hdr)] &= ~IEEE80211_QOS_CTRL_A_MSDU_PRESENT;
/* Some attention flags are valid only in the last MSDU. */
struct ath10k_msg_buf* last = list_peek_tail_type(amsdu, struct ath10k_msg_buf, listnode);
rxd = ath10k_msg_buf_get_header(last, ATH10K_MSG_TYPE_HTT_RX);
uint32_t attention = rxd->attention.flags;
bool has_fcs_err = !!(attention & RX_ATTENTION_FLAGS_FCS_ERR);
bool has_crypto_err = !!(attention & RX_ATTENTION_FLAGS_DECRYPT_ERR);
bool has_tkip_err = !!(attention & RX_ATTENTION_FLAGS_TKIP_MIC_ERR);
bool has_peer_idx_invalid = !!(attention & RX_ATTENTION_FLAGS_PEER_IDX_INVALID);
/* Note: If hardware captures an encrypted frame that it can't decrypt,
* e.g. due to fcs error, missing peer or invalid key data it will
* report the frame as raw.
*/
bool is_decrypted = (enctype != HTT_RX_MPDU_ENCRYPT_NONE &&
!has_fcs_err &&
!has_crypto_err &&
!has_peer_idx_invalid);
uint8_t mpdu_flags = 0;
if (has_fcs_err) {
mpdu_flags |= ATH10K_RX_MPDU_FAILED_FCS_CRC;
}
if (has_tkip_err) {
mpdu_flags |= ATH10K_RX_MPDU_MMIC_ERROR;
}
if (is_decrypted) {
mpdu_flags |= ATH10K_RX_MPDU_DECRYPTED;
if (likely(!is_mgmt)) {
mpdu_flags |= ATH10K_RX_MPDU_IV_STRIPPED | ATH10K_RX_MPDU_MMIC_STRIPPED;
}
}
struct ath10k_msg_buf* msdu;
list_for_every_entry(amsdu, msdu, struct ath10k_msg_buf, listnode) {
msdu->rx.frame_offset = ath10k_msg_buf_get_payload_offset(msdu->type);
msdu->rx.frame_size = msdu->used - msdu->rx.frame_offset;
msdu->rx.mpdu_flags = mpdu_flags;
#if 0 // NEEDS PORTING
ath10k_htt_rx_h_csum_offload(msdu);
#endif // NEEDS PORTING
ath10k_htt_rx_h_undecap(ar, msdu, original_hdr, original_hdr_len, enctype, is_decrypted);
/* Undecapping involves copying the original 802.11 header back
* to msg_buf. If frame is protected and hardware has decrypted
* it then remove the protected bit.
*/
if (!is_decrypted) {
continue;
}
if (is_mgmt) {
continue;
}
hdr = ath10k_msg_buf_get_payload(msdu);
hdr->frame_ctrl &= ~IEEE80211_FRAME_PROTECTED_MASK;
}
}
static void ath10k_htt_rx_h_deliver(struct ath10k* ar, list_node_t* amsdu) {
struct ath10k_msg_buf* msdu;
while ((msdu = list_remove_head_type(amsdu, struct ath10k_msg_buf, listnode)) != NULL) {
wlan_rx_info_t rx_info = {};
// TODO(gbonik): fill in channel correctly
memcpy(&rx_info.chan, &ar->rx_channel, sizeof(wlan_channel_t));
// TODO(gbonik): fill in rx_info from rx_desc
ar->wlanmac.ifc->recv(ar->wlanmac.cookie, 0, msdu->vaddr + msdu->rx.frame_offset,
msdu->rx.frame_size, &rx_info);
ath10k_msg_buf_free(msdu);
}
}
#if 0 // NEEDS PORTING
static bool ath10k_htt_rx_amsdu_allowed(struct ath10k* ar,
struct sk_buff_head* amsdu,
struct ieee80211_rx_status* rx_status) {
/* FIXME: It might be a good idea to do some fuzzy-testing to drop
* invalid/dangerous frames.
*/
if (!rx_status->freq) {
ath10k_warn("no channel configured; ignoring frame(s)!\n");
return false;
}
if (BITARR_TEST(&ar->dev_flags, ATH10K_CAC_RUNNING)) {
ath10k_dbg(ar, ATH10K_DBG_HTT, "htt rx cac running\n");
return false;
}
return true;
}
static void ath10k_htt_rx_h_filter(struct ath10k* ar,
struct sk_buff_head* amsdu,
struct ieee80211_rx_status* rx_status) {
if (skb_queue_empty(amsdu)) {
return;
}
if (ath10k_htt_rx_amsdu_allowed(ar, amsdu, rx_status)) {
return;
}
__skb_queue_purge(amsdu);
}
#endif // NEEDS PORTING
// Pop the chained buffers from `amsdu` and append their contents into `msdu_head`
static zx_status_t ath10k_htt_rx_unchain_msdu(list_node_t* amsdu,
struct ath10k_msg_buf* msdu_head) {
struct htt_rx_desc* rx_desc = ath10k_msg_buf_get_header(msdu_head, ATH10K_MSG_TYPE_HTT_RX);
int num_chained = rx_desc->frag_info.ring2_more_count;
while (num_chained--) {
struct ath10k_msg_buf* chained_part = list_remove_head_type(
amsdu, struct ath10k_msg_buf, listnode);
if (!chained_part) {
return ZX_ERR_NOT_FOUND;
}
size_t available = msdu_head->capacity - msdu_head->used;
if (chained_part->used > available) {
// If the first msdu buffer doesn't have any available room left, drop the frame:
// pop the remaining messages, free them and return.
