blob: 2a7680ed241e2a505f55811847fba127068f760a [file] [log] [blame]
//===-- combined.h ----------------------------------------------*- C++ -*-===//
//
// Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
// See https://llvm.org/LICENSE.txt for license information.
// SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
//
//===----------------------------------------------------------------------===//
#ifndef SCUDO_COMBINED_H_
#define SCUDO_COMBINED_H_
#include "chunk.h"
#include "common.h"
#include "flags.h"
#include "flags_parser.h"
#include "interface.h"
#include "local_cache.h"
#include "quarantine.h"
#include "report.h"
#include "secondary.h"
#include "tsd.h"
namespace scudo {
template <class Params> class Allocator {
public:
typedef typename Params::Primary PrimaryT;
typedef SizeClassAllocatorLocalCache<PrimaryT> CacheT;
typedef Allocator<Params> ThisT;
typedef typename Params::template TSDRegistryT<ThisT> TSDRegistryT;
struct QuarantineCallback {
explicit QuarantineCallback(ThisT &Instance, CacheT &LocalCache)
: Allocator(Instance), Cache(LocalCache) {}
// Chunk recycling function, returns a quarantined chunk to the backend,
// first making sure it hasn't been tampered with.
void recycle(void *Ptr) {
UnpackedHeader Header;
Chunk::loadHeader(Allocator.Cookie, Ptr, &Header);
if (UNLIKELY(Header.State != ChunkQuarantine))
reportInvalidChunkState(AllocatorAction::Recycling, Ptr);
UnpackedHeader NewHeader = Header;
NewHeader.State = ChunkAvailable;
Chunk::compareExchangeHeader(Allocator.Cookie, Ptr, &NewHeader, &Header);
void *BlockBegin = Chunk::getBlockBegin(Ptr, &Header);
const uptr ClassId = Header.ClassId;
if (ClassId)
Cache.deallocate(&Allocator.Primary, ClassId, BlockBegin);
else
Allocator.Secondary.deallocate(BlockBegin);
}
// We take a shortcut when allocating a quarantine batch by working with the
// appropriate class ID instead of using Size. The compiler should optimize
// the class ID computation and work with the associated cache directly.
void *allocate(UNUSED uptr Size) {
const uptr QuarantineClassId = SizeClassMap::getClassIdBySize(
sizeof(QuarantineBatch) + Chunk::getHeaderSize());
void *Ptr = Cache.allocate(&Allocator.Primary, QuarantineClassId);
// Quarantine batch allocation failure is fatal.
if (UNLIKELY(!Ptr))
reportOutOfMemory(SizeClassMap::getSizeByClassId(QuarantineClassId));
Ptr = reinterpret_cast<void *>(reinterpret_cast<uptr>(Ptr) +
Chunk::getHeaderSize());
UnpackedHeader Header = {};
Header.ClassId = QuarantineClassId & ClassIdMask;
Header.SizeOrUnusedBytes = sizeof(QuarantineBatch);
Header.State = ChunkAllocated;
Chunk::storeHeader(Allocator.Cookie, Ptr, &Header);
return Ptr;
}
void deallocate(void *Ptr) {
const uptr QuarantineClassId = SizeClassMap::getClassIdBySize(
sizeof(QuarantineBatch) + Chunk::getHeaderSize());
UnpackedHeader Header;
Chunk::loadHeader(Allocator.Cookie, Ptr, &Header);
if (UNLIKELY(Header.State != ChunkAllocated))
reportInvalidChunkState(AllocatorAction::Deallocating, Ptr);
DCHECK_EQ(Header.ClassId, QuarantineClassId);
DCHECK_EQ(Header.Offset, 0);
DCHECK_EQ(Header.SizeOrUnusedBytes, sizeof(QuarantineBatch));
UnpackedHeader NewHeader = Header;
NewHeader.State = ChunkAvailable;
Chunk::compareExchangeHeader(Allocator.Cookie, Ptr, &NewHeader, &Header);
Cache.deallocate(&Allocator.Primary, QuarantineClassId,
reinterpret_cast<void *>(reinterpret_cast<uptr>(Ptr) -
Chunk::getHeaderSize()));
}
private:
ThisT &Allocator;
CacheT &Cache;
};
typedef GlobalQuarantine<QuarantineCallback, void> QuarantineT;
typedef typename QuarantineT::CacheT QuarantineCacheT;
void initLinkerInitialized() {
performSanityChecks();
// Check if hardware CRC32 is supported in the binary and by the platform,
// if so, opt for the CRC32 hardware version of the checksum.
if (&computeHardwareCRC32 && hasHardwareCRC32())
atomic_store_relaxed(&HashAlgorithm, HardwareCRC32);
if (UNLIKELY(!getRandom(reinterpret_cast<void *>(&Cookie), sizeof(Cookie))))
Cookie = static_cast<u32>(getMonotonicTime() ^
(reinterpret_cast<uptr>(this) >> 4));
initFlags();
reportUnrecognizedFlags();
// Store some flags locally.