ath10k_msg_buf_free(chained_part);
ath10k_msg_buf_pop_and_free_n(amsdu, num_chained);
return ZX_ERR_INVALID_ARGS;
}
/* Note: Chained buffers do not contain rx descriptor */
memcpy(msdu_head->vaddr + msdu_head->used, chained_part->vaddr, chained_part->used);
msdu_head->used += chained_part->used;
ath10k_msg_buf_free(chained_part);
}
return ZX_OK;
}
// Unchain all chained msdus in `amsdu`
static void ath10k_htt_rx_unchain_amsdu(list_node_t* amsdu) {
list_node_t unchained_amsdu;
list_initialize(&unchained_amsdu);
for (;;) {
struct ath10k_msg_buf* msdu_head = list_remove_head_type(
amsdu, struct ath10k_msg_buf, listnode);
if (!msdu_head) {
break;
}
if (ath10k_htt_rx_unchain_msdu(amsdu, msdu_head) == ZX_OK) {
list_add_tail(&unchained_amsdu, &msdu_head->listnode);
} else {
ath10k_msg_buf_free(msdu_head);
}
}
list_move(&unchained_amsdu, amsdu);
}
/* Firmware reports all necessary management frames via WMI already,
* so we need to filter them out from the regular RX path. */
static void ath10k_htt_rx_filter_mgmt(list_node_t* amsdu) {
struct ath10k_msg_buf* head = list_peek_head_type(amsdu, struct ath10k_msg_buf, listnode);
if (head == NULL) {
return;
}
struct htt_rx_desc* rx_desc = ath10k_msg_buf_get_header(head, ATH10K_MSG_TYPE_HTT_RX);
if (rx_desc->attention.flags & RX_ATTENTION_FLAGS_MGMT_TYPE) {
ath10k_msg_buf_purge(amsdu);
}
}
static zx_status_t ath10k_htt_rx_handle_amsdu(struct ath10k_htt* htt) {
struct ath10k* ar = htt->ar;
mtx_lock(&htt->rx_ring.lock);
if (htt->rx_confused) {
mtx_unlock(&htt->rx_ring.lock);
return ZX_ERR_IO;
}
list_node_t amsdu;
list_initialize(&amsdu);
zx_status_t ret = ath10k_htt_rx_amsdu_pop(htt, &amsdu);
mtx_unlock(&htt->rx_ring.lock);
if (ret != ZX_OK) {
ath10k_err("rx ring became corrupted: %d\n", ret);
/* FIXME: It's probably a good idea to reboot the
* device instead of leaving it inoperable.
*/
htt->rx_confused = true;
goto fail;
}
// TODO(gbonik): store RSSI etc. from ppdu
// ath10k_htt_rx_h_ppdu(ar, &amsdu, rx_status, 0xffff);
ath10k_htt_rx_unchain_amsdu(&amsdu);
#if 0 // NEEDS PORTING
ath10k_htt_rx_h_filter(ar, &amsdu, rx_status);
#endif // NEEDS PORTING
ath10k_htt_rx_filter_mgmt(&amsdu);
ath10k_htt_rx_h_mpdu(ar, &amsdu);
ath10k_htt_rx_h_deliver(ar, &amsdu);
return ZX_OK;
fail:
{
struct ath10k_msg_buf* buf;
while ((buf = list_remove_head_type(&amsdu, struct ath10k_msg_buf, listnode)) != NULL) {
ath10k_msg_buf_free(buf);
}
}
return ret;
}
static void ath10k_htt_rx_proc_rx_ind(struct ath10k_htt* htt,
struct htt_rx_indication* rx) {
struct ath10k* ar = htt->ar;
struct htt_rx_indication_mpdu_range* mpdu_ranges;
int num_mpdu_ranges;
int i, mpdu_count = 0;
num_mpdu_ranges = MS(rx->hdr.info1,
HTT_RX_INDICATION_INFO1_NUM_MPDU_RANGES);
mpdu_ranges = htt_rx_ind_get_mpdu_ranges(rx);
ath10k_dbg_dump(ar, ATH10K_DBG_HTT_DUMP, NULL, "htt rx ind: ",
rx, sizeof(*rx) +
(sizeof(struct htt_rx_indication_mpdu_range) *
num_mpdu_ranges));
for (i = 0; i < num_mpdu_ranges; i++) {
mpdu_count += mpdu_ranges[i].mpdu_count;
}
while (mpdu_count--) {
zx_status_t status = ath10k_htt_rx_handle_amsdu(htt);
if (status != ZX_OK) {
ath10k_err("Could not handle an AMSDU RX: %s\n", zx_status_get_string(status));
break;
}
}
}
static void ath10k_htt_rx_tx_compl_ind(struct ath10k* ar, struct ath10k_msg_buf* buf) {
struct ath10k_htt* htt = &ar->htt;
struct htt_resp* resp = ath10k_msg_buf_get_header(buf, ATH10K_MSG_TYPE_HTT_RESP);
struct htt_tx_done tx_done = {};
int status = MS(resp->data_tx_completion.flags, HTT_DATA_TX_STATUS);
uint16_t msdu_id;
int i;
switch (status) {
case HTT_DATA_TX_STATUS_NO_ACK:
tx_done.status = HTT_TX_COMPL_STATE_NOACK;
break;
case HTT_DATA_TX_STATUS_OK:
tx_done.status = HTT_TX_COMPL_STATE_ACK;
break;
case HTT_DATA_TX_STATUS_DISCARD:
case HTT_DATA_TX_STATUS_POSTPONE:
case HTT_DATA_TX_STATUS_DOWNLOAD_FAIL:
tx_done.status = HTT_TX_COMPL_STATE_DISCARD;
break;
default:
ath10k_warn("unhandled tx completion status %d\n", status);
tx_done.status = HTT_TX_COMPL_STATE_DISCARD;
break;
}
ath10k_dbg(ar, ATH10K_DBG_HTT, "htt tx completion num_msdus %d\n",
resp->data_tx_completion.num_msdus);
for (i = 0; i < resp->data_tx_completion.num_msdus; i++) {
msdu_id = resp->data_tx_completion.msdus[i];
tx_done.msdu_id = msdu_id;
ath10k_txrx_tx_unref(htt, &tx_done);
}
}
#if 0 // NEEDS PORTING
static void ath10k_htt_rx_addba(struct ath10k* ar, struct htt_resp* resp) {
struct htt_rx_addba* ev = &resp->rx_addba;
struct ath10k_peer* peer;
struct ath10k_vif* arvif;
uint16_t info0, tid, peer_id;
info0 = ev->info0;
tid = MS(info0, HTT_RX_BA_INFO0_TID);
peer_id = MS(info0, HTT_RX_BA_INFO0_PEER_ID);
ath10k_dbg(ar, ATH10K_DBG_HTT,
"htt rx addba tid %hu peer_id %hu size %hhu\n",
tid, peer_id, ev->window_size);
mtx_lock(&ar->data_lock);
peer = ath10k_peer_find_by_id(ar, peer_id);
if (!peer) {
ath10k_warn("received addba event for invalid peer_id: %hu\n",
peer_id);
mtx_unlock(&ar->data_lock);
return;
}
arvif = ath10k_get_arvif(ar, peer->vdev_id);
if (!arvif) {
ath10k_warn("received addba event for invalid vdev_id: %u\n",
peer->vdev_id);
mtx_unlock(&ar->data_lock);
return;
}
ath10k_dbg(ar, ATH10K_DBG_HTT,
"htt rx start rx ba session sta %pM tid %hu size %hhu\n",
peer->addr, tid, ev->window_size);
ieee80211_start_rx_ba_session_offl(arvif->vif, peer->addr, tid);
mtx_unlock(&ar->data_lock);
}
static void ath10k_htt_rx_delba(struct ath10k* ar, struct htt_resp* resp) {
struct htt_rx_delba* ev = &resp->rx_delba;
struct ath10k_peer* peer;
struct ath10k_vif* arvif;
uint16_t info0, tid, peer_id;
info0 = ev->info0;
tid = MS(info0, HTT_RX_BA_INFO0_TID);
peer_id = MS(info0, HTT_RX_BA_INFO0_PEER_ID);
ath10k_dbg(ar, ATH10K_DBG_HTT,
"htt rx delba tid %hu peer_id %hu\n",
tid, peer_id);
mtx_lock(&ar->data_lock);
peer = ath10k_peer_find_by_id(ar, peer_id);
if (!peer) {
ath10k_warn("received addba event for invalid peer_id: %hu\n",
peer_id);
mtx_unlock(&ar->data_lock);
return;
}
arvif = ath10k_get_arvif(ar, peer->vdev_id);
if (!arvif) {
ath10k_warn("received addba event for invalid vdev_id: %u\n",
peer->vdev_id);
mtx_unlock(&ar->data_lock);
return;
}
ath10k_dbg(ar, ATH10K_DBG_HTT,
"htt rx stop rx ba session sta %pM tid %hu\n",
peer->addr, tid);
ieee80211_stop_rx_ba_session_offl(arvif->vif, peer->addr, tid);
mtx_unlock(&ar->data_lock);
}
static int ath10k_htt_rx_extract_amsdu(struct sk_buff_head* list,
struct sk_buff_head* amsdu) {
struct sk_buff* msdu;
struct htt_rx_desc* rxd;
if (skb_queue_empty(list)) {
return -ENOBUFS;
}
if (COND_WARN(!skb_queue_empty(amsdu))) {
return -EINVAL;
}
while ((msdu = __skb_dequeue(list))) {
__skb_queue_tail(amsdu, msdu);
rxd = (void*)msdu->data - sizeof(*rxd);
if (rxd->msdu_end.common.info0&
RX_MSDU_END_INFO0_LAST_MSDU) {
break;
}
}
msdu = skb_peek_tail(amsdu);
rxd = (void*)msdu->data - sizeof(*rxd);
if (!(rxd->msdu_end.common.info0&
RX_MSDU_END_INFO0_LAST_MSDU)) {
skb_queue_splice_init(amsdu, list);
return -EAGAIN;
}
return 0;
}
static void ath10k_htt_rx_h_rx_offload_prot(struct ieee80211_rx_status* status,
struct sk_buff* skb) {
struct ieee80211_hdr* hdr = (struct ieee80211_hdr*)skb->data;
if (!ieee80211_has_protected(hdr->frame_control)) {
return;
}
/* Offloaded frames are already decrypted but firmware insists they are
* protected in the 802.11 header. Strip the flag. Otherwise mac80211
* will drop the frame.
*/
hdr->frame_control &= ~IEEE80211_FCTL_PROTECTED;
status->flag |= RX_FLAG_DECRYPTED |
RX_FLAG_IV_STRIPPED |
RX_FLAG_MMIC_STRIPPED;
}
static int ath10k_htt_rx_h_rx_offload(struct ath10k* ar,
struct sk_buff_head* list) {
struct ath10k_htt* htt = &ar->htt;
struct ieee80211_rx_status* status = &htt->rx_status;
struct htt_rx_offload_msdu* rx;
struct sk_buff* msdu;
size_t offset;
int num_msdu = 0;
while ((msdu = __skb_dequeue(list))) {
/* Offloaded frames don't have Rx descriptor. Instead they have
* a short meta information header.
*/
rx = (void*)msdu->data;
skb_put(msdu, sizeof(*rx));
skb_pull(msdu, sizeof(*rx));
if (skb_tailroom(msdu) < rx->msdu_len) {
ath10k_warn("dropping frame: offloaded rx msdu is too long!\n");
dev_kfree_skb_any(msdu);
continue;
}
skb_put(msdu, rx->msdu_len);
/* Offloaded rx header length isn't multiple of 2 nor 4 so the
* actual payload is unaligned. Align the frame. Otherwise
* mac80211 complains. This shouldn't reduce performance much
* because these offloaded frames are rare.
*/
offset = 4 - ((unsigned long)msdu->data & 3);
skb_put(msdu, offset);
memmove(msdu->data + offset, msdu->data, msdu->len);
skb_pull(msdu, offset);
/* FIXME: The frame is NWifi. Re-construct QoS Control
* if possible later.