Options.MayReturnNull = getFlags()->may_return_null;
Options.ZeroContents = getFlags()->zero_contents;
Options.DeallocTypeMismatch = getFlags()->dealloc_type_mismatch;
Options.DeleteSizeMismatch = getFlags()->delete_size_mismatch;
Options.QuarantineMaxChunkSize = getFlags()->quarantine_max_chunk_size;
Stats.initLinkerInitialized();
Primary.initLinkerInitialized(getFlags()->release_to_os_interval_ms);
Secondary.initLinkerInitialized(&Stats);
Quarantine.init(getFlags()->quarantine_size_kb << 10,
getFlags()->thread_local_quarantine_size_kb << 10);
}
void init() { memset(this, 0, sizeof(*this)); }
TSDRegistryT *getTSDRegistry() { return &TSDRegistry; }
void initCache(CacheT *Cache) { Cache->init(&Stats); }
// Release the resources used by a TSD, which involves:
// - draining the local quarantine cache to the global quarantine;
// - releasing the cached pointers back to the Primary;
// - unlinking the local stats from the global ones.
void commitBack(TSD<ThisT> *TSD) {
Quarantine.drain(&TSD->QuarantineCache,
QuarantineCallback(*this, TSD->Cache));
TSD->Cache.destroy(&Primary, &Stats);
}
NOINLINE void *allocate(uptr Size, AllocType Type,
uptr Alignment = MinAlignment,
bool ZeroContents = false) {
initThreadMaybe();
if (UNLIKELY(Alignment > MaxAlignment)) {
if (Options.MayReturnNull)
return nullptr;
reportAlignmentTooBig(Alignment, MaxAlignment);
}
if (UNLIKELY(Alignment < MinAlignment))
Alignment = MinAlignment;
// If the requested size happens to be 0 (more common than you might think),
// allocate 1 byte on top of the header. Then add the extra bytes required
// to fulfill the alignment requirements: we allocate enough to be sure that
// there will be an address in the block that will be aligned.
const uptr NeededSize =
Chunk::getHeaderSize() + roundUpTo(Size ? Size : 1, MinAlignment) +
((Alignment > MinAlignment) ? (Alignment - Chunk::getHeaderSize()) : 0);
// Takes care of extravagantly large sizes as well as integer overflows.
if (UNLIKELY(Size >= MaxAllowedMallocSize ||
NeededSize >= MaxAllowedMallocSize)) {
if (Options.MayReturnNull)
return nullptr;
reportAllocationSizeTooBig(Size, NeededSize, MaxAllowedMallocSize);
}
void *Block;
uptr ClassId;
uptr BlockEnd = 0;
if (PrimaryT::canAllocate(NeededSize)) {
ClassId = SizeClassMap::getClassIdBySize(NeededSize);
bool UnlockRequired;
auto *TSD = TSDRegistry.getTSDAndLock(&UnlockRequired);
Block = TSD->Cache.allocate(&Primary, ClassId);
if (UnlockRequired)
TSD->unlock();
} else {
ClassId = 0;
Block = Secondary.allocate(NeededSize, Alignment, &BlockEnd);
}
if (UNLIKELY(!Block)) {
if (Options.MayReturnNull)
return nullptr;
reportOutOfMemory(Size);
}
// We only need to zero the contents for Primary backed allocations.
if ((ZeroContents || Options.ZeroContents) && ClassId)
memset(Block, 0, PrimaryT::getSizeByClassId(ClassId));
UnpackedHeader Header = {};
uptr UserPtr = reinterpret_cast<uptr>(Block) + Chunk::getHeaderSize();
if (!isAligned(UserPtr, Alignment)) {
const uptr AlignedUserPtr = roundUpTo(UserPtr, Alignment);
const uptr Offset = AlignedUserPtr - UserPtr;
Header.Offset = (Offset >> MinAlignmentLog) & OffsetMask;
DCHECK_GT(Offset, 2 * sizeof(u32));
// The BlockMarker has no security purpose, but is specifically meant for
// the chunk iteration function that can be used in debugging situations.
// It is the only situation where we have to locate the start of a chunk
// based on its block address.
reinterpret_cast<u32 *>(Block)[0] = BlockMarker;
reinterpret_cast<u32 *>(Block)[1] = static_cast<u32>(Offset);
UserPtr = AlignedUserPtr;
}
Header.State = ChunkAllocated;
Header.AllocType = Type & AllocTypeMask;
if (ClassId) {
Header.ClassId = ClassId & ClassIdMask;
Header.SizeOrUnusedBytes = Size & SizeOrUnusedBytesMask;
} else {
Header.SizeOrUnusedBytes =
(BlockEnd - (UserPtr + Size)) & SizeOrUnusedBytesMask;
}
void *Ptr = reinterpret_cast<void *>(UserPtr);
Chunk::storeHeader(Cookie, Ptr, &Header);
if (&__scudo_allocate_hook)
__scudo_allocate_hook(Ptr, Size);
return Ptr;
}
void deallocate(void *Ptr, AllocType Type, uptr DeleteSize = 0,
UNUSED uptr Alignment = MinAlignment) {
// For a deallocation, we only ensure minimal initialization, meaning thread
// local data will be left uninitialized for now (when using ELF TLS). The
// fallback cache will be used instead. This is a workaround for a situation
// where the only heap operation performed in a thread would be a free past
// the TLS destructors, ending up in initialized thread specific data never
// being destroyed properly. Any other heap operation will do a full init.
initThreadMaybe(/*MinimalInit=*/true);
if (&__scudo_deallocate_hook)
__scudo_deallocate_hook(Ptr);
if (UNLIKELY(!Ptr))
return;
if (UNLIKELY(!isAligned(reinterpret_cast<uptr>(Ptr), MinAlignment)))
reportMisalignedPointer(AllocatorAction::Deallocating, Ptr);
UnpackedHeader Header;
Chunk::loadHeader(Cookie, Ptr, &Header);
if (UNLIKELY(Header.State != ChunkAllocated))
reportInvalidChunkState(AllocatorAction::Deallocating, Ptr);
if (Options.DeallocTypeMismatch) {
if (Header.AllocType != Type) {
// With the exception of memalign'd Chunks, that can be still be free'd.
if (UNLIKELY(Header.AllocType != FromMemalign || Type != FromMalloc))
reportDeallocTypeMismatch(AllocatorAction::Deallocating, Ptr,
Header.AllocType, Type);
}
}
const uptr Size = getSize(Ptr, &Header);
if (DeleteSize && Options.DeleteSizeMismatch) {
if (UNLIKELY(DeleteSize != Size))
reportDeleteSizeMismatch(Ptr, DeleteSize, Size);
}
quarantineOrDeallocateChunk(Ptr, &Header, Size);
}
void *reallocate(void *OldPtr, uptr NewSize, uptr Alignment = MinAlignment) {
initThreadMaybe();
// The following cases are handled by the C wrappers.
DCHECK_NE(OldPtr, nullptr);
DCHECK_NE(NewSize, 0);
if (UNLIKELY(!isAligned(reinterpret_cast<uptr>(OldPtr), MinAlignment)))
reportMisalignedPointer(AllocatorAction::Reallocating, OldPtr);
UnpackedHeader OldHeader;
Chunk::loadHeader(Cookie, OldPtr, &OldHeader);
if (UNLIKELY(OldHeader.State != ChunkAllocated))
reportInvalidChunkState(AllocatorAction::Reallocating, OldPtr);
// Pointer has to be allocated with a malloc-type function. Some
// applications think that it is ok to realloc a memalign'ed pointer, which
// will trigger this check.
if (Options.DeallocTypeMismatch) {
if (UNLIKELY(OldHeader.AllocType != FromMalloc))
reportDeallocTypeMismatch(AllocatorAction::Reallocating, OldPtr,
OldHeader.AllocType, FromMalloc);
}
const uptr OldSize = getSize(OldPtr, &OldHeader);
// If the new size is identical to the old one, or lower but within an
// acceptable range, we just keep the old chunk, and udpate its header.
if (NewSize == OldSize)
return OldPtr;
if (NewSize < OldSize) {
const uptr Delta = OldSize - NewSize;
if (Delta < (SizeClassMap::MaxSize / 2)) {
UnpackedHeader NewHeader = OldHeader;
NewHeader.SizeOrUnusedBytes =
(OldHeader.ClassId ? NewHeader.SizeOrUnusedBytes - Delta
: NewHeader.SizeOrUnusedBytes + Delta) &
SizeOrUnusedBytesMask;
Chunk::compareExchangeHeader(Cookie, OldPtr, &NewHeader, &OldHeader);
return OldPtr;
}
}
// Otherwise we allocate a new one, and deallocate the old one.