*/
memset(status, 0, sizeof(*status));
status->flag |= RX_FLAG_NO_SIGNAL_VAL;
ath10k_htt_rx_h_rx_offload_prot(status, msdu);
ath10k_htt_rx_h_channel(ar, status, NULL, rx->vdev_id);
ath10k_process_rx(ar, status, msdu);
num_msdu++;
}
return num_msdu;
}
#endif // NEEDS PORTING
static zx_status_t ath10k_htt_rx_in_ord_ind(struct ath10k* ar, struct ath10k_msg_buf* buf) {
struct ath10k_htt* htt = &ar->htt;
struct htt_resp* resp = ath10k_msg_buf_get_header(buf, ATH10K_MSG_TYPE_HTT_RESP);
for (unsigned msdu_ndx = 0; msdu_ndx < resp->rx_in_ord_ind.msdu_count; msdu_ndx++) {
struct htt_rx_in_ord_msdu_desc* desc = &resp->rx_in_ord_ind.msdu_descs[msdu_ndx];
uint32_t paddr = desc->msdu_paddr;
struct ath10k_msg_buf* msdu = ath10k_htt_rx_pop_paddr(htt, paddr);
size_t msdu_len = desc->msdu_len;
msdu->type = ATH10K_MSG_TYPE_HTT_RX;
msdu->used = sizeof(struct htt_rx_desc) + msdu_len;
struct htt_rx_desc* rx_desc = ath10k_msg_buf_get_header(msdu, ATH10K_MSG_TYPE_HTT_RX);
wlan_rx_info_t rx_info = {};
memcpy(&rx_info.chan, &ar->rx_channel, sizeof(wlan_channel_t));
// TODO: fill in rx_info from rx_desc
ar->wlanmac.ifc->recv(ar->wlanmac.cookie, 0, rx_desc->msdu_payload, msdu_len, &rx_info);
ath10k_msg_buf_free(msdu);
}
return ZX_OK;
}
#if 0 // NEEDS PORTING
static zx_status_t ath10k_htt_rx_in_ord_ind(struct ath10k* ar,
struct ath10k_msg_buf* buf,
int* num_msdus) {
struct ath10k_htt* htt = &ar->htt;
buf->type = ATH10K_MSG_TYPE_HTT_RESP_RX_IN_ORD_IND;
struct htt_resp* resp = ath10k_msg_buf_get_header(buf, ATH10K_MSG_TYPE_HTT_RESP);
uint16_t peer_id;
uint16_t msdu_count;
uint8_t vdev_id;
uint8_t tid;
bool offload;
bool frag;
zx_status_t status;
list_node_t list;
struct ieee80211_rx_status* status = &htt->rx_status;
list_node_t amsdu;
int num_msdus = 0;
ASSERT_MTX_HELD(&htt->rx_ring.lock);
if (htt->rx_confused) {
return ZX_ERR_INTERNAL;
}
peer_id = resp->rx_in_ord_ind.peer_id;
msdu_count = resp->rx_in_ord_ind.msdu_count;
vdev_id = resp->rx_in_ord_ind.vdev_id;
tid = SM(resp->rx_in_ord_ind.info, HTT_RX_IN_ORD_IND_INFO_TID);
offload = !!(resp->rx_in_ord_ind.info &
HTT_RX_IN_ORD_IND_INFO_OFFLOAD_MASK);
frag = !!(resp->rx_in_ord_ind.info & HTT_RX_IN_ORD_IND_INFO_FRAG_MASK);
ath10k_info("htt rx in ord vdev %i peer %i tid %i offload %i frag %i msdu count %i\n",
vdev_id, peer_id, tid, offload, frag, msdu_count);
size_t data_len = buf->used - ath10k_msg_buf_get_payload_offset(buf->type);
if (data_len < msdu_count * sizeof(*resp->rx_in_ord_ind.msdu_descs)) {
ath10k_warn("dropping invalid in order rx indication\n");
return ZX_ERR_INVALID_ARGS;
}
/* The event can deliver more than 1 A-MSDU. Each A-MSDU is later
* extracted and processed.
*/
list_initialize(&list);
status = ath10k_htt_rx_pop_paddr_list(htt, &resp->rx_in_ord_ind, &list);
if (status != ZX_OK) {
ath10k_warn("failed to pop paddr list: %s\n", zx_status_get_string(status));
htt->rx_confused = true;
return ZX_ERR_INTERNAL;
}
/* Offloaded frames are very different and need to be handled
* separately.
*/
ZX_DEBUG_ASSERT(!offload);
if (offload) {
*num_msdus = ath10k_htt_rx_h_rx_offload(ar, &list);
}
while (!skb_queue_empty(&list)) {
list_initialize(&amsdu);
ret = ath10k_htt_rx_extract_amsdu(&list, &amsdu);
switch (ret) {
case 0:
/* Note: The in-order indication may report interleaved
* frames from different PPDUs meaning reported rx rate
* to mac80211 isn't accurate/reliable. It's still
* better to report something than nothing though. This
* should still give an idea about rx rate to the user.
*/
(*num_msdus) += skb_queue_len(&amsdu);
ath10k_htt_rx_h_ppdu(ar, &amsdu, status, vdev_id);
ath10k_htt_rx_h_filter(ar, &amsdu, status);
ath10k_htt_rx_h_mpdu(ar, &amsdu, status);
ath10k_htt_rx_h_deliver(ar, &amsdu, status);
break;
case -EAGAIN:
/* fall through */
default:
/* Should not happen. */
ath10k_warn("failed to extract amsdu: %d\n", ret);
htt->rx_confused = true;
__skb_queue_purge(&list);
return ZX_ERR_INTERNAL;
}
}
return ZX_OK;
}
static void ath10k_htt_rx_tx_fetch_resp_id_confirm(struct ath10k* ar,
const uint32_t* resp_ids,
int num_resp_ids) {
int i;
uint32_t resp_id;
ath10k_dbg(ar, ATH10K_DBG_HTT, "htt rx tx fetch confirm num_resp_ids %d\n",
num_resp_ids);
for (i = 0; i < num_resp_ids; i++) {
resp_id = resp_ids[i];
ath10k_dbg(ar, ATH10K_DBG_HTT, "htt rx tx fetch confirm resp_id %u\n",
resp_id);
/* TODO: free resp_id */
}
}
static void ath10k_htt_rx_tx_fetch_ind(struct ath10k* ar, struct sk_buff* skb) {
struct ieee80211_hw* hw = ar->hw;
struct ieee80211_txq* txq;
struct htt_resp* resp = (struct htt_resp*)skb->data;
struct htt_tx_fetch_record* record;
size_t len;
size_t max_num_bytes;
size_t max_num_msdus;
size_t num_bytes;
size_t num_msdus;
const uint32_t* resp_ids;
uint16_t num_records;
uint16_t num_resp_ids;
uint16_t peer_id;
uint8_t tid;
int ret;
int i;
ath10k_dbg(ar, ATH10K_DBG_HTT, "htt rx tx fetch ind\n");
len = sizeof(resp->hdr) + sizeof(resp->tx_fetch_ind);
if (unlikely(skb->len < len)) {
ath10k_warn("received corrupted tx_fetch_ind event: buffer too short\n");
return;
}
num_records = resp->tx_fetch_ind.num_records;
num_resp_ids = resp->tx_fetch_ind.num_resp_ids;
len += sizeof(resp->tx_fetch_ind.records[0]) * num_records;
len += sizeof(resp->tx_fetch_ind.resp_ids[0]) * num_resp_ids;
if (unlikely(skb->len < len)) {
ath10k_warn("received corrupted tx_fetch_ind event: too many records/resp_ids\n");
return;
}
ath10k_dbg(ar, ATH10K_DBG_HTT, "htt rx tx fetch ind num records %hu num resps %hu seq %hu\n",
num_records, num_resp_ids,
resp->tx_fetch_ind.fetch_seq_num);
if (!ar->htt.tx_q_state.enabled) {
ath10k_warn("received unexpected tx_fetch_ind event: not enabled\n");
return;
}
if (ar->htt.tx_q_state.mode == HTT_TX_MODE_SWITCH_PUSH) {
ath10k_warn("received unexpected tx_fetch_ind event: in push mode\n");
return;
}
rcu_read_lock();
for (i = 0; i < num_records; i++) {
record = &resp->tx_fetch_ind.records[i];
peer_id = MS(record->info,
HTT_TX_FETCH_RECORD_INFO_PEER_ID);
tid = MS(record->info,
HTT_TX_FETCH_RECORD_INFO_TID);
max_num_msdus = record->num_msdus;
max_num_bytes = record->num_bytes;
ath10k_dbg(ar, ATH10K_DBG_HTT, "htt rx tx fetch record %i peer_id %hu tid %hhu msdus %zu bytes %zu\n",
i, peer_id, tid, max_num_msdus, max_num_bytes);
if (unlikely(peer_id >= ar->htt.tx_q_state.num_peers) ||
unlikely(tid >= ar->htt.tx_q_state.num_tids)) {
ath10k_warn("received out of range peer_id %hu tid %hhu\n",
peer_id, tid);
continue;
}
mtx_lock(&ar->data_lock);
txq = ath10k_mac_txq_lookup(ar, peer_id, tid);
mtx_unlock(&ar->data_lock);
/* It is okay to release the lock and use txq because RCU read
* lock is held.
*/
if (unlikely(!txq)) {
ath10k_warn("failed to lookup txq for peer_id %hu tid %hhu\n",
peer_id, tid);
continue;
}
num_msdus = 0;
num_bytes = 0;
while (num_msdus < max_num_msdus &&
num_bytes < max_num_bytes) {
ret = ath10k_mac_tx_push_txq(hw, txq);
if (ret < 0) {
break;
}
num_msdus++;
num_bytes += ret;
}
record->num_msdus = num_msdus;
record->num_bytes = num_bytes;
ath10k_htt_tx_txq_recalc(hw, txq);
}
rcu_read_unlock();
resp_ids = ath10k_htt_get_tx_fetch_ind_resp_ids(&resp->tx_fetch_ind);
ath10k_htt_rx_tx_fetch_resp_id_confirm(ar, resp_ids, num_resp_ids);
ret = ath10k_htt_tx_fetch_resp(ar,
resp->tx_fetch_ind.token,
resp->tx_fetch_ind.fetch_seq_num,
resp->tx_fetch_ind.records,
num_records);
if (unlikely(ret)) {
ath10k_warn("failed to submit tx fetch resp for token 0x%08x: %d\n",
resp->tx_fetch_ind.token, ret);
/* FIXME: request fw restart */
}
ath10k_htt_tx_txq_sync(ar);
}
static void ath10k_htt_rx_tx_fetch_confirm(struct ath10k* ar,
struct sk_buff* skb) {
const struct htt_resp* resp = (void*)skb->data;
size_t len;
int num_resp_ids;
ath10k_dbg(ar, ATH10K_DBG_HTT, "htt rx tx fetch confirm\n");
len = sizeof(resp->hdr) + sizeof(resp->tx_fetch_confirm);
if (unlikely(skb->len < len)) {
ath10k_warn("received corrupted tx_fetch_confirm event: buffer too short\n");
return;
}
num_resp_ids = resp->tx_fetch_confirm.num_resp_ids;
len += sizeof(resp->tx_fetch_confirm.resp_ids[0]) * num_resp_ids;
if (unlikely(skb->len < len)) {
ath10k_warn("received corrupted tx_fetch_confirm event: resp_ids buffer overflow\n");
return;
}
ath10k_htt_rx_tx_fetch_resp_id_confirm(ar,
resp->tx_fetch_confirm.resp_ids,
num_resp_ids);
}