void *NewPtr = allocate(NewSize, FromMalloc, Alignment);
if (NewPtr) {
memcpy(NewPtr, OldPtr, Min(NewSize, OldSize));
quarantineOrDeallocateChunk(OldPtr, &OldHeader, OldSize);
}
return NewPtr;
}
// TODO(kostyak): while this locks the Primary & Secondary, it still allows
// pointers to be fetched from the TSD.
void disable() {
initThreadMaybe();
Primary.disable();
Secondary.disable();
}
void enable() {
initThreadMaybe();
Secondary.enable();
Primary.enable();
}
void printStats() {
disable();
Primary.printStats();
Secondary.printStats();
Quarantine.printStats();
enable();
}
void releaseToOS() { Primary.releaseToOS(); }
// Iterate over all chunks and call a callback for all busy chunks located
// within the provided memory range. Said callback must not use the heap or a
// deadlock will ensue. This fits Android's malloc_iterate() needs.
void iterateOverChunks(uptr Base, uptr Size, iterate_callback Callback,
void *Arg) {
initThreadMaybe();
const uptr From = Base;
const uptr To = Base + Size;
auto Lambda = [this, From, To, Callback, Arg](uptr Block) {
if (Block < From || Block > To)
return;
uptr ChunkSize;
const uptr ChunkBase = getChunkFromBlock(Block, &ChunkSize);
if (ChunkBase != InvalidChunk)
Callback(ChunkBase, ChunkSize, Arg);
};
Primary.iterateOverBlocks(Lambda);
Secondary.iterateOverBlocks(Lambda);
}
bool canReturnNull() {
initThreadMaybe();
return Options.MayReturnNull;
}
// TODO(kostyak): implement this as a "backend" to mallopt.
bool setOption(UNUSED uptr Option, UNUSED uptr Value) { return false; }
// Return the usable size for a given chunk. Technically we lie, as we just
// report the actual size of a chunk. This is done to counteract code actively
// writing past the end of a chunk (like sqlite3) when the usable size allows
// for it, which then forces realloc to copy the usable size of a chunk as
// opposed to its actual size.
uptr getUsableSize(const void *Ptr) {
initThreadMaybe();
if (UNLIKELY(!Ptr))
return 0;
UnpackedHeader Header;
Chunk::loadHeader(Cookie, Ptr, &Header);
// Getting the usable size of a chunk only makes sense if it's allocated.
if (UNLIKELY(Header.State != ChunkAllocated))
reportInvalidChunkState(AllocatorAction::Sizing, const_cast<void *>(Ptr));
return getSize(Ptr, &Header);
}
private:
typedef LargeMmapAllocator SecondaryT;
typedef typename PrimaryT::SizeClassMap SizeClassMap;
static const uptr MinAlignmentLog = SCUDO_MIN_ALIGNMENT_LOG;
static const uptr MaxAlignmentLog = 24; // 16 MB seems reasonable.
static const uptr MinAlignment = 1U << MinAlignmentLog;
static const uptr MaxAlignment = 1U << MaxAlignmentLog;
static const uptr MaxAllowedMallocSize =
FIRST_32_SECOND_64(1UL << 31, 1ULL << 40);
// Constants used by the chunk iteration mechanism.
static const u32 BlockMarker = 0x44554353U;
static const uptr InvalidChunk = ~static_cast<uptr>(0);
GlobalStats Stats;
TSDRegistryT TSDRegistry;
PrimaryT Primary;
SecondaryT Secondary;
QuarantineT Quarantine;
u32 Cookie;
struct {
u8 MayReturnNull : 1; // may_return_null
u8 ZeroContents : 1; // zero_contents
u8 DeallocTypeMismatch : 1; // dealloc_type_mismatch
u8 DeleteSizeMismatch : 1; // delete_size_mismatch
u32 QuarantineMaxChunkSize; // quarantine_max_chunk_size
} Options;
// The following might get optimized out by the compiler.