static void ath10k_htt_rx_tx_mode_switch_ind(struct ath10k* ar,
struct sk_buff* skb) {
const struct htt_resp* resp = (void*)skb->data;
const struct htt_tx_mode_switch_record* record;
struct ieee80211_txq* txq;
struct ath10k_txq* artxq;
size_t len;
size_t num_records;
enum htt_tx_mode_switch_mode mode;
bool enable;
uint16_t info0;
uint16_t info1;
uint16_t threshold;
uint16_t peer_id;
uint8_t tid;
int i;
ath10k_dbg(ar, ATH10K_DBG_HTT, "htt rx tx mode switch ind\n");
len = sizeof(resp->hdr) + sizeof(resp->tx_mode_switch_ind);
if (unlikely(skb->len < len)) {
ath10k_warn("received corrupted tx_mode_switch_ind event: buffer too short\n");
return;
}
info0 = resp->tx_mode_switch_ind.info0;
info1 = resp->tx_mode_switch_ind.info1;
enable = !!(info0 & HTT_TX_MODE_SWITCH_IND_INFO0_ENABLE);
num_records = MS(info0, HTT_TX_MODE_SWITCH_IND_INFO1_THRESHOLD);
mode = MS(info1, HTT_TX_MODE_SWITCH_IND_INFO1_MODE);
threshold = MS(info1, HTT_TX_MODE_SWITCH_IND_INFO1_THRESHOLD);
ath10k_dbg(ar, ATH10K_DBG_HTT,
"htt rx tx mode switch ind info0 0x%04hx info1 0x%04hx enable %d num records %zd mode %d threshold %hu\n",
info0, info1, enable, num_records, mode, threshold);
len += sizeof(resp->tx_mode_switch_ind.records[0]) * num_records;
if (unlikely(skb->len < len)) {
ath10k_warn("received corrupted tx_mode_switch_mode_ind event: too many records\n");
return;
}
switch (mode) {
case HTT_TX_MODE_SWITCH_PUSH:
case HTT_TX_MODE_SWITCH_PUSH_PULL:
break;
default:
ath10k_warn("received invalid tx_mode_switch_mode_ind mode %d, ignoring\n",
mode);
return;
}
if (!enable) {
return;
}
ar->htt.tx_q_state.enabled = enable;
ar->htt.tx_q_state.mode = mode;
ar->htt.tx_q_state.num_push_allowed = threshold;
rcu_read_lock();
for (i = 0; i < num_records; i++) {
record = &resp->tx_mode_switch_ind.records[i];
info0 = record->info0;
peer_id = MS(info0, HTT_TX_MODE_SWITCH_RECORD_INFO0_PEER_ID);
tid = MS(info0, HTT_TX_MODE_SWITCH_RECORD_INFO0_TID);
if (unlikely(peer_id >= ar->htt.tx_q_state.num_peers) ||
unlikely(tid >= ar->htt.tx_q_state.num_tids)) {
ath10k_warn("received out of range peer_id %hu tid %hhu\n",
peer_id, tid);
continue;
}
mtx_lock(&ar->data_lock);
txq = ath10k_mac_txq_lookup(ar, peer_id, tid);
mtx_unlock(&ar->data_lock);
/* It is okay to release the lock and use txq because RCU read
* lock is held.
*/
if (unlikely(!txq)) {
ath10k_warn("failed to lookup txq for peer_id %hu tid %hhu\n",
peer_id, tid);
continue;
}
mtx_lock(&ar->htt.tx_lock);
artxq = (void*)txq->drv_priv;
artxq->num_push_allowed = record->num_max_msdus;
mtx_unlock(&ar->htt.tx_lock);
}
rcu_read_unlock();
ath10k_mac_tx_push_pending(ar);
}
#endif // NEEDS PORTING
void ath10k_htt_htc_t2h_msg_handler(struct ath10k* ar, struct ath10k_msg_buf* msg_buf) {
bool release;
release = ath10k_htt_t2h_msg_handler(ar, msg_buf);
/* Free the indication buffer */
if (release) { ath10k_msg_buf_free(msg_buf); }
}
#if 0 // NEEDS PORTING
static inline bool is_valid_legacy_rate(uint8_t rate) {
static const uint8_t legacy_rates[] = {1, 2, 5, 11, 6, 9, 12,
18, 24, 36, 48, 54
};
int i;
for (i = 0; i < countof(legacy_rates); i++) {
if (rate == legacy_rates[i]) {
return true;
}
}
return false;
}
static void
ath10k_update_per_peer_tx_stats(struct ath10k* ar,
struct ieee80211_sta* sta,
struct ath10k_per_peer_tx_stats* peer_stats) {
struct ath10k_sta* arsta = (struct ath10k_sta*)sta->drv_priv;
uint8_t rate = 0, sgi;
struct rate_info txrate;
ASSERT_MTX_HELD(&ar->data_lock);
txrate.flags = ATH10K_HW_PREAMBLE(peer_stats->ratecode);
txrate.bw = ATH10K_HW_BW(peer_stats->flags);
txrate.nss = ATH10K_HW_NSS(peer_stats->ratecode);
txrate.mcs = ATH10K_HW_MCS_RATE(peer_stats->ratecode);
sgi = ATH10K_HW_GI(peer_stats->flags);
if (txrate.flags == WMI_RATE_PREAMBLE_VHT && txrate.mcs > 9) {
ath10k_warn("Invalid VHT mcs %hhd peer stats", txrate.mcs);
return;
}
if (txrate.flags == WMI_RATE_PREAMBLE_HT &&
(txrate.mcs > 7 || txrate.nss < 1)) {
ath10k_warn("Invalid HT mcs %hhd nss %hhd peer stats",
txrate.mcs, txrate.nss);
return;
}
memset(&arsta->txrate, 0, sizeof(arsta->txrate));
if (txrate.flags == WMI_RATE_PREAMBLE_CCK ||
txrate.flags == WMI_RATE_PREAMBLE_OFDM) {
rate = ATH10K_HW_LEGACY_RATE(peer_stats->ratecode);
if (!is_valid_legacy_rate(rate)) {
ath10k_warn("Invalid legacy rate %hhd peer stats",
rate);
return;
}
/* This is hacky, FW sends CCK rate 5.5Mbps as 6 */
rate *= 10;
if (rate == 60 && txrate.flags == WMI_RATE_PREAMBLE_CCK) {
rate = rate - 5;
}
arsta->txrate.legacy = rate;
} else if (txrate.flags == WMI_RATE_PREAMBLE_HT) {
arsta->txrate.flags = RATE_INFO_FLAGS_MCS;
arsta->txrate.mcs = txrate.mcs + 8 * (txrate.nss - 1);
} else {
arsta->txrate.flags = RATE_INFO_FLAGS_VHT_MCS;
arsta->txrate.mcs = txrate.mcs;
}
if (sgi) {