NOINLINE void performSanityChecks() {
// Verify that the header offset field can hold the maximum offset. In the
// case of the Secondary allocator, it takes care of alignment and the
// offset will always be small. In the case of the Primary, the worst case
// scenario happens in the last size class, when the backend allocation
// would already be aligned on the requested alignment, which would happen
// to be the maximum alignment that would fit in that size class. As a
// result, the maximum offset will be at most the maximum alignment for the
// last size class minus the header size, in multiples of MinAlignment.
UnpackedHeader Header = {};
const uptr MaxPrimaryAlignment = 1 << getMostSignificantSetBitIndex(
SizeClassMap::MaxSize - MinAlignment);
const uptr MaxOffset =
(MaxPrimaryAlignment - Chunk::getHeaderSize()) >> MinAlignmentLog;
Header.Offset = MaxOffset & OffsetMask;
if (UNLIKELY(Header.Offset != MaxOffset))
reportSanityCheckError("offset");
// Verify that we can fit the maximum size or amount of unused bytes in the
// header. Given that the Secondary fits the allocation to a page, the worst
// case scenario happens in the Primary. It will depend on the second to
// last and last class sizes, as well as the dynamic base for the Primary.
// The following is an over-approximation that works for our needs.
const uptr MaxSizeOrUnusedBytes = SizeClassMap::MaxSize - 1;
Header.SizeOrUnusedBytes = MaxSizeOrUnusedBytes & SizeOrUnusedBytesMask;
if (UNLIKELY(Header.SizeOrUnusedBytes != MaxSizeOrUnusedBytes))
reportSanityCheckError("size (or unused bytes)");
const uptr LargestClassId = SizeClassMap::LargestClassId;
Header.ClassId = LargestClassId;
if (UNLIKELY(Header.ClassId != LargestClassId))
reportSanityCheckError("class ID");
}
// Return the size of a chunk as requested during its allocation.
INLINE uptr getSize(const void *Ptr, UnpackedHeader *Header) {
const uptr SizeOrUnusedBytes = Header->SizeOrUnusedBytes;
if (Header->ClassId)
return SizeOrUnusedBytes;
return SecondaryT::getBlockSize(Chunk::getBlockBegin(Ptr, Header)) -
Chunk::getHeaderSize() - SizeOrUnusedBytes;
}
ALWAYS_INLINE void initThreadMaybe(bool MinimalInit = false) {
TSDRegistry.initThreadMaybe(this, MinimalInit);
}
void quarantineOrDeallocateChunk(void *Ptr, UnpackedHeader *Header,
uptr Size) {
UnpackedHeader NewHeader = *Header;
// If the quarantine is disabled, the actual size of a chunk is 0 or larger
// than the maximum allowed, we return a chunk directly to the backend.
const bool BypassQuarantine = !Quarantine.getCacheSize() || !Size ||
(Size > Options.QuarantineMaxChunkSize);
if (BypassQuarantine) {
NewHeader.State = ChunkAvailable;
Chunk::compareExchangeHeader(Cookie, Ptr, &NewHeader, Header);
void *BlockBegin = Chunk::getBlockBegin(Ptr, Header);
const uptr ClassId = NewHeader.ClassId;
if (ClassId) {
bool UnlockRequired;
auto *TSD = TSDRegistry.getTSDAndLock(&UnlockRequired);
TSD->Cache.deallocate(&Primary, ClassId, BlockBegin);
if (UnlockRequired)
TSD->unlock();
} else {
Secondary.deallocate(BlockBegin);
}
} else {
NewHeader.State = ChunkQuarantine;
Chunk::compareExchangeHeader(Cookie, Ptr, &NewHeader, Header);
bool UnlockRequired;
auto *TSD = TSDRegistry.getTSDAndLock(&UnlockRequired);
Quarantine.put(&TSD->QuarantineCache,
QuarantineCallback(*this, TSD->Cache), Ptr, Size);
if (UnlockRequired)
TSD->unlock();
}
}
// In its current use, this function only cares about valid busy chunks. This
// might change in the future.
uptr getChunkFromBlock(uptr Block, uptr *Size) {
u32 Offset = 0;
if (reinterpret_cast<u32 *>(Block)[0] == BlockMarker)
Offset = reinterpret_cast<u32 *>(Block)[1];
const uptr P = Block + Offset + Chunk::getHeaderSize();
const void *Ptr = reinterpret_cast<const void *>(P);
UnpackedHeader Header;
if (!Chunk::isValid(Cookie, Ptr, &Header) || Header.State != ChunkAllocated)
return InvalidChunk;
if (Size)
*Size = getSize(Ptr, &Header);
return P;
}
};
} // namespace scudo
#endif // SCUDO_COMBINED_H_