arsta->txrate.flags |= RATE_INFO_FLAGS_SHORT_GI;
}
arsta->txrate.nss = txrate.nss;
arsta->txrate.bw = txrate.bw + RATE_INFO_BW_20;
}
static void ath10k_htt_fetch_peer_stats(struct ath10k* ar,
struct sk_buff* skb) {
struct htt_resp* resp = (struct htt_resp*)skb->data;
struct ath10k_per_peer_tx_stats* p_tx_stats = &ar->peer_tx_stats;
struct htt_per_peer_tx_stats_ind* tx_stats;
struct ieee80211_sta* sta;
struct ath10k_peer* peer;
int peer_id, i;
uint8_t ppdu_len, num_ppdu;
num_ppdu = resp->peer_tx_stats.num_ppdu;
ppdu_len = resp->peer_tx_stats.ppdu_len * sizeof(uint32_t);
if (skb->len < sizeof(struct htt_resp_hdr) + num_ppdu * ppdu_len) {
ath10k_warn("Invalid peer stats buf length %d\n", skb->len);
return;
}
tx_stats = (struct htt_per_peer_tx_stats_ind*)
(resp->peer_tx_stats.payload);
peer_id = tx_stats->peer_id;
rcu_read_lock();
mtx_lock(&ar->data_lock);
peer = ath10k_peer_find_by_id(ar, peer_id);
if (!peer) {
ath10k_warn("Invalid peer id %d peer stats buffer\n",
peer_id);
goto out;
}
sta = peer->sta;
for (i = 0; i < num_ppdu; i++) {
tx_stats = (struct htt_per_peer_tx_stats_ind*)
(resp->peer_tx_stats.payload + i * ppdu_len);
p_tx_stats->succ_bytes = tx_stats->succ_bytes;
p_tx_stats->retry_bytes = tx_stats->retry_bytes;
p_tx_stats->failed_bytes =
tx_stats->failed_bytes;
p_tx_stats->ratecode = tx_stats->ratecode;
p_tx_stats->flags = tx_stats->flags;
p_tx_stats->succ_pkts = tx_stats->succ_pkts;
p_tx_stats->retry_pkts = tx_stats->retry_pkts;
p_tx_stats->failed_pkts = tx_stats->failed_pkts;
ath10k_update_per_peer_tx_stats(ar, sta, p_tx_stats);
}
out:
mtx_unlock(&ar->data_lock);
rcu_read_unlock();
}
#endif // NEEDS PORTING
bool ath10k_htt_t2h_msg_handler(struct ath10k* ar, struct ath10k_msg_buf* msg_buf) {
struct ath10k_htt* htt = &ar->htt;
struct htt_resp* resp = ath10k_msg_buf_get_header(msg_buf, ATH10K_MSG_TYPE_HTT_RESP);
zx_status_t status;
/* confirm alignment */
if (!IS_ALIGNED((unsigned long)msg_buf->vaddr, 4)) {
ath10k_warn("unaligned htt message, expect trouble\n");
}
ath10k_dbg(ar, ATH10K_DBG_HTT, "htt rx, msg_type: 0x%0X\n", resp->hdr.msg_type);
if (resp->hdr.msg_type >= ar->htt.t2h_msg_types_max) {
ath10k_dbg(ar, ATH10K_DBG_HTT, "htt rx, unsupported msg_type: 0x%0X\n max: 0x%0X",
resp->hdr.msg_type, ar->htt.t2h_msg_types_max);
return true;
}
enum htt_t2h_msg_type type = ar->htt.t2h_msg_types[resp->hdr.msg_type];
switch (type) {
case HTT_T2H_MSG_TYPE_VERSION_CONF: {
htt->target_version_major = resp->ver_resp.major;
htt->target_version_minor = resp->ver_resp.minor;
sync_completion_signal(&htt->target_version_received);
break;
}
case HTT_T2H_MSG_TYPE_RX_IND:
ath10k_htt_rx_proc_rx_ind(htt, &resp->rx_ind);
ath10k_htt_rx_msdu_buff_replenish(htt);
break;
case HTT_T2H_MSG_TYPE_PEER_MAP: {
struct htt_peer_map_event ev = {
.vdev_id = resp->peer_map.vdev_id,
.peer_id = resp->peer_map.peer_id,
};
memcpy(ev.addr, resp->peer_map.addr, sizeof(ev.addr));
ath10k_peer_map_event(htt, &ev);
break;
}
case HTT_T2H_MSG_TYPE_PEER_UNMAP: {
struct htt_peer_unmap_event ev = {
.peer_id = resp->peer_unmap.peer_id,
};
ath10k_peer_unmap_event(htt, &ev);
break;
}
case HTT_T2H_MSG_TYPE_MGMT_TX_COMPLETION: {
struct htt_tx_done tx_done = {};
int compl_status = resp->mgmt_tx_completion.status;
tx_done.msdu_id = resp->mgmt_tx_completion.desc_id;
switch (compl_status) {
case HTT_MGMT_TX_STATUS_OK:
tx_done.status = HTT_TX_COMPL_STATE_ACK;
break;
case HTT_MGMT_TX_STATUS_RETRY:
tx_done.status = HTT_TX_COMPL_STATE_NOACK;
break;
case HTT_MGMT_TX_STATUS_DROP:
tx_done.status = HTT_TX_COMPL_STATE_DISCARD;
break;
}
if (ath10k_txrx_tx_unref(htt, &tx_done) == ZX_OK) {
mtx_lock(&htt->tx_lock);
ath10k_htt_tx_mgmt_dec_pending(htt);
mtx_unlock(&htt->tx_lock);
}
break;
}
case HTT_T2H_MSG_TYPE_TX_COMPL_IND:
ath10k_htt_rx_tx_compl_ind(htt->ar, msg_buf);
break;
case HTT_T2H_MSG_TYPE_SEC_IND: {
struct ath10k* ar = htt->ar;
struct htt_security_indication* ev = &resp->security_indication;
ath10k_dbg(ar, ATH10K_DBG_HTT, "sec ind peer_id %d unicast %d type %d\n", ev->peer_id,
!!(ev->flags & HTT_SECURITY_IS_UNICAST), MS(ev->flags, HTT_SECURITY_TYPE));
sync_completion_signal(&ar->install_key_done);
break;
}
case HTT_T2H_MSG_TYPE_RX_FRAG_IND: {
ath10k_dbg_dump(ar, ATH10K_DBG_HTT_DUMP, NULL, "htt event: ", msg_buf->vaddr,
msg_buf->used);
ath10k_htt_rx_handle_amsdu(htt);
ath10k_htt_rx_msdu_buff_replenish(htt);
break;
}
case HTT_T2H_MSG_TYPE_TEST:
break;
case HTT_T2H_MSG_TYPE_STATS_CONF:
ath10k_err("HTT_T2H_MSG_TYPE_STATS_CONF unimplemented\n");
break;
case HTT_T2H_MSG_TYPE_TX_INSPECT_IND:
/* Firmware can return tx frames if it's unable to fully
* process them and suspects host may be able to fix it. ath10k
* sends all tx frames as already inspected so this shouldn't
* happen unless fw has a bug.
*/
ath10k_warn("received an unexpected htt tx inspect event\n");
break;
case HTT_T2H_MSG_TYPE_RX_ADDBA:
ath10k_err("HTT_T2H_MSG_TYPE_RX_ADDBA unimplemented\n");
#if 0 // NEEDS PORTING
ath10k_htt_rx_addba(ar, resp);
#endif // NEEDS PORTING
break;
case HTT_T2H_MSG_TYPE_RX_DELBA:
ath10k_err("HTT_T2H_MSG_TYPE_RX_DELBA unimplemented\n");
#if 0 // NEEDS PORTING
ath10k_htt_rx_delba(ar, resp);
#endif // NEEDS PORTING
break;
case HTT_T2H_MSG_TYPE_PKTLOG: {
ath10k_err("HTT_T2H_MSG_TYPE_PKTLOG unimplemented\n");
#if 0 // NEEDS PORTING
trace_ath10k_htt_pktlog(ar, resp->pktlog_msg.payload,
skb->len -
offsetof(struct htt_resp,
pktlog_msg.payload));
#endif // NEEDS PORTING
break;
}
case HTT_T2H_MSG_TYPE_RX_FLUSH: {
/* TODO: Verify that we can ignore this event because mac takes care of Rx
* aggregation reordering
*/
break;
}
case HTT_T2H_MSG_TYPE_RX_IN_ORD_PADDR_IND: {
mtx_lock(&htt->rx_ring.lock);
status = ath10k_htt_rx_in_ord_ind(ar, msg_buf);
mtx_unlock(&htt->rx_ring.lock);
ath10k_htt_rx_msdu_buff_replenish(htt);
if (status != ZX_OK) { return false; }
break;
}
case HTT_T2H_MSG_TYPE_TX_CREDIT_UPDATE_IND:
break;
case HTT_T2H_MSG_TYPE_CHAN_CHANGE: {
ath10k_err("HTT_T2H_MSG_TYPE_CHAN_CHANGE unimplemented\n");
#if 0 // NEEDS PORTING
uint32_t phymode = resp->chan_change.phymode;
uint32_t freq = resp->chan_change.freq;
ar->tgt_oper_chan = ieee80211_get_channel(ar->hw->wiphy, freq);
ath10k_dbg(ar, ATH10K_DBG_HTT,
"htt chan change freq %u phymode %s\n",
freq, ath10k_wmi_phymode_str(phymode));
#endif // NEEDS PORTING
break;
}
case HTT_T2H_MSG_TYPE_AGGR_CONF:
break;
case HTT_T2H_MSG_TYPE_TX_FETCH_IND: {
ath10k_err("HTT_T2H_MSG_TYPE_TX_FETCH_IND unimplemented\n");
break;
}
case HTT_T2H_MSG_TYPE_TX_FETCH_CONFIRM:
ath10k_err("HTT_T2H_MSG_TYPE_TX_FETCH_CONFIRM unimplemented\n");
#if 0 // NEEDS PORTING
ath10k_htt_rx_tx_fetch_confirm(ar, skb);
#endif // NEEDS PORTING
break;
case HTT_T2H_MSG_TYPE_TX_MODE_SWITCH_IND:
ath10k_err("HTT_T2H_MSG_TYPE_TX_MODE_SWITCH_IND unimplemented\n");
#if 0 // NEEDS PORTING
ath10k_htt_rx_tx_mode_switch_ind(ar, skb);
#endif // NEEDS PORTING
break;
case HTT_T2H_MSG_TYPE_PEER_STATS:
ath10k_err("HTT_T2H_MSG_TYPE_PEER_STATS unimplemented\n");
#if 0 // NEEDS PORTING
ath10k_htt_fetch_peer_stats(ar, skb);
#endif // NEEDS PORTING
break;
case HTT_T2H_MSG_TYPE_EN_STATS:
default:
ath10k_warn("htt event (%d) not handled\n", resp->hdr.msg_type);
ath10k_dbg_dump(ar, ATH10K_DBG_HTT_DUMP, NULL, "htt event: ", msg_buf->vaddr,
msg_buf->used);
break;
}
return true;
}
void ath10k_htt_rx_pktlog_completion_handler(struct ath10k* ar, struct ath10k_msg_buf* buf) {
ath10k_msg_buf_free(buf);
}